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Abstract

In this paper we present local Sternberg conjugation theorems near
attracting fixed points for lattice systems. The interactions are spatially
decaying and are not restricted to finite distance. The conjugations ob-
tained retain the same spatial decay. In the presence of resonances the
conjugations are to a polynomial normal form that also has decaying prop-
erties.

1 Introduction

Coupled map lattices are used to model many systems in physics, chemistry
and biology. They are formed by sequences of nodes, each one having its own
internal dynamics and being influenced by the dynamics of other nodes through
some interactions.

Its origin can be found in the first models for the dynamics of chains of
particles under the action of a potential, with a nearest neighbours interaction,
models which were first considered by Prandtl [29] and Dehlinger [9]. Later,
these models were also considered by Frenkel and Kontorova for specific cases
in dislocation models of solids in [16] and [17].

Several problems can be studied under the Frenkel-Kontorova model (or
some generalization), ranging from chains of coupled pendula, dislocation dy-
namics and surface physics to DNA and neural dynamics. See [4] for a modern
description and many applications of this model.

In statistical mechanics, coupled oscillations were used to study numerically
the equirepartion of energy, starting with [11]. See also [19] for a modern treat-
ment of the problem. Mathematically, they appear as models of discretised
partial differential equations. Several objects and notions are studied in this
setting, such as travelling waves, wave fronts, invariant measures and spatio-
temporal chaos, see [25], [5], [2], [18], [8], [12], [23], [26]. For applications to
neuroscience and biology see [10], [21], [27], [28].

One can consider higher dimensional lattices with interactions among all
particles. In this case, we have to require some decay in the strength of the
interaction, because as it is physically natural, the larger the separation between
particles is, the smaller the force of interaction should be.
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Assuming each node is represented by Rn, in this paper we consider m-
dimensional lattices modelled as

ℓ∞ = ℓ∞(Rn) = {x : Zm → Rn | sup
k∈Zm

|x(k)| < ∞}.

We allow each node to interact with every other node, but the strength of
the interactions decay with the distance between them with a spatial decay
controlled by a function Γ : Zm → [0,∞) satisfying certain properties. To
this end, we will use the decay functions introduced in [22] and presented in
Section 2.1. We will work with differentiable maps F : ℓ∞ → ℓ∞ such that the
derivative of the component of F corresponding to the i-th node with respect
to the variable xj of the j-th node satisfies∣∣∣∂Fi

∂xj

∣∣∣ ≤ CΓ(i− j).

More generally, we will work with spaces Cr
Γ(ℓ

∞, ℓ∞) of Cr functions having
decay properties. To be able to work with them, first we have to introduce
linear and multilinear maps with decay in ℓ∞ spaces. See Sections 3 and 4 for
the precise definitions and properties. These spaces or similar constructs were
introduced in [22], [13], [14], [15].

In this paper we describe normal forms and Sternberg theorems [32] around
fixed points in the setting described above, which give differentiable conjugations
of the map to their normal forms in neighbourhoods of attracting fixed points.
In absence of resonances, the normal forms reduce to the linearisation of the map
at the fixed point. For more general fixed points, even in finite dimensions, the
study seems to require the use of differentiable bump functions in the ambient
space, as it is the case in other settings we are aware of [33], [3], [20], [7].
However, such bump functions do not exist in ℓ∞(Rn).

One important consequence of our results is that the normal forms and the
obtained conjugations have the same kind of decay as the original map.

From the differentiable conjugation to the linear map we can obtain several
invariant manifolds: if we can linearise the map, we can find as many manifolds
as linear invariant subspaces the linear map has. Among them, the slow mani-
folds. These define the motion which converges to the attractor the slowest, and
contain the dynamics that can be observed in simulations or physical systems.
These manifolds have parameterisations that decay in the aforementioned sense.
This property is important in the study of statistical mechanics, see [22].

In the study of normal forms and the linearisation procedure we have to
deal with cohomological equations in ℓ∞(Rn), in the setting of linear maps with
decay. For this, we use the so-called Sylvester operators (see [6]) and we adapt
the theory to work in the space of k-linear maps with decay and study their
invertibility properties. To that end we introduce the Γ-spectrum in Section 5,
a tool enabling us to study these operators in this setting.

We obtain Sternberg theorems for the conjugation of a map to its linear part
or to its normal form, in the case that the linear part is a contraction (Poincaré
domain). Assuming decay properties for the map we obtain decay properties for
the conjugating map. For the results where we allow the existence of resonances,
we use a normal form theory with decay which we develop here (analogous to
the standard normal form theory around a fixed point) and based on the use of
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Sylvester operators in spaces of k-linear maps in ℓ∞(Rn), introduced in Section
6.

We study two cases, the first one for maps that are small perturbations of
an uncoupled map with equal dynamics in each node. For this class of maps we
add conditions on the eigenvalues of the linearisation of the unperturbed map
at the fixed point restricted to a node (all maps are the same in each node).

In the absence of resonances among eigenvalues we have the following result
that gives differentiable conjugation to the linear part of the map. The norm
∥ · ∥Γ is introduced in Section 3 and the space of Cr functions with decay Cr

Γ is
introduced in Section 4.

Theorem 1.1. Let U be an open set of ℓ∞(Rn) such that 0 ∈ U . Let F : U →
ℓ∞(Rn) be a Cr

Γ map of the form F = F0+F1 where F0 is an uncoupled map and
F0(0) = F1(0) = 0. Let A = DF0(0), B = DF1(0) and M = A + B. Assume
that Aij = aδij with a ∈ L(Rn,Rn).

Let Spec(a) = {λ1, . . . , λn}, α = mini |λi|, β = maxi |λi|, ν = logα
log β and

r0 = [ν] + 1. Assume

(H1) 0 < |λi| < 1, 1 ≤ i ≤ n,

(H2) λi ̸= λk, k ∈ (Z+)n, 2 ≤ |k| ≤ r0, 1 ≤ i ≤ n.

Then, if F ∈ Cr
Γ(U, ℓ

∞(Rn)) with r ≥ r0 and ∥B∥Γ is small enough, there exists
R ∈ Cr

Γ(ℓ
∞(Rn), ℓ∞(Rn)) such that R(0) = 0, DR(0) = Id and

R ◦ F = MR

in some neighborhood U1 ⊆ U of 0 in ℓ∞(Rn).

If we allow for the existence of resonances, i.e. omitting Hypothesis (H2)
above, we have an analogous result giving a differentiable conjugation to a
polynomial normal form (Theorem 8.6 in Section 8).

The second case we consider is non-perturbative and requires conditions over
the Γ-spectrum of the linear part, introduced in Section 5.

Theorem 1.2. Let U be an open set of ℓ∞(Rn) such that 0 ∈ U . Let F ∈
Cr

Γ(U, ℓ
∞(Rn)) with F (0) = 0. Let A = DF (0), αΓ = inf{|λ| |λ ∈ SpecΓ(A)},

βΓ = sup{|λ| |λ ∈ SpecΓ(A)}, ν = logαΓ

log βΓ
and r0 = [ν] + 1. Assume

(H1) 0 /∈ SpecΓ(A) and SpecΓ(A) ⊂ D(0, 1),

(H2) SpecΓ(A) ∩ (SpecΓ(A))
j
= ∅, 2 ≤ j ≤ r0.

Then, if F ∈ Cr
Γ(U, ℓ

∞(Rn)) with r ≥ r0 there exists R ∈ Cr
Γ(ℓ

∞(Rn), ℓ∞(Rn))
such that R(0) = 0, DR(0) = Id and

R ◦ F = AR

in a neighborhood U1 ⊂ U of 0.

The paper is structured as follows. Section 2.1 provides the definition of
the class of decay functions we will work with and the main examples of them.
Section 3 deals with linear and multilinear maps with decay while Section 4
deals with Ck maps with decay. In Section 5 we introduce the Γ-spectrum
of linear map with decay. In Section 6 we study some spectral properties of
Sylvester operators. Finally, Sections 7 and 8 provide the normal forms and the
conjugation results respectively.
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2 Lattices, decay functions and dynamical sys-
tems

In this work we will consider dynamical systems in the space of bounded se-
quences of points of Rn with indices in Zm. That is, we will work in the infinite
product space (Rn)Z

m

, where as usual we will call node each individual Rn in
the lattice. Associated with this space we will consider a decay function, which
will control the strength of the interactions between different nodes.

