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Abstract
Topological data analysis provides a new perspective on many problems in the domain of complex
systems. Here, we establish the dependency of the mean value of functional p-norms of ’persistence
landscapes’ on a uniform scaling of the underlying multivariate distribution. Furthermore, we
demonstrate that the average value of p-norms is decreasing, when the covariance in a system is
increasing. To illustrate the complex dependency of these topological features on changes of the
covariance matrix, we conduct numerical experiments utilizing bi-variate distributions with known
statistical properties. Our results help to explain the puzzling behavior of p-norms derived from
daily log-returns of major equity indices on European and US markets at the inception phase of
the global financial meltdown caused by the COVID-19 pandemic.

Keywords: topological data analysis, statistical topology, complex systems, financial time series

1. Introduction

Topological data analysis (TDA) of noisy data sets combines deterministic constructs of computa-
tional topology with statistical and machine learning methods. The latter methods are typically
applied by encoding the persistence diagram - one of the main instruments of dimensionality re-
duction in TDA - into a vector space. The popular way to implement this task is to transform
the persistence diagram into the persistent landscape; see Bubenik (2015). This approach has been
successfully used in a growing number of empirical studies: from astronomy to protein analysis,
from image processing to finance, as well as in many other fields; see, e.g., Green et al. (2019);
Kovacev-Nikolic et al. (2016); Bonis et al. (2016); Gidea and Katz (2018) and Wang et al. (2015).
Theoretical understanding of relationships between statistical properties of different topological fea-
tures and statistical properties of noisy data sets is the area of active ongoing research which could
facilitate a broader application of TDA in many real-world complex systems; see Adler et al. (2010,
2014), Bobrowski and Mukherjee (2015), Chazal et al. (2016, 2018), and Vejdemo-Johansson and
Mukherjee (2018) among others.

In this paper, we establish the functional dependency of the mean value of Lp-norms of per-
sistence landscapes on a uniform scaling of the underlying multivariate distribution. Furthermore,
we demonstrate that the average value of Lp-norms is decreasing when the covariance between the
components of a m-dimensional random vector variable X is increasing. To illustrate the complex
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dependency of these topological features on changes in the distribution, we conduct numerical ex-
periments utilizing bi-variate distributions with known statistical properties. The high sensitivity
of the mean of Lp-norms to transformation of the underlying multivariate distribution, reflected by
changes in the covariance matrix Σ, has never been discussed in the literature and is significant from
the practitioner’s point of view.

Following the work of Gidea and Katz (2018), we apply TDA to noisy time series observed on
financial markets. Sudden regime changes – financial crashes – are often characterized by increased
market variability and covariance between broad market indices. This behavior is similar to critical
transitions in many natural systems caused by endogenous forces; see Scheffer (2009) and Scheffer et
al. (2009) and references therein. Here, we use the sliding window technique to quantify the temporal
changes in total variations and co-variances between the components of X as well as evolution of
L1-norms of persistence landscapes derived from the daily log-returns of portfolio-like mixtures of
major equity indices on European and US markets.

Our theoretical results and numeric experiments facilitate interpretation of the puzzling behavior
of these topological features at the inception phase of the global meltdown caused by the COVID-19
pandemic. Contrary to early phases of the technology crash (March 2000) and the global financial
crisis (2008-2009), despite the spike in variance of underlying time series, we do not observe any
growth of Lp-norms in March 2020. We conclude that a strong synchronization between all elements
of the global financial system nullifies persistence of transient loops that are usually present in point
clouds representing noisy data sets.

In Section 2 we provide the background allowing readers to acquire a general understanding of
the TDA methodology. In Section 3 we consider dependency of the mean of functional p-norms of
persistence landscapes on changes in the underlying multivariate distribution. This consideration
illuminates our empirical results, presented in Section 4. We offer conclusions in Section 5.

