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A B S T R A C T   

Official control methods to detect olive oil (OO) adulteration fail to provide satisfactory consumer protection. 
Thus, faster and more sensitive screening tools are needed to increase their effectiveness. Here, the official 
method for adulterant detection in OO was compared with three untargeted screening methods based on tri-
acylglycerol analysis using high-throughput (FIA-HESI-HRMS; HT-GC–MS; HPLC-RID) and pattern recognition 
techniques (PLS-DA). They were assayed on a set of genuine and adulterated samples with a high natural 
variability (n = 143). The sensitivity of the official method was 1 for high linoleic (HL) blends at ≥2 % but only 
0.39 for high oleic (HO) blends at ≥5 %, while specificity was 0.96. The sensitivity of the screening methods in 
external validation was 0.90–0.99 for the detection of HL and 0.82–0.88 for HO blends. Among them, HT-GC–MS 
offered the highest sensitivity (0.94) and specificity (0.76), proving to be the most suitable screening tool for OO 
authentication.   

1. Introduction 

According to the latest report from the EU Food Fraud Network 
(European Union, 2021), olive oil (OO) tops the list of reported adul-
terated food products. One of the most common frauds is mixing OO 
with cheaper vegetable oils (Casadei et al., 2021; The Food Integrity 
Project, 2018). The official methods to assess OO purity and detect the 
presence of extraneous vegetable oils include the analysis of fatty acids 
(FAs), triacylglycerols (TAGs) and sterols (Regulation (EU) No 2568/91 
and its amendments). Adulterants may be masked by the removal of 
minor compounds, as occurs with desterolised seed oils, but major 
constituents such as FAs and/or the corresponding TAGs appear to be 
more robust parameters. As not only the amounts of FAs but also their 
arrangement to form TAGs are genetically determined, the official 
method based on TAGs rather than FA composition has proved to be 
more effective in detecting low levels of vegetable oils in OO (Christo-
poulou et al., 2004). Nonetheless, the current official method for TAG 
analysis is time- and reagent-consuming because it entails a double 

analysis of the samples. Firstly, High Performance Liquid Chromatog-
raphy coupled to a Refractive Index Detector (HPLC-RID) is used to 
determine the experimental amount of TAGs and calculate the equiva-
lent carbon number 42 (ECN42). Then, the theoretical ECN42 is deter-
mined from the FA content analysed by Gas Chromatography coupled to 
a Flame Ionization Detector (GC-FID), and both values are compared to 
calculate the ΔECN42 parameter. The lengthiness of this procedure 
limits the annual conformity checks to one per thousand tons of the OO 
marketed in European Union member states (Regulation (EU) No 2568/ 
91 and its amendments), which does not guarantee a satisfactory level of 
consumer protection (European Commission, 2020). Additionally, this 
method shows low sensitivity when high linoleic (HL) seed oils are 
present at low levels or when the adulterants have a similar TAG 
composition to OO, as is the case of high oleic (HO) vegetable oils (Conte 
et al., 2020; Mailer & Gafner, 2020). Considering these drawbacks, and 
that the illegal blending of OO with both HL and HO vegetable oils is 
reported to be a common practice (Casadei et al., 2021; Everstine et al., 
2013; Mailer & Gafner, 2020; Yan et al., 2020), more efficient methods 
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are needed to detect extraneous vegetable oils in OO. 
In this context, the development of fit-for-purpose screening tools 

would allow a more rapid assessment of a higher number of samples for 
a more efficient purity control of OO (Aparicio et al., 2013; Ruiz- 
Samblás et al., 2015). Screening methods featuring a binary qualitative 
output (compliant/non-compliant) obtained by time-efficient analytical 
methods, and combining different analytical and classification tech-
niques, have been developed to overcome limitations in food authenti-
cation (López et al., 2014). Their advantages include immediacy in 
decision-making and reducing the time and cost of routine analysis 
(Muñoz-Olivas, 2004). The main goal of these screening methods is to 
achieve high sensitivity values for an efficient food fraud alert. Thus, 
qualitative screening can identify all suspicious samples, and subsequent 
control checks can confirm whether they have been adulterated or not 
(Magnusson & Örnemark, 2014). This is of particular importance when 
the fraudulent products pose a threat to food safety (López et al., 2014), 
in which case adulteration not only implies a loss of traceability due to 
blending with substances from unknown sources, but also carries the 
risk of allergenic or toxic effects related to the nature of the adulterants 
(Arlorio et al., 2010; Gelpí et al., 2002). 

