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some applications to finance

Sixian Jina,1, Henry Schellhorna,2, Josep Vivesb,3

aInstitute of Mathematical Sciences, Claremont Graduate University, 710 N. College Ave.,
Claremont, CA 91711, USA

bFaculty of Mathematics, Universitat de Barcelona, Gran Via 585, 08007 Barcelona
(Catalunya), Spain

Abstract

In this paper we obtain a Dyson type formula for integrable functionals of a
pure jump Lévy process. We represent the conditional expectation of a FT -
measurable random variable F at a time t ≤ T as an exponential formula
involving Malliavin derivatives evaluated along a frozen path. The series repre-
sentation of this exponential formula turns out to be useful for different appli-
cations, and in particular in quantitative finance, as we show in the following
examples: the first one is the pricing of options in the Poisson-Black-Scholes
model; the second one is the pricing of discount bonds in the Lévy quadratic
model. We also obtain, for the conditional expectation of a function of a finite
number of the process values, a backward Taylor expansion, that turns out to
be useful for numerical calculations.
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1. Introduction

In [5], a representation theorem for smooth Brownian martingales was ob-
tained. It consists of a series reminiscent of the Dyson series in quantum mechan-
ics. A similar representation was obtained in [6] for functionals of the fractional
Brownian motion for H > 1/2. In both cases, the representation involves the
Malliavin derivative. Here we obtain an analogous formula for functionals of
pure jump Lévy processes. Our work is based on Malliavin-Skorohod calculus
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techniques for Lévy processes. As general references for this calculus we refer
the reader to books [3] and [9].

Note that our result is essentially different from the previous Brownian re-
sults. In that case, the involved operator is the second order Malliavin derivative
whereas in our case only the first order Malliavin derivative is required. So, this
shows that this type of results are intrinsically probabilistic and cannot be cov-
ered by algebraic methods based only on the Fock space structure of the space of
square integrable functionals of a process with the chaotic representation prop-
erty. See [8] or [15] for a discussion about the role of the Fock space structure in
Malliavin-Skorohod calculus. Also, the method of proof is significantly different.

The obtained formula is a new way to compute conditional expectations,
based on the idea to freeze the path on the conditioning time instant. Taking
into account that the price of a financial derivative is nothing more than the
conditional expectation of the final payoff at the current time with respect to
the risk neutral probability, the obtained representation formula is potentially
useful in pricing and hedging, as two examples in the paper show. One of them,
the quadratic Lévy model, is, as far as we know, an original result.

The paper is organized as follows. Section 2 is devoted to preliminaries
about Malliavin-Skorohod type calculus for Lévy processes and Poisson random
measures. For a given conditional expectation of a certain functional, in Section
3 we prove the Dyson type formula and in Section 4 we prove its backward Taylor
expansion, which is of independent interest for numerical calculations, see [5].
Finally, in Section 5, two examples of financial application are analyzed in detail.

2. Lévy processes and Malliavin-Skorohod calculus

2.1. Lévy processes and Poisson random measures

Let T > 0. Consider a real Lévy process X = {Xt, t ∈ [0, T ]} defined on a
complete probability space (Ω,F ,P). Denote by E the expectation with respect
to P and by L2(Ω) the space of the square integrable random variables. Denote
by {Ft, t ≥ 0} the completed natural filtration of X and assume F = FT . Recall
that a Lévy process is a process with independent and stationary increments,
null at the origin and with càdlàg trajectories. See for example [14] for the basic
theory of Lévy processes.

The distribution of a Lévy process can be characterized by the triplet (γ, σ2, ν),
where γ ∈ R, σ2 ≥ 0 and ν is a Lévy measure on R, that is, a σ−finite positive
measure, null at the origin and such that

∫
R0

(1 ∧ x2)ν(dx) <∞.
Let us denote by BT and B the σ−algebras of Borel sets of [0, T ] and R

respectively. Consider also R0 := R−{0} and denote by B0 its Borel σ−algebra.
Consider the measure space ([0, T ] × R0,G, ` ⊗ ν) where G := BT ⊗ B0 and `
denotes the Lebesgue measure on [0, T ].

For simplicity, throughout the paper, we denote by (m(ds,dx))⊗n the tensor
product of a non-random measure m, that is,

(m(ds,dx))⊗n := m(dsn,dxn) · · ·m(ds1,dx1).
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Given G ∈ G, we introduce the random measure J associated to X, defined
as

J(G) := #{t : (t,∆Xt) ∈ G},
with ∆Xt = Xt −Xt−.

Recall that J is a Poisson random measure on G with intensity `⊗ ν. Let G∗
be the family of Borel sets G such that (`⊗ ν)(G) <∞. Then, for any G ∈ G∗,
J(G) is a Poisson random variable with E[J(G)] = (`⊗ ν)(G). As usual, from
now on, we write `(dt) = dt. We can consider the compensated random measure

J̃(dt,dx) := J(dt, dx) − dtν(dx), that is a square integrable centered random
measure such that for any G1 and G2, subsets of G∗, we have

E[J̃(G1)J̃(G2)] = (`⊗ ν)(G1 ∩G2).

Taking into account that any Lévy process can be decomposed into two
independent parts, the Brownian one and the so-called pure jump one, and since
the Brownian case was treated in [5], we consider in this paper Lévy processes
of the type

Xt := γt+

∫ t

0

∫
|x|>1

xJ(ds,dx) +

∫ t

0

∫
|x|≤1

xJ̃(ds,dx).

Recall that the selection of sets {|x| > 1} and {|x| ≤ 1} is arbitrary and the
border at 1 can be changed by any fixed δ > 0. If for a certain fixed δ > 0,

c(δ) :=

∫
|x|≤δ

xν(dx) (2.1)

is well defined, we can write

Xt = γt+

∫ t

0

∫
R0

xJ(ds,dx)−
∫ t

0

∫
|x|≤δ

xν(dx)ds

=

∫ t

0

∫
R0

xJ(ds,dx) + (γ − c(δ))t.