The space of bounded sequences in the infinite product space (Rn)Z
m

is
denoted by ℓ∞(Rn) and formally defined as

ℓ∞(Rn) =

{
(xi)i∈Zm |xi ∈ Rn, sup

i∈Zm

∥xi∥ < ∞
}
,

where ∥ · ∥ is a given norm in Rn. We endow ℓ∞(Rn) with the norm ∥x∥∞ =
supi∈Zm ∥xi∥ as usual. Note that if we change the norm in Rn we end up with an
equivalent norm in ℓ∞(Rn). We denote by proji : ℓ

∞(Rn) → Rn the projection
onto the i-th component, and the related function, embi : Rn → ℓ∞(Rn) the i-th
embedding. They satisfy projj(embi(u)) = 0, i ̸= j, and proji(embi(u)) = u for
every u ∈ Rn. This embedding is an isometry if the norm in ℓ∞(Rn) is induced
by the norm considered in Rn.

2.1 Decay functions in lattices

To be able to define meaningful localised perturbations in ℓ∞(Rn), we con-
sider an appropriate set of weighted Banach spaces. The main idea is that
the coupling term in the perturbed system belongs to a weighted space, which
controls the strength of the interaction between nodes. We should note that
nearest-neighbour coupling (or any other finite rank coupling) will satisfy these
hypotheses.

We will make use of the following decay functions, originally introduced in
[22].

Definition 2.1. We say that a function Γ : Zm → R+ is a decay function when
it satisfies:

1.
∑

k∈Zm Γ(k) ≤ 1,

2.
∑

k∈Zm Γ(i− k)Γ(k − j) ≤ Γ(i− j), i, j ∈ Zm.

The first property ensures that interaction propagation related to such a de-
cay function is finite, while the second property is akin to a triangular inequality
in a discrete lattice. As pointed out by Prof. L. Sadun, the second property can
be interpreted as that the sum of the interactions between two nodes through
the interactions involving third nodes is dominated by the direct interaction
between them.

The following proposition can be found in [22] and provides a family of
examples of decay functions satisfying Definition 2.1.

Proposition 2.2. Given α > m, θ ≥ 0, there exists a > 0, depending on α, θ,m
such that the function defined by

Γ(j) =

{
a, j = 0,

a|j|−αe−θ|j|, j ̸= 0,
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is a decay function on Zm.

Note that the standard exponential function Γ(j) = Ce−θ|j| is not a decay
function for any C, θ > 0, as proved in [22].

3 Linear and multilinear maps with decay

To define Cr maps with decay properties in lattices we need to first introduce
spaces of linear and multilinear mappings with suitable decay properties. Then
we can use these definitions to introduce spaces of Cr maps with these predefined
decay properties for its derivatives. In this section we will define linear maps
with decay and its related norm ∥ · ∥Γ. From now on we will use ∥ · ∥ to denote
the norm induced in the space of linear or multilinear maps by the same norm
in ℓ∞(Rn). All decay functions will satisfy Definition 2.1. We reproduce some
statements from [22] and [13], and provide some details and some additional
results for the convenience of the reader.

3.1 The space of linear maps with decay

The most natural way to define linear maps with decay is to require the com-
ponents of “infinite matrices” to have decay properties with respect to their
indices. This is formalised as follows. Given ∥ · ∥ a norm in Rn we define

LΓ = LΓ(ℓ
∞(Rn), ℓ∞(Rn)) =

{
A ∈ L(ℓ∞(Rn), ℓ∞(Rn)) | ∥A∥Γ < ∞

}
,

where
∥A∥Γ = max{∥A∥, γ(A)},

with ∥A∥ the operator norm of A and

γ(A) = sup
i,k∈Zm

sup
∥u∥≤1,

projju=0, j ̸=k

∥(Au)i∥Γ(i− k)−1.

Remark 3.1. We will use LΓ as an abbreviation for LΓ(ℓ
∞(Rn), ℓ∞(Rn)).

Although the definition has been written for ℓ∞(Rn), we can define linear maps
with decay among arbitrary vector subspaces E ,F of ℓ∞(Rn) as

LΓ = LΓ(E ,F) =
{
A ∈ L(E ,F) | ∥A∥Γ < ∞

}
.

All results stated for LΓ(ℓ
∞(Rn), ℓ∞(Rn)) extend in a straightforward way to

LΓ(E ,F).

We can provide an interpretation of γ(A) in terms of the elements of the
infinite dimensional matrix. If we denote Aij = projiA embj then we have

γ(A) = sup
i,j∈Zm

∥Aij∥Γ(i− j)−1.

It is worth emphasizing that the elements Aij do not determine A. We can
find a specific counter-example in [13, p.2843]

Remark 3.2. Observe that given an uncoupled linear map Aij = aδij, with a ∈
L(Rn,Rn) we have A ∈ LΓ(ℓ

∞(Rn), ℓ∞(Rn)), γ(A) = Γ(0)−1∥a∥ and ∥A∥Γ =
Γ(0)−1∥a∥.
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Several basic properties follow.

Proposition 3.3. The space (LΓ, ∥ · ∥Γ) is a Banach space.

Proposition 3.4 (Algebra properties). Let A, B ∈ LΓ(ℓ
∞(Rn), ℓ∞(Rn)). Then

AB ∈ LΓ(ℓ
∞(Rn), ℓ∞(Rn)) and

(1) γ(AB) ≤ γ(A)γ(B),

(2) ∥AB∥Γ ≤ ∥A∥Γ∥B∥Γ.

Remark 3.5. Proposition 3.3 and Proposition 3.4 imply LΓ(ℓ
∞(Rn), ℓ∞(Rn))

is a Banach algebra. It has a unit element Id but ∥ Id ∥Γ ̸= 1. This makes
spectral theory in LΓ less straightforward, since the classic results (cf. [30])
require unit elements with norm 1 in most proofs. There is however a standard
trick to overcome this difficulty, see Section 5.

Proposition 3.6. Let M0 ∈ LΓ(ℓ
∞(Rn), ℓ∞(Rn)) invertible such that

M−1
0 ∈ LΓ(ℓ

∞(Rn), ℓ∞(Rn))

and M1 ∈ LΓ(ℓ
∞(Rn), ℓ∞(Rn)) such that ∥M−1

0 ∥Γ∥M1∥Γ < 1. Then M =
M0 +M1 is invertible, M−1 ∈ LΓ(ℓ

∞(Rn), ℓ∞(Rn)) and

|∥M−1∥Γ − ∥M−1
0 ∥Γ| ≤ ∥M−1 −M−1

0 ∥Γ = O(∥M1∥Γ).

Proof. Since M0 is invertible, we can write

M = M0

(
Id+M−1

0 M1

)
.

Since ∥M−1
0 ∥Γ∥M1∥Γ < 1 we can write M−1 as a Neumann series as

M−1 =

∞∑
j=0

(−M−1
0 M1)

jM−1
0 = M−1

0 +

∞∑
j=1

(−M−1
0 M1)

jM−1
0

which is convergent in ∥ · ∥Γ.

3.2 The space of k-linear maps with decay

To characterise higher order differentiable functions with decay we inductively
define multilinear maps with decay. Recall that we can define the space of
k-linear maps Lk(ℓ∞(Rn), ℓ∞(Rn)) via the identification

Lk(ℓ∞(Rn), ℓ∞(Rn)) = L(ℓ∞(Rn), Lk−1(ℓ∞(Rn), ℓ∞(Rn))).

There are k possible identifications defined by the isomorphisms ιj as follows.
Given the map

ιj : L
k(ℓ∞(Rn), ℓ∞(Rn)) → L(ℓ∞(Rn), Lk−1(ℓ∞(Rn), ℓ∞(Rn))), 1 ≤ j ≤ k,

and A ∈ Lk(ℓ∞(Rn), ℓ∞(Rn)), let

ιj(A)(w)(v1, . . . , vk−1) = A(v1, . . . ,

j︷︸︸︷
w , . . . , vk−1). (3.1)
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The maps ιj , 1 ≤ j ≤ k, are isometries in the corresponding operator norms.
We define

Lk
Γ(ℓ

∞(Rn), ℓ∞(Rn)) =
{
A ∈ Lk(ℓ∞(Rn), ℓ∞(Rn)) |
ιp(A) ∈ LΓ(ℓ

∞(Rn), Lk−1(ℓ∞(Rn), ℓ∞(Rn))), 1 ≤ p ≤ k
}
,

with the norm
∥A∥Γ = max{∥A∥, γ(A)},

where
γ(A) = max

1≤p≤k
{γ(ιp(A))}.