Most of the screening methods proposed as alternatives to the official 
method for adulterant detection in OO are also based on the measure-
ment of the TAG fraction, due to its advantages as an authenticity 
marker (Meenu et al., 2019). Approaches based on high-throughput 
analytical techniques coupled to multivariate classification methods 
have proved to be efficient in fraud detection and have a short analysis 
time (Cavanna et al., 2018; Esslinger et al., 2014). Among them, 
untargeted profiling and fingerprinting methods have been applied as an 
alternative to the classic targeted approach of the current official 
method (Ballin & Laursen, 2019). Besides involving an effortless data 
treatment, untargeted approaches can consider more analytical infor-
mation than conventional targeted methods, which may be valuable for 
authentication (Quintanilla-Casas et al., 2020). Although some of the 
alternative methods have provided promising results, comparison with 
the official method is difficult, as they differ in sample sets, variability, 
and analytical conditions. A further challenge to assessing the perfor-
mance of the new methods is that multivariate validation is not as well 
defined as univariate validation (López et al., 2014). 

In the present study, three promising screening methods for adul-
terant detection in OO based on TAG analysis and the official method 
based on ΔECN42 (Regulation (EU) No 2568/91 and its amendments) 
were compared. The selected screening methods are all based on an 
untargeted approach. One involves TAG profiling by Flow Injection 
Analysis-Heated Electrospray-High Resolution Mass Spectrometry (FIA- 
HESI-HRMS), an extremely fast high-throughput instrumental method 
requiring minimal sample preparation, which had already been tested 
for the analysis of OO adulteration with satisfactory results (Quintanilla- 
Casas et al., 2021). The other two methods were developed in the pre-
sent study and follow a fingerprinting approach, a cutting-edge strategy 
that uses the whole analytical signal to find specific patterns charac-
teristic of a given food category. Thus, TAG fingerprinting by High- 
Temperature Gas Chromatography coupled to Mass Spectrometry (HT- 
GC–MS) was developed by adapting the chromatographic conditions of 
(Ruiz-Samblás et al., 2012) to MS detection, which allowed us to build 
an unfolded matrix from Selected Ion Monitoring (SIM) chromatograms 
(Torres-Cobos et al., 2021). The third method, TAG fingerprinting by 
High Performance Liquid Chromatography coupled to Refractive Index 
Detector (HPLC-RID), was developed by applying chemometrics to the 
raw HPLC-RID data obtained by the official method, but without the 
need for any further TAG identification or quantitation. Finally, unlike 
in previous studies, the performance of each method could be directly 
compared because the same sample set (genuine samples and their 
blends with HO and HL adulterants) was analysed in each case. 

2. Material and methods 

2.1. Samples and experimental design 

A set of 150 samples was analysed by the four methods described 
above. The set was composed of 30 traceable genuine extra virgin olive 
oils (EVOO) and their blends (n = 120) with 36 adulterant oils of 
different botanical origin, including HL oils (refined sunflower oil [SFO, 
n = 14] and refined soybean oil [SBO, n = 10]), as well as HO oils (virgin 
and refined hazelnut oils [HZN, n = 10] and high-oleic refined sunflower 
oils [HOSFO, n = 12]). The blends were in-house prepared at 2 % and 5 
% for the HL (n = 60) and at 5 % and 10 % for the HO (n = 60) adul-
terants, following a balanced incomplete Latin squares experimental 
design. Seven of the chromatographic or FIA runs had to be discarded 
due to analytical problems, and these samples were eliminated from the 
datasets of the four methods to avoid any bias between the different 
models tested. The final dataset (n = 143) is provided in Table S1 of 
Supplementary Information. 

All samples were obtained directly from reliable producers in the 
framework of the Autenfood project (ACCIÓ-Programa Operatiu FEDER 
Catalunya 2014–2020). The EVOO samples represented a range of 
geographical production regions, olive cultivars and technological 
conditions. The natural variability of the samples was further ensured by 
including several adulterant oils of each type in the sampling. 

2.2. Method I. Official method to determine ΔECN42 according to 
Regulation (EU) No 2568/91 

The difference between the experimental and theoretical ECN42 
values of TAGs was calculated and compared with the limit established 
for EVOO, i.e., ΔECN42<|0.20|. 

2.2.1. Material and reagents 
Methanol (>99.5 %), HPLC grade hexane (99 %), HPLC grade hep-

tane and diethyl ether stabilized with 7 ppm of BHT were purchased 
from Scharlau (Sentmenat, Spain). Potassium hydroxide was purchased 
from Panreac (Castellar del Vallès, Spain), and propionitrile (>99 %) 
from Sigma-Aldrich (St. Louis, USA). Methanolic potassium hydroxide 
solution (2 M) was prepared according to the official method. Extra 
Bond® solid phase extraction cartridges (6 mL), packed with 1 g of silica 
phase, and 13 mm-0.45 µm nylon filters, both from Scharlau (Sentme-
nat, Spain), were used for sample purification and preparation. 

