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The research presented in this article provides an alternative option pricing approach
for a class of rough fractional stochastic volatility models. These models are increasingly
popular between academics and practitioners due to their surprising consistency with �-
nancial markets. However, they bring several challenges alongside. Most noticeably, even
simple non-linear �nancial derivatives as vanilla European options are typically priced
by means of Monte-Carlo (MC) simulations which are more computationally demanding
than similar MC schemes for standard stochastic volatility models. In this paper, we pro-
vide a proof of the prediction law for general Gaussian Volterra processes. The prediction
law is then utilized to obtain an adapted projection of the future squared volatility � a
cornerstone of the proposed pricing approximation. Firstly, a decomposition formula for
European option prices under general Volterra volatility models is introduced. Then we
focus on particular models with rough fractional volatility and we derive an explicit semi-
closed approximation formula. Numerical properties of the approximation for a popular
model � the rBergomi model � are studied and we propose a hybrid calibration scheme
which combines the approximation formula alongside MC simulations. This scheme can
signi�cantly speed up the calibration to �nancial markets as illustrated on a set of AAPL
options.
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1. Introduction

It is well known that the main issue of the Black-Scholes model lies in its assump-
tions about volatility of the modelled asset. Opposed to the model assumptions,
the realized volatility time series tend to cluster, depend on the spot asset level and
certainly they do not take a constant value within a reasonable time-frame (see e.g.
Cont (2001)).

To deal with the aforementioned inconsistencies, stochastic volatility (SV) mod-
els have been proposed originally by Hull & White (1987) and later e.g. by Heston
(1993). These models do not only assume that the asset price follows a speci�c
stochastic process, but also that the instantaneous volatility of asset returns is of
random nature as well. Especially, the latter approach by Heston became popular
in the eyes of both practitioners and academics. Several modi�cations of this model
have been proposed over the last 20 years: models with jump-di�usion dynam-
ics Bates (1996), Du�e, Pan & Singleton (2000), with time-dependent parameters
Mikhailov & Nögel (2003), Elices (2008), Benhamou, Gobet & Miri (2010), with
fractionally scaled volatility Comte & Renault (1998), Alòs, León & Vives (2007),
El Euch & Rosenbaum (2019), and models with several aspects combined as Pospí²il
& Sobotka (2016) or Baustian, Mrázek, Pospí²il & Sobotka (2017).

The original pricing approach of Heston (1993) was several times revisited, e.g
by Lewis (2000), Attari (2004) and Albrecher, Mayer, Schoutens & Tistaert (2007)
with focus on semi-closed form Fourier transform solutions, by Kahl & Jäckel (2006)
and Alfonsi (2010) with respect to Monte-Carlo simulation techniques and last but
not least by Alòs (2012) who introduced an analytical approach to option pricing
approximation. This approach improves on the techniques introduced by Hull &
White (1987) and shows how an adaptive projection of future volatility can be used
to price European options under Heston (1993) model. Many other papers gener-
alized this idea, see e.g. Alòs, de Santiago & Vives (2015), Merino & Vives (2015),
or recently, Merino, Pospí²il, Sobotka & Vives (2018). In this article, we revisit the
latter approach and we come up with the approximation technique for SV mod-
els with volatility process driven by the fractional Brownian motion. This includes
exponential rough fractional volatility models introduced by Gatheral, Jaisson &
Rosenbaum (2014, 2018).

Although many SV models have been proposed since the original Hull & White
(1987) model, it seems that none of them can be considered as the universal best
market practice approach. Several models might perform well for calibration to
complex volatility surfaces, but can su�er from over-�tting or they might not be
robust in the sense described by Pospí²il, Sobotka & Ziegler (2019). Also a model
with a good �t to implied volatility surface might not be in-line with the observed
time-series properties.

Pioneers of the fractional SV models � Comte & Renault (1998), see also Comte,
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Coutin & Renault (2012) � assumed the so-called Hurst parameter a ranged within
H ∈ (1/2, 1) which implies that the spot variance evolution is represented by a
persistent process, i.e. it would have a long-memory property. In Alòs, León &
Vives (2007), a mean reverting fractional stochastic volatility model with H ∈ (0, 1)

was presented. Gatheral, Jaisson & Rosenbaum (2018) and Bayer, Friz & Gatheral
(2016) came up with a more detailed analysis of rough fractional volatility mod-
els which should be consistent with market option prices Bayer, Friz & Gatheral
(2016), with realized volatility time series and also they could provide superior
volatility prediction results to several other models Bennedsen, Lunde & Pakkanen
(2017). An approach considering a two factor fractional volatility model, combining
a rough term (H < 1

2 ) and a persistent one (H > 1
2 ), was presented in Funahashi

& Kijima (2017). Recently, also an approximation for target-volatility options un-
der log-normal fractional SABR model was studied by Alòs, Chatterjee, Tudor &
Wang (2019) who use the Malliavin calculus techniques to derive the decomposition
formula. In parallel, short-term at-the-money asymptotics for a class of stochastic
volatility models were studied by El Euch, Fukasawa, Gatheral & Rosenbaum (2019)
who use the Edgeworth expansion of the density of an asset price.

A typical problem of rough fractional models lies in their tractability � only
computational demanding simulation techniques seem to be available for vanilla
European options at the time of writing this article. This serves as a motivation to
develop a pricing approximation based on the works of Alòs (2012), whose approach
was further generalised by Merino & Vives (2015) and Merino, Pospí²il, Sobotka &
Vives (2018). Without using the Malliavin calculus we derive a decomposition and
approximation formula for European option prices under general Volterra volatility
models and in particular under a class of models with rough fractional volatility.
Obtained results hence give a better understanding of the whole surface of prices
than results focusing only on at-the-money volatility skew.

The structure of the paper is the following. Section 2 is devoted to preliminaries.
In Section 3 we present a generic decomposition formula of the vanilla European
option fair value. In Setion 4 we present Volterra volatility models. In particular
in Section 4.1 we prove the prediction law for general Gaussian Volterra processes,
in Section 4.2 we obtain the decomposition formula for the exponential Volterra
volatility model including the error bound for the approximation formula and in
Section 4.3 we provide particular results for exponential fracional volatility models
(including the standard Brownian motion case). In Section 5, we provide a numerical
comparison of approximated prices against Monte Carlo simulations. All obtained
results are concluded in Section 6.

aNamed after the hydrologist and Nile River expert Harold Edwin Hurst. For more information
on fractional Brownian motion, see Section 4.3 and Mandelbrot & Van Ness (1968).
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2. Preliminaries and notation

Let S = (St, t ∈ [0, T ]) be a strictly positive asset price process under a market
chosen risk neutral probability measure P that follows the model

dSt = rSt dt+ σtSt

(
ρ dWt +

√
1− ρ2 dW̃t

)
, (2.1)

where S0 is the current price, r ≥ 0 is the interest rate, Wt and W̃t are independent
standard Wiener processes de�ned on a probability space (Ω,F ,P) and ρ ∈ (−1, 1).
In the following, we will denote by FW and FW̃ the �ltrations generated by W and
W̃ respectively. Moreover, we de�ne F := FW ∨FW̃ . The volatility process σt is a
square-integrable process assumed to be adapted to the �ltration generated by W
and its trajectories are assumed to be a.s. càdlàg and stricly positive a.e.. Note that
ρ is the correlation between the price and the volatility processes.

Without any loss of generality, it will be convenient in the following sections to
make the change of variable Xt = logSt, t ∈ [0, T ], and write

dXt =

(
r − 1

2
σ2
t

)
dt+ σt

(
ρdWt +

√
1− ρ2 dW̃t

)
. (2.2)

Recall that Z := ρW +
√
1− ρ2W̃ is a standard Wiener process.

For any t ∈ [0, T ], x ≥ 0 and y ≥ 0 we denote by BS(t, x, y) the so-called
Black-Scholes function given by

BS (t, x, y) = exΦ(d+)−Ke−rτΦ(d−), (2.3)

where Φ(·) denotes the cumulative distribution function of the standard normal law,
r ≥ 0 is a constant, τ = T − t and

d±(y) =
x− lnK + (r ± y2

2 )τ

y
√
τ

. (2.4)

Recall that the price of an European plain vanilla call option under the classical
Black-Scholes model with constant volatility σ, current log stock price Xt, time to
maturity τ = T − t, strike price K and interest rate r is given by BS(t,Xt, σ).

In our setting, the call option price is given by

Vt = e−rτEt[(e
XT −K)+] (2.5)

where Et is the conditional expectation respect to the σ−algebra Ft.
Recall that from the Feynman-Kac formula for the model (2.2), the operator

Ly := ∂t +
1

2
y2∂2x +

(
r − 1

2
y2
)
∂x − r (2.6)

satis�es LyBS(t, x, y) = 0, t ∈ [0, T ], x ≥ 0 and y ≥ 0.



August 23, 2022 11:46 WSPC/INSTRUCTION FILE paper_one�le

5

We de�ne the operators Λ := ∂x, Λn := ∂nx , Γ :=
(
∂2x − ∂x

)
and Γ2 = Γ ◦ Γ. In

particular, for the Black-Scholes formula, using straightforward calculations, we get

ΓBS(t, x, y) =
ex

y
√
2πτ

exp

(
−
d2+(y)

2

)
, (2.7)

ΛΓBS(t, x, y) =
ex

y
√
2πτ

exp

(
−
d2+(y)

2

)(
1− d+(y)

y
√
τ

)
, (2.8)

Γ2BS(t, x, y) =
ex

y
√
2πτ

exp

(
−
d2+(y)

2

)
d2+(y)− yd+(y)

√
τ − 1

y2τ
. (2.9)

We de�ne

Rt :=
1

8
Et

[∫ T

t

d⟨M,M⟩u

]
(2.10)

and

Ut :=
ρ

2
Et

[∫ T

t

σu d⟨M,W ⟩u

]
, (2.11)

where ⟨·, ·⟩ denotes the quadratic covariation process and M is the F−martingale
de�ned by

Mt :=

∫ T

0

Et

[
σ2
s

]
ds. (2.12)

3. A generic decomposition formula

In this section, we provide an insight on a generic decomposition formula based on
the work of Alòs (2012), Merino & Vives (2015) and Merino, Pospí²il, Sobotka &
Vives (2018). In particular, we recover the results for a generic stochastic volatility
model presented in Merino, Pospí²il, Sobotka & Vives (2018).

It is well known that if the stochastic volatility process is independent of the
price process, the pricing formula of a vanilla European call option is given by

Vt = Et[BS(t,Xt, σ̄t)] (3.1)

where σ̄2
t is the so called average future variance that is de�ned by

σ̄2
t :=

1

T − t

∫ T

t

σ2
u du. (3.2)

Naturally, σ̄t is called the average future volatility.
We consider the adapted projection of the future variance

a2t :=

∫ T

t

Et[σ
2
u] du (3.3)
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and the average future variance as

v2t := Et(σ̄
2
t ) =

a2t
T − t

(3.4)

to obtain a decomposition of Vt in terms of vt. This idea switches an anticipative
problem related to the anticipative process σ̄t into a non-anticipative one related to
the adapted process vt.

Taking into account M de�ned in (2.12), we can write

dv2t =
1

T − t

[
dMt +

(
v2t − σ2

t

)
dt
]
. (3.5)

In this paper, we will utilize the following lemma which is a direct application of
(Alòs 2012, Lemma 2.1).

Lemma 3.1. Let 0 ≤ u ≤ T . Then for every n ≥ 0, there exists C = C(n) such

that

|ΛnΓBS (u,Xu, vu)| ≤ C(a2u)
− 1

2 (n+1), (3.6)

where a2u is de�ned by (3.3).

