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Endomorphism algebras of
geometrically split abelian surfaces over Q

Francesc Fité and Xavier Guitart

We determine the set of geometric endomorphism algebras of geometrically split abelian surfaces defined
over Q. In particular we find that this set has cardinality 92. The essential part of the classification
consists in determining the set of quadratic imaginary fields M with class group C2 × C2 for which
there exists an abelian surface A defined over Q which is geometrically isogenous to the square of an
elliptic curve with CM by M. We first study the interplay between the field of definition of the geometric
endomorphisms of A and the field M. This reduces the problem to the situation in which E is a Q-curve
in the sense of Gross. We can then conclude our analysis by employing Nakamura’s method to compute
the endomorphism algebra of the restriction of scalars of a Gross Q-curve.

1. Introduction

Let A be an abelian variety of dimension g ≥ 1 defined over a number field k of degree d . Let us denote
by AQ its base change to Q. We refer to End(AQ), the Q-algebra spanned by the endomorphisms of A de-
fined over Q, as the Q-endomorphism algebra of A. For a fixed choice of g and d , it is conjectured that the
set of possibilities for End(AQ) is finite. A slightly stronger form of this conjecture, applying to endomor-
phism rings of abelian varieties over number fields, has been attributed to Coleman in [Bruin et al. 2006].

Hereafter, let A denote an abelian surface defined over Q. In the case that A is geometrically simple
(that is, AQ is simple), the previous conjecture stands widely open. If A is principally polarized and
has CM it has been shown by Murabayashi and Umegaki [2001] that End(AQ) is one of 19 possible
quartic CM fields. However, narrowing down to a finite set the possible quadratic real fields and quaternion
division algebras over Q which occur as End(AQ) for some A has escaped all attempts of proof. See also
[Orr and Skorobogatov 2018] for recent more general results which prove Coleman’s conjecture for CM
abelian varieties.

In the present paper, we focus on the case that A is geometrically split, that is, the case in which AQ

is isogenous to a product of elliptic curves, which we will assume from now on. Let A be the set of
possibilities for End(AQ), where A is a geometrically split abelian surface over Q.

Let us briefly recall how scattered results in the literature ensure the finiteness of A (we will detail the
arguments in Section 4). Indeed, if AQ is isogenous to the product of two nonisogenous elliptic curves,
then the finiteness (and in fact the precise description) of the set of possibilities for End(AQ) follows
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from [Fité et al. 2012, Proposition 4.5]. If, on the contrary, AQ is isogenous to the square of an elliptic
curve, then the finiteness of the set of possibilities for End(AQ) was established by Shafarevich [1996]
(see also [González 2011] for the determination of the precise subset corresponding to modular abelian
surfaces). In the present work, we aim at an effective version of Shafarevich’s result. Our starting point is
[Fité and Guitart 2018a, Theorem 1.4], which we recall in our particular setting.

Theorem 1.1 [Fité and Guitart 2018a]. If A is an abelian surface defined over Q such that AQ is isogenous
to the square of an elliptic curve E/Q with complex multiplication (CM) by a quadratic imaginary field M,
then the class group of M is 1, C2, or C2×C2.

It should be noted that several other works can be used to see that, in the situation of the theorem, the
exponent of the class group of M divides 2 (see [Schütt 2007; Kani 2011], for example).

While it is an easy observation that an abelian surface A as in the theorem can be found for each
quadratic imaginary field M with class group 1 or C2 (see [Fité and Guitart 2018a, Remark 2.20] and
also Section 4), the question whether such an A exists for each of the fields M with class group C2×C2

is far from trivial. The aforementioned results are thus not sufficient for the determination of the set A.
The main contribution of this article is the following theorem.

Theorem 1.2. Let M be a quadratic imaginary field with class group C2×C2. There exists an abelian
surface defined over Q such that AQ is isogenous to the square of an elliptic curve E/Q with CM by M if
and only if the discriminant of M belongs to the set{

−84,−120,−132,−168,−228,−280,−372,−408,−435,

−483,−520,−532,−595,−627,−708,−795,−1012,−1435
}
.

(1-1)

The only imaginary quadratic fields with class group C2×C2 whose discriminant does not belong to
(1-1) are

Q(
√
−195), Q(

√
−312), Q(

√
−340), Q(

√
−555), Q(

√
−715), Q(

√
−760). (1-2)

With Theorem 1.2 at hand, the determination of the set A follows as a mere corollary (see Section 4
for the proof).

Corollary 1.3. The set A of Q-endomorphism algebras of geometrically split abelian surfaces over Q is
made of :

(i) Q×Q, Q×M, M1×M2, where M, M1 and M2 are quadratic imaginary fields of class number 1;

(ii) M2(Q), M2(M), where M is a quadratic imaginary field with class group 1, C2, or C2 ×C2 and
distinct from those listed in (1-2).

In particular, the set A has cardinality 92.

The paper is organized in the following manner. In Section 2 we attach a c-representation %V of
degree 2 to an abelian surface A defined over Q such that AQ is isogenous to the square of an elliptic curve
E/Q with CM by M. It is well known that E is a Q-curve and that one can associate a 2-cocycle cE to E .
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A c-representation is essentially a representation up to scalar and it is thus a notion closely related to that
of projective representation. In the case of the c-representation %V attached to A, the scalar that measures
the failure of %V to be a proper representation is precisely the 2-cocycle cE . Choosing the language
of c-representations instead of that of projective representations has an unexpected payoff: the tensor
product of a c-representation % and its contragradient c-representation %∗ is again a proper representation.
We show that %V ⊗ %

∗

V coincides with the representation of GQ on the 4-dimensional M-vector space
End(AQ). This representation has been studied in detail in [Fité and Sutherland 2014] and the tensor
decomposition of End(AQ) is exploited in Theorems 2.20 and 2.27 to obtain obstructions on the existence
of A. These obstructions extend to the general case those obtained in [Fité and Guitart 2018a, §3.1, §3.2]
under very restrictive hypotheses. The c-representation point of view also allows us to understand in
a unified manner what we called group theoretic and cohomological obstructions in [Fité and Guitart
2018a]. It should be noted that one can define analogues of %V in other more general situations. For
example, a parallel construction in the context of geometrically isotypic abelian varieties potentially of
GL2-type has been exploited in [Fité and Guitart 2019] to determine a tensor factorization of their Tate
modules. This can be used to deduce the validity of the Sato–Tate conjecture for them in certain cases.

In Section 3, we describe a method of Nakamura to compute the endomorphism algebra of the restriction
of scalars of certain Gross Q-curves (see Definition 2.9 below for the precise definition of these curves).
Then we apply this method to all Gross Q-curves with CM by a field M of class group C2×C2. This com-
putation plays a key role in the proof of Theorem 1.2, both in proving the existence of the abelian surfaces
for the fields M different from those listed in (1-2), and in proving the nonexistence for the fields of (1-2).

In Section 4 we culminate the proofs of Theorem 1.2 and Corollary 1.3 by assembling together the
obstructions and existence results from Sections 2 and 3. We essentially show that we can use the results of
Section 2 to reduce to the case of Gross Q-curves, and then deal with this case using the results of Section 3.