2.2.2. TAG analysis by reverse phase (RP)-HPLC-RID and assessment of 
experimental ECN42 

Once the samples were prepared and purified according to Annex 
XVIII of Regulation (EU) No 2568/91 and its amendments, TAGs were 
determined by HPLC-RID using an Agilent Technologies 1100 instru-
ment (Agilent Technologies, Santa Clara, California, USA). Analytes 
were separated on a Luna C18 column (250 × 4.6 mm, I.D., 5 μm) from 
Phenomenex (Torrance, California, USA) at 40̊C. The analysis was per-
formed in isocratic mode with propionitrile as the mobile phase at 1 mL/ 
min. The injection volume was 20 µL. The peak areas of TAGs with an 
ECN between 42 and 52 were integrated and normalized, obtaining the 
experimental TAG content with ECN42. 

2.2.3. Analysis of FA methyl esters (FAME) by GC-FID and calculation of 
theoretical ECN42 

After obtaining FAME by transmethylation according to Annex X of 
Regulation (EU) No 2568/91 and its amendments, they were analysed 
by GC-FID using an Agilent 4890D chromatograph, coupled to an Agi-
lent Technologies 7683B automatic sampler (Agilent Technologies, 
Santa Clara, California, USA). The injection volume was 1 μL, with a split 
injection ratio of 1:100. The temperature of the injector and detector 
was 250 ̊C. Analytes were separated on a SP-2380 capillary column (60 
m × 0.25 mm I.D., 0.2 μm) (Supelco, St. Louis, USA). The initial column 
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temperature was 165 ̊C and it was held for 8 min; it was then increased 
to 210 ̊C at 2 ̊C /min and held for 15 min. Hydrogen (99.995 %) was the 
carrier gas, and the flow rate was 1 mL/min. The areas of the FAME with 
16 and 18 carbon atoms were integrated and normalized. The theoret-
ical content of ECN42 TAGs was calculated according to Annex XVIII of 
Regulation (EU) No 2568/91 and its amendments. 

2.3. Method II. Screening method based on TAG profiling by FIA-HESI- 
HRMS 

2.3.1. Material and reagents 
Dichloromethane (SupraSolv® for GC-ECD/FID), methanol (Supra-

Solv® for gas chromatography) and NaCl (ACS reagent, ≥99.0 %) were 
purchased from Merck (Darmstadt, Germany). Nitrogen (Alphagaz, 
purity 99.999 %, Air Liquid) was used in the Orbitrap-Exactive as 
nebulization gas. 

2.3.2. Sample preparation 
As described by Vichi et al. (2012), 30 mg of oil sample was dissolved 

in dichloromethane:methanol (70:30, v/v) and diluted 1:100 using the 
same solvent mixture. The solution was saturated with NaCl as the 
cationization agent and vortex-mixed for 30 s. The supernatant was then 
further diluted to 1:50 with the same solvent mixture and analysed. 

2.3.3. TAG profile by FIA-HESI-HRMS 
Untargeted profiling of TAGs was done according to Vichi et al. 

(2012), using an Orbitrap Exactive instrument (Thermo Fisher Scienti-
fic, Bremen, Germany) equipped with an electrospray source (H-ESI II) 
and coupled to a Surveyor MS pump with an Accela Open automatic 
sampler (Thermo Fisher Scientific, San Jose, USA). 

The selected mass peaks were single positive-charged molecular ions 
forming adducts with sodium. These peaks were exported to peak lists 
and feasible elemental formulae attributable to TAGs were generated. 
Different restrictive criteria were set to generate reliable elemental 
formulae: C ≤ 200, H ≤ 400, O ≤ 15, Na = 1 and RDB: 2.5–19.5 
(Quintanilla-Casas et al., 2021). Mass error tolerance was set at 5 ppm. 
Signal intensities of TAGs were expressed as a relative intensity, the total 
TAG profile being equal to 100 %. The molecular formulae calculation 
was performed with Xcalibur 2.1 (Thermo Fisher Scientific, Bremen, 
Germany), and the posterior data analysis was done using excel files, as 

shown in Fig. 1a. 

2.4. Method III. Screening method based on TAG fingerprinting by HT- 
GC–MS 

2.4.1. Material and reagents 
Dichloromethane (SupraSolv® for GC-ECD/FID) was purchased from 

Merck (Darmstadt, Germany). 

2.4.2. Sample preparation 
A small amount (60 mg) of oil sample was dissolved in 3 mL of 

dichloromethane to a final concentration of 2 % (w/v). 

2.4.3. TAG fingerprinting by selected ion Monitoring (SIM) HT-GC -MS 
HT-GC–MS analysis was carried out on an Agilent Technologies 

6890 N gas chromatograph coupled to an Agilent 5973 Network quad-
rupolar mass selective analyser (Agilent Technologies, Santa Clara, 
California, USA). A total of 2 μL of sample was injected with a split ratio 
of 1:20. Analytes were separated on a Rtx®-65TG column (Restek, 
Bellefonte, PA, USA) (30 × 0.25 mm I.D., 0.10 μm). The initial column 
temperature was 315 ̊C, which was increased to 350 ̊C at 2 ̊C /min and 
held for 15 min. Helium was the carrier gas and the flow rate was 1.5 
mL/min. The temperature of the injector was 370̊C and the transfer line, 
350̊C. Electron impact mass spectra were recorded at 70 eV ionization 
energy. Mass spectra were acquired in SIM mode. 