2. Background

Calculation of persistence homology (PH) is at the core of TDA; see Carlsson (2009), Carlsson and
Zomorodian (2005), Edelsbrunner and Harer (2009). Informally, it is based on the computation of
persistence of r-dimensional homologies, e.g., connected components (r = 0), loops (r = 1), cavities
(r = 2), etc., at a wide range of scales.

2.1 Computation of Persistence Homology

The computational algorithm of PH involves construction of simplicial complexes, ordered with re-
spect to the scaling parameter ε. Similarly to a network graph, the basic objects (simplices) include
vertices (0-dimensional simplices) and edges (1-dimensional simplices). However, a simplicial com-
plex includes higher dimensional simplices as well. For example, a filled triangle is a 2-dimensional
simplex determined by its vertices (0-simplices), edges (1-simplices) and a face (2-simplex). If we
eliminate the face, this construction becomes a 1-dimensional complex, corresponding to a loop,
r = 1 homology. In that way, the simplicial complex provides a proxy for the shape of a point cloud,
which represents a discrete multidimensional data set embedded in Rm.

Extensive work has been done considering several types of complexes; see Carlsson (2009) and
Ghrist (2008), among others. For instance, the popular Vietoris-Rips construction scheme contrives
complexes by setting ε > 0 for an edge of a r-simplex, σ = [p0, . . . , pr], iff the distance d(pi, pj) ≤ ε for
all i, j. The basic principle underlying computation of PH relies on the fact that alteration of the scale
parameter ε results in modification of a simplicial complex. Consequently, homological attributes
characterizing a simplicial complex are intrinsically dependent on ε. As the scaling parameter
changes, some homologies appear while others disappear. Each homology is assigned a birth and a
death value, and the difference between these two values represents its persistence. The output of
this filtration procedure is captured in a concise form by a persistence (Rips) diagram. Coordinates
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of each point on the Rips diagram represent the birth value (x-coordinate) and the death value
(y-coordinate) of a r-dimensional hole. As a result, an arbitrary finite multidimensional data set
is projected via the Rips filtration onto the two-dimensional persistence diagram. For a detailed
exposition we refer to Edelsbrunner and Harer (2009).

2.2 The persistence landscape

Another PH-based summarization instrument is the persistence landscape, introduced by Bubenik
(2015). It consists of a sequence of piece-wise linear functions defined in the re-scaled birth-death
coordinates of the corresponding Rips diagram. The key advantage of persistence landscapes vs.
persistence diagrams is related to their embedding into a Banach space. Consequently, one can
apply standard tools of functional analysis and statistics to compute, e.g., their means, variances
and p-norms.

Here, we formally define the persistence landscape and provide some of its properties. For a
more detailed and broader exposition, we refer to Bubenik (2015, 2019).

Definition 1 Let D = {(bi, di)}i∈I be a persistence diagram. For each birth-death point (bi, di) in
D, we define a piecewise linear continuous function:

f(bi,di)(x) =


x− bi if bi < x ≤ bi+di

2

−x+ di if bi+di
2 < x < di

0 otherwise.

Then, the function Λ: N× R −→ R given by

Λ(k, x) = kmax{f(bi,di)(x)}i∈I , (1)

is called the persistence landscape function associated to the persistence diagram D, where kmax
denotes the k-th largest value of a set.

Remark 2 By definition, if k > |I|, then the value of kmax is zero, where I denotes the index set
of D and |I| denotes its cardinality.

Alternatively, the persistence landscape may also be viewed as a sequence of functions λ1, λ2, . . . : R→
R, where λk(x) = Λ(k, x) is called the k-th persistence landscape function of D. Each function λk(x)
is piecewise linear with slope either 0, 1, or −1. The critical points of λk are those values of x at
which the slope changes. The set of critical points of the persistence landscape Λ is the union of the
sets of critical points of the functions λk.