Notations and terminology. For k a number field, we will work in the category of abelian varieties up
to isogeny over k. Note that isogenies become invertible in this category. Given an abelian variety A
defined over k, the set of endomorphisms End(A) of A defined over k is endowed with a Q-algebra
structure. More generally, if B is an abelian variety defined over k, we will denote by Hom(A, B) the
Q-vector space of homomorphisms from A to B that are defined over k. We note that for us End(A)
and Hom(A, B) denote what some other authors call End0(A) and Hom0(A, B). We will write A∼ B to
mean that A and B are isogenous over k. If L/k is a field extension, then AL will denote the base change
of A from k to L . In particular, we will write AL ∼ BL if A and B become isogenous over L , and we
will write Hom(AL , BL) to refer to what some authors write as HomL(A, B).

2. c-representations and k-curves

The goal of this section is to obtain obstructions to the existence of abelian surfaces defined over Q

such that End(AQ)'M2(M), where M is a quadratic imaginary field. To this purpose, we analyze the
interplay between the k-curves and c-representations that arise from them.
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2A. c-representations: general definitions. Let V be a vector space of finite dimension over a field k
and let G be a finite group. We say that a map

%V : G→ GL(V )

is a c-representation (of the group G) if %V (1)= 1 and there exists a map

cV : G×G→ k×

such that for every σ, τ ∈ G one has

%V (σ )%V (τ )= %V (στ)cV (σ, τ ). (2-1)

Remark 2.1. The following properties follow easily from the definition:

(i) We have

%V (σ
−1)= %V (σ )

−1cV (σ
−1, σ ) and %V (σ

−1)= %V (σ )
−1cV (σ, σ

−1).

In particular, cV (σ, σ
−1)= cV (σ

−1, σ ).

(ii) If cV ( · , · )= 1, the notion of c-representation corresponds to the usual notion of representation.

Let V and W be c-representations of the group G. Let T = Hom(V,W ) denote the space of k-linear
maps from V to W. A homomorphism of c-representations from V to W is a k-linear map f ∈ T such that

f (v)= %W (σ )( f (%V (σ )
−1v))

for every v ∈ V and σ ∈ G.
Consider now the map

%T : G→ GL(Hom(V,W )),

defined by
(%T (σ ) f )(v)= %W (σ )( f (%V (σ )

−1v)).

Proposition 2.2. The map %T together with the map cT : G×G→ k× defined by cT = c−1
V · cW equip T

with the structure of a c-representation.

Before proving the proposition we show a particular case. In the case that W is k equipped with the
trivial action of G, let us write V ∗ = T and %∗ = %T . In this case, %∗(σ ) is the inverse transpose of %V (σ ).
The assertion of the proposition is then immediate from (2-1).

The following two lemmas, whose proof is straightforward, imply the proposition.

Lemma 2.3. The maps
%⊗ : G→ GL(V ⊗W ),

defined by %⊗(σ )(v⊗w)= %V (σ )(v)⊗ %W (σ )(w) and c⊗ = cV · cW endow V ⊗W with a structure of
c-representation.

Lemma 2.4. The map
φ :W ⊗ V ∗→ T

defined by φ(w⊗ f )(v)= f (v)w is an isomorphism of c-representations.
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Corollary 2.5. When V =W, the c-representation T is in fact a representation.

2B. k-curves: general definitions. We briefly recall some definitions and results regarding Q-curves
and, more generally, k-curves with complex multiplication. More details can be found in [Fité and Guitart
2018a, §2.1] and the references therein (especially [Quer 2000; Ribet 1992; Nakamura 2004]).

Let E/Q be an elliptic curve and let k be a number field, whose absolute Galois group we denote by Gk .

Definition 2.6. We say that E is a k-curve if for every σ ∈ Gk there exists an isogeny µσ : σE→ E .

Definition 2.7. We say that E is a Ribet k-curve if E is a k-curve and the isogenies µσ can be taken to
be compatible with the endomorphisms of E , in the sense that the diagram

σE
σϕ

��

µσ
// E

ϕ

��
σE

µσ
// E

(2-2)

commutes for all σ ∈ Gk and all ϕ ∈ End(E).

Remark 2.8. (i) Observe that if E does not have CM, then E is a k-curve if and only if it is a Ribet
k-curve. If E has CM (say by a quadratic imaginary field M), it is well known that E is isogenous
to all of its Galois conjugates and hence it is always a k-curve; it is a Ribet k-curve if and only if
M ⊆ k; see [Silverman 1994, Theorem 2.2].

(ii) We warn the reader that in the present paper we are using a slightly different terminology from that
of [Fité and Guitart 2018a]: as in [Fité and Guitart 2018a] the only relevant notion was that of a
Ribet k-curve, we called Ribet k-curves simply k-curves.

Let K be a number field containing k. We say that an elliptic curve E/K is a k-curve defined over K
(resp. a Ribet k-curve defined over K ) if EQ is a k-curve (resp. a Ribet k-curve). We will say that E is
completely defined over K if, in addition, all the isogenies µσ : σE→ E can be taken to be defined over K.

Definition 2.9. Let H denote the Hilbert class field of M and let E/H be an elliptic curve with CM
by M. We say that E is a Gross Q-curve if E is completely defined over H.

The next proposition characterizes the existence of Gross Q-curves and Ribet M-curves with CM
by M defined over the Hilbert class field H.

Proposition 2.10. Let M be a quadratic imaginary field and let D denote its discriminant. Then:

(i) There exists a Ribet M-curve E∗ with CM by M and completely defined over H.

(ii) There exists a Gross Q-curve E∗ with CM by M (and completely defined over H ) if and only if D is
not of the form

D =−4p1 . . . pt−1, (2-3)

where t ≥ 2 and p1, . . . , pt−1 are primes congruent to 1 modulo 4.
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The first part of the previous proposition is a weaker form of [Shimura 1971, Proposition 5, p. 521]
(see also [Nakamura 2001, Remark 1]). For the second part, we refer to [Gross 1980, §11; Nakamura
2004, Proposition 5]. Discriminants of the form (2-3) are called exceptional.

Suppose from now on that E is a k-curve defined over K with CM by an imaginary quadratic field M.
Fix a system of isogenies {µσ : σE→ E}σ∈Gk . By enlarging K if necessary, we can always assume that
K/k is Galois and that E is completely defined over K. We will equip End(E) with the following action.
For σ ∈ Gal(K/k) and ϕ ∈ End(E) define

σ ? ϕ = µσ ◦
σϕ ◦µ−1

σ .

Note that if E is a Ribet k-curve, then this action is trivial. If we regard M as a Gal(K/k)-module
by means of the natural Galois action (which is actually the trivial action when k contains M) and
End(E) endowed with the action defined above, then the identification of End(E) with M becomes a
Gal(K/k)-equivariant isomorphism. The map

cK
E : Gal(K/k)×Gal(K/k)→ M×, (σ, τ ) 7→ µστ ◦

σµ−1
τ ◦µ

−1
σ

satisfies the condition

(% ? cK
E (σ, τ )) · c

K
E (%σ, τ )

−1
· cK

E (%, στ) · c
K
E (%, σ )

−1
= 1, (2-4)

for %, σ, τ ∈ Gal(K/k), and is then a 2-cocycle.1 Denote the cohomology class in H 2(Gal(K/k),M×)
corresponding to cK

E by γ K
E . The class γ K

E only depends on the K -isogeny class of E .
The next result is a consequence of Weil’s descent criterion, extended to varieties up to isogeny by

Ribet [1992, §8].

Theorem 2.11 (Ribet–Weil). Suppose that E is a Ribet k-curve completely defined over K (and hence
M ⊆ k). Let L be a number field with k ⊆ L ⊆ K, and consider the restriction map

res : H 2(Gal(K/k),M×)→ H 2(Gal(K/L),M×).