A fingerprinting approach was followed using extracted ion chro-
matograms (EIC) obtained for m/z signals attributable to 11 TAG frag-
ment ions, according to Barber, Merren & Kelly (1964): acyl ions 
corresponding to a FFAA (Po: palmitoleic acid, C16:1; P: palmitic acid, 
C:16:0; O: oleic acid, C18:1; L: linoleic acid, C18:2; Ln: linolenic acid, 
C18:3) molecule (RCOOH) with a loss of an OH group [RCOOH – OH]+

(m/z 237, [Po – OH]+; m/z 239, [P – OH]+; m/z 260, [Ln – OH]+; m/z 
262, [L – OH]+; m/z 264, 265, [O – OH]+) and to a FFAA acyl ions 
attached to a residual of the glycerol skeleton [RCOOH – C3H5O]+ (m/z 
311, [Po – C3H5O]+; m/z 313, [P – C3H5O]+; m/z 335, [Ln – C3H5O]+; 
m/z 337, [L – C3H5O]+; m/z 339, [O – C3H5O]+). A data matrix was built 
for each ion with the 3159 scan intensities of each EIC (columns) for all 
samples (rows) (143 samples × 3159 variables) and it was aligned by the 
COW algorithm in Matlab® (Nielsen et al., 1998) to solve the retention 
time shifts among samples. The optimal COW parameters for each case 

Fig. 1. Scheme of the data matrices building for each screening method: a) Method II: FIA-HESI-HRMS, b) Method III: HT-GC–MS fingerprinting and c) Method IV: 
HPLC-RID fingerprinting. 
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were calculated upon the starting parameters provided in Table S2, 
Supplementary information. 

Then, the 11 aligned matrices – one for each EIC - were concatenated 
to obtain a two-way unfolded matrix (143 samples × 34749 variables) 
(Fig. 1b). 

2.5. Method IV. Screening method based on TAG fingerprinting by RP- 
HPLC-RID 

2.5.1. Sample preparation 
Samples were prepared as described for Method I – Official method 

(section 2.2.2). 

2.5.2. TAG fingerprinting by RP-HPLC-RID 
Separation and detection of compounds were as described in section 

2.2.3 for the official method (Method I). Using a fingerprinting 
approach, a data matrix was built with the chromatographic intensities 
obtained for each acquisition point from minute 8 until minute 25 for 
each sample (143 samples × 3466 variables). Chromatograms were 
aligned by the COW algorithm in Matlab® to solve the retention time 
shifts among samples (Nielsen et al., 1998) (Fig. 1c). The optimal COW 
parameters for each case were calculated upon the starting parameters 
provided in Table S2, Supplementary information. 

2.6. Data processing and chemometrics 

Data obtained by the official method (method I) were processed 
according to Regulation (EU) No 2568/91 and its amendments. 
Regarding the data matrices provided by each of the tested alternative 
screening methods (II-IV), classification models were developed and 
validated with SIMCA v13.0 (Umetrics AB, Sweden). 

First, a Principal Component Analysis (PCA) was performed to 
explore the data and identify potential outliers. In no case were outlier 
samples detected by PCA, according to the Hotelling’s T2 range and 
distance to the model parameters. 

Then, the whole sample set (n = 143) (Table S1, Supplementary 
information) was randomly split 7 times (7 iterations) into: i) a training 
set (80 % of the samples, n = 114; genuine EVOOs, n = 22; HL blends, n 
= 46; HO blends, n = 46) and ii) a validation set (20 % of the samples, n 
= 29; genuine EVOOs, n = 6; HL blends, n = 12; HO blends, n = 11). For 
each screening method and each iteration, two independent binary 
Partial Least Squares Discriminant Analysis (PLS-DA) models were built: 
one to discriminate between genuine and HL adulterated samples (n =
68; HL blends, n = 46; genuine EVOOs, n = 22) and the other to 
discriminate between genuine and HO adulterated samples (n = 68; HO 
blends, n = 46; genuine EVOOs, n = 22). In PLS-DA binary models, 
classes are expressed as PLS dummy variables (here 0 for the non- 
adulterated and 1 for the adulterated class). Then, the PLS predicted 
value of each sample was used for its classification into one class or the 
other according to a classification threshold (predicted value = 0.5). 
PLS-DA models were calibrated by leave 10 %-out cross-validation, 
selecting the optimal number of Latent Variables (LV) according to the 
lowest Root Mean Squared Error of Cross Validation (RMSEcv). A per-
mutation test and ANOVA were carried out on the cross-validated pre-
dictive residuals (p-value) to assess overfitting. The Q2 values and 
efficiency, expressed as the % of correct classification, were assessed to 
evaluate the suitability of each PLS-DA model. 