In this case, the Lévy process X is of finite variation and we can restrict our
analysis to the case

Xt =

∫ t

0

∫
R0

xJ(ds,dx),

that, for any t, is a.s. a well defined random variable.
If ν has finite expectation, that is,

∫
R0
|x|ν(dx) < ∞, condition (2.1) is

satisfied and the variable Xt belongs to L1(Ω) for any t.
Another relevant particular case is the case when ν is a finite measure, that

is λ := ν(R0) < ∞. In this case condition (2.1) is also satisfied and we have a
so-called Compound Poisson process. It is well known that in this case we can
associate to X the process

Nt :=

∫ t

0

∫
R0

J(ds, dx)
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that is a standard Poisson process with intensity λ and rewrite Xt =
∑Nt
j=0 Yj

where Yj are independent and identically distributed random variables with
probability law Q := ν/λ. See for example [2].

Two particular cases of Compound Poisson processes are of particular inter-
est, the standard Poisson process that corresponds with the case Q = δ1, the
Dirac-delta at 1, and the so-called simple Lévy processes that correspond to
the case Q is concentrated in a finite set of values. In this last case, process X
can be rewritten as a sum of different standard Poisson processes with different
intensities, see for example [12].

2.2. Chaotic representation property and Malliavin-Skorohod operators

Following [3], we can consider the spaces

L2
n := L2

(
([0, T ]× R0)n,G⊗n, (`⊗ ν)⊗n

)
and define the Itô multiple stochastic integrals In(f) with respect to J̃ in the
usual way. Then we have the so-called chaos representation property, that is,
for any functional F ∈ L2(Ω) we have

F =

∞∑
n=0

In(fn)

for a certain unique family of symmetric kernels fn ∈ L2
n.

This chaos representation shows that L2(Ω) has a Fock space structure. Thus
it is possible to apply the machinery related with the annihilation operator
(Malliavin derivative) and the creation operator (Skorohod integral) as it is
exposed, for example, in [8] and [15].

Define D := {F : F ∈ L2(Ω) with
∑∞
n=1 nn!||fn||2L2

n
< ∞}. The Malliavin

derivative of F ∈ D is an element of L2([0, T ]×R0×Ω,G⊗F , `⊗ν⊗P), defined
as

Dt,xF =

∞∑
n=1

nIn−1

(
fn
(
t, x, ·

))
, t ∈ [0, T ], x ∈ R0.

Of course the Malliavin derivative can be iterated in the usual way, written
as Dn

t1,x1,...,tn,xnF. The domain of the nth iterated operator is denoted by Dn.
On the other hand, let u ∈ L2([0, T ]× R0 × Ω,G ⊗ F , `⊗ ν ⊗ P). For every

t ∈ [0, T ] and x ∈ R0, we have the chaos decomposition

ut,x =

∞∑
n=0

In(fn(t, x, ·))

where fn ∈ L2
n+1 is symmetric in the last n pairs of variables. Denote by f̃n the

symmetrization in all n + 1 pairs of variables. Then, we define the Skorohod
integral of u by

δ(u) :=

∞∑
n=0

In+1(f̃n),
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in L2(Ω), provided u ∈ Dom δ that means
∑∞
n=0(n + 1)! ‖f̃n‖2L2

n+1
< ∞. This

integral turns to be an extension of Itô type and pathwise integrals in the sense
that for a predictable process u ∈ L2([0, T ]× R0 × Ω), we have

δ(u) =

∫
[0,T ]×R0

u(s, x)J̃(ds,dx).

Moreover, according to Proposition 5.4 in [16], we have the following inte-
gration by parts formula:

Lemma 2.1. Assume u ∈ Dom δ and F ∈ D such that

E

[∫
[0,T ]×R0

u2
t,x(F 2 + (Dt,xF )2) dtν(dx)

]
<∞.

Then, the following relation holds:

δ(Fu) = Fδ(u)−
∫

[0,T ]×R0

ut,xDt,xF dtν(dx)− δ(DF · u)

provided that one of the two sides of the equality exists.

We define the space L1,2 as the class of processes of Dom δ such that u(t, x) ∈
D for almost all (t, x), satisfying

E

[∫
[0,T ]2×R2

0

(Dt,xu(s, y))2dtν(dx)dsν(dy)

]
<∞.

Then, we have the following lemma.

Lemma 2.2. If both u and v ∈ L1,2 ⊂ Dom δ, we have

E[δ(u)δ(v)] =

∫
[0,T ]×R0

E[us,xvs,x]dsν(dx)

+

∫
[0,T ]2×R2

0

E[Ds,xut,yDt,yvs,x]dsν(dx)dtν(dy).

2.3. Clark-Hausmann-Ocone formula

Finally, in this setting, we can establish an abstract Clark-Haussmann-Ocone
(CHO) formula. Given A ∈ G we can consider the σ−algebra FA generated by

{J̃(A′) : A′ ∈ G∗, A′ ⊆ A}. We have, see [8], that F is FA−measurable if for
any n ≥ 1, fn(t1, x1, . . . , tn, xn) = 0, (` ⊗ ν)⊗n-a.e. unless (ti, xi) ∈ A for all
i = 1, . . . , n.

In particular, we are interested in the case A := [0, t) × R0, let us call the
corresponding σ−algebra as Ft−. Obviously, if F ∈ D and it is Ft−−measurable
then Ds,xF = 0 a.e. for s ≥ t and any x ∈ R0.
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From the chaos representation property we can see that for F ∈ L2(Ω),

E[F |Ft−] =

∞∑
n=0

In(fn(t1, x1, . . . , tn, xn)

n∏
i=1

χ[0,t)(ti)),

(see e.g. [8]). Then, for F ∈ D we have

Ds,xE[F |Ft−] = E[Ds,xF |Ft−]χ[0,t)(s), (s, x) ∈ [0, T ]× R0.

Using these facts we can prove, see for example [3] section 12.6, the CHO
formula. It says that if F ∈ D we have

F = E[F ] + δ(E[Dt,xF |Ft−]),

where E[Dt,xF |Ft−] is the predictable projection of Dt,xF .
Since the integrand is a predictable process, the Skorohod integral δ here is

actually an Itô integral. Then, the CHO formula can be rewritten as

F = E[F ] +

∫
[0,T ]×R0

E[Ds,xF |Fs−]J̃(ds,dx).

2.4. The Malliavin type derivative on the canonical space

We are interested in the probabilistic interpretation of the operatorD defined
before in the canonical space of a Poisson random measure. It is well known,
see for example [13], that this space can be seen as the set of finite or infinite
sequences of pairs (ti, xi) such that for any ε > 0, only a finite number of them
are in [0, T ]× Sε where

Sε := {x ∈ R : |x| > ε} ⊆ R0.