If res(γ K
E )= 1, there exists an elliptic curve C/L such that E ∼ CK .

2C. M-curves from squares of CM elliptic curves. Let M be a quadratic imaginary field. Let A be an
abelian surface defined over Q such that AQ is isogenous to E2, where E is an elliptic curve defined over
Q with CM by M. Let K/Q denote the minimal extension over which

End(AQ)' End(AK ).

By the theory of complex multiplication, K contains the Hilbert class field H of M. Note also that K/Q
is Galois and the possibilities for Gal(K/Q) can be read from [Fité et al. 2012, Table 8]. For our purposes,

1Actually, this is the inverse of the cocycle considered in [Fité and Guitart 2018a], but this does not affect any of the results
that we will use.
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it is enough to recall that

Gal(K/M)'


Cr for r ∈ {1, 2, 3, 4, 6},
Dr for r ∈ {2, 3, 4, 6},
A4, S4.

(2-5)

Here, Cr denotes the cyclic group of r elements, Dr denotes the dihedral group of 2r elements, and A4

(resp. S4) stands for the alternating (resp. symmetric) group on 4 letters.
We can (and do) assume that E is in fact defined over K, and then we have that AK ∼ E2. For

σ ∈ Gal(K/Q) we have that (σ E)2 ∼ σ AK = AK ∼ E2. Therefore, Poincaré’s decomposition theorem
implies that E is a Q-curve completely defined over K.

For the purposes of this article, we need to consider the following (slightly more general) situation:
Let N/M be a Galois subextension of K/M, and let E∗ be a Ribet M-curve which is completely defined
over N and such that EQ ∼ E∗

Q
. Observe that there always exist N and E∗ satisfying these conditions,

for example by taking N = K and E∗ = E ; but in Sections 2D and 2E we will exploit certain situations
where N ( K and E∗ 6= E.

Then we can consider two cohomology classes: the class γ K
E attached to E , and the class γ N

E∗ attached
to E∗. We recall the following key result about γ K

E , which is a particular case of [Fité and Guitart 2018a,
Corollary 2.4].

Theorem 2.12. The cohomology class γ K
E is 2-torsion.

Denote by U the set of roots of unity of M and put P = M×/U. The same argument of [Fité
and Guitart 2018a, Proof of Theorem 2.14] proves the following decomposition of the 2-torsion of
H 2(Gal(K/M),M×):

H 2(Gal(K/M),M×)[2] ' H 2(Gal(K/M),U )[2]×Hom(Gal(K/M), P/P2). (2-6)

If M 6=Q(i),Q(
√
−3) this particularizes to

H 2(Gal(K/M),M×)[2] ' H 2(Gal(K/M), {±1})×Hom(Gal(K/M), P/P2). (2-7)

For γ ∈ H 2(Gal(K/M),M×)[2] we will denote by (γ±, γ ) its components under the isomorphism (2-7);
we will refer to γ± as the sign component and to γ as the degree component.

In order to study the relation between γ K
E and γ N

E∗ , define L/K to be the smallest extension such
that E∗L and EL are isogenous. Since all the endomorphisms of E are defined over K, this is also the
smallest extension L/K such that Hom(E∗L , EL)=Hom(E∗

Q
, EQ). The extension L/Q is Galois. Indeed,

for σ ∈GQ put L ′= σL and let βσ : σE∗→ E∗ and µσ : σE→ E be isogenies defined over N and over K
respectively; then, if φ : E∗L → EL is an isogeny defined over L we find that µσ ◦ σφ ◦β−1

σ is an isogeny
defined over L ′ between E∗L ′ and EL ′ , so that L ⊆ L ′ and therefore L = L ′.

One can also characterize L/K as the minimal extension such that

Hom(E∗
Q
, AQ)' Hom(E∗L , AL).
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Denote by

infK
N : H

2(Gal(N/M),M×)→ H 2(Gal(K/M),M×)

the inflation map in Galois cohomology.

Lemma 2.13. Suppose that M 6=Q(i),Q(
√
−3). Then

infK
N (γ

N
E∗)= w · γ

K
E ,

for some w ∈ H 2(Gal(K/M), {±1}).

Proof. Since EL ∼ (E∗)L we have that

infL
N (γ

N
E∗)= infL

K (γ
K
E ). (2-8)

Now consider the following piece of the inflation–restriction exact sequence

H 1(Gal(L/K ),M×) t
→ H 2(Gal(K/M),M×)

infL
K
−→ H 2(Gal(L/M),M×). (2-9)

Equality (2-8) implies that infK
N (γ

N
E∗) and γ K

E have the same image under the inflation map infL
K , and thus

infK
N (γ

N
E∗)= t (v) · γ K

E

for some v ∈ H 1(Gal(L/K ),M×). If M 6=Q(i),Q(
√
−3) we have that

H 1(Gal(L/K ),M×)' Hom(Gal(L/K ), {±1})

and therefore t (v) belongs to H 2(Gal(K/M), {±1}). �

Observe that from Theorem 2.12 one cannot deduce that the class γ N
E∗ is 2-torsion, since AN is not

isogenous to (E∗)2 in general. By Lemma 2.13, what we do deduce is that infK
N (γ

N
E∗)

2
= 1. Therefore,

once again by the inflation–restriction exact sequence

H 1(Gal(K/N ),M×) t
→ H 2(Gal(N/M),M×) infK

N
−→ H 2(Gal(K/M),M×) (2-10)

we have that

(γ N
E∗)

2
= t (µ) for some µ ∈ H 1(Gal(K/N ),M×). (2-11)

The following technical lemma will be used in Section 2E below.

Lemma 2.14. Suppose that N/M is abelian and that M 6=Q(i),Q(
√
−3). Let cN

E∗ be a cocycle repre-
senting the class γ N

E∗ . Then cN
E∗(σ, τ )=±cN

E∗(τ, σ ) for all σ, τ ∈ Gal(N/M).

Proof. Since M 6=Q(i),Q(
√
−3) we have that

H 1(Gal(K/N ),M×)= Hom(Gal(K/N ), {±1}). (2-12)

By (2-11) and (2-12) we can suppose that there exists a map d : Gal(N/M)→ M× such that

cN
E∗(σ, τ )

2
= d(σ )d(τ )d(στ)−1

· t (µ)(σ, τ ),
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where t (µ)(σ, τ ) ∈ {±1}. Therefore

cN
E∗(σ, τ )

2
=±d(σ )d(τ )d(στ)−1

=±d(σ )d(τ )d(τσ )−1
=±cN

E∗(τ, σ )
2.

We see that cN
E∗(σ, τ )/c

N
E∗(τ, σ ) is a root of unity in M, and hence is equal to ±1. �

2D. c-representations from squares of CM elliptic curves. Keep the notations from Section 2C. We
will denote by V the M-module Hom(E∗L , AL). Fix a system of isogenies {µσ : σE∗→ E∗}σ∈Gal(L/M).
We do not have a natural action of Gal(L/M) on V, but the next lemma says that we can use the chosen
system of isogenies to define a c-action on V.

Lemma 2.15. The map
%V : Gal(L/M)→ GL(V )

defined by
%V ( f )= σ f ◦µ−1

σ for σ ∈ Gal(L/M), f ∈ V

and the 2-cocycle cL
E∗ endow the module V with a structure of a c-representation.