After testing multiple pre-processing treatments, the optimal one for 
the HL and HO models based on FIA-HESI-HRMS profiling data was 
found to be logarithm 10, mean centring and scaling to unit of variance; 
for the HL model based on HT-GC–MS fingerprinting, it was mean 
centring and scaling to unit of variance, and for the HO model based on 
HT-GC–MS fingerprinting, logarithm 10. Finally, the pre-processing 
applied for the HL model based on RP-HPLC-RID fingerprinting was 
logarithm 10, mean centring and scaling to unit of variance and for the 
HO model, a first derivative was also needed. The optimal pre- 

processing treatments for the HL and HO models were applied to 
training sets of each iteration. 

2.6.1. External validation of the authentication strategy 
Samples in the abovementioned validation sets (20 %, n = 29 for 

each of the 7 iterations) were not included in the previous calibrated 
models but used to externally validate the authentication tool following 
a combined strategy according to Quintanilla-Casas et al. (2021) 
(Fig. 2). Thus, validation samples were classified as non-adulterated 
(with HL oils at ≥ 2 % or HO oils at ≥ 5 %) only when identified as 
such by both models, whereas they were considered as adulterated when 
identified as such by at least one of the authentication models (HL or 
HO). 

External validation results for each screening method were 
compared according to the % of correct classification of each class, and 
the sensitivity (true positives/[true positives + false negatives]) and 
specificity (true negatives/[true negatives + false positives]) values, 
positive samples being those containing the adulterant. 

2.6.2. Exploration of regression coefficients 
For the three screening methods, the regression coefficients of the 

binary HL and HO PLS-DA models developed with the full sample set 
were explored to tentatively identify the variables that most contributed 
to the discrimination between adulterated and genuine samples. 
Regression coefficients were considered as significant when a jack-knife 
standard error of cross-validation (SEcv) was lower than the given co-
efficient value. 

3. Results 

3.1. Method I. Official method to determine ΔECN42 according to 
Regulation (EU) No 2568/91 

The results obtained with the official method based on ΔECN42 
showed high percentages of correct classification for genuine (96.4 %) 
and HL adulterated samples (100 %), whereas only 38.6 % of the blends 
with HO oils were classified as adulterated (Table 1). 

3.2. Screening methods (II-IV) based on untargeted TAG profiling and 
fingerprinting 

For all the screening methods, the cross-validation results of models 
built upon training sets (7 iterations) were successful. Mean overall 
sensitivity and specificity were 0.96–1 and 0.95–1, respectively. Each of 
the PLS-DA models (7 per screening method) were then used to predict 
the class of the samples in the corresponding validation set. The process 
was run seven times to evaluate the effect of the sample set composition 
and to increase the robustness of the external validation. The results 
achieved by the external validation of each screening method (sensi-
tivity and specificity) (Table S3, Supplementary information) were 
expressed as mean values of the seven iterations (Table 2) and showed a 
sensitivity above 0.82 for all the developed methods, the HT-GC–MS 
method standing out with an average sensitivity for HL and HO adul-
terated samples of 0.94. Remarkably, the detection performance for HO 
blends was not far below the results obtained for the HL adulterants 
(Table 2). The three tested methods had a sensitivity close to 0.9 (mean 
value of the 7 iterations) and a specificity between 0.50 and 0.76 (mean 
values of the 7 iterations). 

As explained in section 2.6.2, the coefficients of models were studied 
to tentatively identify the variables that contributed most to the 
discrimination between HL adulterated and genuine samples, or be-
tween HO adulterated and genuine samples. For FIA-HESI-HRMS, the 
relevant coefficients agreed with those reported by Quintanilla-Casas 
et al. (2021). In both models, the highest regression coefficients corre-
sponded to several minor TAG species distributed within the entire 
experimental m/z range. Specifically, for the HL model, the most 
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relevant coefficients for the HL adulterated class belonged to TAGs 
containing L and Ln acids, such as C54 TAGs LLL and LLLn, and C52 
TAGs such as PoLL/PLLn. On the other hand, for the HO model, the most 
discriminant variables associated with the HO adulterated class were 
signals corresponding to long-chain TAGs, C54 and C58, which could 
contain arachidic (A), behenic (B) or lignoceric acids (Li). Additionally, 
some TAGs containing L and short-chain TAGs C23, C24 and C26 also 
played a significant role in detecting HO adulterated samples (Quinta-
nilla-Casas et al., 2021). 