In this setting, we define, see [4] or [13], the operator Ψt,x by

Ψt,xF = F (ω + et,x)− F (ω)

where ω + et,x denotes to add to ω a jump in time t with amplitude x. This
operator is linear, closed and well defined from L0(Ω) to L0(Ω × [0, T ] × R0).
We say that it is a probabilistic interpretation of operator D in the sense that
F ∈ D if and only if ΨF ∈ L2([0, T ]× R0 × Ω) and in this case

DF = ΨF, `⊗ ν × P− a.e..

From now on we will write with a certain abuse of notation D instead of
Ψ, that is, we will use D as an operator defined on L0(Ω) taking values in
L0(Ω× [0, T ]× R0).

It is immediate to obtain the chain rule: for any t and x and any measurable
function f,

Dt,xf(G) = f(G+Dt,xG)− f(G). (2.2)

Moreover, by iteration, we have the following useful formula

Ds1,x1
· · ·Dsn,xnF (ω) =

n∑
k=0

∑
{j1≤···≤jk}⊂{1,...,n}

(−1)n−kF (ω+esj1 ,xj1 +...+esjk ,xjk ).

(2.3)
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2.5. Particular cases: standard Poisson process and simple Lévy process

In the particular case of the standard Poisson process {Nt, t ≥ 0} with
intensity λ, we have the compensated Poisson process {Ñt := Nt − λt, t ≥ 0}.
In this case, iterated stochastic integrals are written as

In(fn) = n!

∫ T

t

∫ sn−

t

· · ·
∫ s2−

t

fn(s1, ..., sn)dÑs1 · · · dÑsn

and the Malliavin derivative satisfies: Dtf(G) = f(G+DtG)− f(G).
Accordingly, the CHO formula is

F = E[F ] +

∫ T

0

E[DtF |Ft−]dÑt. (2.4)

for any F ∈ D and FT−measurable.
The simple Lévy process corresponds to the case where Q is concentrated in

a finite number of jump sizes {z1, ..., zJ} and Yt =
∑Nt
k=1 Zk where {Zk}k≥0 is

a sequence of independent and identically distributed discrete random variables
taking values in {z1, ..., zJ}. The values of Z represent the jump size at each
jump before time T. We set p(zj) = P (Z = zj) for j = 1, ..., J , and then we

can rewrite Yt =
∑J
j=1 zjN

j
t where

{
N j , 1 ≤ j ≤ J

}
are independent standard

Poisson processes with intensities {λj = λp(zj), 1 ≤ j ≤ J} .
Let Ỹt denote the compensated process. Then

Ỹt = Yt − λt
J∑
j=1

zjp(zj) =

J∑
j=1

zj

(
N j
t − λp(zj)t

)
=

J∑
j=1

zjÑ
j
t .

Thus, the Itô integral for Ỹt can be defined as
∫ T

0
XtdỸt =

∑J
j=1

∫ T
0
zjXtdÑ

j
t

and the CHO formula becomes:

F = E[F ] +

∫ T

0

J∑
j=1

E[D(j)
s F |Fs−]dÑ j

s (2.5)

where D
(j)
s F := Ds,zjF .

3. A Dyson type formula

We introduce first of all the so-called freezing path operator.

Definition 3.1. Given a functional F ∈ L0(Ω) and given ω = ((s1, x1), (s2, x2), . . . ),
we define the freezing path operator ωt as the operator

(ωt ◦ F )(ω) := F (ωt(ω))

where ωt(ω) is the sequence of pairs (si, xi) of ω such that si ≤ t.
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Remark 3.1. Assume the finite variation case. Consider

Xt :=

∫
[0,t]×R0

xJ(ds,dx).

Based on the definition, we have the following properties of the freezing path
operator:

1. ωt ◦Xu = Xu∧t.

2. For any measurable function g(x1, ..., xn), we have

ωt ◦ g(Xt1 , ..., Xtn) = g(Xt1∧t, ..., Xtn∧t).

3. Given t ∈ [0, T ] and f ∈ L1([0, T ]× R0), we have

ωt ◦
∫

[0,T ]×R0

f(s, x)J̃(ds,dx)

=

∫
[0,t]×R0

f(s, x)J(ds,dx)−
∫

[0,T ]×R0

f(s, x)ν(dx)ds.

Now we can establish the main theorems of the paper, the so-called Dyson
type formula, for the Compound Poisson case in Theorem 3.1 and for the general
pure jump Lévy case in Theorem 3.2.

Theorem 3.1. Let F ∈ L1(Ω). Assume ν(R0) = λ <∞. Then, a.s.,

E[F |Ft] = ωt◦F+

∞∑
n=1

1

n!

∫
[t,T ]n×Rn0

ωt◦(Ds1,x1
· · ·Dsn,xnF )(ν(dx)ds)⊗n. (3.1)

Remark 3.2. Note that the previous equality can be naturally written as

E[F |Ft] = ωt ◦

(
exp

(∫
[t,T ]×R0

Ds,x ν(dx)ds

))
(F ),

and note also that the iteration of operator Ds,x is symmetric in (s1, x1), ..., (sn, xn).

Proof. If F is integrable and thanks to Jensen’s inequality, the left hand side
of the equality (3.1) is, for any t ∈ [0, T ], a well defined random variable that
belongs to L1(Ω).

If ν(R0) = λ <∞, the underlying pure jump Lévy process X associated to ν
is a compound Poisson process, that is, there exists a standard Poisson process
N with intensity λ that determines the jump instants and ν = λQ where Q is
the probability law of the jump amplitudes.

First of all, we show that the right hand side element of (3.1) is bounded by
e2λ(T−t)E[|F ||Ft], so it is a random variable in L1(Ω). It is enough to show that

∞∑
n=0

1

n!

∫
[t,T ]n×Rn0

|ωt ◦ (Ds1,x1
· · ·Dsn,xnF )|(ν(dx)ds)⊗n ≤ e2λ(T−t)E[|F ||Ft].
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Using formula (2.3) and the fact that the underlying process is a compound
Poisson process, the left hand side term in the previous inequality is equivalent
to

∞∑
n=0

1

n!

n∑
k=0

∑
{j1≤···≤jk}⊂{1,...,n}

∫
[t,T ]n×Rn0

|F (ωt(ω+esj1 ,xj1 +...+esjk ,xjk ))|(ν(dx)ds)⊗n.