Remark 3.1. It is easy to see that the previous lemma holds for put options and
for several other non-path dependent options as well (e.g. gap options).

For general stochastic volatility jump di�usion models the following theorem
giving us generic decomposition formula was proved by Merino, Pospí²il, Sobotka
& Vives (2018).

Theorem 3.1 (Generic decomposition formula).

Let Bt be a continuous semimartingale with respect to the �ltration FW , let

A(t, x, y) be a C1,2,2([0, T ]× [0,∞)× [0,∞)) function and let v2t and Mt be de�ned

as above. Then we are able to formulate the expectation of e−rTA(T,XT , v
2
T )BT in

the following way:

Et

[
e−r(T−t)A(T,XT , v

2
T )BT

]
= A(t,Xt, v

2
t )Bt

+ Et

[∫ T

t

e−r(u−t)∂yA(u,Xu, v
2
u)Bu

1

T − u

(
v2u − σ2

u

)
du

]

+ Et

[∫ T

t

e−r(u−t)A(u,Xu, v
2
u) dBu

]

+
1

2
Et

[∫ T

t

e−r(u−t)
(
∂2x − ∂x

)
A(u,Xu, v

2
u)Bu

(
σ2
u − v2u

)
du

]

+
1

2
Et

[∫ T

t

e−r(u−t)∂2yA(u,Xu, v
2
u)Bu

1

(T − u)2
d⟨M·,M·⟩u

]

+ ρEt

[∫ T

t

e−r(u−t)∂2x,yA(u,Xu, v
2
u)Bu

σu
T − u

d⟨W·,M·⟩u

]
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+ ρEt

[∫ T

t

e−r(u−t)∂xA(u,Xu, v
2
u)σu d⟨W·, B·⟩u

]

+ Et

[∫ T

t

e−r(u−t)∂yA(u,Xu, v
2
u)

1

T − u
d⟨M·, B·⟩u

]
. (3.7)

Proof. See the proof of Theorem 3.1 in Merino, Pospí²il, Sobotka & Vives (2018).

Using the previous decomposition formula, we �nd that

Corollary 3.1 (decomposition formula for SV processes without jumps).

Under assumptions of the Theorem 3.1, we can obtain a decomposition of European

option price Vt as:

Vt = BS(t,Xt, vt)

+
ρ

2
Et

[∫ T

t

e−r(u−t)ΛΓBS(u,Xu, vu)σu d⟨W·,M·⟩u

]

+
1

8
Et

[∫ T

t

e−r(u−t)Γ2BS(u,Xu, vu) d⟨M·,M·⟩u

]
= BS(t,Xt, vt) + (I) + (II) (3.8)

Proof. Using Theorem 3.1 with A(t,Xt, v
2
t ) = BS(t,Xt, vt) and B ≡ 1 we obtain

Et

[
e−r(T−t)BS(T,XT , vT )

]
= BS(t,Xt, vt)

+ Et

[∫ T

t

e−r(u−t)∂y2BS(u,Xu, vu)
1

T − u

(
v2u − σ2

u

)
du

]

+
1

2
Et

[∫ T

t

e−r(u−t)
(
∂2x − ∂x

)
BS(u,Xu, vu)

(
σ2
u − v2u

)
du

]

+
1

2
Et

[∫ T

t

e−r(u−t)∂2y2BS(u,Xu, vu)
1

(T − u)2
d⟨M·,M·⟩u

]

+ ρEt

[∫ T

t

e−r(u−t)∂2x,y2BS(u,Xu, vu)
σu

T − u
d⟨W·,M·⟩u

]
. (3.9)

Using that

∂y2BS(t, x, y) =
τ

2

(
∂2x − ∂x

)
BS(t, x, y) (3.10)

the second and the third term disappear and the corollary follows straightforward.
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For many SV models, the terms (I) and (II) are not easy to evaluate. Therefore,
it becomes important to �nd simpler approximations to (I) and (II) and estimate
the error terms. In order to �nd these approximations, we are going to apply The-
orem 3.1 to �nd a decomposition formula for the terms (I) and (II). Using

A(t,Xt, v
2
t ) = ΛΓBS(t,Xt, vt) (3.11)

and

Bt = Ut =
ρ

2
Et

[∫ T

t

σu d⟨W·,M·⟩u

]
(3.12)

a decomposition of the term (I) can be found, and using

A(t,Xt, v
2
t ) = Γ2BS(t,Xt, vt) (3.13)

and

Bt = Rt =
1

8
Et

[∫ T

t

d⟨M·,M·⟩u

]
(3.14)

a decomposition of the term (II) is obtained.
After that process, we can approximate the price of a call option by

Vt = BS(t,Xt, vt)

+ ΛΓBS(t,Xt, vt)Ut

+ Γ2BS(t,Xt, vt)Rt

+ ϵt. (3.15)

where ϵt denotes error terms. Terms of ϵt under a general setting for σt are provided
in Appendix A. We note that the error term will depend on the assumed volatility
dynamics.

4. Volterra volatility models

4.1. General Volterra volatility model

In this section, we apply the generic decomposition formula to model (2.2) with
general Volterra volatility process de�ned as

σt := g(t, Yt), t ≥ 0, (4.1)

where g : [0,+∞) × R 7→ [0,+∞) is a deterministic function such that σt belongs
to L1(Ω× [0,+∞)) and Y = (Yt, t ≥ 0) is the Gaussian Volterra process

Yt =

∫ t

0

K(t, s) dWs, (4.2)
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where K(t, s) is a kernel such that for all 0 < s < t ≤ T

T∫
s

K2(t, s) dt <∞,

t∫
0

K2(t, s) ds <∞, (A1)

and

FY
t = FW

t . (A2)

Let

r(t, s) := E[YtYs], t, s ≥ 0, (4.3)

denote the autocovariance function of process Yt and

r(t) := r(t, t) = E[Y 2
t ], t ≥ 0, (4.4)

be the variance function (i.e. the second moment).
Extending the Theorem 3.1 in Sottinen & Viitasaari (2017) enables us to

rephrase the adapted projection of the future squared volatility.

Theorem 4.1 (Prediction law for Gaussian Volterra processes). Let (Yt, t ≥
0) be the Gaussian Volterra process (4.2) satisfying assumptions (A1) and (A2).
Then, the conditional process (Yu|Ft, 0 ≤ t ≤ u) is Gaussian with Fu-measurable

mean function

m̂t(u) := Et[Yu] =

∫ t

0

K(u, s) dWs, (4.5)

and deterministic covariance function

r̂(u1, u2|t) := Et [(Yu1
− m̂t(u1)) (Yu2

− m̂t(u2))]

= r(u1, u2)−
∫ t

0

K(u1, v)K(u2, v) dv (4.6)

for u1, u2 ≥ t.

Proof. Let 0 ≤ t ≤ u. Then

m̂t(u) = Et[Yu] = E

[∫ u

0

K(u, s) dWs

∣∣∣∣∣FW
t

]
=

∫ t

0

K(u, s) dWs (4.7)

and

r̂(u1, u2|t) = E [(Yu1
− m̂t(u1)) (Yu2

− m̂t(u2))| FW
t ]

= E

[(∫ u1

0

K(u1, v1) dWv1 −
∫ t

0

K(u1, v1) dWv1

)

·
(∫ u2

0

K(u2, v2) dWv2 −
∫ t

0

K(u2, v2) dWv2

) ∣∣∣∣∣FW
t

]
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= E

[∫ u1

t

K(u1, v1) dWv1

∫ u2

t

K(u2, v2) dWv2

∣∣∣∣∣FW
t

]

=

∫ u1∧u2

t

K(u1, v)K(u2, v) dv

= r(u1, u2)−
∫ t

0

K(u1, v)K(u2, v) dv. (4.8)

In the upcoming sections, we will denote r̂(u|t) := r̂(u, u|t).
Under the general volatility process (4.1), we have

v2t =
1

T − t

∫ T

t

Et

[
g2(u, Yu)

]
du (4.9)

and the martingale

Mt =

∫ T

0

Et

[
g2(u, Yu)

]
du. (4.10)

In the upcoming lemma, we express the conditional expectation of the future
squared volatility in terms of the mean function m̂t(u).

Let us denote:

F (t, m̂t(u)) := Et

[
g2(u, Yu)

]
, (4.11)

Lemma 4.1 (Auxiliary terms in the decomposition formula for the general

volatility model). Let 0 ≤ t ≤ u and F (t, m̂t(u)) = Et

[
g2(u, Yu)

]
, then

dF (t, m̂t(u)) =

(
∂1F (t, m̂t(u)) +

1

2
∂22F (t, m̂t(u))K

2(u, t)

)
dt

+ ∂2F (t, m̂t(u)) dm̂t(u), (4.12)

d⟨M·,W·⟩t =
∫ T

0

∂2F (t, m̂t(u))K(u, t) dudt, (4.13)

d⟨M·,M·⟩t =
∫ T

0

∫ T

0

∂2F (t, m̂t(u1))∂2F (t, m̂t(u2))·

·K(u1, t)K(u2, t) du1 du2 dt. (4.14)

Proof. Follows directly from the de�nition.

4.2. Exponential Volterra volatility model

Assume now that Xt is the log-price process (2.2) with σt being the exponential

Volterra volatility process

σt = g(t, Yt) = σ0 exp

{
ξYt −

1

2
αξ2r(t)

}
, t ≥ 0, (4.15)



August 23, 2022 11:46 WSPC/INSTRUCTION FILE paper_one�le

11

where (Yt, t ≥ 0) is the Gaussian Volterra process (4.2) satisfying assumptions (A1)
and (A2), r(t) is its autocovariance function (4.4), and σ0 > 0, ξ > 0 and α ∈ [0, 1]

are model parameters.

Lemma 4.2 (Auxiliary terms in the decomposition formula for the ex-

ponential Volterra volatility model). Let σt be as in (4.15) and 0 ≤ t ≤ u.

Then

F (t, m̂t(u)) = σ2
0 exp

{
2ξm̂t(u) + 2ξ2r̂(u|t)− αξ2r(u)

}
, (4.16)

∂2F (t, m̂t(u)) = 2ξF (t, m̂t(u)), (4.17)

d⟨M·,W·⟩t = 2σ2
0ξ

∫ T

0

exp
{
2ξm̂t(u) + 2ξ2r̂(u|t)− αξ2r(u)

}
·

·K(u, t) du dt, (4.18)

d⟨M·,M·⟩t = 4σ4
0ξ

2

∫ T

0

∫ T

0

exp {2ξ (m̂t(u1) + m̂t(u2))} ·

· exp
{
2ξ2 (r̂(u1|t) + r̂(u2|t))

}
·

· exp
{
−αξ2 (r(u1) + r(u2))

}
·

·K(u1, t)K(u2, t) du1 du2 dt. (4.19)

Proof. Follows from Lemma 4.1.