The study of the coefficients of models based on the HPLC-RID 
method (Fig. 3) produced results consistent with the FIA-HESI-HRMS 
findings, as the most relevant coefficients also belonged to minor 
TAGs. Specifically, to detect the HL adulterated samples, the highest 
coefficients were found in the first part of the fingerprint, covering the 
region of TAG clusters with ECN40, ECN42 and ECN44. According to the 
elution order within each cluster (Regulation (EU) No 2568/91 and its 
amendments), the most discriminant TAGs could corresponded to spe-
cies containing L and Ln acids, such as LLLn (ECN40), LLL, OLLn, PoLL, 
PLLn (ECN42), PLL, PoPoO, and POLn (ECN44). Although ECN42 TAGs 
(tentatively identified as LLL, OLLn, and PoLL) and ECN44 TAGs 
(tentatively identified as OOLn, PoOL, PoPoO, and PLL) were also 

relevant for the detection of HO adulterated samples, the highest co-
efficients of the HO model also include TAGs in the ECN46 region (OOL, 
PPLn, PPoO, PoSL, SOLn, PoPoS), or even higher (Fig. 3), which agree 
with the relevant coefficients found in the FIA-HESI-HRMS model cor-
responding to long chain TAGs. 

Finally, for the HT-GC–MS method (Fig. 3), some of the most relevant 
ions for the detection of samples adulterated with HL oils were found in 
the C54 TAG cluster and corresponded to glyceryl fragments with acyl 
species such as Ln, L and O. According to the fragmentation (Barber 
et al., 1964) and the expected elution order (Ruiz-Samblás et al., 2010), 
these relevant ions would agree with TAGs such as OLLn (m/z 335), 
LLLn (m/z 260, m/z 262, m/z 335 and m/z 337) and OLnLn (m/z 260, m/ 
z 335 and m/z 339). In addition, some relevant coefficients for the m/z 
262 and m/z 337 were found in chromatographic regions where the 
eluted TAGs were of a higher carbon number, such as C56 TAG, and 
could contain L and A. Several high coefficients corresponded to other 
glyceryl species of lower molecular weight that eluted prior to the main 
TAG clusters, which could be C38 diglycerides (DAG) such as OA (m/z 
264) and LA (m/z 262) and C40 diglycerides such as OB (m/z 264, m/z 
265 and m/z 339), and LB (m/z 262 and m/z 337). 

For the HO model, some of the highest regression coefficients to 

Fig. 2. Classification diagram based on two combined binary PLS-DA models to predict the presence of high linoleic (HL) (≥2%) and high oleic (HO) (≥5%) oil 
adulterants in olive oil (OO) using the tested untargeted screening methods. 

Table 1 
Classification results according to the official method for OO adulteration detection.   

n Adulterated (n) Genuine (n) Correct classification (%) Sensitivity Specificity 

Adulterated 115 80 35 69.6 0.70  
HL blends 58 58 0 100 1  
HO blends 57 22 35 38.6 0.39  
Genuine 28 1 27 96.4   0.96 
Total 143       
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detect HO adulterated samples were also found in the C54 TAG cluster 
and included acyl species such as L, Ln, O and Po (Fig. 3). In agreement 
with the fragmentation and the expected elution order (Ruiz-Samblás 
et al., 2010), these glyceryl species would correspond to PoOA (m/z 
237), OLL (m/z 262 and m/z 339), OOLn (m/z 335), LLL (m/z 262), 
OLLn (m/z 335), LLLn (m/z 335 and m/z 337), and OLnLn (m/z 335). 
Moreover, some other relevant coefficients were found in the C48 and 
C50 TAG clusters that included P and Po as acyl species, and that would 
agree with PPoPo (m/z 237) and PPoS (m/z 237) TAGs, respectively. In 
addition, some fragments that could correspond to DAG also appeared as 
relevant coefficients: PoL (m/z 311), SO (m/z 339), SLn and LLn (m/z 
335), LA (m/z 262), LB (m/z 262) and OB (m/z 264 and m/z 265). 

These relevant coefficients agree with those from the HPLC-RID and 
FIA-HESI-HRMS models, as all of them found C54 TAGs conformed by 
Ln and L (OLLn, LLLn), which are relevant for detecting HL adulterated 
samples. For the HO model, both HT-GC–MS and FIA-HESI-HRMS 
detected relevant variables corresponding to C54 TAGs conformed by 
longer chain FAs such as A, and for the HPLC-RID coefficients, C54 TAGs 
containing O and Ln (OOLn) were also significant to detect HO adul-
terated samples in the HT-GC–MS method. 

4. Discussion 

The high rate of correct classification achieved by ΔECN42 for 
genuine OO samples demonstrated the high specificity of the current 
reference method (Table 1), which guarantees that genuine samples will 
not be misclassified as adulterated. The specificity achieved by the 
official method in the present study was higher than that reported by 
Beccaria et al. (2016), who obtained between 16 and 19 % of false 
positives when analysing genuine EVOOs from very different 
geographical locations. This may denote a high dependence of the 
ΔECN42 parameter on OO characteristics or factors not included in the 
official analytical protocol. The official method also showed a high 
sensitivity for HL adulterants even when present in low amounts (≥2%). 
However, it proved unsuitable for the detection of adulteration with HO 