Note that integrals∫
[t,T ]n×Rn0

|F (ωt(ω + esj1,xj1
+ ...+ esjk ,xjk ))|(ν(dx)ds)⊗n

are the same for any selection of j1, . . . , jk, fixed k. So the previous series is
equal to

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)∫
[t,T ]n×Rn0

|F (ωt(ω + es1,x1
+ ...+ esk,xk))|(ν(dx)ds)⊗n.

Interchanging sums and computing the n− k integrals not affected by s and x,
we have

∞∑
k=0

1

k!

∞∑
n=k

λn−k(T − t)n−k

(n− k)!

∫
[t,T ]k×Rk0

|F (ωt(ω+es1,x1
+...+esk,xk))|(ν(dx)ds)⊗k

that is equal to

eλ(T−t)
∞∑
k=0

1

k!

∫
[t,T ]k×Rk0

|F (ωt(ω + es1,x1 + · · ·+ esk,xk))|(ν(dx)ds)⊗k

= eλ(T−t)
∞∑
k=0

λk(T − t)k

k!

∫
[t,T ]k×Rk0

|F (ωt(ω + es1,x1 + · · ·+ esk,xk))|
(
ν(dx)ds

λ(T − t)

)⊗k
= e2λ(T−t)

∞∑
k=0

P (NT −Nt = k)E
[
E[|F ||NT −Nt = k]

∣∣∣Ft]
= e2λ(T−t)E[|F ||Ft].
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Doing similar computations we prove the equality:

∞∑
n=0

1

n!

∫
[t,T ]n×Rn0

ωt ◦ (Ds1,x1
· · ·Dsn,xnF )(ν(dx)ds)⊗n)

=

∞∑
n=0

1

n!

n∑
k=0

∑
{j1≤···≤jk}⊂{1,...,n}

(−1)n−k

×
∫

[t,T ]n×Rn0
F (ωt(ω + esj1 ,xj1 + ...+ esjk ,xjk ))(ν(dx)ds)⊗n

=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
(−1)n−k

×
∫

[t,T ]n×Rn0
F (ωt(ω + es1,x1

+ ...+ esk,xk))(ν(dx)ds)⊗n

=

∞∑
k=0

1

k!

∞∑
n=k

(−1)n−kλn−k(T − t)n−k

(n− k)!

×
∫

[t,T ]k×Rk0
F (ωt(ω + es1,x1

+ ...+ esk,xk))(ν(dx)ds)⊗k

= e−λ(T−t)
∞∑
k=0

1

k!

∫
[t,T ]k×Rk0

F (ωt(ω + es1,x1 + ...+ esk,xk))(ν(dx)ds)⊗k

= e−λ(T−t)
∞∑
k=0

λk(T − t)k

k!

∫
[t,T ]k×Rk0

F (ωt(ω + es1,x1 + ...+ esk,xk))

(
ν(dx)ds

λ(T − t)

)⊗k
=

∞∑
k=0

P (NT −Nt = k)E
[
E[F |NT −Nt = k]

∣∣∣Ft]
= E[F |Ft].

The main idea of this proof is to use the binomial recombination. Similar
idea for related combinatorics can be found in the proofs of Proposition 4 and
5 of [10].

Theorem 3.2. Assume F ∈ L1(Ω), and

ωt ◦ F +

∞∑
n=1

1

n!

∫
[t,T ]n×Rn0

|ωt ◦ (Ds1,x1 · · ·Dsn,xnF )|(ν(dx)ds)⊗n <∞, a.s..

Then, a.s.,

E[F |Ft] = ωt ◦ F +

∞∑
n=1

1

n!

∫
[t,T ]n×Rn0

ωt ◦ (Ds1,x1
· · ·Dsn,xnF )(ν(dx)ds)⊗n.
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Proof. If ΩT,ε is the canonical Poisson space when ν is concentrated in {|x| > ε},
from the finite activity case (Theorem 3.1), we have

E[F11ΩT,ε |Ft] =

∞∑
n=0

1

n!

∫
[t,T ]n×{|x|>ε}n

ωt ◦ (Ds1,x1
· · ·Dsn,xnF )(ν(dx)ds)⊗n.

Using the hypothesis and dominated convergence, the equality is valid a.s. for
a general ν.

Remark 3.3. Following Section 2.5, we directly obtain the Dyson type formula
for Poisson process and simple Lévy process as corollaries of Theorem 3.1.

In the standard Poisson case, if F ∈ L1(Ω), we have

E[F |Ft] = ωt ◦ F +

∞∑
n=1

λn
∫
t≤s1≤...≤sn≤T

ωt ◦ (Dsn · · ·Ds1F ) (ds)
⊗n

. (3.2)

In the simple Lévy process case, we define the operator As :=
∑J
j=1 λjD

(j)
s .

Then,

E[F |Ft] = ωt ◦ F +

∞∑
n=1

∫
t≤s1≤...≤sn≤T

ωt ◦ (Asn · · ·As1F ) (ds)
⊗n

.

4. Backward Taylor expansion

In this section, we provide the backward Taylor expansion (BTE) for a func-
tion of discrete pure jump Lévy processes. As was showed in [5] for the Brownian
case, the BTE is useful for numerical applications. We provide an example of
an application in the next section. One can also use, as we did in [5], the BTE
to prove the Dyson type formula by an approximation argument. However, the
conditions for convergence of the Dyson series that we give in Theorem 3.1 are
simpler than what we obtain following the BTE approach, so we do not show
this method of proof here.

We first consider the case of the Poisson process. The case of the compound
Poisson process will be a corollary. Recall that the Charlier polynomials Cn(x, y)
can be defined by the formula (1+z)xe−yz =

∑∞
n=0

zn

n!Cn(x, y) or by recurrence
as C0(x, y) = 1, C1(x, y) = x− y and

Cn+1(x, y) = (x− y − n)Cn(x, y)− nyCn−1(x, y).

A well-known relation between Charlier polynomials and multiple stochastic
integrals (see [16] section 3) is given by the formula

Cn(NT −Nt, λ(T − t)) = n!

∫ T

t

∫ sn−

t

· · ·
∫ s2−

t

dÑs1 · · · dÑsn .