An overview of the persistence landscape associated to a given data set is illustrated in Figure 1,
top right. For a persistence landscape Λ derived from a persistence diagram D, the different k-th
persistence landscape functions λk are clearly positive and by definition satisfy λk(x) ≥ λk+1(x) for
all x.

Persistence landscapes can be understood in terms of elements of a Banach space. Recall that,
for a given measure space (S,A, µ) and a function f : S → R defined µ-almost everywhere, for
1 ≤ p <∞, the functional Lp-norms are defined as

‖f‖p =
(∫
S
|f |p dµ

)1/p

.

Moreover, for 1 ≤ p <∞, we have the Banach space

Lp(S) = {f : S → R | ‖f‖p <∞},

and define Lp(S) = Lp(S)/ ∼, where f ∼ g if ‖f − g‖p = 0. Hence, we can define the norm of
persistence landscape, as follows:
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Figure 1: On the right, two visualizations of the persistence landscape derived from the persistence
diagram on the left. The top-right figure, shows the different k-persistence landscape
functions for k = 1, 2, 3. The figure is adapted from Bubenik (2015).

Definition 3 Let Λ: N×R→ R be a persistence landscape function. Suppose that on N×R we use
the product of the counting measure on N and the Lebesgue measure on R. Then, for 1 ≤ p < ∞,
we define

‖Λ‖p =

∞∑
k=1

‖λk‖p (2)

where λk(t) = Λ(k, t), and ‖λk‖p denotes the standard Lp-norm of λk.

Thus, we can endow the space of persistent landscapes with the norm (2) and the set of persistence
landscapes becomes a subset of the Banach space Lp(N× R).

3. Average values of p-norms of persistence landscapes

Our goal throughout this section is to characterize the dependency of the mean of Lp-norms of
persistence landscapes on changes in the underlying multivariate distribution. For a given proba-
bility space (Ω,F , P ), let X denote a m-dimensional (m > 1) random vector with a multivariate
distribution function F. We can generate a point cloud that represents a sample of X of size N and
compute the corresponding persistence landscape Λ. In this sense, we can interpret the persistence
landscape as a Banach space valued random variable Λ(ω) : Ω→ Lp(N×R), where the image space
is endowed with the norm given in (2).

The analysis of the present paper are restricted to 1−homologies, that is, loops. The number of
loops in an N -point data set can be roughly bounded by the sum

L1(N) :=

i=N∑
i=4

(
N

i

)
≤ 2N , (3)

where we consider the total number of loops to be bounded by grouping each different cluster of i =
4, 5, . . . , N points that can determine a 1D homology; notice that in the Vietoris-Rips construction
scheme the minimum size of these clusters is 4.
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First, we are going to derive the functional dependency of the average value of Lp-norms of
persistence landscapes on a scaling factor of F . Throughout the exposition below, we assume
regular conditions on F and rely on the Vietoris-Rips construction scheme.

3.1 Some properties of p-norms

For a given persistence landscape Λ, its Lp-norm is defined as ‖Λ‖p =
∑∞
k=1 ‖λk‖p, where λk is the

k-th persistence landscape function of Λ. It would seem obvious that for a finite data set, this sum is
finite. Indeed, a finite data set describes a persistence diagram D∗ composed of finitely many points
(also with finite multiplicity). Thus, there exists t such that λk = 0 for all k ≥ t and ‖λk‖p = 0 for
all p, hence

∑∞
k=1 ‖λk‖p < ∞ (see Eq. (1)). To simplify our exposition, we denote D∗ := D \∆ to

be the undecorated persistence diagram associated to a given point cloud, where ∆ denotes the set
of points on the diagonal of the persistence diagram D; see Chazal et al. (2016).