Proof. This is tautological:

%V (σ )%V (τ )( f )= στ f ◦ σµ−1
τ ◦µ

−1
σ =

στ f ◦µ−1
στ · c

L
E∗(σ, τ )= %V (στ)( f )cL

E∗(σ, τ ). �

Let now R denote the M-module End(AK ). It is equipped with the natural Galois conjugation action
of Gal(L/M), which factors through Gal(K/M) and which we sometimes will write as %R(σ )(ψ)=

σψ .
Let T denote Hom(V, V ), equipped with the c-representation structure given by Lemma 2.15 and
Proposition 2.2. Note that by Corollary 2.5, we know that T is actually a M[Gal(L/M)]-module.

Lemma 2.16. The map

8 : R→ T ' V ⊗ V ∗, 8(ψ)( f )= ψ ◦ f, for f ∈ V, ψ ∈ End(AK )

is an isomorphism of c-representations (and thus of M[Gal(L/M)]-modules).

Proof. The fact that 8 is a morphism of c-representations is straightforward:

%T (σ )(8(
σ−1
ψ))( f )= %V (σ )(8(

σ−1
ψ)(%V (σ )

−1( f )))

= %V (σ )(
σ−1
ψ ◦ %V (σ

−1)( f )cL
E∗(σ

−1, σ )−1)

= ψ ◦ f ◦ σµ−1
σ−1µ

−1
σ cL

E∗(σ
−1, σ )−1

=8(ψ)( f ),

where we have used Remark 2.1 in the second and last equalities. The lemma follows by noting that 8 is
clearly injective and that both R and T have dimension 4 over M. �

We now describe the M[Gal(K/M)]-module structure of R. It follows from (2-5) that the order r of
an element σ ∈ Gal(K/M) is 1, 2, 3, 4, or 6.

Lemma 2.17. Tr %R(σ )= 2+ ζr + ζ r , where ζr is a primitive r-th root of unity.
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Remark 2.18. This lemma is proven in [Fité and Sutherland 2014, Proposition 3.4] under the strong
running hypothesis of that paper: in our setting that hypothesis would say that there exists E∗ defined
over M such that AQ ∼ E∗2

Q
(i.e., that N can be taken to be M, in the notation of the previous section).

Proof. We claim that Tr(%R) ∈ M is in fact rational. Let us postpone the proof of this claim until the end
of the proof of the lemma. Assuming it, we have that

TrM/Q(Tr(%R(σ )))= 2 Tr(%R)(σ ). (2-13)

But if %RQ
is the representation afforded by R regarded as an 8-dimensional module over Q, we have

TrM/Q(Tr(%R(σ )))= Tr(%RQ
)(σ )= 2(2+ ζr + ζ r ), (2-14)

where the last equality is [Fité et al. 2012, Proposition 4.9]. The comparison of (2-13) and (2-14) concludes
the proof of the lemma.

We turn now to prove the rationality of Tr %R . We first recall the aforementioned proof (that of [Fité
and Sutherland 2014, Proposition 3.4]) which uses the fact that we can choose E∗ to be defined over M.
In this case, we have that V is an M[Gal(L/M)]-module, that Tr(%V ∗) is a sum of roots of unity so that
Tr(%V ∗)= Tr(%V ), and hence that Tr(%R)= Tr(%V ) ·Tr %V belongs to Q.

For the general case, assume that Tr %R does not belong to Q. Since it is a sum of roots of unity of
orders diving either 4 or 6, then M would be Q(i) or Q(

√
−3), but then we could take a model of E∗

defined over M, and by the above paragraph, the trace Tr %R would be rational, which is a contradiction. �

2E. Obstructions. Keep the notations from Sections 2C and 2D. Let S denote the normal subgroup of
Gal(K/M) generated by the square elements. In this section, we make the following hypotheses.

Hypothesis 2.19. (i) There exists a Ribet M-curve E∗ with CM by M completely defined over N, where
N/M is the subextension of K/M fixed by S.

(ii) M 6=Q(i), Q(
√
−3).

Let σ ∈ Gal(K/M) be an element of order r ∈ {4, 6}. Let

·̄ : Gal(K/M)→ Gal(N/M)' Gal(K/M)/S (2-15)

denote the natural projection map. Note that Gal(N/M) is a group of exponent dividing 2.

Theorem 2.20. Under Hypothesis 2.19, we have:

(i) If r = 4, then 2cN
E∗(σ , σ ) belongs to ±(M×)2.

(ii) If r = 6, then 3cN
E∗(σ , σ ) belongs to ±(M×)2.

Proof. First of all, note that E∗ is completely defined over N. Thus we can, and do, assume that cL
E∗ is

the inflation of cN
E∗ . Let s ∈ Gal(L/M) be a lift of σ . By Hypothesis 2.19(ii), we have that [L : K ] ≤ 2.
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Therefore, the order of s divides 2r . We then have

%V (s)2r
= %V (s2)r cN

E∗(σ , σ )
r
= %V (s2r )cN

E∗(σ , σ )
r
= cN

E∗(σ , σ )
r , (2-16)

where we have used that cN
E∗(σ

2e, σ 2e′)= 1 for any pair of integers e, e′. Let α and β be the eigenvalues
of %V (s). By (2-16), we have that α2r

= cN
E∗(σ , σ )

r , from which we deduce that ωrα
2
= cN

E∗(σ , σ )∈ M×,
where ωr is a (not necessarily primitive) r -th root of unity.

Since the eigenvalues of %V ∗(s) are 1/α and 1/β, by Lemmas 2.17 and 2.16 we have that

2+ ζr + ζ r = (α+β)
( 1
α
+

1
β

)
; equivalently, α2

+β2
= (ζr + ζ r )αβ. (2-17)

This means that α/β satisfies the r -th cyclotomic polynomial and thus, by reordering α and β if necessary,
we have that α = βζr .

Combining this with (2-17), we get

(2+ ζr + ζ r )cN
E∗(σ , σ )= (2+ ζr + ζ r )ωrα

2
= (2+ ζr + ζ r )αβωrζr = (α+β)

2ωrζr .

Since the left-hand side is in M×, the fact that α+β ∈ M× tells us that ωrζr ∈ M×. If ωrζr is not rational,
then M =Q(ζr ), which contradicts Hypothesis 2.19(ii). If ωrζr ∈Q, since it is a root of unity, it must be
equal to ±1 and thus we get

±(2+ ζr + ζ r )cN
E∗(σ , σ )= (α+β)

2.

Therefore, (2+ ζr + ζ r )cN
E∗(σ , σ ) belongs to ±(M×)2. �

Remark 2.21. It follows from the above proof that if r = 4, then any lift s ∈ Gal(L/M) of σ has order
2r = 8. Indeed, if the order of s was r , then arguing as in (2-16), we would obtain %V (s)r = cN

E∗(σ , σ )
r/2,

from which we would infer ωr/2α
2
= cN

E∗(σ , σ ), for some (not necessarily primitive) r/2-th root of unity.
We could then run the same argument as above, but since ωr/2ζr is never rational, we would deduce now
that M =Q(i). Note that if r = 6 it can certainly happen that ωr/2ζr ∈Q.

Until the end of this section, we make the following additional assumption on M.

Hypothesis 2.22. (i) Gal(K/M)' D4 or D6.

(ii) M 6=Q(i), Q(
√
−3).

Hypothesis 2.22(i) implies that N/M is a biquadratic extension. By Proposition 2.10(i), there exists a
Ribet M-curve E∗ with CM by M completely defined over the Hilbert class field H of M. Using [Fité
and Guitart 2018a, Theorem 2.14], it is immediate to see that H ⊆ N, so that Hypothesis 2.22 implies
Hypothesis 2.19.