By the integration by parts formula given in Lemma 2.1 and induction, we
can prove the following lemma, which is the counterpart of Lemma 5.3 in [5].

11



Lemma 4.1. Let F = f(ÑT ) ∈ L2(Ω) be FT -measurable and
∑∞
i=0E

[(
Di
TF
)2]

<

∞. Then for n ≥ 1,∫ T

t

∫ sn−

t

· · ·
∫ s2−

t

FδÑs1 · · · δÑsn =

n∑
j=0

∞∑
i1,...,in=0

(−1)i1+...+in+jDi1+...+in+j
T F

×Cn−j (NT −Nt, λ(T − t)) (λ(T − t))j

(n− j)!j!
.

Proof. As a consequence of Lemma 2.1 (see also Proposition 6.5.1 in [9]), the
integration by parts formula for the Skorohod integration with respect to the
compensated Poisson process is:∫ T

0

FδÑs = F

∫ T

0

dÑs − λ
∫ T

0

DsFds−
∫ T

0

DsFδÑs. (4.1)

Since F depends only on ÑT , we have DsF = DTF when s ≤ T . Therefore, we
apply (4.1) repeatedly to obtain∫ T

0

FδÑs = F

∫ T

0

dÑs − λDTF

∫ T

0

ds

−

(
DTF

∫ T

0

dÑs − λD2
TF

∫ T

0

ds−
∫ T

0

D2
TFδÑs

)

= G

∫ T

0

dÑs − λDTG

∫ T

0

ds (4.2)

where G :=
∑∞
i=0(−1)iDi

TF .
In general, repeatedly applying (4.2), by induction:∫ T

t

∫ sn−

t

· · ·
∫ s2−

t

FδÑs1 · · · δÑsn

=

∞∑
i1=0

∞∑
i2=0

...

∞∑
in=0

{
(−1)i1+..+inDi1+..+in

T F

∫ T

t

∫ sn−

t

· · ·
∫ s2−

t

dÑs1 · · · dÑsn

+λ(−1)i1+..+in+1Di1+..+in+1
T F

∫ T

t

∫ sn−1−

t

· · ·
∫ s2−

t

dÑs1 · · · dÑsn−1

∫ T

t

ds1

+...+ λn(−1)i1+..+in+nDi1+..+in+n
T F

∫
t≤s1≤...≤sn≤T

(ds)⊗n
}

=

n∑
j=0

∞∑
i1,...,in=0

(−1)i1+...+in+jDi1+..+in+j
T FCn−j(NT −Nt, λ(T − t))λ

j(T − t)j

(n− j)!j!
.

Note that any Lévy process can be assumed right continuous with left limits
without losing generality. Being T is a prefixed point, the probability of a jump

12



on T is null. Therefore NT is almost surely equal to NT− and of course these
two random variables are equal as elements of L2(Ω). Similar argument holds
also in the following proof of Theorem 4.1.

According to Lemma 2.2, Proposition 5.4 and 5.7 in [16], and (2.12) in [7],
we have the following lemma. It is the counterpart of Lemma 5.1 in [5].

Lemma 4.2. For the multiple Skorohod integral δL with respect to the compen-
sated Poisson process, if u ∈ LL,2 ⊂ DomδL we have:

E
[(
δL(u)

)2]
=

L∑
i=0

(
L

i

)2

i!E
[∥∥DL−iu

∥∥2

H⊗(2L−i)

]
,

where ∥∥DL−iu
∥∥2

H⊗(2L−i) :=

∫
[0,T ]2L

Dt1 · · ·DtL−iu(s1, ..., sL)(dt)⊗(L−i)

×Ds1 · · ·DsL−iu(t1, ..., tL)(ds)⊗(L−i)dtL−i+1 · · · dtLdsL−i+1 · · · dsL.

Recall that the space LL,2 is the generalization of L1,2 changing D by DL in
the definition, see Lemma 2.2 above (or Definition 5.5 in [16]).

Based on these two lemmas, we can prove the Backward Taylor Expansion.
For simplicity, we introduce a notation p(m,n) to denote the number of parti-
tions of a positive integer n with exactly m parts, allowing 0.

Theorem 4.1. Suppose F ∈ L2(Ω) and 0 ≤ t1 ≤ ... ≤ tM .
1. Poisson process: Assume F = F (Ñt1 , ..., ÑtM ) such that for any m =

1, . . . ,M − 1,
∑∞
i=0E

[(
Di
tmF

)2]
<∞ and

L∑
i=0

E

[(
D2L−i
tm+1

F
)2
]
λ2L−i

(
L

i

)4
i!

(L!)2
(tm+1 − tm)2L−i L→∞−−−−→ 0. (4.3)

Then we have

E[F |Ftm ] =

∞∑
l=0

γl(m,∆Ntm)E[Dl
tm+1

F |Ftm+1
] (4.4)

where ∆Ntm := Ntm+1 − Ntm and the random coefficient γl(m,∆Ntm) has the
following representation for l ≥ 0:

γl(m,∆Ntm) = (−1)l
∑
j+n≤l
j≤n

p(n, l−j−n)Cn−j(∆Ntm , λ(tm+1−tm))
λj(tm+1 − tm)j

(n− j)!j!
.

2. Simple Lévy process: Assume F = F
(
Ỹt1 , ..., ỸtM

)
such that for any

m = 1, . . . ,M − 1 and all j,
∑∞
i=0E

[(
D
i,(j)
tm F

)2
]
<∞; as well as

∑
n1+...+nJ=L

(
nj∑
i=0

E

[(
D

2nj−i,(j)
tm+1

F
)2
]
λ

2nj−i
i

(
nj
i

)4
i!(tm+1 − tm)2nj−i

(nj !)2

)
L→∞−−−−→ 0.

13



Then we have

E[F |Ftm ] =

∞∑
l1,...,lJ=0

γl1,...,lJ (m,∆N1
tm , . . . ,∆N

J
tm)E[D

l1,(1)
tm+1

· · ·DlJ ,(J)
tm+1

F |Ftm+1
]

where

γl1,...,lJ (m,∆N1
tm , . . . ,∆N

J
tm) = (−1)l1+...+lJ

J∏
j=1

∑
rj+nj≤lj
rj≤nj

p(nj , lj − nj − rj)Cnj−rj (∆N
j
tm , λj(tm+1 − tm))λ

rj
j (tm+1 − tm)rj

(nj − rj)!rj !
.