Proposition 4 Let X : Ω → Rm denote a random vector with a generic distribution function
F (µ,Σ), where µ is the mean vector and Σ the variance-covariance matrix. Let X1, . . . , XN be
independent identical copies of X such that X := (X1, . . . , XN ) describes an N -point data set in
Rm. Assume µ and Σ are finite. Then,

E(‖Λ‖p) ≤ L1(N) ·N · Tr(Σ)
p+1
2p ,

where ‖Λ‖p denotes the p-norm of the persistence landscape Λ introduced in (2), and L1(N) is the
bound of the number of loops introduced in (3).

Proof Let D∗ denote the undecorated persistence diagram with corresponding persistence landscape
Λ. From previous arguments we have that |D∗| < ∞. Thus, we can define εb = min

s
{bs} and

εd = max
l
{dl}, to be the minimum parameter at which a generator is born and the maximum

parameter at which a generator dies, respectively. Now, for each x ∈ (εb, εd), we consider the
piecewise linear function

f̃(x) := f(εb,εd)(x) =

x− εb if x ∈ (εb,
εb+εd

2 ]

−x+ εd if x ∈ ( εb+εd2 , εd).

Recall that in Section 2 we defined the function fpi for every pi ∈ D∗ so that λk = kmax{fpi}i∈I .
To prove our statement, we can bound λ1, and since λk ≥ λk+1, this is enough to bound

∑
k≥1 ‖λk‖p.

It is easily deduced that dom(λ1) = dom(f̃) =: S ⊂ R, since λ1 = max{fpi}i∈I . Moreover,

f̃(x) ≥ λ1(x) ≥ 0 for all x ∈ S and taking integrals on both sides, for any p ≥ 1, we have∫
S

(f̃(x))p dx ≥
∫
S

(λ(x))p dx.

Thus,

‖f̃‖pp =
(εd − εb)p+1

2p(p+ 1)
≥ ‖λ1‖pp.

Now we can write the following chain of inequalities:

‖λ1‖pp ≤
(εd − εb)p+1

2p(p+ 1)

(∗)
≤ max

1≤i≤N
(d(Xi, µ)p)

= max
1≤i≤N

( d∑
j=1

(Xi
j − µj)2

) p+1
2

.
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Inequality (*) comes directly from the fact that

(εd − εb) ≤ 2 · max
1≤i≤N

(d(Xi, µ)) = 2r.

In other words, the distance between two points of X inside the disc B(µ, r) = {x ∈ Rd | d(x, µ) ≤ r}
will never surpass 2r. Taking expected values,

E[‖λ1‖p] ≤ E
[

max
1≤i≤N

( d∑
j=1

(Xi
j − µj)2

) p+1
2p
]

≤ E
[ N∑
i=1

( d∑
j=1

(Xi
j − µj)2

) p+1
2p
]
.

From here, setting α := 2p/(p+ 1) one can prove using Jensen’s inequality that the following holds:

E
[ N∑
i=1

( d∑
j=1

(Xi
j − µj)2

) 1
α
]
≤ N

( d∑
j=1

E(Xj − µj)2
) 1
α

≤ N · (TrΣ)
1
α .

Notice that
∑
k≥1 ‖λk‖ has a finite number of non zero terms bounded by L1(N). Hence

E(‖Λ‖p) = E
( L1(N)∑

i=1

‖λi‖p
)

=

L1(N)∑
i=1

E(‖λi‖p)

(∗∗)
≤ L1(N) · E(‖λ1‖p) ≤ L1(N) ·N · tr(Σ)

p+1
2p .

Inequality (**) is due to the property λk ≥ λk+1 mentioned in Section 2.2.

Another useful property results from the analysis of changing values of Lp-norms in response to a
uniform (isotropic) scaling of a point cloud by a certain factor h > 0.

Proposition 5 Let X denote a point cloud in Rm with associated persistence landscape ΛX, and
H : Rm → Rm be a homothetic transformation of the metric space such that H(X) = h · X. Then,

‖ΛH(X)‖p = h
p+1
p · ‖ΛX‖p,

where ‖ΛH(X)‖p denotes the Lp-norm of the persistence landscape associated to the uniformly scaled
point cloud H(X).