Remark 4.1. Using that F (t, m̂t(u)) = Et

[
σ2
u

]
, it is straightforward to see that

dMt = 2ξ

(∫ T

t

Et

[
σ2
u

]
K(u, t) du

)
dWt, (4.20)

d⟨M·,W·⟩t = 2ξ

∫ T

0

Et

[
σ2
u

]
K(u, t) dudt, (4.21)

d⟨M·,M·⟩t = 4ξ2
∫ T

0

∫ T

0

Et

[
σ2
u1

]
Et

[
σ2
u2

]
K(u1, t)K(u2, t) du1 du2 dt. (4.22)

Lemma 4.3. Let σt be as in (4.15) and 0 ≤ t ≤ u. Then, we can re-write

F (t, m̂t(u)) as

Et

[
σ2
u

]
= σ2

t exp
{
−αξ2(r(u)− r(t))

+ 2ξ

∫ t

0

(K(u, z)−K(t, z)) dWz + 2ξ2r̂(u|t)
}
. (4.23)

Moreover, we also have the following equalities

Et

[
σ3
u exp

{
2ξ

∫ u

0

(K(s, z)−K(u, z)) dWz

}]
= σ3

t exp
{
−3

2
αξ2 (r(u)− r(t)) + ξ

∫ t

0

(2K(s, z) +K(u, z)− 3K(t, z)) dWz
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+
ξ2

2

∫ u

t

(2K(s, z) +K(u, z))
2
dz
}

(4.24)

and

Et

[
σ4
u exp

{
2ξ

∫ u

0

(K(s, z) +K(v, z)− 2K(u, z)) dWz

}]
= σ4

t exp
{
2ξ

∫ t

0

(K(s, z) +K(v, z)− 2K(t, z)) dWz

− 2αξ2 (r(u)− r(t)) + 2ξ2
∫ u

t

(K(s, z) +K(v, z))
2
dz
}
. (4.25)

Proof. The calculations to obtain these statements are straightforward.

Proposition 4.1 (Terms in the approximation formula for the exponential

Volterra volatility model). Let σt be as in (4.15) and 0 ≤ t ≤ u. Then

Ut = ρξσ3
t

∫ T

t

∫ T

0

exp
{
−3

2
αξ2 (r(u)− r(t))− αξ2 (r(s)− r(u))

+ 2ξ2r̂(s|u) + ξ

∫ t

0

(2K(s, z) +K(u, z)− 3K(t, z)) dWz

+
ξ2

2

∫ u

t

(2K(s, z) +K(u, z))
2
dz
}
K(s, u) dsdu (4.26)

and

Rt =
1

2
ξ2σ4

t

∫ T

t

∫ T

0

∫ T

0

exp
{
−αξ2 (r(s) + r(v)− 2r(t))

+ 2ξ2 (r̂(s|u) + r̂(v|u)) + 2ξ2
∫ u

t

(K(s, z) +K(v, z))
2
dz

+ 2ξ

∫ t

0

(K(s, z) +K(v, z)− 2K(t, z)) dWz

}
·K(s, u)K(v, u) dsdv du (4.27)

In particular,

U0 = ρξσ3
0

∫ T

0

∫ T

0

exp
{ξ2

2

∫ u

0

[2K(s, z) +K(u, z)]2 dz

+ 2ξ2r̂(s|u)− 1

2
αξ2r(u)− αξ2r(s)

}
·K(s, u) ds du (4.28)

and

R0 =
1

2
σ4
0ξ

2

∫ T

0

∫ T

0

∫ T

0

exp
{
2ξ2

∫ u

0

[K(s, z) +K(v, z)]2 dz

+ 2ξ2 (r̂(s|u) + r̂(v|u))− αξ2 (r(s) + r(v))
}
·

·K(s, u)K(v, u) dsdv du. (4.29)
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Proof. We have that

Ut =
ρ

2
Et

[∫ T

t

σu d⟨M·,W·⟩u

]

= ρξ Et

[∫ T

t

σu

(∫ T

0

Eu

[
σ2
s

]
K(s, u) ds

)
du

]

= ρξ

∫ T

t

Et

[
σu

(∫ T

0

Eu

[
σ2
s

]
K(s, u) ds

)]
du

= ρξ

∫ T

t

∫ T

0

Et

[
σ3
u exp

{
−αξ2 (r(s)− r(u))

+ 2ξ

∫ u

0

(K(s, z)−K(u, z)) dWz + 2ξ2r̂(s|u)
}
K(s, u)

]
dsdu

= ρξ

∫ T

t

∫ T

0

Et

[
σ3
u exp

{
2ξ

∫ u

0

(K(s, z)−K(u, z)) dWz

}]
· exp

{
−αξ2 (r(s)− r(u)) + 2ξ2r̂(s|u)

}
K(s, u) dsdu

= ρξσ3
t

∫ T

t

∫ T

0

exp
{
−3

2
αξ2 (r(u)− r(t))− αξ2 (r(s)− r(u)) + 2ξ2r̂(s|u)

+ ξ

∫ t

0

(2K(s, z) +K(u, z)− 3K(t, z)) dWz

+
ξ2

2

∫ u

t

(2K(s, z) +K(u, z))
2
dz
}
K(s, u) dsdu (4.30)

Similarly, we have that

Rt =
1

8
Et

[∫ T

t

d⟨M·,M·⟩u

]

=
1

2
ξ2 Et

∫ T

t

(∫ T

0

Eu

[
σ2
s

]
K(s, u) ds

)2

du


=

1

2
ξ2
∫ T

t

Et

(∫ T

0

Eu

[
σ2
s

]
K(s, u) ds

)2
 du

=
1

2
ξ2
∫ T

t

Et

[(∫ T

0

∫ T

0

Eu

[
σ2
s

]
Eu

[
σ2
v

]
K(s, u)K(v, u) dsdv

)]
du

=
1

2
ξ2
∫ T

t

Et

[∫ T

0

∫ T

0

σ4
uK(s, u)K(v, u)

· exp
{
−αξ2(r(s) + r(v)− 2r(u)) + 2ξ2 (r̂(s|u) + r̂(v|u))

+ 2ξ

∫ u

0

(K(s, z) +K(v, z)− 2K(u, z)) dWz

}
dsdv

]
du
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=
1

2
ξ2
∫ T

t

∫ T

0

∫ T

0

Et

[
σ4
u exp

{
2ξ

∫ u

0

(K(s, z) +K(v, z)− 2K(u, z)) dWz

}]
· exp

{
−αξ2(r(s) + r(v)− 2r(u)) + 2ξ2 (r̂(s|u) + r̂(v|u))

}
·K(s, u)K(v, u) dsdv du

=
1

2
ξ2σ4

t

∫ T

t

∫ T

0

∫ T

0

exp
{
−αξ2 (r(s) + r(v)− 2r(t))

+ 2ξ2 (r̂(s|u) + r̂(v|u)) + 2ξ

∫ t

0

(K(s, z) +K(v, z)− 2K(t, z)) dWz

+ 2ξ2
∫ u

t

(K(s, z) +K(v, z))
2
dz
}
K(s, u)K(v, u) dsdv du. (4.31)

For the exponential Volterra volatility model we can determine an upper error
bound for the price approximation in the following way.

Proposition 4.2 (Upper error bound for the exponential Volterra volatil-

ity model). Let Xt be the log-price process (2.2) with σt being the exponential

Volterra volatility process (4.15). Let the processes Rt and Ut be as in Proposi-

tion 4.1. Then we can express the call option fair value Vt by

Vt = BS(t,Xt, vt)

+ ΛΓBS(t,Xt, vt)Ut

+ Γ2BS(t,Xt, vt)Rt

+ ϵt, (4.32)

where ϵt are error terms of order O
(
ρ
(
ξ2 + ξ3 + ρ

(
ξ + ξ2

))
+ ξ3 + ξ4

)
.

Proof. Note that using (4.20) we have that

d ⟨M,M⟩t = 4ξ2

(∫ T

t

Et

[
σ2
u

]
K(u, t) du

)2

dt, (4.33)

d ⟨M,W ⟩t = 2ξ

(∫ T

t

Et

[
σ2
u

]
K(u, t) du

)
dt. (4.34)

Applying the Jensen's inequality to (4.23), we can see that

a2t ≥ σ2
t (T − t) exp

{ 1

T − t

∫ T

t

[
−αξ2(r(u)− r(t)) + 2ξ (m̂t(u)− m̂t(t))

+ 2ξ2r(u|t)
]
du
}
. (4.35)

Then, it is easy to �nd that

T − t

a2t
≤ 1

σ2
0

exp
{
− 2ξm̂t(t) + αξ2r(t)− 1

T − t

∫ T

t

[
−αξ2(r(u)− r(t))
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+ 2ξ (m̂t(u)− m̂t(t)) + 2ξ2r(u|t)
]
du
}

(4.36)

where the exponent

− 2ξm̂t(t) + αξ2r(t)− 1

T − t

∫ T

t

[
−αξ2(r(u)− r(t))

+ 2ξ (m̂t(u)− m̂t(t)) + 2ξ2r(u|t)
]
du. (4.37)

is a Gaussian process. Therefore 1
a2
t
has �nite moments of all orders.

Using the error terms speci�ed in the Appendix A and Lemma 3.1, we �nd the
following decompositions for each term

∣∣∣∣∣18Et

[∫ T

t

e−r(u−t)Γ2BS(u,Xu, vu) d ⟨M,M⟩u

]
− Γ2BS(t,Xt, vt)Rt

∣∣∣∣∣
≤ C

8
Et

[∫ T

t

e−r(u−t)

(
1

a7u
+

3

a6u
+

3

a5u
+

1

a4u

)
Ru d ⟨M,M⟩u

]

+
Cρ

2
Et

[∫ T

t

e−r(u−t)

(
1

a6u
+

2

a5u
+

1

a4u

)
Ruσu d ⟨W,M⟩u

]

+ CρEt

[∫ T

t

e−r(u−t)

(
1

a4u
+

1

a3u

)
σu d ⟨W,R⟩u

]

+
C

2
Et

[∫ T

t

e−r(u−t)

(
1

a5u
+

2

a4u
+

1

a3u

)
d ⟨M,R⟩u

]
. (4.38)

and ∣∣∣∣∣ρ2Et

[∫ T

t

e−r(u−t)ΛΓBS(u,Xu, vu)σu d ⟨W,M⟩u

]
− ΛΓBS(t,Xt, vt)Ut

∣∣∣∣∣
≤ C

8
Et

[∫ T

t

e−r(u−t)

(
1

a6u
+

2

a5u
+

1

a4u

)
Uu d ⟨M,M⟩u

]

+
Cρ

2
Et

[∫ T

t

e−r(u−t)

(
1

a5u
+

1

a4u

)
Uuσu d ⟨W,M⟩u

]

+ CρEt

[∫ T

t

e−r(u−t) 1

a3u
σu d ⟨W,U⟩u

]

+
C

2
Et

[∫ T

t

e−r(u−t)

(
1

a4u
+

1

a3u

)
d ⟨M,U⟩u

]
. (4.39)

Since we have a Gaussian driving process and the kernel is square-integrable by
assumption (A1), the integrals are well-de�ned and the conditional expectations are
�nite. Substituting Ut, Rt, d ⟨M,M⟩u and d ⟨M,W ⟩u from (4.26), (4.27), (4.33) and
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(4.34) respectively, into (4.38) and (4.39), a gross estimate of the error is obtained
as O

(
ρ
(
ξ2 + ξ3 + ρ

(
ξ + ξ2

))
+ ξ3 + ξ4

)
.

Remark 4.2. If Yt is a semimartingale, terms dUt and dRt and consequently
covariations ⟨U,M⟩t, ⟨U,W ⟩t, ⟨R,M⟩t and ⟨R,W ⟩t can be further speci�ed, see

Appendix B, and the error estimation can be improved to O
((
ξ2 + ρξ

)2)
.