Proof. The proof of this theorem is similar to the proof of Theorem 2.1 for the
BTE of Brownian motion in [5]. First, for any m ≤M − 1, we apply the CHO
formula (2.4) to obtain:

E[F |Ftm ] = E[F ] +

∫ tm

0

E[Ds1F |Fs1−]dÑs1

= E[F |Ftm+1
]−
∫ tm+1

tm

E[Dtm+1
F |Fs1−]dÑs1 . (4.5)

The equality Ds1F = Dtm+1
F in the previous line comes from the assumption

that F = F (Ñt1 , ..., ÑtM ). Applying the CHO formula iteratively, we obtain:

E[F |Ftm ] =

L−1∑
l=0

(−1)l
∫ tm+1

tm

∫ sl−

tm

· · ·
∫ s2−

tm

E[Dl
tm+1

F |Ftm+1−]δÑs1 · · · δÑsl

+RL[tm,tm+1] (4.6)

where the remainder is defined as

RL[tm,tm+1] :=

∫ tm+1

tm

∫ sL−

tm

· · ·
∫ s2−

tm

E[DL
tm+1

F |FsL−]dÑs1 · · · dÑsL .

Applying Lemma 4.2 to the remainder RL[tm,tm+1] and with the help of con-

dition (4.3), similarly to the proof of Lemma 5.2 in [5], we obtain:

E

[(
RL[tm,tm+1]

)2
]
≤

L∑
i=0

E
[(
Dtm+1,x1

· · ·Dtm+1,x2L−iF
)2](L

i

)4
i!

(L!)2
(tm+1−tm)2L−i

and this converges to 0, which guarantees that the series (4.4) converge. Now
we define, for any ε > 0,

G(L,m, ε) :=

∫ tm+1−ε

tm

∫ sL−

tm

· · ·
∫ s2−

tm

E[DL
tm+1

F |Ftm+1−ε]δÑs1 · · · δÑsL

14



where G(L,m, ε) is a Ftm+1−ε measurable random variable. Notice that DsF =
Dtm+1F if s ∈ (tm, tm+1], by taking ε < tm+1 − tm and applying Lemma 4.1 to
G(L,m, ε), we obtain

G(L,m, ε) =

n∑
j=0

∞∑
i1,...,in=0

(−1)i1+...+in+jE[Di1+...+in+j+L
tm+1

F |Ftm+1−ε]

×Cn−j
(
Ntm+1−ε −Ntm , λ(tm+1 − ε− t)

) (λ(tm+1 − ε− tm))
j

(n− j)!j!
.

Let T (L,m, ε) be the set

T (L,m, ε) = {tm ≤ s1 ≤ ... ≤ sL ≤ tm+1} − {tm ≤ s1 ≤ ... ≤ sL ≤ tm+1−ε}.

Then E

[(∫
T (L,m,ε)

E[DL
tm+1

F |Ftm+1−ε]δÑs1 · · · δÑsL
)2
]
ε→0−−−→ 0.

On the other hand, E[Di1+...+in+j+L
tm+1

F |Ftm+1−ε] −→ E[Di1+...+in+j+L
tm+1

F |Ftm+1
]

almost surely as ε → 0 because Ñ has a finite number of jumps in any finite
interval. Therefore, with the decomposition of the Skorohod integral∫ tm+1

tm

∫ sL−

tm

· · ·
∫ s2−

tm

E[DL
tm+1

F |Ftm+1−]δÑs1 · · · δÑsL

= G(L,m, ε) +

∫
T (L,m,ε)

E[DL
tm+1

F |Ftm+1−ε]δÑs1 · · · δÑsL

and Cauchy-Schwarz inequality, in L2(Ω),∫ tm+1

tm

∫ sL−

tm

· · ·
∫ s2−

tm

E[DL
tm+1

F |Ftm+1−]δÑs1 · · · δÑsL

=

L∑
j=0

∞∑
i1,...,iL=0

(−1)i1+...+iL+jE[Di1+...+iL+j+L
tm+1

F |Ftm+1 ]

×CL−j
(
Ntm+1

−Ntm , λ(tm+1 − tm)
) (λ(tm+1 − tm))

j

(L− j)!j!
.

We notice that the remainder tends to 0. This completes the proof of the
backward Taylor expansion for Poisson processes.

Since the simple Lévy processes can be regarded as a finite sum of Poisson
processes, similar to (4.5), we apply the CHO formula (2.5) and obtain:

E[F |Ftm ] = E[F |Ftm+1 ]−
∫ tm+1

tm

J∑
j=1

E[D
(j)
tm+1

F |Fs1−]dÑ j
s1 .

Keep iterating the above formula using (2.5), with the similar discussions as
what we did for (4.6), the backward Taylor expansion for simple Lévy processes
can be obtained.
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As a corollary of Theorem 4.1, we can similarly prove the backward Taylor
expansion for the compound Poisson process. We writeXt =

∫
[0,t]×R0

xJ(ds,dx).

Corollary 4.1. Assume F ∈ L2(Ω) such that F = f(Xt1 , ..., XtM ) with 0 ≤
t1 ≤ ... ≤ tM . Then if

∑∞
i=0

∫
Ri0
E
[(
Dtm+1,x1 · · ·Dtm+1,xiF

)2]
(ν(dx))

⊗i
< ∞,

ν(R0) = λ <∞, and the following condition holds: for any 1 ≤ m ≤M − 1,

L∑
i=0

∫
R2L−i

0

E

[(
D2L−i
tm+1,x1,...,tm+1,x2L−i

F
)2
]

(ν(dx))
⊗2L−i

(
L

i

)4
i!

(L!)2
(tm+1 − tm)2L−i

L→∞−−−−→ 0, (4.7)

we have, for any 1 ≤ m ≤M − 1,

E[F |Ftm ]

= E[F |Ftm+1
] +

∞∑
l=1

γl(m,∆Xm)

∫
Rl0
E[Dl

tm+1,x1,...,tm+1,xl
F |Ftm+1

] (ν(dx))
⊗l

where γl(m,∆Xm) has the following representation: for l ≥ 0

γl(m,∆Xm) = (−1)l
∑

i1+···+in+j+n=l
j≤n

Cn−j (∆Xtm , λ(tm+1 − tm))
(λ(tm+1 − tm))j

(n− j)!j!
.