Remark 3.7. Note that this definition is consistent because we can identify
Lk−1(ℓ∞(Rn), ℓ∞(Rn)) with the ℓ∞ space ℓ∞(Lk−1(ℓ∞(Rn),Rn)).

With the definition of this norm we can prove that Lk
Γ(ℓ

∞(Rn), ℓ∞(Rn)) is
a Banach space using the same tools as in the proof of Proposition 3.3.

The following proposition gives bounds to the norm of multilinear contrac-
tions. These bounds are fundamental later on, since multilinear contractions
appear naturally when differentiating repeatedly invariance equations, a basic
step in the study of normal form equations and the parameterisation method.

Proposition 3.8. Let A ∈ Lk
Γ(ℓ

∞(Rn), ℓ∞(Rn)), k ≥ 2, and u1, . . . , up ∈
ℓ∞(Rn), 1 ≤ p ≤ k − 1. Then, for any permutation of k elements τ ∈ Sk, the
map

Bτ,u1,...,up
: ℓ∞(Rn)×

(k−p)
· · · ×ℓ∞(Rn) → ℓ∞(Rn)

defined by

Bτ,u1,...,up
(v1, . . . , vk−p) = A(τ(v1, . . . , vk−p, u1, . . . , up))

belongs to Lk−p
Γ (ℓ∞(Rn), ℓ∞(Rn)). Moreover

γ(Bτ,u1,...,up
) ≤ γ(A)∥u1∥ · · · ∥up∥

and
∥Bτ,u1,...,up

∥Γ ≤ ∥A∥Γ∥u1∥ · · · ∥up∥.

Proposition 3.8 can be used to bound Γ-norms of contractions in such a way
that decay properties can be ignored except for the bound of just one component,
as the next proposition shows.

From Propositions 3.4 and 3.8 we also obtain the following composition
property, which will prove crucial for later developments.

Given A ∈ Lk
Γ(ℓ

∞(Rn), ℓ∞(Rn)), Bj ∈ L
lj
Γ (ℓ

∞(Rn), ℓ∞(Rn)) for j = 1, . . . , k
and wlj ∈ ℓ∞(Rn)lj , we define the composition AB1 · · ·Bk by

AB1 · · ·Bk(wl1 , . . . , wlk) = A(B1wl1 , . . . , Bkwlk).

Proposition 3.9. If A ∈ Lk
Γ(ℓ

∞(Rn), ℓ∞(Rn)) and Bj ∈ L
lj
Γ (ℓ

∞(Rn), ℓ∞(Rn)),

for j = 1, . . . , k, then the composition AB1 · · ·Bk ∈ Ll1+···+lk
Γ (ℓ∞(Rn), ℓ∞(Rn))

and

γ(AB1 · · ·Bk) ≤γ(A)∥B1∥Γ · · · ∥Bk∥Γ, (3.2)

∥AB1 · · ·Bk∥Γ ≤∥A∥Γ∥B1∥Γ · · · ∥Bk∥Γ. (3.3)
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A consequence of the proof is that if Bp = Bq for all q ̸= p the bounds can be
written instead as

γ(AB · · ·B) ≤γ(A)∥B∥Γ∥B∥ · · · ∥B∥,
∥AB · · ·B∥Γ ≤∥A∥Γ∥B∥Γ∥B∥ · · · ∥B∥.

An important special case of the previous proposition is the following result.

Corollary 3.10. If A ∈ LΓ(ℓ
∞(Rn), ℓ∞(Rn)) and B ∈ Lk

Γ(ℓ
∞(Rn), ℓ∞(Rn))

then A ·B ∈ Lk
Γ(ℓ

∞(Rn), ℓ∞(Rn)) and

γ(AB) ≤ γ(A)γ(B),

∥AB∥Γ ≤ ∥A∥Γ∥B∥Γ.

4 Spaces of differentiable functions with decay

With the definitions of linear and multilinear applications with decay from the
previous section we are prepared to define spaces of differentiable functions with
decay whose domain is an open set in ℓ∞(Rn).

Definition 4.1. Let U be an open set of ℓ∞(Rn). We define

C1
Γ(U, ℓ

∞(Rn)) = {F ∈ C1(U, ℓ∞(Rn)) | sup
x∈U

∥F (x)∥∞ < ∞,

DF (x) ∈ LΓ(ℓ
∞(Rn), ℓ∞(Rn)),∀x ∈ U,

sup
x∈U

∥DF (x)∥Γ < ∞}

with norm

∥F∥C1
Γ
= max

(
∥F∥C0 , sup

x∈U
∥DF (x)∥Γ

)
,

where ∥F∥C0 = supx∈U ∥F (x)∥∞ as usual. We can also define

C1
Γ(U,L

k(ℓ∞(Rn), ℓ∞(Rn))) =
{
F ∈ C1(U,Lk(ℓ∞(Rn), ℓ∞(Rn))) |
F (x) ∈ Lk

Γ(ℓ
∞(Rn), ℓ∞(Rn)), ∀x ∈ U,

sup
x∈U

∥F (x)∥Γ < ∞
}
.

This definition is consistent since

Lk(ℓ∞(Rn), ℓ∞(Rn)) ∼ ℓ∞(Lk(ℓ∞(Rn),Rn)).

Based on the above, we define spaces of Cr
Γ functions as:

Cr
Γ(U, ℓ

∞(Rn)) =
{
F ∈ Cr(U, ℓ∞(Rn)) |DkF ∈ C1

Γ(U,L
k(ℓ∞(Rn), ℓ∞(Rn))),

0 ≤ k ≤ r − 1
}

with norm

∥F∥Cr
Γ
= max

(
∥F∥C0 , max

0≤k≤r−1
sup
x∈U

∥DDkF (x)∥Γ
)
.
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Remark 4.2. The inclusions Ci
Γ ⊂ Ci−1

Γ , 1 ≤ i ≤ r, are satisfied.

It is easy to check that Cr
Γ(U, ℓ

∞(Rn)) is a Banach space. We have the
following result concerning the composition of maps, which can be found in
[13].

Proposition 4.3. Let U, V be open sets of ℓ∞(Rn), F ∈ Cr
Γ(U, ℓ

∞(Rn)) and
G ∈ Cr

Γ(V, ℓ
∞(Rn)) such that F (U) ⊆ V . Then

(1) G ◦ F ∈ Cr
Γ(U, ℓ

∞(Rn)),

(2) ∥G ◦ F∥Cr
Γ
≤ K(1 + ∥F∥rCr

Γ
)∥G∥Cr

Γ
.

Remark 4.4. An important particular case appears when G is a linear map in
LΓ(ℓ

∞(Rn), ℓ∞(Rn)). In this case the estimates in the proof are much easier
and the bound is

∥A ◦ F∥Cr
Γ
≤ ∥A∥Γ∥F∥Cr

Γ
. (4.1)

Theorem 4.5 (Inverse Function Theorem). Let U be an open set of ℓ∞(Rn)
and F ∈ Cr

Γ(U, ℓ
∞(Rn)), r ≥ 1. Let p ∈ U and q = F (p). Assume that DF (p)

is invertible and DF (p)−1 ∈ LΓ(ℓ
∞(Rn), ℓ∞(Rn)). Then F is locally invertible

around p and F−1 ∈ Cr
Γ(V, ℓ

∞(Rn)), where V is a suitable neighbourhood of q.

We defer the proof of this result until Section 5.

5 Spectral theory for Γ-coupled linear maps

In this section we recall some results in spectral theory of linear operators and
also introduce a new notion, the Γ-spectrum of a linear operator in a lattice,
associated to a decay function Γ satisfying the definition introduced in Section
2.1.

Given a Banach space E the space of continuous linear maps L(E,E) is also
a Banach space with the standard operator norm. Moreover, it is a Banach
algebra with the product given by the composition of maps.

Let E = ℓ∞(Rn). Given a decay function Γ as in Definition 2.1, the space
LΓ(E,E) introduced in Section 3.1 is a Banach algebra (see Proposition 3.4).