4.3. Exponential fractional volatility model

Let us now focus on a very important example of Gaussian Volterra processes,
the fractional Brownian motion (fBm), which is a process with a Hurst parameter
H ∈ (0, 1), with covariance function

r(t, s) := E[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0, (4.40)

and, in particular, with variance

r(t) := r(t, t) = t2H , t ≥ 0. (4.41)

One of the �rst applications of fractional Brownian motion is credited to Hurst
(1951) who modelled the long term storage capacity of reservoirs along the Nile river.
However, the idea of this concept goes back to Kolmogorov (1940), who studied
Wiener spirals and some other curves in Hilbert spaces. Later, Lévy (1953) used
the Riemann�Liouville fractional integral to de�ne the process as

B̃H
t :=

1

Γ(H + 1/2)

t∫
0

(t− s)H−1/2 dWs, (4.42)

where H may be any positive number. This type of integral turned out to be ill-
suited to applications of fractional Brownian motion because of its over-emphasis on
the origin for many applications. In their highly cited work, Mandelbrot & Van Ness
(1968) introduced the Weyl's representation of the fractional Brownian motion:

BH
t :=

1

Γ(H + 1/2)

Zt +

t∫
0

(t− s)H−1/2 dWs

 , (4.43)

where

Zt :=

0∫
−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dWs (4.44)

and Wt is the standard Wiener process. Nowadays, the most widely used represen-
tation of fBm is the one by Molchan & Golosov (1969)

BH
t :=

t∫
0

KH(t, s) dWs, (4.45)
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where for H > 1
2

KH(t, s) := CH

[
s

1
2−H

∫ t

s

uH− 1
2 (u− s)H− 3

2 du

]
(4.46)

and for H ≤ 1
2

KH(t, s) := CH

[(
t

s

)H− 1
2

(t− s)H− 1
2

−
(
H − 1

2

)
sH− 1

2

∫ t

s

zH− 3
2 (z − s)H− 1

2 dz

]
(4.47)

with

CH :=

√
2HΓ

(
3
2 −H

)
Γ
(
H + 1

2

)
Γ (2− 2H)

. (4.48)

To understand the connection between Molchan-Golosov and Mandelbrot-Van Ness
representations of fBm we refer readers to the paper by Jost (2008).

Despite of the above mentioned arguments, Alòs, Mazet & Nualart (2000) pro-
posed to consider a process B̂t =

∫ t

0
(t − s)H−1/2 dWs instead of BH

t in fractional
stochastic calculus, since Zt has absolutely continuous trajectories. Since BH

t is not
a semimartingale, the process B̂t = Γ(H+1/2)BH

t −Zt is also not a semimartingale.
Later on, Thao (2006) introduced the so called approximate fractional Brownian
motion process as

B̂ε
t =

t∫
0

(t− s+ ε)H−1/2 dWs, H ∈ (0, 1), H ̸= 1

2
, ε > 0, (4.49)

and showed that for every ε > 0 the process B̂ε
t is a semimartingale and it converges

to B̂t in L2(Ω) when ε tends to zero. This convergence is uniform with respect to
t ∈ [0, T ] (Thao 2006, Theorem 2.1).

Let us now consider the exponential fractional volatility process

σt := σ0 exp

{
ξBH

t − 1

2
αξ2r(t)

}
, t ≥ 0, (4.50)

where (BH
t , t ≥ 0) is one of the above mentioned representations of fBm. We are

especially interested in the "rough" models, i.e. when H < 1/2. In this case, we call
the model (2.1) with volatility process (4.50) the rough fractional stochastic volatility
model (αRFSV). Note that if α = 1, we get the rBergomi model, see Bayer, Friz &
Gatheral (2016) and Gatheral, Jaisson & Rosenbaum (2018), if α = 0, we get the
original exponential fractional volatility model. Values of α between 0 and 1 give us
a new degree of freedom that can be viewed as a weight between these two models.
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Example 4.1 (Volatility driven by the approximate fractional Brownian

motion). Let us consider model (2.2) with volatility process

σt = σ0 exp

{
ξB̃t −

1

2
αξ2r(t)

}
, (4.51)

where

B̃t =

∫ t

0

K̃(t, s) dWs (4.52)

and

K̃(t, s) =
√
2H(t− s+ ε)H−1/2, s ≤ t, ε ≥ 0, H ∈ (0, 1). (4.53)

Then

r(t, s) =

∫ t∧s

0

K̃(t, v)K̃(s, v) dv, (4.54)

r(t) =

∫ t

0

K̃2(t, v) dv = 2H

∫ t

0

(t− v + ε)2H−1 dv = (t+ ε)2H − ε2H . (4.55)

Note that if ε = 0, we get exactly the variance r(t) = t2H , that it is the variance
of the standard fractional Brownian motion. Further we have

r̂(t|u) = r(t)−
∫ u

0

K̃2(t, v) dv

= r(t)− 2H

∫ u

0

(t− v + ε)2H−1 dv = (t− u+ ε)2H − ε2H (4.56)

and thus

U0 = ρσ3
0ξ
√
2H

∫ T

0

∫ T

0

exp
{
2ξ2[(s− u+ ε)2H − ε2H ]

+ ξ2H

∫ u

0

[(u− v + ε)H−1/2 + 2(s− v + ε)H−1/2]2 dv

− 1

2
αξ2[(u+ ε)2H + 2(s+ ε)2H − 3ε2H ]

}
·

· (s− u+ ε)H−1/2 dsdu (4.57)

R0 = σ4
0ξ

2H

∫ T

0

∫ T

0

∫ T

0

exp
{
2ξ2[(t1 − u+ ε)2H + (t2 − u+ ε)2H − 2ε2H ]

+ 4ξ2H

∫ u

0

[(t1 − v + ε)H−1/2 + (t2 − v + ε)H−1/2]2 dv

− αξ2[(t1 + ε)2H + (t2 + ε)2H − 2ε2H ]
}
·

· (t1 − u+ ε)H−1/2(t2 − u+ ε)H−1/2 dt1 dt2 du. (4.58)

Example 4.2 (Volatility driven by the standard Wiener process). If in
the previous Example 4.1 we take H = 1/2 and ε = 0, we get model (2.2) with
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exponential Wiener volatility process

σt = σ0 exp

{
ξW̃t −

1

2
αξ2r(t)

}
, (4.59)

where

W̃t =

∫ t

0

K̃(t, s) dWs (4.60)

is the standard Wiener process, i.e. where K̃(t, s) = 1{s≤t}. In this case, we have
that

v2t =
σ2
t

(2− α) ξ2(T − t)

[
exp{(2− α) ξ2(T − t)} − 1

]
, (4.61)

r(t, s) =

∫ t∧s

0

K̃(t, v)K̃(s, v) dv = t ∧ s, (4.62)

r(t) =

∫ t

0

K̃2(t, v) dv = t. (4.63)

De�ne

ϕ(t, T , α) :=

∫ T

t

exp
{
(2− α)ξ2(s− t)

}
ds. (4.64)

It is easy to see that

dMt = 2ξσ2
t dWtϕ(t, T , α), (4.65)

and thus

U0 = ρσ3
0ξ

∫ T

0

∫ T

0

exp
{1
2
ξ2
∫ u

0

[1{v≤u} + 2 · 1{v≤s}]
2 dv

+ 2ξ2(s− u)− 1

2
αξ2u− αξ2s

}
1{u≤s} dsdu

= ρσ3
0ξ

∫ T

0

∫ T

0

exp
{9
2
ξ2u+

1

2
ξ2[(4− 2α)s− (4 + α)u]

}
1{u≤s} dsdu

=
2ρσ3

0

3(2− α)(3− α)(5− α)ξ3

[
2(2− α) exp

{3
2
ξ2(3− α)T

}
−3(3− α) exp

{
ξ2(2− α)T

}
+ 5− α

]
(4.66)

and

R0 =
1

2
σ4
0ξ

2

∫ T

0

∫ T

0

∫ T

0

exp
{
2ξ2

∫ u

0

[1{v≤t1} + 1{v≤t2}]
2 dv

+ 2ξ2[t1 + t2 − 2u]− αξ2[t1 + t2]
}
1{u≤t1}1{u≤t2} dt1 dt2 du

=
1

2
σ4
0ξ

2

∫ T

0

∫ T

0

∫ T

0

exp
{
8ξ2u+ 2ξ2[t1 + t2 − 2u]− αξ2[t1 + t2]

}
·

· 1{u≤t1}1{u≤t2} dt1 dt2 du
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=
σ4
0

8(2− α)2(4− α)(6− α)ξ4

[
(2− α)2 exp

{
2(4− α)ξ2T

}
− (4− α)(6− α) exp

{
2(2− α)ξ2T

}
+ 8(4− α) exp

{
(2− α)ξ2T

}
− 2(6− α)

]
. (4.67)

For a model without exponential drift (α = 0) these formulas simplify to

U0 =
ρσ3

0

45ξ3

[
4 exp

{9
2
ξ2T

}
− 9 exp

{
2ξ2T

}
+ 5

]
, (4.68)

R0 =
σ4
0

192ξ4

[
exp
{
2ξ2T

}
− 1
]3 [

exp
{
2ξ2T

}
+ 3
]

(4.69)

and for the classical Bergomi model (α = 1) we get

U0 =
ρσ3

0

6ξ3

[
exp
{
3ξ2T

}
− 3 exp

{
ξ2T

}
+ 2
]
, (4.70)

R0 =
σ4
0

120ξ4

[
exp
{
6ξ2T

}
− 15 exp

{
2ξ2T

}
+ 24 exp

{
ξ2T

}
− 10

]
. (4.71)

For matter of convenience, we de�ne the functions

ψ(t, T , α) =

∫ T

t

exp
{
(8− 2α)ξ2(s− t)

} [
exp

{
(2− α)ξ2(T − s)

}
− 1
]2

ds (4.72)

and

ζ(t, T , α) =

∫ T

t

exp

{
1

2
(9− 3α)ξ2(s− t)

}[
exp

{
(2− α)ξ2(T − s)

}
− 1
]
ds.

(4.73)

We can re-write Ut and Rt as

Ut =
ρσ3

t

(2− α)ξ
ζ(t, T , α) (4.74)

and

Rt =
σ4
t

2(2− α)2ξ2
ψ(t, T , α). (4.75)

It is easy to �nd the dUt and dRt,

dUt =
ρ dσ3

t

(2− α)ξ
ζ(t, T , α) +

ρσ3
t

(2− α)ξ
ζ ′(t, T , α) dt

=
ρ
(
3ξσ3

t dWt +
1
2 (18− 3α)ξ2σ3 dt

)
(2− α)ξ

ζ(t, T , α)

+
ρσ3

t

(2− α)ξ
ζ ′(t, T , α) dt (4.76)

and

dRt =
dσ4

t

2(2− α)2ξ2
ψ(t, T , α) +

σ4
t

2(2− α)2ξ2
ψ′(t, T , α) dt
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=
4ξσ4

t dWt + 2(8− α)σ4
t dt

2(2− α)2ξ2
ψ(t, T , α)

+
σ4
t

2(2− α)2ξ2
ψ′(t, T , α) dt. (4.77)

Remark 4.3. We can do a Taylor expansion of U0 and R0 to understand better
their dependencies. Doing that we obtain

U0 ∼ ρξT 2σ3
t

(
1

2
+

1

12
(13− 5α)ξ2T +

1

96
(α(19α− 100) + 133)ξ4T 2

− 1

960
(5α− 13) (α(13α− 70) + 97) ξ6T 3 +O

(
T 4
))

(4.78)

and

R0 ∼ ξ2T 3σ4
t

(
−1

6
(α− 2) +

1

24
(α− 2)(5α− 14)ξ2T

− 1

120
(α− 2)

(
17α2 − 96α+ 140

)
ξ4T 2 +O

(
T 3
))

. (4.79)

Proposition 4.3 (Decomposition formula for exponential Wiener volatil-

ity model). Let Xt be the log-price process (2.2) with σt being the exponential

Wiener volatility process de�ned in (4.59). Assuming without any loss of generality

that the options starts at time 0, then we can express the call option fair value V0
using the processes U0, R0 from (4.66) and (4.67) respectively. In particular,

V0 = BS(0, X0, v0)

+ ΛΓBS(0, X0, v0)U0

+ Γ2BS(0, X0, v0)R0

+ ϵ. (4.80)

where ϵ denotes error terms and for α ≥ 0, |ϵ| is at most of the order Cξ(
√
T +

ρξ2)T 3/2Π(α, T, ξ, ρ). The exact bound is given in Appendix C.