oils at 5–10 % as they have a similar TAG and FA composition to OO. 
This is a worrisome result, given that HO oils are emerging adulterants 
for the illegal blending of OO. While higher sensitivity values have been 
reported for the official method in HZO detection (García-González 
et al., 2007), our results agree with those of another study, that set the 
minimum detectable amount of HZO in OO at 20 % by this method 
(Moreda et al., 2003). The present results can be considered as repre-
sentative of the efficacy of the method, as HO oil from different sources 
(HZO and HOSFO) and suppliers were included in the modelling and 
validation. Poor sensitivity towards HO adulterants, also reported by 
other authors (Beccaria et al., 2016), can thus be added to the other 
drawbacks of the official method. As well as being a time-consuming 
analytical procedure, requiring two different analyses per sample, it 
involves the use of highly contaminating organic solvents such as pro-
pionitrile, and lacks robustness due to the low resolution of the HPLC- 
RID peaks, specifically the very minor ECN42 cluster that includes the 
LLL peak (Beccaria et al., 2016). 

In contrast, the new screening methods proved more suitable for the 
detection of adulterated samples, providing high sensitivity values 
regardless of the adulterant composition (Table 2). Among the devel-
oped screening tools, the HT-GC–MS method performed the best in 
terms of sensitivity (0.99 for HL and 0.88 for HO models). High sensi-
tivity and a relatively short analysis time, allowing the rapid analysis of 
a high number of samples, are of paramount importance for a screening 
method (López et al., 2014). HT-GC–MS was also the screening tool that 
showed the highest specificity value (0.76). Although this value was 
lower than the one of the official method, it is an acceptable value for a 
screening method, given that confirmatory analyses or checks can be 
carried out afterwards to identify false positives (Magnusson & 
Örnemark, 2014). Moreover, it is important to highlight that these 
values were obtained with a sampling of a high natural variability as it 
included a high number of genuine olive oils of different varieties, re-
gions and harvests, and various samples of various adulterant types, 
blended at low adulteration levels. These results demonstrate that a 
fingerprinting approach applied to multidimensional data such as 

Table 2 
External validation of PLS-DA models (HL blends vs genuine olive oils; HO blends vs genuine olive oils) developed by FIA-HESI-HRMS, HT-GC–MS and RP-HPLC-RID 
screening methods. Results are mean values obtained from seven randomly selected validation sets. Results of individual sets are reported in Supplementary infor-
mation (Table S3).  

FIA-ESI-HRMSa  

n Adulterated (n) Genuine (n) Correct classification (%) Sensitivity Specificity 

Adulterated 23 20.6 ± 1.7 2.4 ± 1.7 89.4 ± 7.5 0.89 ± 0.07  
HL blends 12 10.9 ± 0.7 1.1 ± 0.7 90.5 ± 5.8 0.90 ± 0.06  
HO blends 11 9.7 ± 1.4 1.3 ± 1.4 88.3 ± 12.6 0.88 ± 0.13  
Genuine 6 3.0 ± 0.8 3.0 ± 0.8 50.0 ± 13.6  0.50 ± 0.14 
Total 29      

HT-GC-MSb  

n Adulterated (n) Genuine (n) Correct classification (%) Sensitivity Specificity 

Adulterated 23 21.6 ± 0.5 1.4 ± 0.5 93.8 ± 2.3 0.94 ± 0.02  
HL blends 12 11.9 ± 0.4 0.1 ± 0.4 98.8 ± 3.2 0.99 ± 0.03  
HO blends 11 9.7 ± 0.5 1.3 ± 0.5 88.3 ± 4.4 0.88 ± 0.04  
Genuine 6 1.4 ± 0.8 4.6 ± 0.8 76.2 ± 13.1  0.76 ± 0.10 
Total 29      

HPLC-RIDc  

n Adulterated (n) Genuine (n) Correct classification (%) Sensitivity Specificity 

Adulterated 23 20.6 ± 0.8 2.4 ± 0.8 89.4 ± 3.4 0.89 ± 0.03  
HL blends 12 11.6 ± 0.5 0.4 ± 0.5 96.4 ± 4.5 0.96 ± 0.04  
HO blends 11 9.0 ± 0.8 2.0 ± 0.8 81.8 ± 7.4 0.82 ± 0.07  
Genuine 6 2.4 ± 0.5 3.6 ± 0.5 59.5 ± 8.9  0.60 ± 0.09 
Total 29      

For all models HL and HO models: n = 143 and ANOVA p-value < 0.05. 
a HL model: mean LVs = 6, Q2 

> 0.4104, RMSEcv < 0.3626; HO model: mean LVs = 5, Q2 
> 0.3594, RMSEcv < 0.3972. 