The inclusion LΓ(E,E) ⊂ L(E,E) holds considering both spaces as sets,
but LΓ(E,E) is not a closed subalgebra of L(E,E), hence it is not a Banach
subalgebra of L(E,E). Indeed, consider a specific decay function:

Γ(j) = a|j|−αe−θ|j|, j ∈ Zm,

with α > m, θ > 0 and a > 0 small enough.
Consider the sequence of linear maps {Ak}k∈N defined by

Ak =

{
Ak

i,j = |i− j|Γ(i− j), |i− j| ≤ k,

Ak
i,j = 0, otherwise.

Clearly Ak ∈ LΓ(E,E). Next we check that {Ak}k∈N converges to A∞ in
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L(E,E), where A∞
i,j = |i− j|Γ(i− j), ∀i, j ∈ Zm. Indeed

∥A∞ −Ak∥ = sup
u∈E
∥u∥≤1

∥(A∞ −Ak)u∥ = sup
∥u∥≤1

sup
i∈Zm

∥
∑

|i−j|>k

|i− j|Γ(i− j)uj∥

≤
∑
|l|>k

|l|Γ(l)

which goes to zero as k → ∞ because
∑

l∈Zm |l|Γ(l) is convergent provided
either θ > 0 or θ = 0 and α > m+ 1. However A∞ /∈ LΓ(E,E) because

γ(A∞) = sup
i,j∈Zm

|Ai,j |Γ(i− j)−1 = sup
i,j∈Zm

|i− j| = ∞.

The space LΓ(E,E) is a Banach algebra with the identity as unit, but
∥ Id ∥Γ = Γ(0)−1 ̸= 1. To be able to apply the general results of Banach al-
gebras with unit, we can introduce an equivalent norm in LΓ(E,E), say ∥ · ∥′,
such that ∥ Id ∥′ = 1. The procedure is standard (see [24]). We define

∥A∥′ = sup {∥AC∥Γ, C ∈ LΓ(E,E), ∥C∥Γ ≤ 1} .

The properties of norm are easily checked from the definition, proving the equiv-
alence requires the following. On one hand,

∥A∥′ = sup
∥C∥Γ≤1

∥AC∥Γ ≤ sup
∥C∥Γ≤1

∥A∥Γ∥C∥Γ = ∥A∥Γ,

on the other hand,

∥A∥′ ≥ ∥A Id

∥ Id ∥Γ
∥Γ =

1

∥ Id ∥Γ
∥A∥Γ.

Finally,
∥ Id ∥′ = sup

∥C∥Γ≤1

∥ Id ·C∥Γ = sup
∥C∥Γ≤1

∥C∥Γ = 1.

To illustrate some features of LΓ(E,E) we present an example of an in-
vertible linear map in LΓ(ℓ

∞(Cn), ℓ∞(Cn)) such that its inverse may not be in
LΓ(ℓ

∞(Cn), ℓ∞(Cn)) depending on the decay function Γ considered.
Let ℓ∞(C) be a one dimensional lattice (m = 1), r ∈ N, a0, . . . , ar ∈ C and

A ∈ L(ℓ∞(Cn), ℓ∞(Cn)) determined by

Ai,j = 0, if either j < i or j > i+ r,

Ai,i+k = ak, 0 ≤ k ≤ r,

with (Ax)i =
∑i+r

j=i Aijxj .
Clearly A ∈ LΓ(ℓ

∞(C), ℓ∞(C)) for any decay function Γ, since

γ(A) = sup
i,j

|Aij |Γ(i− j)−1 = max{|a0|Γ(0)−1, |a1|Γ(1)−1, . . . , |ar|Γ(r)−1} < ∞

and

∥A∥ = sup
∥x∥≤1

∥Ax∥ = sup
∥x∥≤1

sup
i∈Z

∥(. . . ,
i+r∑
j=i

Aijxj , . . .)∥ = |a0|+ . . .+ |ar|.
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We look for the inverse B of A assuming a priori that the inverse is upper
triangular and a band matrix. That is, Bij = bj−i for some bk ∈ C, with bk = 0
if k < 0.

Imposing the condition AB = Id, or equivalently∑
k∈Z

AikBkj = δij

we get
a0bj−i + a1bj−i−1 + . . .+ arbj−i−r = δij .

When i = j we have a0b0 = 1. This condition implies a0 ̸= 0. We assume it
from now on. Then we proceed by induction and recursively obtain bj for j > 0.
Actually bj satisfies the r-th order linear difference equation

bj = −a1
a0

bj−1 −
a2
a0

bj−2 − . . .− ar
a0

bj−r, j ≥ 1,

with initial conditions b0 = 1/a0, b−1 = 0, . . . , b−r+1 = 0.
Using the theory of linear difference equations we can compute bj in terms

of the zeros of the characteristic polynomial of this equation,

a0x
r + a1x

r−1 + . . .+ ar = 0.

Once we have determined bj and hence B, we can check that indeed

AB = BA = Id .

For this to hold we strongly use that Aik ∈ L(R,R) ∼ R. It remains to check
that B sends ℓ∞(R) to itself. This will depend on the choice of the values of ai.

To work with a specific example, assume r = 2 and a0 = 1. Hence we
can determine the zeros of the characteristic polynomial and write the general
solution of the difference equation as

bj = β1

(
−a1 +

√
a21 − 4a2
2

)j

+ β2

(
−a1 −

√
a21 − 4a2
2

)j

, j ≥ 0,

for suitable values β1, β2.
Now we can choose a1, a2 to adjust the growth of the coefficients bj . For

instance, taking a1 = − 3
4 , a2 = 1

8 , then bj = 2
(
1
2

)j − ( 14)j . In this case B ∈
L(ℓ∞(R), ℓ∞(R)), because

∑
j≥0 |bj | < ∞. With the choice of decay function

Γ(j) = a|j|−αe−θ|j| we have that

γ(B) = sup
i,j

|Bij |Γ(i− j)−1

= max

(
1

a
, sup
j−i≥1

[
2

(
1

2

)j−i

−
(
1

4

)j−i
]
a−1|j − i|αeθ|j−i|

)

which is finite when θ < log 2. Hence B ∈ LΓ(ℓ
∞(R), ℓ∞(R)) (with this partic-

ular choice of decay function Γ) if and only if θ < log 2.
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5.1 Γ-spectrum of linear maps on lattices

Consider the lattice ℓ∞(Rn) and a decay function Γ. Also consider the com-
plexified space

ℓ∞(Rn)⊗R C ∼ ℓ∞(Rn)⊕ iℓ∞(Rn) ∼ ℓ∞(Cn).

Let E be a linear subspace of ℓ∞(Cn). Given A ∈ LΓ(E , E) we define:

� Γ-resolvent of A as

ρΓ(A) = {λ ∈ C |A− λ Id is invertible and (A− λ Id)−1 ∈ LΓ(E , E)},

� Γ-spectrum of A as
SpecΓ(A) = C\ρΓ(A),

� Γ-spectral radius of A as

rΓ(A) = sup{|λ| |λ ∈ SpecΓ(A)}.

From the definitions above it is immediate that

ρΓ(A) ⊂ ρ(A)

and therefore
Spec(A) ⊂ SpecΓ(A), r(A) ≤ rΓ(A).

Also from the definitions, it is clear that SpecΓ(A) is the spectrum of A as an
element of the Banach algebra LΓ(E , E). Hence all general properties of spectra
in unitary Banach algebras apply to SpecΓ.

5.2 Operational calculus

The results in this section are similar to those for the spectrum of a linear
operator, a standard reference is [31]. For the remaining of this section let E
denote a complex Banach space.

Let A ∈ LΓ(E , E) and Ω be an open set such that SpecΓ(A) ⊂ Ω. Let ω be
an open set such that

SpecΓ(A) ⊂ ω ⊂ ω ⊂ Ω (5.1)

and ∂ω is a finite union of closed curves.
Then, given f : Ω → C analytic we define

f(A) =
1

2πi

∫
∂ω

f(z)(z −A)−1 dz.

This definition is independent of the choice of ω provided it satisfies the
conditions above, and we have that

f(A) ∈ LΓ(E , E).

In the case that f is a polynomial, f(z) =
∑m

k=0 akz
k, the previous definition

gives f(A) =
∑m

k=0 akA
k.