Remark 4.1. A large range of random variables can fit (4.3). Using the Stirling
approximation, we can prove that:

L∑
i=0

(
L

i

)4
i!

(L!)2
λ2L−i(tm+1 − tm)2L−i ≤ CL

LL

for some fixed constant C > 0. Thus, for those random variables F such that
for any l and t,

E
[(
Dl
tF
)2] ≤ cl (4.8)

for some constant c, (4.3) always holds. A simple example is F = eαNT for any
constant α. We have

DL
TF =

L∑
l=0

(−1)L−l
(
L

l

)
eαNT+αl = eαNT

L∑
l=0

(−1)L−l
(
L

l

)
eαl = eαNT (eα − 1)

L
.

Then, E
[(
DL
TF
)2]

= E[e2αNT ] (eα − 1)
2L ≤ cL for some fixed c which does

not depend on L and (4.3) holds. Therefore, we can regard (4.8) as an alter-
native condition of (4.3), which is easy to check in practical examples. Similar
discussion also holds for condition (4.7). We can use the alternative condition:∫

RL0
E
[(
Dtm+1,x1

· · ·Dtm+1,xLF
)2]

(ν(dx))
⊗L ≤ cL.

to simplify the checking process in practical calculations.
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5. Applications

5.1. Poisson Black-Scholes Model

In this section, we recover the price of the call option under the Poisson
Black-Scholes Model. We notice that the Dyson series approach is simpler and
more direct than the classical PIDE approach, see for example [11], Chapter 11.
Also, we note that we can not use the Dyson series in the Brownian case, since
the maximum function is not differentiable.

Let F = exp (NT log(σ + 1)− λTσ) with σ ≥ 0. We want to evaluate E[(F−
K)+|Ft] for some fixed positive K. Let G = (F−K)+, then for s1, ..., sn ∈ (t, T ],
using the chain rule of Malliavin derivative and induction, we obtain:

ωt ◦Ds1 · · ·DsnG =

n∑
k=0

(−1)n−k
(
n

k

)(
eNt log(σ+1)−λTσ+k log(σ+1) −K

)+

.

Thus by the Dyson type formula for Poisson process (3.2),

E[G|Ft]

=

∞∑
n=0

n∑
k=0

(−1)n−k
(
n

k

)(
eNt log(σ+1)−λTσ+k log(σ+1) −K

)+ λn(T − t)n

n!

(5.1)

= e−λ(T−t)
∞∑
k=0

λk(T − t)k

k!

(
eNt log(σ+1)−λTσ+k log(σ+1) −K

)+

(5.2)

which matches the classical result shown in [11], Chapter 11.
Rather than these two approaches, we can also obtain a series of the pricing

formula with BTE using Theorem 4.1:

∞∑
n=0

{ ∑
i1+...+il+j+l=n

j≤l

Cl−j(NT −Nt, λ(T − t))λ
j(T − t)j

(l − j)!j!

×
n∑
k=0

(−1)k
(
n

k

)(
eNT log(σ+1)−λTσ+k log(σ+1) −K

)+
}
. (5.3)

In the following, we numerically compare these three different approaches:
by Dyson series (5.1), BTE (5.3) and regular series (5.2). In each case, we
truncate the series along the first summation symbol up to N terms.

We choose T = λ = 1, t = 0 and the strike K = 1, and approximate these
three series by taking N = 30 and we show two cases with different values of σ.
From Figure 1 and 2, we can easily observe that both backward Taylor expansion
and Dyson type series converge faster than the regular approach. Moreover, this
comparison also implies that the Dyson series matches the BTE numerically for
this particular example.
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Figure 1: Option price with σ = 2 as a
function of the number of terms in the se-
ries

Figure 2: Option price with σ = 0.5 as
a function of the number of terms in the
series

5.2. Lévy Quadratic Model

In this section, we use the Dyson type series to evaluate the bond price in
the Lévy quadratic model of interest rates. In [5], Section 3.4, we applied the
Dyson series representation of Brownian motion to evaluate the bond price in
the extended Cox-Ingersoll-Ross model, in which the interest rate is given by
a summation of the square of Gaussian Ornstein-Uhlenbeck processes. In this
section, we extend this model to Lévy processes. In this model, the interest
rate is the sum of square of non-Gaussian Ornstein-Uhlenbeck processes, that

is, rs :=
∑d
i=1

(
U

(i)
s

)2

with U
(i)
s = U

(i)
0 +

∫ s
0
σi(u)dX

(i)
u for each i = 1, ..., d.

{σi}i=1,...,d are deterministic volatility functions, U
(i)
0 are constants and Xi

u are
independent and identically distributed pure jump Lévy processes with finite
Lévy measure ν and intensity λ := ν(R0) <∞.

This model can be regarded as a special case of a general Lévy quadratic
model. The bond price of the general case is given by (1.2) and (1.3) in [1]
as a solution of a system of Riccati equations. For this particular case, we
use the Dyson series shown in Theorem 3.1 to give an explicit representation

for the bond price E [F |Ft] with F = exp
(
−
∫ T
t
rsds

)
. We have the following

proposition, which to the best of our knowledge, is an original result.

Proposition 5.1. 1. If d = 1, U
(1)
0 = 0 and σ1(u) = 1, we have:

E [F |Ft] = exp (−rt(T − t)− λ(T − t))

(
1 +

∞∑
i=1

∫
Ri0
Ii(x1, ..., xi) (ν(dx))

⊗i

)
where Ii is defined in (5.5) below.

2. If d > 1 and {σi}i=1,...,d are deterministic volatility functions, we have:

E [F |Ft] = exp (−rt(T − t)− dλ(T − t))
d∏
i=1

( ∞∑
l=0

∫
Rl0
b
(i)
l (x1, ..., xi) (ν(dx))

⊗l

)

where b
(i)
l is defined in (5.6) below.
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Before proving the proposition, we provide two numerical simulations. Let
X be a standard Poisson process with λ = 1, take T = 1 and t = 0. We
approximate the bond prices using two series in Proposition 5.1. For case 1, we

simulate e−1
(

1 +
∑N
i=1 Ii(1, · · · , 1)

)
up to N = 10, see Figure 3. For case 2,

we assume d = 2, U
(1)
0 = U

(2)
0 = 0 and σ1(u) = σ2(u) = e−(1−u) and simulate

e−2

(
1 +

N∑
l=1

b
(1)
l (1, ..., 1)

)(
1 +

N∑
l=1

b
(2)
l (1, ..., 1)

)

up to N = 10 also, see Figure 4. From these two figures, we can observe a
quite stable series converging to the target estimation quickly in four terms.
And the limit values match with the values obtained by Monte Carlo simulation
generating the Poisson variable 220 times. Rather than the large amount of the
data necessary to generate Poisson variables in order to simulate the integral

in E
[
exp

(
−
∫ 1

0
N2
s )ds

)]
, using Riemann sum, the Dyson series has an obvious

simpler way to reach a good approximation with less request of time and data.
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0.36
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Figure 3: The first 10 partial sums of
Dyson series with d = σ = 1.
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Figure 4: The first 10 partial sums of
Dyson series with d = 2 and σ1(u) =
σ2(u) = e−(1−u).