The next two propositions describe the structure of the group Gal(L/M).

Proposition 2.23. If Gal(K/M) ' D4, then Gal(L/M) is isomorphic to either the dihedral group D8;
the generalized dihedral group QD8 of order 16; or the generalized quaternion group Q16.2

2The gap identification numbers of QD8 and Q16 are 〈16, 8〉 and 〈16, 9〉, respectively.
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Proof. If Gal(K/M)' D4, then by Remark 2.21 we have that any element of Gal(L/M) projecting onto
an element of Gal(K/M) of order 4 must have order 8. The groups of order 16 with a quotient isomorphic
to D4 satisfying the previous property are those in the statement of the proposition. �

Proposition 2.24. If Gal(K/M)' D6, there exists a Ribet M-curve E∗ completely defined over N with
CM by M such that E ∼ E∗K and hence L = K and Gal(L/M)' D6.

Proof. Recall the cohomology class γ K
E ∈ H 2(Gal(K/M),M×)[2] attached to E and consider the

restriction map
res : H 2(Gal(K/M),M×)→ H 2(Gal(K/N ),M×).

We will first see that γ = resγ K
E is trivial. Recall the decomposition (2-7) of the 2-torsion cohomology

classes into degree and sign components

H 2(Gal(K/N ),M×)[2] ' H 2(Gal(K/N ), {±1})×Hom(Gal(K/N ), P/P2),

and the notation γ± (resp. γ ) for the sign component (resp. degree component) of γ . Since Gal(K/N )'C3

is the subgroup of Gal(K/M) generated by the squares, we have that γ is trivial. Since

H 2(Gal(K/N ), {±1})' H 2(C3, {±1})= 0,

we see that γ± is also trivial. By Theorem 2.11, there exists an elliptic curve E∗ defined over N such that
E∗K ∼ E . To see that E∗ is completely defined over N, on the one hand, note that since M 6=Q(i),Q(

√
−3),

then E∗ and any Galois conjugate σ E∗ of it are isogenous over a quadratic extension of N. On the other
hand, since E∗K ∼ E and E is completely defined over K, we have that the smallest field of definition of
Hom(E∗

Q
, σE∗

Q
) is contained in K. Since K/N is a cubic extension, we deduce that E∗ and σ E∗ are in

fact isogenous over N. �

Corollary 2.25. If Gal(K/M) ' Dr for r = 4 or 6, there exists a Ribet M-curve E∗ with CM by M
completely defined over N for which Gal(L/M) contains

(i) an element s of order 8 if r = 4 and of order 6 if r = 6;

(ii) an element t such that tst−1
= ta for 1≤ a ≤ 2r such that a ≡−1 (mod r).

Proof. This is obvious when Gal(L/M) is dihedral. For the other options allowed by Proposition 2.23,
recall that

QD8 ' 〈s, t | s8, t2, tsts5
〉, Q16 ' 〈s, t | s8, t2s4, tst−1s〉. �

Remark 2.26. It is clear from the proof of Proposition 2.24 that, in the case that N = H and H is not
exceptional, we can choose E∗ in the above corollary to be a Gross Q-curve.

Until the end of this section, we will assume that E∗ is as in the previous corollary. Let s and t be also
as in the corollary, and let σ and τ be the images of s and t under the projection map

Gal(L/M)→ Gal(K/M).
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Recall also the projection map ·̄ :Gal(K/M)→Gal(N/M) and note that σ and τ are nontrivial elements
of Gal(N/M).

Theorem 2.27. Under Hypothesis 2.22, we have cN
E∗(τ , τ )=±1.

Proof. By Lemma 2.14, we have that cN
E∗(g, g′)=±cN

E∗(g
′, g) for every g, g′ ∈ Gal(N/M). Moreover,

the 2-cocycle condition (2-4) asserts that

cN
E∗(τ , τ )= cN

E∗(τ , τ )c
N
E∗(σ , 1)= cN

E∗(στ , τ )c
N
E∗(σ , τ ).

Then, we have

%V (t)%V (s)%V (t)−1
= %V (t)%V (s)%V (t−1)cN

E∗(τ , τ )= %V (ts)%V (t−1)cN
E∗(τ , σ )c

N
E∗(τ , τ )

= %V (tst−1)cN
E∗(τσ , τ )c

N
E∗(τ , σ )c

N
E∗(τ , τ )=±%V (sa)cN

E∗(τ , τ )
2.

(2-18)

It is easy to observe that
%V (s)a = %V (sa)cN

E∗(σ , σ )
(a−1)/2. (2-19)

Letting α and β be the eigenvalues of %V (s), taking traces of (2-18), and applying (2-19), we obtain

(α+β)=±(αa
+βa)cN

E∗(σ , σ )
−(a−1)/2cN

E∗(τ , τ )
2.

But as in the proof of Theorem 2.20, we have β = ζrα and cN
E∗(σ , σ )= ωrα

2, where ζr and ωr are r -th
roots of unity and ζr is primitive. This, together with the fact that a ≡−1 (mod r), permits to write the
above equation as

±
1+ ζr

ω
−(a−1)/2
r (1+ ζ r )

= cN
E∗(τ , τ )

2
∈ (M×)2.

One easily verifies that (1+ ζr )/(1+ ζ r ) is an r-th root of unity. Therefore, the left-hand side of the
above equation is a root of unity in M×, and hence it must be ±1. �

3. Restriction of scalars of Gross Q-curves

For the convenience of the reader, in this section we review some results of [Nakamura 2004] on Gross
Q-curves, to which we refer for more details and proofs.

Let M be an imaginary quadratic field. Throughout this section, we make the following hypothesis.

Hypothesis 3.1. (i) M is nonexceptional.

(ii) M has class group isomorphic to C2×C2.

Remark 3.2. If M has class group isomorphic to C2×C2, then the discriminant D of M belongs to the set{
−84,−120,−132,−168,−195,−228,−280,−312,−340,−372,−408,−435,

−483,−520,−532,−555,−595,−627,−708,−715,−760,−795,−1012,−1435
}
.

This list can be easily obtained from [Watkins 2004], for example. Among them, only−340 is exceptional.
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Then, by Proposition 2.10, there exists a Gross Q-curve E with CM by M, which is thus completely
defined over the Hilbert class field H of M. The aim of this section is to describe Nakamura’s method for
computing the endomorphism algebra of the restriction of scalars of a Gross Q-curve, which we will then
apply to all Gross Q-curves attached to M satisfying Hypothesis 3.1. Our account of Nakamura’s method
will be only in the particular case where M has class group C2×C2, which is the case of interest to us.

As seen in Section 2B, one can associate a cohomology class γE :=γ
H
E in the group H 2(Gal(H/Q),M×)

to E . The set of cohomology classes arising from Gross Q-curves over H has cardinality 8 (see [Nakamura
2004, Proposition 4]), and we regard the set of Gross Q-curves over H as partitioned into 8 equivalence
classes according to their cohomology class.

Let ResH/M(E) denote Weil’s restriction of scalars of E . This variety is a priori defined over M, but
it can be defined over Q, in the sense that ResH/M(E) ' (BE)M for some variety BE/Q. It turns out
that the endomorphism algebra DE = End(BE) only depends on the cohomology class γE [Nakamura
2004, Proposition 6]. Nakamura devised a method for computing DE in terms of the Hecke character
attached to E , which he applied to compute all the endomorphism algebras arising in this way from Gross
Q-curves in the cases where D =−84 and D =−195. We extend his computation to the remaining 21
nonexceptional discriminants of Remark 3.2.