Proof. The detailed proof is given in Appendix C, where we also examine the order
of magnitude by the �rst Taylor term of the integrals.

Remark 4.4. It is worth to mention that the order of the error bound from Propo-
sition 4.3 is better than the general estimate from Proposition 4.2, where the time
dependency is not considered. To get �ner estimates also for the exponential frac-
tional model (case H ̸= 1/2), a proof similar to the one in Appendix C would have
to be performed with more complicated but still tractable calculations.

Example 4.3 (Volatility driven by the standard fractional Brownian mo-

tion). Let us consider a model with volatility process

σt = σ0 exp

{
ξBH

t − 1

2
αξ2r(t)

}
, (4.81)
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where BH
t is the standard fractional Brownian motion as de�ned in (4.45), i.e. with

the Molchan-Golosov kernel (4.46) or (4.47). Then, the formulas for U0 and R0

are given in Proposition 4.1 with particular kernel (4.46) or (4.47), autocovariance
function (4.41) and r̂(t, s|u) as in Theorem 4.1. In this case, we do not give the
formulas for U0 and R0 after substituting the Molchan-Golosov kernel, since these
formulas are too long. However, the formulas are explicit and numerical evaluation
requires only the computation of some multiple Gaussian integrals.

Remark 4.5. The Molchan-Golosov kernel can be for all H ∈ (0, 1) expressed as
(Decreusefond & Üstünel 1999)

KH(t, s) = CH(t− s)H− 1
2 2F1

(
1

2
−H,H − 1

2
, H +

1

2
, 1− t

s

)
(4.82)

where 2F1(a, b, c, z) is the Gauss hypergeometric function and CH is given by (4.48).
Then, it is easy to see that

KH(t, s) ≤ C |t− s|H− 1
2 (4.83)

and KH(t, s) is a square-integrable function, see also Jost (2006), Sec. 3.1.

5. Numerical comparison of approximation formula

In this section, we focus on numerical aspects of the introduced approximation for-
mula. We detail on its numerical implementation and a comparison with the Monte
Carlo (MC) simulation framework introduced by Bennedsen, Lunde & Pakkanen
(2017) will be provided.

In the second part of this section, we also introduce two interesting outcome
analysis for rBergomi model. In particular, we show how the model can be e�-
ciently calibrated using the approximation formula to short maturity smiles. We
remark that classical SV models (e.g. Heston model) might fail to �t the short term
smiles, unless they exploit high volatility of volatility levels for which they would
be typically inconsistent with the long term skew of the volatility surface.

In what follows, we will inspect the approximation quality for rBergomi model
and time to maturity / volatility of volatility ξ scenarios. Based on the nature of
error terms (see Appendix A) those two factors should play prominent role when it
comes to approximation quality.

5.1. On implementation of the approximation formula

We note that for the models studied in this paper, we have obtained either a semi-
closed form or analytical formula for standard Wiener case (H=0.5). Moreover, for
the class of exponential fractional models � represented by the αRFSV model � we
only need to numerically evaluate multiple integrals in R0 and U0.
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In our case, this was done using a trapezoid quadrature routine � not necessarily
the most e�cient approach, but easy to implement. We used a discretisationb of
integrands such that the numerical error doesn't a�ect the results in a signi�cant
way. I.e. to be lower than standard MC errors when comparing to simulated prices
or lower than the expected approximation error.

For benchmarking we use a �rst-order hybrid MC scheme introduced by Benned-
sen, Lunde & Pakkanen (2017) alongside 50000 MC sample paths. Similarly to the
implementation of the approximation formula, we remark that this scheme could
be also improved as described in McCrickerd & Pakkanen (2018).

5.2. Sensitivity analysis for rBergomi (α = 1) approximation

w.r.t. increasing ξ and time to maturity τ

In this section, we illustrate the approximation quality for European call options
under various model regimes / data set properties as described in Table 1. We use
option expiries up to 1Y � we are expecting a loss of approximation quality, based
on the nature of the approximation formula. Since we utilized a �rst order approxi-
mation arguments with respect to volatility of volatility, we are also expecting more
pronounced di�erences between MC simulations and the formula for large values of
ξ.

Table 1: Model / data settings for sensitivity analyses.

Model params Values

ξ {10%, 20%, 30%, 40%, 50%, 100%}
σ0 8%
ρ -20%
H 0.1

Data set speci�cs Values

Moneyness S/K 70% � 130% with 5% step
Time to maturity τ {1M, 3M, 6M, 1Y}

Underlying spot price S0 100

In Figure 1, we illustrate the approximation quality of the rBergomi approxi-
mation for low ξ values. We can observe an expected behaviour: a very good match
upto 3M expiry and almost linear deterioration of the quality with increasing τ .
Also the approximation formula provides a similar scale of errors across the tested
moneyness.

bTypically we used from 1000 up to 27000 points for 3D integrals.
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Fig. 1: Comparison of call option fair values calculated by MC simulations and by
the approximation formula for the rBergomi model. (Example 4.1 with α = 1 and
ε = 0. Data and parameter values are: v0 = 8%, ξ = 10%, ρ = −20%, H = 0.1)

For di�erent moneyness regimes and 1M time to maturity, we obtained the
following discrepancies between the MC trials and the introduced formula, measured
in the relative option fair value (FV)c:

Table 2: Di�erences in terms of relative FV

Spot moneyness ξ = 10% ξ = 50% ξ = 100%

80% 4.5e-04 -8.1e-05 -0.29928
90% 3.9e-04 2.6e-05 -0.02797
100% 2.3e-04 7.2e-04 0.95436
110% -1.5e-05 -7.7e-05 0.09690
120% -1.2e-05 -2.7e-04 -0.46417

In Table 2, we can see reasonable approximation error measures which fell below
standard 1 MC error for ξ = 10% and ξ = 50% regimes. Due to the theoretical
properties of the approximation formula, we observe signi�cant deterioration for
high volatility of volatility regimes. This also depends on the time to maturity of
the approximated option � the shorter maturity we have, the higher ξ we can allow
to obtain reasonable approximation errors (i.e. of the order 1e-04 and lower in terms
of FV).

cRelative FV is the absolute option fair value divided by the initial spot price.
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In order to have a more detailed comparison between the proposed approxi-
mation and MC simulations, we have also evaluated pricing di�erences in terms of
implied volatilities within a range from 10% to 50 % for parameter ξ. The di�erences
are provided in Table 3.

Table 3: Di�erences in terms of implied volatility

Spot moneyness ξ = 10% ξ = 20% ξ = 30% ξ = 40% ξ = 50%

80% 0.0381 0.0143 0.0289 0.0210 0.0062
90% 0.0037 0.0026 0.0043 0.0038 0.0019
100% 0.0008 4e-05 0.0005 0.0014 0.0057
110% -0.0003 -0.0001 -0.0014 -0.0020 -0.0027
120% -0.0005 -0.0008 -0.0019 -0.0060 -0.0187

We note that for in the money options (80% and 90% spot moneyness), the
results were signi�cantly a�ected by Monte Carlo errors even at 150k simulations.
However, for other options we have measured a reasonably good match and only a
slight deterioration in approximation quality for increasing ξ.

Although the introduced approximation is typically not suitable for calibrations
to the whole volatility surface � due to the deterioration of approximation quality
when increasing time to maturity � we will illustrate how it can signi�cantly speed-
up MC calibration to the provided forward at-the-money (ATMF) backbone.

5.3. Short-tenor calibration and a hybrid calibration to ATMF

backbone

Unlike previous analyses, which were based on arti�cial data / model parameter
values, we inspect an application fo the formula on the calibration to real option
market data. In particular, we utilize four data sets of AAPL options which were
analysed in detail by Pospí²il, Sobotka & Ziegler (2019). Descriptive statistics of
the data sets are provided in Table 4. The following calibration test trials will be
considered.

1. Calibration to short maturity smiles:

This should illustrate how well the model can �t short maturity smiles using
the introduced approximation formula without exploiting too high volatility of
volatility values (ξ). For each data set we selected the shortest maturity slice
with more than one traded option. The values were not interpolated by any
model, i.e. we calibrated to discrete close mid-prices of traded options. We also
con�rm, that both MC simulation and the formula reprice the smile with the
�nal calibrated parameters without signi�cant di�erences.

2. Hybrid calibration to the ATMF backbone:



August 23, 2022 11:46 WSPC/INSTRUCTION FILE paper_one�le

26

In the second trial, we calibrate to the ATMF backbone for each data set. We
note that because we have only a discrete set of traded options we might not
have for each maturity an option with strike equal to the corresponding forward.
Hence, we take an option with the closest strike to the forward value for each
expiry. We use the proposed approximation formula only for τ < 0.2, for longer
time to maturities we price by MC simulations.

In both cases, the calibration routine was formulated as a standard least-square
optimization problem. I.e. to obtain calibrated parameters, we numerically evalu-
ated

Θ̂ = argmin f(Θ) = argmin

N∑
i=1

[Midi − rBergomii(Θ)]
2
, (5.1)

where N is the total number of contracts for the calibration, Midi is the mid price of
the ith option and rBergomii(Θ) represents the corresponding model price based on
parameter set Θ. The model price is either obtained by the approximation formula
or by means of MC simulations otherwise. The optimization is performed using
Matlab's local search trust region optimizer which also needs an initial guess to
start with.

Data # 1 Data # 2 Data # 3 Data # 4

Date (all EOD) 1-Apr-2015 15-Apr-2015 1-May-2015 15-May-2015
Moneyness range 34%�157% 45%�154% 31%�151% 33%�151%
Time to maturity [Yrs] 0.12-1.81 0.08�1.77 0.04�1.73 0.02�1.69
Total nb. of contracts 113 158 201 194

Table 4: Data on AAPL options used in calibration trials

All following results will be quoted in relative FV: e.g. rBergomii(Θ)/S0 and
also di�erences between market and the calibrated model will be denoted using this
measure. For the calibration to the whole surface of European options, errors in FV
below 0.5% are typically considered to be acceptable, whereas anything exceeding
1% di�erence is considered as a signi�cant model inconsistency.

Firstly, we display the results for the short-maturity calibration. In Figure 2, we
illustrate that even with a not well suited initial guess for Data # 4, we can obtain
satisfactory results (i.e. errors signi�cantly below 0.5% mark). In fact, for all tested
data sets, obtained values of the calibrated parameters were not very sensitive to
the initial guess (only a number of iterations di�ered). This is a desired feature
which typically is not present under classical SV models, see e.g. Mrázek, Pospí²il
& Sobotka (2016). For two other sets we have obtained qualitatively similar �tting
errors, however for the data set # 3 we have retrieved 4 errors (out of 22) with
absolute FV di�erence greater than 0.5% and two even greater than 1%, see Figure
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3. We conclude that this was partly caused due to high ξ values compared to other
three calibration trials and also slightly longer maturity � the data set #3 includes
only one option at the shortest maturity, hence the second shortest was used. Still
we can conclude that the obtained errors (also veri�ed by using MC simulations)
are overall acceptable, although might not be optimal.