The following proposition proves upper semicontinuity of SpecΓ(A) with
respect to A.
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Proposition 5.1. Let A ∈ LΓ(E , E) and µ ∈ ρΓ(A). Then if B ∈ LΓ(E , E) and
∥B∥Γ is small enough, then µ ∈ ρΓ(A+B).

Moreover, if f, g : Ω → C are analytic functions and h(z) = f(z)g(z), hence

h(A) = f(A)g(A). (5.2)

As a consequence, under these conditions if we assume f : Ω → C is not zero,
thus f(A) is invertible, f(A)−1 ∈ LΓ(E , E) and

[f(A)]
−1

=
1

2πi

∫
∂ω

1

f(z)
(z −A)−1 dz (5.3)

where ω satisfies (5.1).
With these results on spectra of Γ-linear maps we can now prove the inverse

function theorem in lattices with spatial decay.

Proof of Theorem 4.5. From the standard inverse function theorem in Banach
spaces, F is locally invertible and F−1 is defined in a neighbourhood V of q.
Moreover, DF−1(q) = DF (p)−1 and by the continuity of DF and continuity of
SpecΓ, DF−1(x) ∈ LΓ for x ∈ V , provided V is small. Since

DF−1(x) =
(
DF (F−1(x))

)−1
(5.4)

we can obtain the higher order derivatives of F−1 by taking derivatives in the
right hand side of (5.4). For instance,

D2F−1(x) = −
(
DF (F−1(x))

)−1
D2F (F−1(x))(DF (F−1(x)))−1

= −DF−1(x)D2F (F−1(x))DF−1(x). (5.5)

Then, by Proposition 3.9, we have D2F−1(x) ∈ L2
Γ. Proceeding in the same

way for the other derivatives we get that F−1 ∈ Cr
Γ(V, ℓ

∞(Rn)). Alternatively,
we can use (5.5) to prove inductively that F−1 ∈ Ci

Γ assuming F−1 ∈ Ci−1
Γ , for

i ≤ r.

5.3 Spectral projections associated to a gap in the Γ-spectrum

We can adapt the spectral projection theorem (see for instance [31]) to the
setting of Γ-spectrum. The statements and proofs are very similar to the ones
corresponding to L(E , E) but we give them here for the sake of completeness.

Assume that
SpecΓ(A) = σ1 ∪ σ2,

with
σi ⊂ ωi ⊂ ωi ⊂ Ωi, i = 1, 2,

where Ωi are disjoint open sets and ωi are open sets such that ∂ωi are finite
union of simple closed curves.

We define

P =
1

2πi

∫
∂ω1

(z −A)−1 dz.

Results on integration of elements of LΓ can be found in [13].
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Lemma 5.2. We have

(i) P ∈ LΓ(E , E),

(ii) P 2 = P ,

(iii) P (E) and Ker(P ) are closed and invariant.

Proof. Part (i) follows from the properties of integrals of functions in the Banach
algebra LΓ in [13]. Part (ii) follows from the fact that P can be written as

1

2πi

∫
∂ω

f(z)(z −A)−1 dz,

with f : Ω1 → C, defined by f(z) = 1. Since f(z) = f(z)f(z), by (5.2)

PP = f(A)f(A) = f(A) = P,

proving P is a projection.
For Part (iii), P (E) and Ker(P ) are invariant when P is a projection, and

E = P (E) ⊕ Ker(P ). Moreover since P (E) = Ker(Id−P ) and P is continuous,
both P (E) and Ker(Id−P ) are closed.

We denote E1 = P (E) and E2 = (Id−P )(E) = Ker(P ) and Ai = A|Ei
.

Theorem 5.3. We have that

SpecΓ(Ai) = σi, i = 1, 2.

Proof. Let

f(z) =

{
1, if z ∈ Ω1,

0, if z ∈ Ω2.

Moreover, let λ /∈ σ1 and g1(z) =
f(z)
λ−z . The function g1 is analytic in a neigh-

bourhood U of SpecΓ(A) and satisfies

f(z) = (λ− z)g1(z),

f(z)g1(z) = g1(z),

for z ∈ U .
By (5.2),

f(A) = (λ−A)g1(A), (5.6)

f(A)g1(A) = g1(A),

and hence

P = (λ−A)g1(A) = g1(A)(λ−A), (5.7)

Pg1(A) = g1(A)P = g1(A). (5.8)

If x ∈ E1,
g1(A)x = Pg1(A)x = P (g1(A)x) ∈ E1.
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Moreover, from (5.6)

g1(A) = (λ−A)−1
∣∣
E1 = (λ−A1)

−1

which implies that λ ∈ ρΓ(A1). Therefore SpecΓ(A1) ⊂ σ1. Since Id−P is a
projection onto E2 a completely analogous argument shows that SpecΓ(A2) ⊂
σ2. Indeed, given λ /∈ σ2, let g2(z) =

1−f(z)
λ−z . Then

(Id−P ) = (λ−A)g2(A) = g2(A)(λ−A),

(Id−P )g2(A) = g2(A)(Id−P ) = g2(A)

and
g2(A) = (λ−A)−1

∣∣
E2 = (λ−A2)

−1.

Now suppose that λ ∈ ρΓ(A1)∩ ρΓ(A2). Since g1(z) + g2(z) =
1

λ−z , by (5.3) we
have

(λ−A)−1 = g1(A) + g2(A) = g1(A)P + g2(A)(Id−P )

= (λ−A1)
−1P + (λ−A2)

−1(Id−P ).

Then λ ∈ ρΓ(A), which implies that

SpecΓ(A) ⊂ SpecΓ(A1) ∪ SpecΓ(A2),

and therefore
σi ⊂ SpecΓ(Ai), i = 1, 2.

6 Sylvester operators in Lk
Γ

In this section we will introduce Sylvester operators and prove some results in
spaces of k linear maps with decay.

Definition 6.1. Let E = ℓ∞(Rn). Given A,B ∈ LΓ(E,E) we define the oper-
ators

Rj,A : Lk
Γ(E,E) → Lk

Γ(E,E), 1 ≤ j ≤ k,

by
Rj,A(W )(u1, . . . , uk) = W (u1, . . . , Auj , . . . , uk),

and LB ,SB,A : Lk
Γ(E,E) → Lk

Γ(E,E) by

LB(W )(u1, . . . , uk) = BW (u1, . . . , uk),

SB,A(W )(u1, . . . , uk) = BW (Au1, . . . , Auk),

respectively.

Note that by Proposition 3.9, if W ∈ Lk
Γ(E,E) then Rj,A(W ),LB(W ) and

SB,A(W ) are in Lk
Γ(E,E) so that the operators are well defined.

Given two subsets X, Y of C we denote by X · Y the set

X · Y = {x · y |x ∈ X, y ∈ Y }.

Analogously, we define
Xk = X· k. . . ·X.
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Proposition 6.2. We have

Spec(SB,A, L
k
Γ(E,E)) ⊂ SpecΓ(B) · (SpecΓ(A))

k
, k ∈ N.

The proof of this proposition is a consequence of the following theorem and
the next lemma.

Theorem 6.3. [Theorem 11.23, [30]] Let a and b be two commuting elements
in a unitary Banach algebra. Then

Spec(ab) ⊆ Spec(a) · Spec(b).

Lemma 6.4. Given A,B ∈ LΓ(E,E), k ∈ N, 1 ≤ j ≤ k, then

Spec(Rj,A, L
k
Γ(E,E)) ⊂ SpecΓ(A),

Spec(LB , L
k
Γ(E,E)) ⊂ SpecΓ(B).

Proof. Let λ ∈ ρΓ(A), thus (A− λ Id)−1 ∈ LΓ(E,E). To study the invertibility
of Rj,A − λ Id we consider the equation

W (u1, . . . , Auj , . . . , uk)− λW (u1, . . . , uj , . . . , uk) = H(u1, . . . , uj , . . . , uk),

for W, H ∈ Lk
Γ(E,E), which is equivalent to

W (u1, . . . , (A− λ Id)uj , . . . , uk) = H(u1, . . . , uj , . . . , uk).

Formally,
W = Rj,(A−λ Id)−1H

and hence W ∈ Lk
Γ(E,E) and λ ∈ ρ(Rj,A).

The proof of the result for LB is completely analogous.