3A. Hecke characters of Gross Q-curves. The first step is to compute a set of Hecke characters whose
associated elliptic curves represent all the equivalence classes of Gross Q-curves.

Local characters. We begin by defining certain local characters that will be used to describe the Hecke
characters. Let IM be the group of ideles of M. If p is a prime of M, we denote by Up =O×M,p the group
of local units. Also, for a rational prime p put Up =

∏
p|p Up.

Suppose that p is odd and inert in M. Then define ηp as the unique character ηp :Up→ {±1} such
that ηp(−1)= (−1)

1
2 (p−1).

Suppose now that 2 is ramified in M and write D = 4m. If m is odd, then

U2/U 2
2 ' (Z/2Z)3 ' 〈

√
m, 3− 2

√
m, 5〉.

Define η−4 :U2→ {±1} to be the character with kernel 〈3− 2
√

m, 5〉. If m is even then

U2/U 2
2 ' (Z/2Z)3 ' 〈1+

√
m,−1, 5〉.

Define η8 to be the character with kernel 〈1+
√

m,−1〉 and η−8 the character with kernel 〈1+
√

m,−5〉.

Hecke characters. Let UM =
∏

p Up be the maximal compact subgroup of IM . Let S be a finite set of
primes of M and put US =

∏
p∈S Up. Suppose that η :US→ {±1} is a continuous homomorphism such

that η(−1)=−1. Next, we explain how to construct from η a Hecke character φ : IM→C× (not uniquely
determined) that gives rise, in certain cases, to a Gross Q-curve.

First of all, extend η to a character that we denote by the same name η :UM → {±1} by composing
with the projection UM→US . Now this character η can be extended to a character η̃ :UM M×M×

∞
→C×

by imposing that
η̃(M×)= 1, η̃(z)= z−1 for z ∈ M×

∞
. (3-1)
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Let φ : IM→C× be a Hecke character that extends η̃ (there are [H :M] = 4 such extensions; see [Shimura
1971, p. 523]). For future reference, it will be useful to have the following formula for φ evaluated at
certain principal ideals.

Lemma 3.3. Suppose that (α) is a principal ideal of M such that vp(α)= 0 for all p ∈ S, and denote by
αS ∈US the natural image of α in US . Then

φ((α))= η(αS)α∞, (3-2)

where α∞ denotes the image of α in M∞ = C.

Proof. If we write (α)=
∏

q∈T qvq(α), where T denotes the support of (α), then

φ((α))=
∏
q∈T

φq(αq),

where φq denotes the restriction of φ to Mq and αq the image of α in Mq. Observe that by hypothesis
S∩T =∅, and that if q 6∈ S∪T , then φq(αq)= 1, since αq belongs to Uq and φ|Uq = η̃|Uq = 1. Therefore,
we can write

φ((α))=
∏
q∈T

φq(αq)
∏
q6∈T

φq(αq)
∏
q∈S

φ−1
q (αq)=

(∏
q

φq(αq)

)
η(αS),

where we have used that η has order 2. Then, by (3-1) we have that

φ((α))=

(
φ∞(α∞)

∏
q

φq(αq)

)
φ∞(α∞)

−1η(αS)= φ(α)α∞η(αS)= α∞η(αS). �

Define now a Hecke character of H by means of ψ = φ ◦NH/M , where

NH/M : IH → IM

denotes the norm on ideles. By a result of Shimura [1971, Proposition 9], the Hecke character ψ is
attached to a Gross Q-curve if and only if φ= φ, where the bar denotes the action of complex conjugation.

For example, if D has some prime factor q ≡ 3 (mod 4), put η0 = ηq . If all the odd primes dividing D
are congruent to 1 modulo 4, then D = 8m for some odd m and we define η0 to be η−8. If we denote
by φ0 : IM → C× a Hecke character attached to η0 by the above construction, then the Hecke character
ψ0 = φ0 ◦NH/M is the Hecke character attached to a Gross Q-curve over H.

Let W be the set of characters θ :UM →{±1} such that θ(−1)= 1 and θ̄ = θ . Denote also by W0 the
set of θ ∈W such that θ = κ ◦NM/Q for some Dirichlet character κ . By [Nakamura 2004, Proposition 3],
the group W/W0 is generated by two characters that can be described explicitly in terms of the characters
ηp, η−4, η−8, and η8. More precisely:

(1) If D =−pqr with p, q , and r primes congruent to 3 modulo 4, then W/W0 = 〈ηpηq , ηpηr 〉.

(2) If D =−pqr with p and q primes congruent to 1 modulo 4, and r congruent to 3 modulo 4, then
W/W0 = 〈ηp, ηq〉.
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(3) If D =−4pq with p and q congruent to 3 modulo 4, then W/W0 = 〈η−4, ηpηq〉.

(4) If D =−8pq with p and q congruent to 3 modulo 4, then W/W0 = 〈η−8ηp, η−8ηq〉.

(5) If D=−8pq with p congruent to 1 modulo 4 and q congruent to 3 modulo 4, then W/W0=〈η8, ηp〉.

(6) If D =−8pq with p and q congruent to 1 modulo 4, then W/W0 = 〈ηp, ηq〉.

Denote by ω̃1, ω̃2 the generators of W/W0, and define ωi = ω̃i ◦NH/M .
Now let k/H be a quadratic extension such that k/Q is Galois and k/M is nonabelian. Such quadratic

extensions exist by [Nakamura 2004, Theorem 1]. Denote by χ : IH→{±1} the Hecke character attached
to k/H.

By [Nakamura 2004, Theorem 2], the eight equivalence classes of Q-curves over H are represented by
the Hecke characters ψ0 ·ω with ω ∈ 〈ω1, ω2, χ〉. Observe that, in particular, this set of Hecke characters
does not depend on the choice of k (any k which is Galois over Q and nonabelian over M will produce
the same set of Hecke characters).

3B. Method for computing the endomorphism algebra. Let p1 and p2 be prime ideals of M that generate
the class group and that are coprime to the conductors of ψ0, ω1, ω2, and χ . Let L i be the decomposition
field of pi in H, and Fi the maximal totally real subfield of L i .

Suppose that E is a Gross Q-curve over H with Hecke character of the form ψ = ψ0ω
a
1ω

b
2 for some

a, b ∈ {0, 1}. We can write ψ = φ ◦NH/M , where φ = φ0ω̃
a
1 ω̃

b
2 . Then φ(pi )+φ(p̄i ) generates a quadratic

number field Q(
√

ni ), and the endomorphism algebra DE = End(BE) is isomorphic to the biquadratic
field Q(

√
n1,
√

n2); see [Nakamura 2004, Proposition 7, Theorem 3].

Remark 3.4. Observe that φ(pi )+ φ(p̄i ) can be computed if one knows the two quantities φ(p2
i ) and

φ(pi p̄i ). Since p2
i and pi p̄i are principal, one can compute φ(p2

i ) and φ(pi p̄i ) by means of (3-2).

Suppose now that the Hecke character of E is of the form ψ = ψ0χω
a
1ω

b
2 . Then DE is a quaternion

algebra over Q, say

DE '

( t1, t2
Q

)
.

The ti can be computed as follows; see [Nakamura 2004, Proposition 7]. First of all, let n1 and n2 be the
rational numbers defined as in the previous paragraph for the character ψ/χ = ψ0ω

a
1ω

b
2 .