(a) Comparison of calibrated rBergomi and market data (Data # 4)

(b) Errors with respect to the initial guess

Calibrated params:

σ0 = 3.41%

ξ = 39.45%

ρ = −98.80%

H = 0.3153

MSE = 0.0883

Fig. 2: Calibration results for rBergomi - short maturity smiles (Data # 4)

We have observed that at least short maturity smiles (< 1M) can be e�ciently
calibrated using the proposed approximation formula, while for expiries greater than
1M, one would need to stay within a low volatility of volatility regime, otherwise
the discrepancies would lead to a non-optimal solution when recomputed using a
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more precise (but much more costly) MC simulations. To illustrate e�ciency of the
approximation will show how the approximation can speed-up ATMF-backbone
calibration.

(a) Comparison of calibrated rBergomi and market data (Data # 3)

(b) Errors with respect to the initial guess

Calibrated params:

σ0 = 4.57%

ξ = 81.36%

ρ = −98.99%

H = 0.3936

MSE = 13.9538

Fig. 3: Calibration results for rBergomi - short maturity smiles (Data # 3)

We will now inspect the hybrid calibration where we switch between the approx-
imation and a MC pricer based on properties of options being priced. In particular,
we focus on data set from 15th May (Data # 4) and for τ < 0.2 we will use the ap-
proximation formula and MC simulations otherwise. For the calibrated parameters,
we will also measure the time spent computing FVs by each pricer. For complete-
ness, we remark that MC simulations under the rBergomi model can be perfomed in
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a more e�cient way using a scheme introduced by McCrickerd & Pakkanen (2018)
and similarly numerical integrations within the approximation could be performed
by an adaptive quadrature and could be vectorized to improve the computation
e�ciency.

In Figure 4, we illustrate calibration �t to the ATMF backbone of the option
price surface. We conclude that we have retrieved similar errors for both the prices
computed using the proposed approximation and the longer maturity option prices
quanti�ed by MC simulations. The �nal �t of the calibrated model (recomputed
by MC simulations) is very good, especially considering that the studied model has
only 4 parameters. Moreover, only a fraction of the time spent by MC pricer was
needed to computed all FV using the approximation formula. In particular, 98.43%
of the pricing timed we were computing MC simulation estimates of FVs. We also
note that 7/9 of total evaluations were computed by the approximation formula.

Fig. 4: ATMF calibration results when combining approximation formula (τ < 0.2)
and MC simulations (Data # 4)

dExcluding any data loading / manipulation routines.



August 23, 2022 11:46 WSPC/INSTRUCTION FILE paper_one�le

30

6. Conclusion

In previous sections we studied an approximation approach for the pricing of Eu-
ropean options under rough stochastic volatility dynamics. Our approach is based
on the option price decomposition results obtained by Alòs (2012) for the standard
Heston SV model and on its recent generalisation to other SV models by Merino,
Pospí²il, Sobotka & Vives (2018). The main contribution of our research is to derive
pricing formulas suitable for various practical applications by applying the general
decomposition on a class of Volterra volatility models. Our main focus is laid on
the rough volatility models introduced by Gatheral, Jaisson & Rosenbaum (2018)
and Bayer, Friz & Gatheral (2016).

In particular, a prediction law for Gaussian Volterra processes was proved and
an adapted projection of future volatility was obtained in Section 4 for the class of
exponential Volterra volatility models, where the volatility process can be expressed
as a positive L1 function of the time and the Volterra process Yt, i.e. σt = g(t, Yt).
We focused on one particular example of Gaussian Volterra processes, namely on
a (rough) fractional Brownian motion BH

t . "Roughness" of sample paths is deter-
mined by the Hurst parameter, H ∈ (0, 1/2], where for H = 0.5 we would recover a
standard Wiener process.

The pricing formula for European options, which is numerically tractable, is
then derived under a newly introduced αRFSV model, i.e. for

σt = σ0 exp

{
ξBH

t − 1

2
αξ2r(t)

}
, (6.1)

where α ∈ [0, 1] and r(t) is the corresponding auto-covariance function de�ned in
Section 4. This newly introduced model seems to have interesting special cases: for
α = 0 it reverts to a simple exponential RFSV model whereas for α = 1 it reverts
to rBergomi model.

Both special cases of the αRFSV model are studied and praised for their sur-
prising consistency with various �nancial markets in Bayer, Friz & Gatheral (2016)
who use the the Bergomi�Guyon expansion to study the ATM skew approximation
of the implied volatilities. However, the authors admit that �the Bergomi�Guyon

expansion does not converge with values of η consistent with the SPX volatility sur-

face, so the Bergomi�Guyon expansion is not useful in practice for calibration of

the rBergomi model.� This motivated us to derive an approximation formula that
will be useful in practice for calibration of the studied models to real market data.

In Section 5, the newly obtained approximation formula was compared to the
MC pricing approach introduced by Bennedsen, Lunde & Pakkanen (2017) and
McCrickerd & Pakkanen (2018). This enabled us to numerically verify the obtained
solution, to quantify its approximation errors under various settings and, last but
not least, to comment on suitability of the rBergomi model for calibration tasks to
real market data based on AAPL stock optionse. The following conclusions were

eThese data sets were analysed and described in Pospí²il, Sobotka & Ziegler (2019)



August 23, 2022 11:46 WSPC/INSTRUCTION FILE paper_one�le

31

drawn:

1. The approximation error is well behaved for short maturities (typically for less
than 1M) and the error increases with time to maturity and ξ parameter.

2. For medium-term expiries we are able to obtain well approximated prices only
under low ξ regimes.

3. Although, the approximation under a rough Volterra process involves several
numerical integration procedures, it is much faster than MC simulation approach
implemented in the same environmentf . For the standard Wiener case (and in
particular for the original Bergomi model), we can have an analytical pricing
formula, but also more e�cient and well developed MC simulation schemes.

4. Considering that the modelling approach studied has only few parameters, we
were able to �t the sample market data surprisingly well. For calibration to short
maturity smiles, we can use just the approximation formula � this was veri�ed
by recomputing calibration errors using MC simulations. For calibration to the
whole surface, one can utilize a newly introduced hybrid scheme which consist
of a combination of approximation and simulation techniques. The idea is quite
simple � to use approximation formula for low maturities or for low ξ values and
MC simulations for the remaining computations. Suitability of this scheme was
judged by a simple calibration to an ATMF-like backbone. We retrieved a well
calibrated model, while saving a signi�cant computational time compared to the
calibration based on MC simulations only.

However, we remark that implementation of the approximation could be further
improved � for simplicity we used a simple trapezoidal quadrature to numerically
evaluate integrals appearing in Ut and Rt expressions.

Another possible improvement could focus on postulating variance dynamics in
terms of a forward variance curve � to ensure consistency with variance swaps. This
is out-of-scope for the current submission and left for further research. However,
some of the main ingredients for forward variance curves under the αRFSV model
are already introduced in this manuscript.

Also to �t some of the pronounced forward variance curves, one might need a
more complex term structure � a simple exponential drift term under the rBergomi
model might not be su�ciently �exible. In this case, one can utilize our approach
to obtain the approximation formula for a new rough volatility model. In fact, once
the new volatility function g is postulated it should be only a matter of algebraic
operations to obtain the corresponding approximation formula.

fThe numerical trials were implemented in MATLAB environment, see https://www.mathworks.

com.

https://www.mathworks.com
https://www.mathworks.com
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A. Decomposition formulas in the general model

In this appendix, we give the error terms for a decomposition of the general model.
The term (I) can be decomposed as

ρ

2
E

[∫ T

t

e−r(u−t)ΛΓBS(u,Xu, vu)σu d⟨W,M⟩u

]
− ΛΓBS(t,Xt, vt)Ut

=
1

8
E

[∫ T

t

e−r(u−t)ΛΓ3BS(u,Xu, vu)Uu d⟨M,M⟩u

]

+
ρ

2
E

[∫ T

t

e−r(u−t)Λ2Γ2BS(u,Xu, vu)Uuσu d⟨W,M⟩u

]

+ ρE

[∫ T

t

e−r(u−t)Λ2ΓBS(u,Xu, vu)σu d⟨W,U⟩u

]

+
1

2
E

[∫ T

t

e−r(u−t)ΛΓ2BS(u,Xu, vu) d⟨M,U⟩u

]
. (A.1)

The term (II) can be decomposed as

1

8
E

[∫ T

t

e−r(u−t)Γ2BS(u,Xu, vu) d⟨M,M⟩u

]
− Γ2BS(t,Xt, vt)Rt

=
1

8
E

[∫ T

t

e−r(u−t)Γ4BS(u,Xu, vu)Ru d⟨M,M⟩u

]

+
ρ

2
E

[∫ T

t

e−r(u−t)ΛΓ3BS(u,Xu, vu)Ruσu d⟨W,M⟩u

]

+ ρE

[∫ T

t

e−r(u−t)ΛΓ2BS(u,Xu, vu)σu d⟨W,R⟩u

]
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+
1

2
E

[∫ T

t

e−r(u−t)Γ3BS(u,Xu, vu) d⟨M,R⟩u

]
. (A.2)

B. Upper-bound estimate for semimartingale

In this appendix we show how to estimate the upper-bound for the error term in
the approximation formula for the exponential Volterra volatility process when Yt
is a semimartingale.

At �rst we express di�erentials with respect to the nth-power.

Lemma B.1. Let σt be as in (4.15) and Yt be a semimartingale. Let n ≥ 1, we

have that

dσn
t = σn

t K(t, t)
[
nξ dWt +

n

2
ξ2K(t, t) (n− α) dt

]
. (B.1)

Proof. The formula is an immediate consequence of the Itô formula.

Lemma B.2. Let σt be as in (4.15) and Yt be a semimartingale. De�ne

φ(t, s, x, T ) := exp
{
−3

2
αξ2 (r(x)− r(u)) +

ξ2

2

∫ x

u

(2K(s, z) +K(x, z))
2
dz

+ ξ

∫ u

0

(2K(s, z) +K(x, z)− 3K(u, z)) dWz

− αξ2 (r(s)− r(x)) + 2ξ2r̂(s|x)
}
, (B.2)

ψ(t, s, v, x, T ) := exp
{
−αξ2 (r(s) + r(v)− 2r(t)) + 2ξ2 (r̂(s|x) + r̂(v|x))

+ 2ξ

∫ t

0

(K(s, z) +K(v, z)− 2K(t, z)) dWz

+ 2ξ2
∫ x

t

(K(s, z) +K(v, z))
2
dz
}
. (B.3)

Then

dUt = ρξσ3
tK(t, t)

[
3ξ dWt +

3

2
ξ2K(t, t) (3− α) dt

]
·

·
∫ T

t

∫ T

0

φ(t, s, x, T )K(s, x) dsdx

− ρξσ3
t

∫ T

0

φ(t, s, t, T )K(s, x) dsdt

+ ρξσ3
t

∫ T

t

∫ T

0

φ(t, s, x, T )
{3
2
αξ2 dr(t)

+ ξ (2K(s, t) +K(x, t)− 3K(t, t)) dWt

+
1

2
ξ2 (2K(s, t) +K(x, t)− 3K(t, t))

2
dt
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− ξ2

2
(2K(s, t) +K(x, t))

2
dt
}
K(s, x) dsdx. (B.4)

and

dRt =
1

2
ξ2σ4

tK(t, t)
[
4ξ dWt + 2ξ2K(t, t) (4− α) dt

]
∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T ) ·K(s, x)K(v, x) dsdv dx

− 1

2
ξ2σ4

t

∫ T

0

∫ T

0

ψ(t, s, v, t, T )K(s, t)K(v, t) dsdv dt

+
1

2
ξ2σ4

t

∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T )K(s, x)K(v, x){
2αξ2 dr(t) + 2ξ (K(s, t) +K(v, t)− 2K(t, t)) dWt

+ 2ξ2 (K(s, t) +K(v, t)− 2K(t, t))
2
dt

− 2ξ2 (K(s, t) +K(v, t))
2
dt
}
dsdv dx. (B.5)

Proof.