Proof of Proposition 6.2. It follows directly from the fact that

SB,A = LB ◦ R1,A ◦ . . . ◦ Rk,A (6.1)

and the fact that the operators on the r.h.s. of (6.1) commute. Then Theorem
6.3 proves the result.

7 Normal forms of maps in lattices

In this section we consider the computation of normal forms around a fixed point
of a map in a lattice, assuming the map has decay properties. We estimate the
decay properties of the normal form and the transformation leading to it.

To study the decay properties of normal forms we will use Sylvester operators
in spaces with decay, introduced in the previous section.

We consider an open set U of ℓ∞(Rn) such that 0 ∈ U and a map

F : U → ℓ∞(Rn)

such that F (0) = 0 and F ∈ Cr
Γ(U, ℓ

∞(Rn)). Let A = DF (0), with A ∈
LΓ(ℓ

∞(Rn), ℓ∞(Rn)), invertible and consider its Γ-spectrum SpecΓ(A).
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Theorem 7.1. In the previously described setting there exist polynomials K ∈
C∞

Γ (ℓ∞(Rn), ℓ∞(Rn)) and H ∈ C∞
Γ (ℓ∞(Rn), ℓ∞(Rn)) of degree at most r such

that K(0) = 0, DK(0) = Id and

F ◦K(x)−K ◦H(x) = o(∥x∥r)

and H(x) = Ax+
∑

j∈J Hjx
⊗j with Hj ∈ Lj

Γ(ℓ
∞(Rn), ℓ∞(Rn)) where

J = {2 ≤ j ≤ r | (SpecΓ(A))j ∩ SpecΓ(A) ̸= ∅}.

Corollary 7.2. Under the conditions of the previous theorem, if

(SpecΓ(A))j ∩ SpecΓ(A) = ∅, 2 ≤ j ≤ r,

then there exists a polynomial K ∈ C∞
Γ (ℓ∞(Rn), ℓ∞(Rn)) such that

F ◦K(x)−K ◦Ax = o(∥x∥r).

Proof of Theorem 7.1. We look for K and H in the form

K(x) =

r∑
j=1

Kjx
⊗j ,

H(x) =

r∑
j=1

Hjx
⊗j ,

where Kj , Hj ∈ Lj
Γ(ℓ

∞(Rn), ℓ∞(Rn)). Taking derivatives on both sides of

F ◦K = K ◦H (7.1)

and evaluating at 0 we have

AK1 = K1 H1.

This equation has the obvious solution K1 = Id, H1 = A, although other
solutions are possible, for instance taking K1 as any linear map which commutes
with A, like K1 = α Id, α ∈ R and H1 = A.

Taking k-th order derivatives on both sides of (7.1), using the Faà di Bruno
formula,

k∑
j=1

∑
i1,...,ij≥1

i1+...+ij=k

CDjF ◦K(Di1K · · ·DijK)

=

k∑
j=1

∑
i1,...,ij≥1

i1+...+ij=k

CDjK ◦H(Di1H · · ·DijH)

(where for the sake of simplicity we have not written the dependence of C on
the indices), and evaluating the derivatives at 0 we can write

AKk +G1
k = Hk +KkA

⊗r +G2
k, (7.2)
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where G1
k, G

2
k are k-linear maps which depend on DjF (0), 2 ≤ j ≤ r, and Ki,

Hi, 2 ≤ i ≤ r − 1.
Let Gk = G1

k − G2
k. Observe that Gk consists of sums and contractions of

multilinear operators.
Using Sylvester operators (introduced in Section 6) we rewrite Equation

(7.2) as (
SA−1,A − Id

)
Kk = A−1(−Hk +Gk). (7.3)

Now we proceed inductively from k = 2 up to k = r. Assume that for j up
to the (k − 1)-th step we have obtained Kj and Hj in Lj

Γ(ℓ
∞(Rn), ℓ∞(Rn)) by

solving Equation (7.3). From the way Gk is defined, Proposition 3.9 proves that
Gk ∈ Lk

Γ(ℓ
∞(Rn), ℓ∞(Rn)) and hence

A−1(−Hk +Gk) ∈ Lk
Γ(ℓ

∞(Rn), ℓ∞(Rn)).

Now by Proposition 6.2, if

SpecΓ(A) ∩ (SpecΓ(A))
k
= ∅,

then 1 /∈ Spec(SA−1,A ), thus
(
SA−1,A − Id

)
: Lk

Γ → Lk
Γ is invertible. This

implies we can choose Hk = 0 and Kk = (SA−1,A − Id)−1A−1Gk.
Obviously, with this choice Hk,Kk ∈ Lk

Γ(ℓ
∞(Rn), ℓ∞(Rn)). On the other

hand, if
SpecΓ(A) ∩ (SpecΓ(A))

k ̸= ∅

the operator SA−1,A may not be invertible and we set Hk = Gk and Kk = 0.
This is not the only possible choice, it is only the simplest one and also has
Kk, Hk ∈ Lk

Γ(ℓ
∞(Rn), ℓ∞(Rn)).

Another standard possibility is to decompose Lk
Γ(E,E) = ImSA−1,A ⊕ V ,

where Im stands for the range of SA−1,A and V is a complementary subspace
in Lk

Γ(E,E). Then one decomposes A−1Gk according to this splitting of the
space as (A−1Gk)

Im+(A−1Gk)
V and chooses Kk such that (SA−1,A − Id)Kk =

(A−1Gk)
I and Hk = A(A−1Gk)

V . Of course this choice also depends on the
choice of the complementary space V .

By the choices of Kk, Hk, 1 ≤ k ≤ r,

Dk [F ◦K −K ◦H] = 0, 1 ≤ k ≤ r,

and hence, by Taylor’s theorem, F ◦K(x)−K ◦H(x) = o(∥x∥r).

8 Sternberg theorems in lattices

In this section we will prove several Sternberg conjugation theorems for contrac-
tions under several non-resonance hypotheses. All of them are adaptations to
our setting of the classical proof in [32], using the normal form theory developed
in the previous section.

We will begin by proving Theorem 1.1. First, two remarks from the require-
ments.

Remark 8.1. Note that we do not require F1 to be small but only B = DF1(0)
to be small in the Γ-norm.
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Remark 8.2. Since r0 is finite, assumption (H2) involves only a finite set of
conditions.

Before starting the proof we perform a rescaling of F in order to transfer
the smallness conditions on the domain of definition to smallness of an auxiliary
parameter.

Let δ ∈ R, δ > 0, and the rescaling map Tδx = δx. We define

Fδ(x) = T−1
δ ◦ F ◦ Tδ(x) = Mx+Nδ(x),

where Nδ(x) = δ−1N(δx).
From now on we will not write the dependence on δ of Fδ(x) and Nδ(x)

and we will assume that F is defined on B(0, 1) ⊂ ℓ∞(Rn) and δ is as small as
needed. In particular, if F is at least of class C2, we have that

∥N∥C0 = O(δ), ∥DN∥C0 = O(δ) and ∥DjN∥C0 = O(δj−1), j ≥ 2,

and moreover
∥N∥Cr

Γ
= O(δ).

Given r, r0 ∈ N, r ≥ r0, we introduce the spaces

χr,r0 =
{
g ∈ Cr(B(0, 1), ℓ∞(Rn)) |Djg(0) = 0, 0 ≤ j ≤ r0, ∥g∥Cr < ∞

}
,

χr,r0
Γ =

{
g ∈ Cr

Γ(B(0, 1), ℓ∞(Rn)) ∩ χr,r0 | ∥g∥Cr
Γ
< ∞

}
.

Observe that χr,r0
Γ is a closed subspace of Cr

Γ.

Lemma 8.3. Assume the hypotheses of Theorem 1.1.
Then, if r ≥ r0, F ∈ Cr

Γ(U, ℓ
∞(Rn)) and ∥B∥Γ and the rescaling parameter

δ are small enough, the linear operator Gm : χr,r0
Γ → χr,r0

Γ defined by

Gm(g) = M−mg ◦ Fm

is well defined and is a contraction in the Cr
Γ-norm.

Proof. First, we fix some quantities to be used throughout the proof. From the
definition of r0 and the fact that β < 1 we have

α−1βr0 < 1.