Proof Consider D, D′
to be the corresponding persistence diagrams for X, H(X), respectively.

Then, for every pi ∈ D becomes hpi ∈ D
′
. Indeed, for any r-simplex σ = [p0, . . . , pr] in the Vietoris-

Rips complex attached to X at parameter α, it has to be so that d(pi, pj) ≤ α for all i, j. So, when we

apply H we have that σ = [p0, . . . , pr] becomes σ
′

= [hp0, . . . , hpr] and if σ is formed at α, then σ
′

is
formed at h·α. Thus, |D| = |D′ | and every point in D is scaled by h in D′

. Furthermore, for every fpi
(mentioned in Section 2.2) associated to the persistence landscape of X, we have that fpi 7→ fhpi and
so, ΛX becomes hΛX. Recall that we denote ΛX(k, x) = λk(x) to be the k-th persistence landscape
function of ΛX, so we can write ΛH(X)(k, x) = hΛX(k, x) = λ

′

k(x). Note that it is enough to prove
that

‖λ
′

k‖pp = hp+1‖λk(x)‖pp.
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If λ
′

k is null out of (a
′
, b

′
) ⊆ (0,∞), we have that λk is null out of (a, b) where a

′
= ha and b

′
= hb.

Then, ∫ b
′

a′
|λ

′

k(y)|pdy = hp+1

∫ b

a

|λk(x)|pdx.

Now, we can characterize the dependency of the mean of Lp-norms of persistence landscapes on a
uniform scaling of the underlying multivariate distribution.

Theorem 6 Let X : Ω→ Rm denote a random vector with the generic distribution function F (µ,Σ),
where µ is the mean vector and Σ is the covariance matrix. Let X1, . . . , XN be independent identical
copies of X such that X := (X1, . . . , XN ) describes a random N -point data set in Rm. Assume µ
and Σ are finite and that for a certain scaling factor h, hF (µ,Σ) = F (hµ, h2Σ). Then,

E(‖Λh2Σ(ω)‖p) = h
p+1
p · E(‖ΛΣ(ω)‖p), (4)

where Λh2Σ, ΛΣ denote the persistence landscapes for random point clouds with corresponding co-
variance matrices h2Σ and Σ, respectively.

Proof Let H denote a homothetic transformation such that H : Rm → Rm, so X 7→ h ·X. From
the assumptions made, we can safely deduce that for every point Xi ∈ X we have H(Xi) = h ·Xi ∼
F (hµ, h2Σ). From this point forward we will be using the following notation terms indistinguishably:
ΛX(ω) = ΛΣ(ω) and Λh·X(ω) = Λh2Σ(ω).

Let X1, . . . ,Xn denote independent identically distributed copies of X, and let Λ1
X, . . . ,Λ

n
X be the

corresponding persistence landscapes. Proposition 5 implies that

1

n

n∑
i=1

‖Λih2Σ(ω)‖p = h
p+1
p

1

n

n∑
i=1

‖ΛiΣ(ω)‖p, (5)

since for every landscape ΛiΣ we have the corresponding scaled persistence landscape Λih2Σ. From
Proposition 4 we have that the expected values E(‖ΛiΣ‖p), E(‖Λih2Σ‖p) are finite. Hence, by the
Strong Law of Large Numbers, we obtain the following two almost surely convergences:

1

n

n∑
i=1

‖Λih2Σ(ω)‖p −→ E(‖Λh2Σ‖p)

h
p+1
p

1

n

n∑
i=1

‖ΛiΣ(ω)‖p −→ h
p+1
p · E(‖ΛΣ‖p)

Therefore, taking limits in (5), we obtain

E(‖Λh2Σ‖p) = h
p+1
p · E(‖ΛΣ‖p),

as we claimed.