Proof of Proposition 5.1. In the following, we will denote s1∨s2 := max{s1, s2}.
For the first case when d = 1, U

(1)
0 = 0 and σ1(u) = 1, i.e. rs = X2

s and F =

exp
(
−
∫ T
t
X2
sds
)

. By the chain rule (2.2) and the fact that Dn
u,x

∫ T
t
X2
sds = 0

for any u and x when n > 2, basic calculations show that

Ds1,x1
· · ·Dsn,xnF =

n∑
i=1

(−1)n−i
∑

{j1≤...≤ji}⊂{1,...,n}

exp

{
−
∫ T

t

X2
sds−

i∑
r=1

(
2xjr

∫ T

sjr

Xsds+ (T − sjr )x2
jr

)

−
∑

1≤r1<r2≤i

2(T − sjr1 ∨ sjr2 )xjr1xjr2

}
+ (−1)n exp

(
−
∫ T

t

X2
sds

)
,(5.4)
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where by convention, the sum over 1 ≤ r1 < r2 ≤ i disappears when i = 1.
With the help of symmetry and Remark 3.1, we obtain∫

[t,T ]n×Rn0
ωt ◦ (Ds1,x1

· · ·Dsn,xnF ) (ν(dx))
⊗n

(ds)⊗n

=

n∑
i=1

(−1)n−i
(
n

i

)
i! exp

(
−(T − t)X2

t

)
(T − t)n−i

∫
Rn0
Ii(x1, ..., xi) (ν(dx))

⊗n

+(−1)n exp
(
−X2

t (T − t)
)
λn(T − t)n

where

Ii(x1, ..., xi) :=

∫
t≤s1≤...≤si≤T

exp (−a1(Xt)(T − s1)− ...− ai(Xt)(T − si)) (ds)⊗i;

aj(Xt) := 2Xtxj + x2
j + 2xj(xj−1 + ...+ x1), j ≥ 2; a1(Xt) := 2Xtx1 + x2

1.

Since Xt can be regarded as a constant in the integral, Ii can be evalu-
ated explicitly. For simplicity, we write aj instead of aj(Xt). By setting up a
recurrence formula for Ii and using induction, we obtain

Ii(x1, ..., xi) = Bi +

i−1∑
k=0

Bk
ak+1(ak+1 + ak+2) · · · (ak+1 + · · ·+ ai)

(5.5)

where

Bk :=
(−1)k exp (−(a1 + · · ·+ ak)(T − t))
ak(ak + ak−1) · · · (ak + · · ·+ a1)

for k ≥ 1 and B0 := 1.

Therefore by Theorem 3.1 and changing summation between n and i, we get

E [F |Ft] =

∞∑
n=0

1

n!

∫
[t,T ]n

∫
Rn0
ωt ◦ (Ds1,x1

· · ·Dsn,xnF ) (ν(dx))
⊗n

(ds)⊗n

= exp
(
−X2

t (T − t)− λ(T − t)
)(

1 +

∞∑
i=1

∫
Ri0
Ii(x1, ..., xi) (ν(dx))

⊗i

)
.

Now we provide the bond pricing formula for the case when d > 1 and
{σi}i=1,...,d are deterministic volatility functions. We calculate E [F |Ft] by de-

composing the filtration into
(
F (i)
t

)⊗d
where for each i, F (i)

t is the natural

filtration generated by X(i). Then by the independence of processes X(i) we
have

E [F |Ft] =

d∏
i=1

E

[
exp

(
−
∫ T

t

(
U

(i)
0 +

∫ s

0

σi(u)dX(i)
u

)2

ds

)∣∣∣∣F (i)
t

]
.
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If we denote D(i) as the Malliavin derivative for X(i), then similar calcula-
tions as in (5.4) give us

D(i)
s1,x1

· · ·D(i)
sn,xnF

(i) =

n∑
l=1

(−1)n−l
∑

{j1≤...≤jl}⊂{1,...,n}

exp

(
−
∫ T

t

(
U (i)
s

)2

ds−
l∑

r=1

(
2xjr

∫ T

sjr

U (i)
s σi(s)ds+ x2

jr

∫ T

sjr

σ2
i (s)ds

)

−
∑

1≤r1<r2≤l

2xjr1xjr2

∫ T

sjr1
∨sjr2

σ2
i (s)ds

)
+ (−1)n exp

(
−
∫ T

t

(
U (i)
s

)2

ds

)
,

where by convention, the sum over 1 ≤ r1 < r2 ≤ l disappears when l = 1.
Now if we define

b
(i)
l (x1, ..., xl) :=

∫
[t,T ]l

exp(−
l∑

r=1

(
2U

(i)
t xr

∫ T

sr

σi(s)ds+ x2
r

∫ T

sr

σ2
i (s)ds

)

−
∑

1≤r1<r2≤l

2xr1xr2

∫ T

sr1∨sr2
σ2
i (s)ds)(ds)⊗i;

b
(i)
1 (x1) :=

∫ T

t

exp

(
−2U

(i)
t x1

∫ T

s1

σi(s)ds− x2
1

∫ T

s1

σ2
i (s)ds

)
ds1, b

(i)
0 = 1,

(5.6)

with the simple notation b
(i)
l instead of b

(i)
l (x1, ..., xl), we finally obtain

E [F |Ft] = exp (−rt(T − t)− d(T − t)λ)

d∏
i=1

( ∞∑
l=0

∫
Rl0
b
(i)
l (ν(dx))

⊗l

)
,

which completes the proof.
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