(1) Suppose that Gal(k/L i )' C2×C2. Then:

(a) If k/Fi is abelian then ti = ni .
(a) If k/Fi is nonabelian, then ti = D/ni .

(2) Suppose that Gal(k/L i )' C4. Then:

(a) If k/Fi is abelian, then ti =−ni .
(b) If k/Fi is nonabelian, then ti =−D/ni .
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3C. Computations and tables. For each of the 23 nonexceptional imaginary quadratic fields of class
group C2×C2, we have computed the 8 endomorphism algebras arising from restriction of scalars of
Gross Q-curves. The results are displayed in Table 1. The notation is as follows: for the biquadratic fields,
the notation (a, b) indicates the field Q(

√
a,
√

b); for the quaternion algebras, we write the discriminant
of the algebra.

For a Gross Q-curve E , recall that BE denotes the abelian variety over Q such that ResH/M E ∼ (BE)M .
Since BE is isogenous to its quadratic twist over M, this implies that

ResH/Q E ∼ (BE)
2.

We observe in Table 1 that for all discriminants except −195, −312, −555, −715, and −760, at least
one of the quaternion algebras is the split algebra M2(Q) of discriminant 1. This implies that for the
corresponding Gross Q-curve E the variety BE decomposes as

BE ∼ A2,

with A/Q an abelian surface. Therefore, ResH/Q E decomposes as the fourth power of an abelian surface.
On the other hand, for the discriminants −195, −312, −555, −715, and −760 we see that BE is

always simple: its endomorphism algebra is either a biquadratic field or a quaternion division algebra
over Q. Therefore, ResH/Q E ∼W 2 for some simple variety W of dimension 4. We record these findings
in the following statement.

Theorem 3.5. Let M be an imaginary quadratic field of discriminant D and Hilbert class field H. Suppose
that D is nonexceptional and that Gal(H/M)' C2×C2. If D 6= −195,−312,−555,−715,−760, there
exists a Gross Q-curve E/H such that

ResH/Q E ∼ A4, for some simple abelian surface A/Q.

If D =−195,−312,−555,−715,−760, then for every Gross Q-curve E/H we have that

ResH/Q E ∼W 2, for some simple abelian variety W/Q of dimension 4.

Remark 3.6. As mentioned above, the cases of D = −84 and D = −195 were already computed by
Nakamura [2004, §6]. We note what appears to be a typo in Nakamura’s table in page 647: the last
biquadratic field should be Q(

√
−14,

√
42), instead of Q(

√
−14,

√
−42).

We have used the software [Sage] and [Magma] to perform the computations of Table 1. The interested
reader can find the code we used in [Fité and Guitart 2018b].

4. Proof of the main theorems

We begin with a lemma that will be used in the proof of Theorem 1.2.

Lemma 4.1. Let E be a Gross Q-curve with CM by a field M of discriminant D, and suppose that
Gal(H/M) is isomorphic to C2 ×C2. Denote by γ H

E the class in H 2(Gal(H/M),M×) attached to E ,
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and by cE a cocycle representing γ H
E . If σ ∈ Gal(H/M) is nontrivial, then ±d · cE(σ, σ ) ∈ (M×)2 for

some divisor d of D such that d is not a square in M×.

Proof. Let OM denote the ring of integers of M. Denote by p1, p2, p3 the primes dividing D. Observe that
piOM = p2

i , with pi a nonprincipal prime ideal of OM . Clearly, we can always find pi , p j such that±pi p j

is not a square in M×, and therefore pip j is not principal. Thus pi , p j generate the class group. Therefore,
we can assume that any nontrivial element of Gal(H/K ) is of the form σq for some unramified prime q

which is equivalent to either pi , p j or pi ·p j . Here σq stands for the Frobenius automorphism of H/K at q.
Now we argue (and use the same notation) as in [Nakamura 2004, Proof of Theorem 3]. Namely,

denote by u(q) the q-multiplication isogenies

u(q) : σqE→ E,

and denote by c the 2-cocycle associated to E using the system of isogenies u(q) (together with the
identity isogeny for 1 ∈Gal(H/M)). Note that cE is any cocycle representing γ H

E , and it may be different
from c. But in any case they are cohomologous, which in particular implies that

c(σq, σq)= b2
q · cE(σq, σq) for some bq ∈ M×. (4-1)

From [loc. cit., Equation (6) and the following display], since the order n of σq is 2 in our case, we see that

c(σq, σq)OM = q2.

The proof is finished by observing that q2
= αOM , where α ∈ M× is, up to an element of (M×)2, equal

to ±pi , ±p j , or ±pi · p j . �

Proof of Theorem 1.2. For all the quadratic imaginary fields not listed in (1-2), we have constructed in
the first part of Theorem 3.5 abelian surfaces defined over Q satisfying the hypothesis of the theorem. To
rule out the remaining 6 fields, we proceed in the following way.

Let M be one of the fields in the list (1-2) and suppose that an abelian surface A satisfying the hypothesis
of the theorem exists for M. Resume the notations from Section 2D. As Gal(H/M)'C2×C2 and H ⊆ K
(by [Fité and Guitart 2018a, Theorem 2.14]), the only possibilities for Gal(K/M) are C2×C2, D4, and D6.

Suppose that Gal(K/M) is C2×C2. Then K = H and thus E is a Gross Q-curve. By Proposition 2.10,
we have that M is not exceptional and thus we cannot have M =Q(

√
−340). For the other possibilities

for M, we have seen in the second part of Theorem 3.5 that ResH/Q E does not have any simple factor of
dimension 2, but this is a contradiction with the fact that A should be a factor of ResH/Q E (indeed, the
universal property of Weil’s restriction of scalars implies that Hom(A,ResH/Q E)=Hom(AH , E)' M2,
and thus Hom(A,ResH/Q E) 6= 0).

Suppose that Gal(K/M) is D4 or D6. Resume the notations of Section 2E. Let E∗ be a Ribet M-curve
completely defined over H with CM by M which we chose as in Corollary 2.25 (and which exists because
of Proposition 2.10). Note that Hypothesis 2.22 is satisfied. Then, by Theorem 2.27, there is a nontrivial
element τ ∈ Gal(N/M)= Gal(H/N ) such that

cH
E∗(τ , τ )=±1. (4-2)
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D Biquadratic fields Quaternion algebras