Now, we can re-write Ut as

Ut = ρξσ3
t

∫ T

t

∫ T

0

φ(t, s, x, T )K(s, x) dsdx (B.6)

and Rt as

Rt =
1

2
ξ2σ4

t

∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T ) ·K(s, x)K(v, x) dsdv dx. (B.7)

We have that

dUt = ρξ dσ3
t

∫ T

t

∫ T

0

φ(t, s, x, T )K(s, x) dsdx

− ρξσ3
t

∫ T

0

φ(t, s, t, T )K(s, x) dsdt

+ ρξσ3
t

∫ T

t

∫ T

0

φ(t, s, x, T )
{3
2
αξ2 dr(t) + ξ (2K(s, t) +K(x, t)− 3K(t, t)) dWt

+ ξ2 (2K(s, t) +K(x, t)− 3K(t, t))
2
dt

− ξ2

2
(2K(s, t) +K(x, t))

2
dt
}
K(s, x) dsdx. (B.8)

Using Lemma B.1, we obtain

dUt = ρξσ3
tK(t, t)

[
3ξ dWt +

3

2
ξ2K(t, t) (3− α) dt

]
·

·
∫ T

t

∫ T

0

φ(t, s, x, T )K(s, x) dsdx
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− ρξσ3
t

∫ T

0

φ(t, s, t, T )K(s, x) dsdt

+ ρξσ3
t

∫ T

t

∫ T

0

φ(t, s, x, T )
{3
2
αξ2 dr(t)

+ ξ (2K(s, t) +K(x, t)− 3K(t, t)) dWt

+
1

2
ξ2 (2K(s, t) +K(x, t)− 3K(t, t))

2
dt

− ξ2

2
(2K(s, t) +K(x, t))

2
dt
}
K(s, x) dsdx. (B.9)

We have that

dRt =
1

2
ξ2 dσ4

t

∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T ) ·K(s, x)K(v, x) dsdv dx

− 1

2
ξ2σ4

t

∫ T

0

∫ T

0

ψ(t, s, v, t, T )K(s, t)K(v, t) dsdv dt

+
1

2
ξ2σ4

t

∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T )K(s, x)K(v, x)·

·
{
2αξ2 dr(t) + 2ξ (K(s, t) +K(v, t)− 2K(t, t)) dWt

+ 2ξ2 (K(s, t) +K(v, t)− 2K(t, t))
2
dt

− 2ξ2 (K(s, t) +K(v, t))
2
dt
}
dsdv dx. (B.10)

Using Lemma B.1, we obtain

dRt =
1

2
ξ2σ4

tK(t, t)
[
4ξ dWt + 2ξ2K(t, t) (4− α) dt

]
∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T ) ·K(s, x)K(v, x) dsdv dx

− 1

2
ξ2σ4

t

∫ T

0

∫ T

0

ψ(t, s, v, t, T )K(s, t)K(v, t) dsdv dt

+
1

2
ξ2σ4

t

∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T )K(s, x)K(v, x)·

·
{
2αξ2 dr(t) + 2ξ (K(s, t) +K(v, t)− 2K(t, t)) dWt

+ 2ξ2 (K(s, t) +K(v, t)− 2K(t, t))
2
dt

− 2ξ2 (K(s, t) +K(v, t))
2
dt
}
dsdv dx. (B.11)

We de�ne the following auxiliary function

ζ(t, T ) :=

∫ T

t

Et

[
σ2
z

]
K(z, t) dz. (B.12)
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Then, it is easier to see that the covariations are the following

d⟨U,W ⟩t = 3ρξ2σ3
tK(t, t)

∫ T

t

∫ T

0

φ(t, s, x, T )K(s, x) dsdx dt

+ ρξ2σ3
t

∫ T

t

∫ T

0

φ(t, s, x, T )·

· (2K(s, t) +K(x, t)− 3K(t, t)) K(s, x) dsdx dt, (B.13)

d⟨U,M⟩t = 6ρξ3σ3
tK(t, t)ζ(t, T )

∫ T

t

∫ T

0

φ(t, s, x, T )K(s, x) dsdx dt

+ 2ρξ3σ3
t ζ(t, T )

∫ T

t

∫ T

0

φ(t, s, x, T )·

· (2K(s, t) +K(x, t)− 3K(t, t))K(s, x) dsdx dt, (B.14)

d⟨R,W ⟩t = 2ξ3σ4
tK(t, t)

∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T )·

·K(s, x)K(v, x) dsdv dx dt

+ ξ3σ4
u

∫ T

u

∫ T

0

∫ T

0

ψ(t, s, v, x, T )K(s, x)K(v, x)·

· (K(s, u) +K(v, u)− 2K(u, u)) dsdv dx dt (B.15)

and

d⟨R,M⟩t = 4ξ4σ4
tK(t, t)ζ(t, T )

∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T )·

·K(s, x)K(v, x) dsdv dx dt

+ 2ξ4σ4
t ζ(t, T )

∫ T

t

∫ T

0

∫ T

0

ψ(t, s, v, x, T )K(s, x)K(v, x)·

· (K(s, t) +K(v, t)− 2K(t, t)) dsdv dx dt. (B.16)

C. Upper-bound estimate for the exponential Wiener volatility

model

In this appendix we obtain the upper-bound for the decomposition formula for the
exponential Wiener volatility model from Example 4.2.

C.1. Upper-bound for term (I)

For matter of convenience, we de�ne the function

χ1(t, T , α) :=

∫ T

t

exp

{
1

2
(9− 3α)ξ2(s− t)

}[
exp

{
(2− α)ξ2(T − s)

}
− 1
]
ds.

(C.1)

We can rewrite Ut as

Ut =
ρσ3

t

(2− α)ξ
χ1(t, T , α). (C.2)
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It is easy to �nd that

dUt =
ρdσ3

t

(2− α)ξ
χ1(t, T , α) +

ρσ3
t

(2− α)ξ
χ′
1(t, T , α) dt

=
ρ
(
3ξσ3

t dWt +
1
2 (18− 3α)ξ2σ3 dt

)
(2− α)ξ

χ1(t, T , α)

+
ρσ3

t

(2− α)ξ
χ′
1(t, T , α) dt. (C.3)

If α ≥ 0, we can �nd an upper-bound for χ1(t, T , α) which is

χ1(t, T , α) ≤
∫ T

t

exp

{
9

2
ξ2(s− t)

}[
exp

{
2ξ2(T − s)

}
− 1
]
ds

=
2

45ξ2

(
−9 exp

{
2ξ2(T − t)

}
+ 4 exp

{
9

2
ξ2(T − t)

}
+ 5

)
. (C.4)

We can re-write the decomposition formula as

ρ

2
Et

[∫ T

t

e−r(u−t)ΛΓBS(u,Xu, vu)σu d ⟨W,M⟩u

]
− ΛΓBS(t,Xt, vt)Ut

=
1

8
Et

[∫ T

t

e−r(u−t)
(
∂5x − 2∂4x + ∂3x

)
ΓBS(u,Xu, vu)Uu d ⟨M,M⟩u

]

+
ρ

2
Et

[∫ T

t

e−r(u−t)
(
∂4x − ∂3x

)
ΓBS(u,Xu, vu)Uuσu d ⟨W,M⟩u

]

+ ρEt

[∫ T

t

e−r(u−t)∂2xΓBS(u,Xu, vu)σu d ⟨W,U⟩u

]

+
1

2
Et

[∫ T

t

e−r(u−t)
(
∂3x − ∂2x

)
ΓBS(u,Xu, vu) d ⟨M,U⟩u

]
. (C.5)

Applying Lemma 3.1 and using the de�nition of au, we obtain∣∣∣∣∣ρ2Et

[∫ T

t

e−r(u−t)ΛΓBS(u,Xu, vu)σu d ⟨W,M⟩u

]
− ΛΓBS(t,Xt, vt)Ut

∣∣∣∣∣
≤ C

8
Et

[∫ T

t

e−r(u−t)

(
1

a6u
+

2

a5u
+

1

a4u

)
Uu d ⟨M,M⟩u

]

+
Cρ

2
Et

[∫ T

t

e−r(u−t)

(
1

a5u
+

1

a4u

)
Uuσu d ⟨W,M⟩u

]

+ CρEt

[∫ T

t

e−r(u−t) 1

a3u
σu d ⟨W,U⟩u

]

+
C

2
Et

[∫ T

t

e−r(u−t)

(
1

a4u
+

1

a3u

)
d ⟨M,U⟩u

]
. (C.6)
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Noting that au = σuϕ
1/2(u, T, α), where ϕ was de�ned in (4.64),∣∣∣∣∣ρ2Et

[∫ T

t

e−r(u−t)ΛΓBS(u,Xu, vu)σu d ⟨W,M⟩u

]
− ΛΓBS(t,Xt, vt)Ut

∣∣∣∣∣
≤ Cρξ

2(2− α)
Et

[∫ T

t

e−r(u−t)

(
σu

ϕ(u, T, α)
+

2σ2
u

ϕ1/2(u, T, α)
+ σ3

u

)
χ1(u, T, α) du

]

+
Cρ2

(2− α)
Et

[∫ T

t

e−r(u−t)

(
σu

ϕ3/2(u, T, α)
+

σ2
u

ϕ(u, T, α)

)
χ1(u, T, α) du

]

+
Cρ23

(2− α)
Et

[∫ T

t

e−r(u−t) σu
ϕ3/2(u, T, α)

χ1(u, T, α) du

]

+
3Cρξ

(2− α)
Et

[∫ T

t

e−r(u−t)

(
σu

ϕ(u, T, α)
+

σ2
u

ϕ1/2(u, T, α)

)
χ1(u, T, α) du

]
. (C.7)

Being σu the only stochastic component, we can get the expectation inside. Each
power of σu has a di�erent forward value, in this case, we can bound all terms by
exp

{
9
2ξ

2(u− t)
}
. We have that∣∣∣∣∣ρ2Et

[∫ T

t

e−r(u−t)ΛΓBS(u,Xu, vu)σu d ⟨W,M⟩u

]
− ΛΓBS(t,Xt, vt)Ut

∣∣∣∣∣
≤ Cρξ

2(2− α)

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
·

·
(

σt
ϕ(u, T, α)

+
2σ2

t

ϕ1/2(u, T, α)
+ σ3

t

)
χ1(u, T, α) du

+
Cρ2

(2− α)

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
·

·
(

σt
ϕ3/2(u, T, α)

+
σ2
t

ϕ(u, T, α)

)
χ1(u, T, α) du

+
Cρ23

(2− α)

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
·

· σt
ϕ3/2(u, T, α)

χ1(u, T, α) du

+
3Cρξ

(2− α)

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
·

·
(

σt
ϕ(u, T, α)

+
σ2
t

ϕ1/2(u, T, α)

)
χ1(u, T, α) du. (C.8)

Substituting ϕ(u, T, α) and using the upper-bound for χ1(u, T, α) when α ≥ 0, we
have ∣∣∣∣∣ρ2Et