Then there exists m ∈ N such that

Γ(0)−2
(
α−1βr0

)m
< 1

and also there exist positive numbers ε1, ε2 and ε3 such that

Γ(0)−1(α−1 + ε1)
m
[
Γ(0)−1 ((β + ε1)

m + ε2)
r0 + ε3

]
< 1. (8.1)

Note that this condition requires β+ε1 < 1. There exists a norm in Rn such
that

∥a∥ < β +
ε1
2
, ∥a−1∥ < α−1 +

ε1
2
,

where ∥ · ∥ is the associated operator norm. Clearly,

∥am∥ <
(
β +

ε1
2

)m
, ∥a−m∥ <

(
α−1 +

ε1
2

)m
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and

∥Am∥Γ < Γ(0)−1
(
β +

ε1
2

)m
, ∥A−m∥Γ ≤ Γ(0)−1

(
α−1 +

ε1
2

)m
.

Moreover,

∥Mm∥Γ = ∥(A+B)m∥Γ

≤ ∥Am∥Γ +O(∥B∥Γ) ≤ Γ(0)−1(β +
ε1
2
)m + Γ(0)−1m

ε1
2
βm−1

< Γ(0)−1(β + ε1)
m

if ∥B∥Γ is small enough.
In the same way, now using Proposition 3.6,

∥M−m∥Γ ≤ ∥A−m∥Γ +O(∥B∥Γ)

≤ Γ(0)−1(α−1 +
ε1
2
)m + Γ(0)−1m

ε1
2
α−(m−1) < Γ(0)−1(α−1 + ε1)

m.

Analogously,
∥Mm∥ ≤ ∥M∥m ≤ (β + ε1)

m.

Let g ∈ χr,r0
Γ . By Remark 4.4 we have

∥Gm(g)∥Cr
Γ
≤ ∥M−m∥Γ∥g ◦ Fm∥Cr

Γ
.

To estimate ∥g ◦ Fm∥Cr
Γ
we will use the Faà di Bruno formula for the p-th

derivative of g ◦ Fm, 1 ≤ p ≤ r,

Dp(g ◦ Fm)(x) =Dpg(Fm(x))(DFm(x))⊗p

+

p−1∑
j=1

∑
i1,...,ij≥1

i1+...+ij=p

CDjg(Fm(x))Di1Fm(x) · · ·DijFm(x),

(8.2)

where C is a combinatorial coefficient which depends on all indices in the sum.
From (8.2) it is clear that Dp(g ◦ Fm)(0) = 0 for 1 ≤ p ≤ r0, since F (0) = 0.

Since g ∈ χr,r0 , by Taylor’s theorem in integral form (see [1]),

g(x) =
1

(r0 − 1)!

∫ 1

0

(1− t)r0−1Dr0g(tx)x⊗r0 dt

and also

Djg(x) =
1

(r0 − j − 1)!

∫ 1

0

(1− t)r0−j−1Dr0g(tx)x⊗(r0−j) dt, 0 ≤ j ≤ r0−1.

Using the previous formulas, Proposition 3.8 and usual results about inte-
gration in Banach spaces (see [1] for the theory of Cauchy-Bochner integration
on Banach spaces) we have

∥Djg(Fm(x))∥Γ

≤ 1

(r0 − j − 1)!

∫ 1

0

(1− t)r0−j−1∥Dr0g(tFm(x))∥Γ∥Fm(x)∥r0−j dt

≤ 1

(r0 − j)!
∥g∥Cr

Γ
∥Fm(x)∥r0−j , 0 ≤ j ≤ r0 − 1
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and
∥Djg(Fm(x))∥Γ ≤ ∥g∥Cr

Γ
, r0 ≤ j ≤ r.

As a consequence of the two previous bounds, we can write the more compact
form

∥Djg(Fm(x))∥Γ ≤ ∥g∥Cr
Γ
∥Fm(x)∥(r0−j)+ , 0 ≤ j ≤ r,

where (t)+ = max(t, 0).
Then, using Proposition 3.9

∥Dp(g ◦ Fm)(x)∥Γ
≤∥g∥Cr

Γ
∥Fm(x)∥(r0−p)+∥DFm(x)∥Γ∥DFm(x)∥p−1

+

p−1∑
j=1

∑
i1,...,ij≥1

i1+...+ij=p

C∥g∥Cr
Γ
∥Fm(x)∥(r0−j)+∥Di1Fm(x)∥ · · · ∥DijFm(x)∥Γ.

By the rescaling, if x ∈ B(0, 1),

∥Fm(x)∥ ≤ ∥Mmx∥+O(δ) ≤ ∥Mm∥+O(δ),

∥DFm(x)∥ ≤ ∥Mm∥+O(δ),

∥DFm(x)∥Γ ≤ ∥Mm∥Γ +O(δ)

and
∥DjFm(x)∥Γ = O(δ), j ≥ 2.

Also note that for p ≥ 0, we have (r0 − p)+ + p ≥ r0.
Then

∥Dp(g ◦ Fm)(x)∥Γ ≤ ∥g∥Cr
Γ

[(
∥Mm∥Γ +O(δ)

)(
∥Mm∥+O(δ)

)r0−1
+O(δ)

]
,

for 1 ≤ p ≤ r, and finally,

∥Gm(g)∥Cr
Γ
≤ ∥M−m∥Γ

[
(∥Mm∥Γ +O(δ)) (∥Mm∥+O(δ))

r0−1
+O(δ)

]
∥g∥Cr

Γ

≤ Γ(0)−1(α−1 + ε1)
m

×
[(
Γ(0)−1(β + ε1)

m +O(δ)
)
((β + ε1)

m +O(δ))
r0−1

+O(δ)
]
∥g∥Cr

Γ
.

Then if δ is small enough, by (8.1) the factor in front of ∥g∥Cr
Γ
is strictly less

than 1 and hence G is a contraction in χr,r0
Γ .

Now we use the normal form theory in the previous section to find a decay
map which linearises our map F up to order r0. The form of A implies that
Spec(A) = {λ1, . . . , λn} and SpecAm = {λm

1 , . . . , λm
n }. Since Am is uncoupled,

SpecΓ(A
m) = Spec(Am). Moreover the non-resonance condition (H2) implies

that
λm
i ̸= λmk1

1 · · ·λmkn
n , k ∈ (Z+)n, |k| ≥ 2,

and therefore

(SpecΓ(A
m))j ∩ SpecΓ(A

m) = ∅, j ≥ 2.
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Taking ∥B∥Γ sufficiently small, since SpecΓ is continuous, we have

(SpecΓ(M
m))j ∩ SpecΓ(M

m) = ∅, 2 ≤ j ≤ r0,

because we are only dealing with a finite set of conditions.
Hence Corollary 7.2 gives us that there exists a polynomialK ∈ C∞

Γ (ℓ∞(Rn), ℓ∞(Rn))
of degree (at most) r0 such that K(0) = 0, DK(0) = Id and

Fm ◦K(x)−K ◦Mm(x) = o(∥x∥r0).

Let S0 = K−1 be the local inverse. Taking the rescaling parameter δ smaller if
necessary we can assume that S0 is defined in B(0, 1) ⊂ ℓ∞(Rn). By Theorem
4.5, we have S0 ∈ Cr

Γ and satisfies

S0(0) = 0, DS0(0) = Id,

M−m ◦ S0 ◦ Fm − S0 = o(∥x∥r0).

Starting with this approximate conjugation we define the sequence

Sn = M−mSn−1 ◦ Fm = Gm(Sn−1), n ≥ 1.

The next lemma proves that Sn converges to a well-defined conjugation in
the space Ck

Γ.

Lemma 8.4. The sequence {Sn}n∈N defined above converges to a function S ∈
Ck

Γ(B(0, 1), ℓ∞(Rn)) satisfying S(0) = 0, DS(0) = Id and

S ◦ Fm = MmS.

Proof. Since m is fixed we will drop the dependence of Gm on m. First, we
prove the following relation

Sn = S0 +

n−1∑
j=0

Gj(M−mS0 ◦ Fm − S0), (8.3)

where G0 = Id and Gj = G◦Gj−1, j ≥ 1. Observe thatM−mS0◦Fm−S0 ∈ χr,r0 ,
since S0 solves the conjugation equation formally up to order r0. Moreover
M−mS0 ◦ Fm − S0 ∈ Ck

Γ since M ∈ LΓ and S0, F ∈ Ck
Γ. We prove (8.3) by

induction. When n = 1, we use the definition S1 = G(S0):

S1 = G(S0) = M−mS0 ◦ Fm = S0 + G0(M−mS0 ◦ Fm − S0).