−84 (−14,−2), (−6, 2), (−6,−42), (−14, 42) 2, 1, 2, 1

−120 (−5, 10), (5,−10), (−5,−10), (5, 10) 1, 6, 3, 1

−132 (22,−2), (−6,−2), (6,−66), (−22,−66) 1, 2, 1, 2

−168 (−14,−2), (3,−21), (14, 21), (−3, 2) 2, 1, 1, 1

−195 (13,−5), (−13,−5), (−13, 5), (13, 5) 13, 39, 26, 39

−228 (−38,−2), (6,−2), (−6,−114), (38,−114) 2, 1, 2, 1

−280 (−10,−5), (−10, 5), (10,−5), (10, 5) 2, 1, 14, 14

−312 (13,−26), (−13, 26), (−13,−26), (13, 26) 13, 39, 26, 39

−372 (−62, 31), (−6,−3), (−6, 31), (−62,−3) 2, 1, 2, 1

−408 (−17, 34), (−17,−34), (17,−34), (17, 34) 2, 1, 1, 1

−435 (−29,−5), (−29, 5), (29,−5), (29, 5) 2, 1, 1, 1

−483 (−23, 7), (23,−69), (−21,−7), (21, 69) 2, 1, 1, 1

−520 (−13,−5), (13,−5), (−13, 5), (13, 5) 1, 1, 1, 2

−532 (−38,−19), (−14, 7), (−14,−19), (−38, 7) 1, 2, 1, 2

−555 (37,−5), (−37,−5), (−37, 5), (37, 5) 37, 111, 74, 111

−595 (−17, 85), (17,−85), (−17,−85), (17, 85) 7, 1, 1, 14

−627 (19,−11), (−19,−57), (−33, 11), (33, 57) 1, 2, 1, 1

−708 (118,−59), (−6, 3), (6,−59), (−118, 3) 1, 2, 1, 2

−715 (−13,−65), (13,−65), (−13, 65), (13, 65) 5, 10, 55, 55

−760 (−10, 5), (10,−5), (−10,−5), (10, 5) 5, 95, 10, 95

−795 (−53,−5), (53,−5), (−53, 5), (53, 5) 6, 1, 1, 3

−1012 (−46, 23), (−22,−11), (−22, 23), (−46,−11) 2, 1, 2, 1

−1435 (−41, 205), (−41,−205), (41,−205), (41, 205) 2, 1, 1, 1

Table 1. Endomorphism algebras of the restriction of scalars of Gross Q-curves. For the
biquadratic fields, the notation (a, b) indicates the field Q(

√
a,
√

b); for the quaternion
algebras, we write the discriminant of the algebra
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If M is nonexceptional, as noted in Remark 2.26, we can suppose that E∗ is in fact a Gross Q-curve.
Then (4-2) is a contradiction with Lemma 4.1.

It remains to show that (4-2) also brings a contradiction if M =Q(
√
−340) is the exceptional field.

Put T = H 〈τ 〉, the fixed field by τ . Observe that M ( T ( H. If cH
E∗(τ , τ )= 1 then by Theorem 2.11 the

curve E∗ is isogenous to a curve defined over T, and this is a contradiction with the fact that M( jE∗)= H.
Suppose now that cH

E∗(τ , τ )=−1. We will see that we can apply the above argument to an appropriate
quadratic twist of E∗.

Claim 4.2. There exists a quadratic extension S/H such that S/M is Galois with Gal(S/M)' D4 and
such that τ lifts to an element of order 4 of Gal(S/M).

We now show how this claim allows us to produce the appropriate twisted curve (and we will prove the
claim later on). Define C to be the S/H quadratic twist of E∗. By [Fité and Guitart 2018a, Lemma 3.13],
the curve C is an M-curve completely defined over H and the cohomology classes of E∗ and C are
related by

γ H
C = γ

H
E∗ · γS,

where γS ∈ H 2(Gal(H/M), {±1}) is the cohomology class attached to the exact sequence

1→ Gal(S/H)' {±1} → Gal(S/M)' D4→ Gal(H/M)→ 1. (4-3)

If we identify Gal(S/M)'〈s, t |s4, t2, stst〉, then Gal(S/H) can be identified with the subgroup generated
by s2 and we can assume that τ lifts to s. Let cS be a cocycle representing γS . The usual construction
that associates a cohomology class to (4-3) gives that cS(τ , τ )= s · s. Since s2 is the nontrivial element
of Gal(S/H), it corresponds to −1 under the isomorphism Gal(S/H)' {±1}, so that cS(τ , τ )=−1.

We conclude that cH
C (τ , τ )= cH

E∗(τ , τ )cS(τ , τ )= 1, and as before this implies that C can be defined
over T, which is a contradiction.

Proof of Claim 4.2. The Hilbert class field of M is H =Q(i,
√

5,
√

17). If we write H = M(
√

a,
√

b)
and suppose that τ(

√
b)=
√

b, it is well known (see, e.g., [Ledet 2001, §0.4]) that the obstruction to the
existence of S is given by the quaternion algebra(

a, ab
M

)
being nonsplit. There are 3 possibilities for T, namely T = M(

√
5), T = M(

√
17), or T = M(

√
5 · 17),

each one giving a different obstruction. The resulting quaternion algebras giving the obstruction are(
17 · 5, 5

M

)
,

(
17 · 5, 17

M

)
,

(
17, 5

M

)
.

Since they are all the split, the field S does exist in all three cases. �
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Remark 4.3. As a byproduct of the above proof, we see that there do not exist abelian surfaces over Q such
that End(AQ)'M2(M)with M a quadratic imaginary field with class group C2×C2 and Gal(K/M)'D4

or D6. As shown by the table of [Cardona Juanals 2001, p. 112], there do exist abelian surfaces over Q such
that End(AQ)'M2(M) with M a quadratic imaginary field with class group C2 and Gal(K/M)' D4

(resp. D6). If M is not exceptional, Theorem 2.20 and Lemma 4.1 imply that 2 (resp. 3) divide the
discriminant of M is a necessary condition for the existence of such an A. The examples of the table of
[Cardona Juanals 2001, p. 112] show that this is actually a necessary and sufficient condition.

Proof of Corollary 1.3. Suppose that A is an abelian surface defined over Q such that AQ ∼ E × E ′,
where E and E ′ are elliptic curves defined over Q. If E and E ′ are not isogenous, then End(AQ) is

Q×Q, M ×Q or M1×M2,

where M, M1 6' M2 are quadratic imaginary fields, depending on whether none of E and E ′ has CM,
only one of E and E ′ has CM, or both of E and E ′ have CM. In any case, note that by [Fité et al. 2012,
Proposition 4.5], both E and E ′ can be defined over Q, whereby the class number of M, M1, and M2

must be 1. Recalling that there are 9 quadratic imaginary fields of class number 1, this accounts for 46
distinct Q-endomorphism algebras.

If E and E ′ are isogenous, we have that End(AQ) is M2(M) or M2(Q), where M is a quadratic
imaginary field, depending on whether E has CM or not. Assume that we are in the former case. By
Theorem 1.1, we have that M has class group 1, C2, or C2 × C2. As explained in [Fité and Guitart
2018a, Remark 2.20], for all fields M with class group 1 (resp. C2), abelian surfaces A over Q with
End(AQ) 'M2(M) can be easily found. Indeed, let E be an elliptic curve with CM by the maximal
order of M and defined over Q (resp. Q( jE)). Then consider the square (resp. the restriction of scalars
from Q( jE) down to Q) of E . If M has class group C2×C2, invoke Theorem 1.2 to obtain 18 possibilities
for M. Taking into account that there are 18 quadratic imaginary fields of class group C2 (see [Watkins
2004] for example), we obtain 46 possibilities for the endomorphism algebra of a geometrically split
abelian surface over Q with Q-isogenous factors.

An open problem. We wish to conclude the article with an open question.

Question 4.4. Which is the subset of A made of the Q-endomorphism algebras End(Jac(C)Q) of geomet-
rically split Jacobians of genus 2 curves C defined over Q?

Again the most intriguing case is to determine how many of the 45 possibilities for M2(M), with M a
quadratic imaginary field, allowed by Theorem 1.2 for geometrically split abelian surfaces defined over Q

still occur among geometrically split Jacobians of genus 2 curves C defined over Q. Looking at the more
restrictive setting that requires Jac(C) to be isomorphic to the square of an elliptic curve with CM by
the maximal order of M, Gélin, Howe, and Ritzenthaler [Gélin et al. 2019] have shown that there are 13
possibilities for such an M (all with class number ≤ 2).
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