[∫ T

t

e−r(u−t)ΛΓBS(u,Xu, vu)σu d ⟨W,M⟩u

]
− ΛΓBS(t,Xt, vt)Ut

∣∣∣∣∣
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≤ Cρξ

45(2− α)ξ2

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
(
σt

2ξ2

[exp {2ξ2(T − u)} − 1]
+ 2σ2

t

√
2ξ

[exp {(2− α)ξ2(T − u)} − 1]
1
2

+ σ3
t

)
(
−9 exp

{
2ξ2(T − u)

}
+ 4 exp

{
9

2
ξ2(T − u)

}
+ 5

)
du

+
2Cρ2

45(2− α)ξ2

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
(
σt

2
3
2 ξ3

[exp {(2− α)ξ2(T − u)} − 1]
3
2

+ σ2
t

2ξ2

[exp {(2− α)ξ2(T − u)} − 1]

)
(
−9 exp

{
2ξ2(T − u)

}
+ 4 exp

{
9

2
ξ2(T − u)

}
+ 5

)
du

+
6Cρ2

45(2− α)ξ2

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
σt

2
3
2 ξ3

[exp {(2− α)ξ2(T − u)} − 1]
3
2

(
−9 exp

{
2ξ2(T − u)

}
+ 4 exp

{
9

2
ξ2(T − u)

}
+ 5

)
du

+
6Cρξ

45(2− α)ξ2

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
(
σt

2ξ2

[exp {(2− α)ξ2(T − u)} − 1]
+ σ2

t

√
2ξ

[exp {(2− α)ξ2(T − u)} − 1]
1
2

)
(
−9 exp

{
2ξ2(T − u)

}
+ 4 exp

{
9

2
ξ2(T − u)

}
+ 5

)
du. (C.9)

The above upper-bound error is di�cult to interpret. In order to do this, we derive
a Taylor expansion for one of the terms. Then, the following error behaviour is
retrieved:

C
ρξ3σtT

3/2

6(α− 2)2

(
32

√
2ρ√

−(α− 2)ξ2
+ 21

√
T

)
. (C.10)

C.2. Upper-bound for term (II)

For matter of convenience, we de�ne the function

χ2(t, T , α) :=

∫ T

t

exp
{
(8− 2α)ξ2(s− t)

} [
exp

{
(2− α)ξ2(T − s)

}
− 1
]2

ds

(C.11)

We can re-write Rt as

Rt =
σ4
t

2(2− α)2ξ2
χ2(t, T , α). (C.12)
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It is easy to �nd that

dRt =
dσ4

t

2(2− α)2ξ2
χ2(t, T , α) +

σ4
t

2(2− α)2ξ2
χ′
2(t, T , α) dt

=
4ξσ4

t dWt + 2(8− α)σ4
t dt

2(2− α)2ξ2
χ2(t, T , α)

+
σ4
t

2(2− α)2ξ2
χ′
2(t, T , α) dt. (C.13)

If α ≥ 0, we can �nd an upper-bound for χ2(t, T, α) which is

χ2(t, T, α) ≤
∫ T

t

exp
{
8ξ2(s− t)

} [
exp

{
2ξ2(T − s)

}
− 1
]2

ds

=
1

24ξ2
(
exp

{
2ξ2(T − t)

}
− 1
)3 (

exp
{
2ξ2(T − t)

}
+ 3
)
. (C.14)

We can re-write the decomposition formula as

1

8
Et

[∫ T

t

e−r(u−t)Γ2BS(u,Xu, vu) d ⟨M,M⟩u

]
− Γ2BS(t,Xt, vt)Rt

=
1

8
Et

[∫ T

t

e−r(u−t)
(
∂6x − 3∂5x + 3∂4x − ∂3x

)
ΓBS(u,Xu, vu)Ru d ⟨M,M⟩u

]

+
ρ

2
Et

[∫ T

t

e−r(u−t)
(
∂5x − 2∂4x + ∂3x

)
ΓBS(u,Xu, vu)Ruσu d ⟨W,M⟩u

]

+ ρEt

[∫ T

t

e−r(u−t)
(
∂3x − ∂2x

)
ΓBS(u,Xu, vu)σu d ⟨W,R⟩u

]

+
1

2
Et

[∫ T

t

e−r(u−t)
(
∂4x − 2∂3x + ∂2x

)
ΓBS(u,Xu, vu) d ⟨M,R⟩u

]
. (C.15)

Applying Lemma 3.1 and using the de�nition of au, we obtain∣∣∣∣∣18Et

[∫ T

t

e−r(u−t)Γ2BS(u,Xu, vu) d ⟨M,M⟩u

]
− Γ2BS(t,Xt, vt)Rt

∣∣∣∣∣
≤ C

8
Et

[∫ T

t

e−r(u−t)

(
1

a7u
+

3

a6u
+

3

a5u
+

1

a4u

)
Ru d ⟨M,M⟩u

]

+
Cρ

2
Et

[∫ T

t

e−r(u−t)

(
1

a6u
+

2

a5u
+

1

a4u

)
Ruσu d ⟨W,M⟩u

]

+ CρEt

[∫ T

t

e−r(u−t)

(
1

a4u
+

1

a3u

)
σu d ⟨W,R⟩u

]

+
C

2
Et

[∫ T

t

e−r(u−t)

(
1

a5u
+

2

a4u
+

1

a3u

)
d ⟨M,R⟩u

]
. (C.16)
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Noting that au = σuϕ
1/2(u, T, α), we have∣∣∣∣∣18Et

[∫ T

t

e−r(u−t)Γ2BS(u,Xu, vu)d ⟨M,M⟩u

]
− Γ2BS(t,Xt, vt)Rt

∣∣∣∣∣
≤ C

4(2− α)2
Et

[∫ T

t

e−r(u−t)

(
σu

ϕ3/2(u, T, α)
+

3σ2
u

ϕ(u, T, α)
+

3σ3
u

ϕ1/2(u, T, α)
+ σ4

u

)
·

· χ2(u, T, α) du

]

+
Cρ

2(2− α)2ξ
Et

[∫ T

t

e−r(u−t)

(
σu

ϕ2(u, T, α)
+

2σ2
u

ϕ3/2(u, T, α)
+

σ3
u

ϕ(u, T, α)

)
·

· χ2(u, T, α) du

]

+
2Cρ

(2− α)2ξ
Et

[∫ T

t

e−r(u−t)

(
σu

ϕ2(u, T, α)
+

σ2
u

ϕ3/2(u, T, α)

)
·

· χ2(u, T, α) du

]

+
2C

(2− α)2
Et

[∫ T

t

e−r(u−t)

(
σu

ϕ3/2(u, T, α)
+

2σ2
u

ϕ(u, T, α)
+

σ3
u

ϕ1/2(u, T, α)

)
·

· χ2(u, T, α) du

]
. (C.17)

Being σu the only stochastic component, we can get the expectation inside. Each
power of σu has a di�erent forward value, in this case, we can bound all terms by
exp

{
8ξ2(u− t)

}
. We have that∣∣∣∣∣18Et

[∫ T

t

e−r(u−t)Γ2BS(u,Xu, vu) d ⟨M,M⟩u

]
− Γ2BS(t,Xt, vt)Rt

∣∣∣∣∣
≤ C

4(2− α)2ξ2

∫ T

t

e−r(u−t) exp
{
8ξ2(u− t)

}
(

σt
ϕ3/2(u, T, α)

+
3σ2

t

ϕ(u, T, α)
+

3σ3
t

ϕ1/2(u, T, α)
+ σ4

u

)
χ2(u, T, α) du

+
Cρ

2(2− α)2ξ3

∫ T

t

e−r(u−t) exp
{
8ξ2(u− t)

}
(

σt
ϕ2(u, T, α)

+
2σ2

t

ϕ3/2(u, T, α)
+

σ3
t

ϕ(u, T, α)

)
χ2(u, T, α) du

+
2Cρ

(2− α)2ξ3

∫ T

t

e−r(u−t) exp
{
8ξ2(u− t)

}
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(
σt

ϕ2(u, T, α)
+

σ2
t

ϕ3/2(u, T, α)

)
χ2(u, T, α) du

+
2C

(2− α)2ξ2

∫ T

t

e−r(u−t) exp
{
8ξ2(u− t)

}
(

σt
ϕ3/2(u, T, α)

+
2σ2

t

ϕ(u, T, α)
+

σ3
t

ϕ1/2(u, T, α)

)
χ2(u, T, α) du. (C.18)

Substituting ϕ(u, T, α) and using the upper-bound for χ2(u, T, α) when α ≥ 0, we
have

∣∣∣∣∣18Et

[∫ T

t

e−r(u−t)Γ2BS(u,Xu, vu) d ⟨M,M⟩u

]
− Γ2BS(t,Xt, vt)Rt

∣∣∣∣∣
≤ C

96(2− α)2ξ4

∫ T

t

e−r(u−t) exp
{
8ξ2(u− t)

}
(
σt

(2− α)
3
2 ξ3

[exp {(2− α)ξ2(T − u)} − 1]
3
2

+ 3σ2
t

(2− α)ξ2

[exp {(2− α)ξ2(T − u)} − 1]

+3σ3
t

(2− α)
1
2 ξ

[exp {(2− α)ξ2(T − u)} − 1]
1
2

+ σ4
u

)
(
exp

{
2ξ2(T − u)

}
− 1
)3 (

exp
{
2ξ2(T − u)

}
+ 3
)
du

+
Cρ

48(2− α)2ξ5

∫ T

t

e−r(u−t) exp
{
8ξ2(u− t)

}
·

·

(
σt

(2− α)2ξ4

[exp {(2− α)ξ2(T − u)} − 1]
2

+2σ2
t

(
(2− α)

3
2 ξ3

[exp {(2− α)ξ2(T − u)} − 1]

) 3
2

+σ3
t

(2− α)ξ2

[exp {(2− α)ξ2(T − u)} − 1]

)
·

·

(
exp

{
2ξ2(T − u)

}
− 1

)3(
exp

{
2ξ2(T − u)

}
+ 3

)
du

+
Cρ

12(2− α)2ξ5

∫ T

t

e−r(u−t) exp
{
8ξ2(u− t)

}
·

·

(
σt

(
(2− α)2ξ4

[exp {(2− α)ξ2(T − u)} − 1]
2

)

+σ2
t

(
(2− α)

3
2 ξ3

[exp {(2− α)ξ2(T − u)} − 1]
3
2

))
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(
exp

{
2ξ2(T − u)

}
− 1

)3(
exp

{
2ξ2(T − u)

}
+ 3

)
du

+
C

12(2− α)2ξ4

∫ T

t

e−r(u−t) exp
{
8ξ2(u− t)

}
·

·

(
σt

(
(2− α)

3
2 ξ3

[exp {(2− α)ξ2(T − u)} − 1]
3
2

)

+2σ2
t

(2− α)ξ2

[exp {(2− α)ξ2(T − u)} − 1]

+σ3
t

(
(2− α)

1
2 ξ

[exp {(2− α)ξ2(T − u)} − 1]
1
2

))
·

·

(
exp

{
2ξ2(T − u)

}
− 1

)3(
exp

{
2ξ2(T − u)

}
+ 3

)
du.

The above upper-bound error is di�cult to interpret. In order to this, we do a
Taylor analysis of one term. Then, the following error behavior is retrieved

C
ξσtT

2

15(α− 2)4

(
5
(
20ρ+

√
2
)
+ 32

√
2
√
T
√

−(α− 2)ξ2
)
. (C.19)
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