Now assume Equation (8.3) is true up to index n, then

Sn+1 = Mm(−n−1)S0 ◦ Fm(n+1)

= M−mnS0 ◦ Fmn +Mm(−n−1)S0 ◦ Fm(n+1) −M−mnS0 ◦ Fmn

= Sn +M−mn
(
M−mS0 ◦ Fm − S0

)
◦ Fmn

= Sn + Gn(M−mS0 ◦ Fm − S0)

= S0 +

n∑
j=0

Gj
(
M−mS0 ◦ Fm − S0

)
.

22



By Lemma 8.3, G is a contraction in χr,r0
Γ and therefore the series arising

from (8.3) converges and limn→∞ Sn exists and belongs to χr,r0
Γ .

Finally, we check the conjugacy property. Indeed,

S ◦ Fm = lim
n→∞

Sn ◦ Fm = lim
n→∞

M−mnS0 ◦ Fmn+m

= lim
n→∞

MmM−mn−mS0F
mn+m = MmS.

Also

S(0) = lim
n→∞

M−mnS0 ◦ Fmn(0) = 0,

and since DFmn(0) = DF (Fmn−1(0)) · · ·DF (0) = Mmn and DS0(0) = Id,

DS(0) = lim
n→∞

M−mnDS0(F
mn(0))DFmn(0) = lim

n→∞
M−mn IdMmn = Id .

Thus, S conjugates Fm to Mm. The final step is to show that S also
conjugates F to M .

By the spectral properties and Corollary 7.2, there exists a polynomial K̃ ∈
C∞(ℓ∞(Rn), ℓ∞(Rn)) such that

K̃(0) = 0, DK̃(0) = Id,

and
F ◦ K̃(x)− K̃ ◦M(x) = o(∥x∥r0).

Let R0 = K̃−1, which similarly to S0, we can assume is defined in B(0, 1) ⊂
ℓ∞(Rn). Thus

M−1R0 ◦ F (x) = R0(x) + o(∥x∥r0)

and as a consequence

M−mR0 ◦ Fm(x) = R0(x) + o(∥x∥r0). (8.4)

Lemma 8.5. Under the hypotheses of Theorem 1.1, if ∥B∥ and the rescaling
parameter δ are small enough, the operator

G̃ : Cr(B(0, 1), ℓ∞(Rn)) → Cr(B(0, 1), ℓ∞(Rn))

defined by
G̃(g) = M−1g ◦ F

is well defined and is a contraction in the Cr-norm.

We omit the proof of this lemma since it is completely analogous to the
proof of Lemma 8.3 but the estimates are much simpler, since they do not
involve decay functions.

We define the sequence

Rn = M−1Rn−1 ◦ F, n ≥ 1.

The same arguments as the ones used in the proof of Lemma 8.4 but now
in the space Cr instead of Cr

Γ give that there exists R = limn→∞ Rn with
R ∈ Cr(B(0, 1), ℓ∞(Rn)) such that R ◦ F = MR.
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Now consider the iteration Sn introduced in the proof of Lemma 8.4 with
S0 = R0 ∈ Cr

Γ. Since R0 satisfies (8.4), we see that Sn is a subsequence of Rn,
being both sequences convergent in the larger space Cr. Then

R = lim
n→∞

Rn = lim
n→∞

Sn = S ∈ Cr
Γ

and therefore S also conjugates F with M , proving Theorem 1.1.
An improvement of Theorem 1.1 consists of not assuming the non-resonance

condition (H2). In such case we obtain a Cr
Γ local conjugation to a normal form

of F instead to a conjugation to its linear part.

Theorem 8.6. Under the conditions and notation of Theorem 1.1 except hy-
pothesis (H2), if F ∈ Cr

Γ(ℓ
∞(Rn), ℓ∞(Rn)) with r ≥ r0 and ∥B∥Γ is small

enough there exists a polynomial H ∈ C∞
Γ (ℓ∞(Rn), ℓ∞(Rn)) of degree not larger

than r0 and R ∈ Cr
Γ(ℓ

∞(Rn), ℓ∞(Rn)) such that

R(0) = 0, DR(0) = Id

and
R ◦ F = H ◦R

in some neighborhood U1 ⊂ U of 0.

Proof. We will only comment on the differences of this proof with the proof of
Theorem 1.1. We rescale the map, we consider the spaces χr,r0 and χr,r0

Γ and
we use the same integer m as in the proof of that theorem. We take a normal
form H provided by Theorem 7.1 and define the operator

Gm(g) = H−m ◦ g ◦ Fm.

Now the estimates on Gm become more involved because in this case H is not
linear. This implies that Gm is not linear anymore. However, because of the
rescaling, H−1 is very close to M−1 in Cr

Γ (and Cr) norm, a fact which gives
similar estimates and thus proves LipGm < 1. The remaining part of the proof
is analogous.

The previous theorems assume that the linear part of the maps is close to
an uncoupled map with identical dynamics on each node. This gives sufficient
conditions for the conjugation in terms of the eigenvalues of the projections to
the nodes.

Theorem 1.2 requires instead conditions on the Γ-spectrum of the linear part
of the map.

Note that, since SpecΓ(A) is compact, Hypothesis (H1) in Theorem 1.2 im-
plies that 0 < αΓ ≤ βΓ < 1 and r0 < ∞.

Proof of Theorem 1.2. The structure of the proof is very similar to the one of
the proof of Theorem 1.1 but it has some technical differences. Let r0 and r be
as in the statement of the theorem. Note that βΓ = rΓ(A) and α−1

Γ = rΓ(A
−1).

Since r0 > ν then α−1
Γ βr0

Γ < 1 and there exists ε1 > 0 such that

(α−1
Γ + ε1)(βΓ + ε1)

r0 < 1.
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In any Banach algebra

rΓ(A) = lim
n→∞

(∥An∥Γ)1/n = inf
n≥1

(∥An∥Γ)
1
n , (8.5)

thus there exists m ∈ N such that

∥An∥Γ ≤ (rΓ(A) + ε1)
n
, n ≥ m,

and
∥A−n∥Γ ≤ (rΓ(A

−1) + ε1)
n, n ≥ m.

Obviously,
(α−1

Γ + ε1)
m(βΓ + ε1)

mr0 < 1

and there exists ε2, ε3 > 0 such that

(α−1
Γ + ε1)

m [((βΓ + ε1)
m + ε2)

r0 + ε3] < 1.

Now we introduce the operator Gm : χr,r0
Γ → χr,r0

Γ defined by

Gm(g) = A−mg ◦ Fm.

Analogous estimates as in Lemma 8.3 yield that if the rescaling parameter
is small enough, Gm is well defined in χr,r0

Γ and is a contraction. Then the proof
follows the same lines as the proof of Theorem 1.1.

For the uniqueness arguments needed at the end of the proof, we consider the
operator G̃(g) = A−1g ◦ F in Cr(B(0, 1), ℓ∞(Rn)). Since Spec(A) ⊂ SpecΓ(A),
condition (H2) implies that there are also no resonances among the elements of
Spec(A) and that r(A) < βΓ and r(A−1) < α−1

Γ . Hence we can find a norm in
the space ℓ∞(Rn), equivalent to the original one, such that

∥A−1∥∥A∥r0 < 1, (8.6)

where in the previous expression ∥ · ∥ stands for the corresponding operator

norm. The bound (8.6) allows us to prove the estimates needed to show that G̃
is a contraction. With these ingredients we can finish the proof in this setting
in the same way as in Theorem 1.1.

The analogous version of Theorem 8.6 in this setting is the following.

Theorem 8.7. Under the conditions of Theorem 1.2, except condition (H2), if
F ∈ Cr

Γ(ℓ
∞(Rn), ℓ∞(Rn)) with r ≥ r0 there exists a polynomial H ∈ C∞

Γ (ℓ∞(Rn), ℓ∞(Rn))
of degree not larger than r0 and R ∈ Cr

Γ(ℓ
∞(Rn), ℓ∞(Rn)) such that

R(0) = 0, DR(0) = Id

and
R ◦ F = H ◦R

in some neighborhood U1 ⊂ U of 0.
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The proof of this theorem is a combination of the arguments in the proofs
of Theorem 8.6 and Theorem 1.2.
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