b HL model: mean LVs = 8, Q2 > 0.7404, RMSEcv < 0.2898; HO model: mean LVs = 8, Q2 > 0.5679, RMSEcv < 0.3292. 
c HL model: mean LVs = 5, Q2 > 0.4551, RMSEcv < 0.3473; HO model: mean LVs = 5, Q2 > 0.2674, RMSEcv < 0.4069. 
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Fig. 3. Regression coefficients of the high linoleic (HL) and high oleic (HO) PLS-DA models on the a) HT-GC–MS fingerprint, plotted against the concatenated EICs of 
an adulterated sample (red EICs) and a genuine olive oil (blue EICs); and b) HPLC-RID fingerprint, plotted against the chromatographic profile of an adulterated 
sample (red chromatogram) and a genuine olive oil (blue chromatogram). For each model, relevant coefficients for the prediction of the adulterated class are 
highlighted in red (positive coefficient) and blue (negative coefficient). 
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GC–MS, can exploit the valuable specific information about authenti-
cation markers in the unfolded matrix built with specific TAG ions. 

The method based on HPLC-RID also followed a fingerprinting 
approach, but its performance was lower compared to HT-GC–MS. This 
can be attributed to the RID-chromatographic data, which did not pro-
vide any specific information on these markers or distinguish unresolved 
or overlapping TAGs. Nonetheless, the HPLC-RID fingerprint effectively 
detected adulterated samples (sensitivity of 0.96 for HL and 0.82 for HO 
models) (Table 2) and is the most affordable and easily applicable of all 
the methods tested here. Considering that it is based on part of the data 
produced by the official method, the implementation of both in parallel 
could improve the detection of HO blends. 

Finally, the FIA-ESI-HRMS method proved as successful as HPLC-RID 
in terms of overall sensitivity (0.89), showing a similar ability to detect 
both HL (0.90) and HO (0.88) adulteration adulterants (Table 2). The 
specificity value of this method (0.50) was low compared with that of 
previous models developed with the same method with a larger sample 
set (0.80) (Quintanilla-Casas et al., 2021). This fact indicates that the 
model developed upon this untargeted TAG profiling data seems to be 
highly dependent on the size of the sample set. Nonetheless, in view of 
the high sensitivity and extremely short analysis time (<2 min per 
sample) of this high-throughput method, its use with large-scale sam-
pling could still be considered as a screening tool to be used in parallel 
with the current control practices. 

Exploring the regression coefficients of the models developed for 
each screening method allowed us to tentatively ascertain the variables 
that contributed most to discriminate between adulterated and genuine 
samples. In all models, the highest regression coefficients corresponded 
to minor TAG species distributed within the entire experimental mass 
range. Although the structural elucidation of discriminant markers was 
not the scope of the present comparative study, some TAG species were 
tentatively identified in correspondence with the most relevant co-
efficients. Several of them were highly discriminant in models generated 
for different screening methods, demonstrating the consistency of the 
results. Particularly, TAGs that could correspond to PoLL/PLLn, OLLn, 
LLLn and LLL were highly discriminant for the HL models, whereas 
species that may match TAGs such as OOLn and OLLn and various other 
TAGs including Po, A or B were significant for the HO models. 

In view of these results, the developed screening methods, especially 
HT-GC–MS TAG fingerprinting, could represent useful tools to facilitate 
inspections by official control bodies, improving the risk analysis on 
which they are currently based (Cugat & Biel, 2016). In particular, the 
high sensitivity of HT-GC–MS, an affordable and green analytical tech-
nique, indicates it has potential as a fit-for-purpose screening tool able to 
process a high number of samples and enhance the effectiveness of 
current official controls. Nonetheless, to confirm its high performance, 
this promising tool needs further testing with an enriched model, 
including a greater number of both genuine and adulterated samples. 

5. Conclusion 

Three different screening methods were tested as tools to support and 
improve official controls, being able to detect ≥2 % of HL and ≥5 % of 
HO adulterants in OO with sensitivity values >0.90 and >0.82, 
respectively. Among them, the HT-GC–MS method was the screening 
tool showing the best performance, with a 0.99 and a 0.88 sensitivity 
values for HL and for HO adulterants, respectively, and a specificity of 
0.76, being the most promising screening tool tested for OO 
authentication. 

The FIA-ESI-HRMS and HPLC-RID methods provided lower speci-
ficity values. However, these methods deserve to be further explored as 
possible supporting screening tools given that they still provide the high 
sensitivity desired for screening methods. FIA-ESI-HRMS is a fast tech-
nique proved to be suitable when assayed in large scale studies, and the 
HPLC-RID method can be run in parallel with the official OO analysis by 
using the same raw data. 

The present study allowed to compare three screening methods 
among them and with the official method providing relevant informa-
tion about their performance when applied to a dataset of genuine and 
adulterated samples with a high natural variability. On these bases, 
optimal models should be further developed and evaluated using a large 
scale dataset. 
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Moreda, W., Pérez-Camino, M. C., & Cert, A. (2003). Improved method for the 
determination of triacylglycerols in olive oils by high performance liquid 
chromatography. Grasas y Aceites, 54(2), 175–179. 
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