The generality of Theorem 6, which does not depend on dimensionality or the size of a data set is
rooted in the known geometrical property of a homothetic transformation. A uniform scaling alters
the geometry of the point cloud, while its topology remains unchanged. However, this transformation
scales the persistence of each homology in the cloud, which is reflected by the dependency of Lp-
norms of persistence landscapes on the scaling factor h; see Proposition 5. In the statistical context,
it results in Eq.4.
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Theorem 7 Let (X,Y ) be a 2D-random vector sampled from a generic bi-variate distribution D(µ,Σ),
where µ = (µx, µy) denotes the 2D finite mean-vector and Σ is the 2x2 finite variance-covariance
matrix:

Σ =

(
σ2
x ρσxσy

ρσyσx σ2
y

)
. (6)

Here, ρ ∈ (−1, 1) is the correlation coefficient. Assume σx ≥ σy. Let θ1 and θ2 be the eigenvalues
of the matrix Σ. Since Σ is symmetric and positive semi-definite, we have θ1 ≥ θ2 ≥ 0. For a
fixed number of points N , consider the associated point cloud X and the corresponding persistence
landscape Λ. Then, we have

E[|Λ‖1] ≤ L1(N)2 ·N · θ2. (7)

Proof Without loss of generality, using Principal Component Analysis, we can write X as a centered
point cloud such that the points (Xi, Yi), for i = 1, . . . , N , are sampled from a bi-variate generic
distribution D(0,Θ) where

Θ =

(
θ1 0
0 θ2

)
.

The new covariance structure allows to interpret the X and Y axis as the axis of maximum and min-
imum variability, respectively. Now, we have that both variables are uncorrelated with the variance-
covariance structure Θ, while the underlying topology of X remains unchanged. Furthermore, we can
encapsulate X into a rectangle of basis 2 maxi |Xi| and height 2 maxi |Yi| with maxi |Yi| ≤ maxi |Xi|.

Analogously we can encapsulate any subset of q points (4 ≤ q ≤ N) of the point-cloud into a
rectangle of basis α and height β where α is the maximum distance in the set of points converted
in x−axis and β the corresponding orthogonal maximum y−distance. Of course, β ≤ α. The
persistence of the 1D homology of this set of points is given by εd − εb ≤ β. Indeed, if we denote
φα(x) :=

√
α2 + x2 for x ∈ [0, α] we have

εd − εb ≤ φα(β)− φα(0) = φ
′

α(z)β

with 0 ≤ z ≤ β. But φ
′

α(z) = z√
α2+z2

≤ 1.

Finally it is clear that for any set of points of the point cloud β ≤ 2 maxi |Yi|.
Recall now that for each point (εbi , εdi) in the persistence diagram, we have an associated triangle

in the first persistence landscape function with the area given by (εdi − εbi)2/4; see (Bubenik, 2015).
Hence, we can bound ‖λ1‖1 of X as follows:

‖λ1‖1 ≤ L1(N) ·max
i

(εdi − εbi)2

4

≤ L1(N) ·max
i
|Yi|2 ≤ L1(N) · ΣNi=1|Yi|2.

From our proof of Proposition 4, we have that ‖Λ‖1 ≤ L1(N) · ‖λ1‖1, so taking expectations in the
inequality above results in Inequality (7).

Remark 8 Note that from Theorem 7 it is easy to see that as ρ→ ±1, the expected value E[|Λ‖1]→
0. Indeed, the eigenvalues of Σ are:

θ1 =
σ2
x + σ2

y

2
+

√(σ2
x + σ2

y

2

)2 − (1− ρ2)σ2
xσ

2
y,

θ2 =
σ2
x + σ2

y

2
−
√(σ2

x + σ2
y

2

)2 − (1− ρ2)σ2
xσ

2
y.

Thus, if ρ = 0, the eigenvalues are σ2
x, σ

2
y, and if ρ = ±1, we obtain σ2

x + σ2
y and 0.
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The boundary on E[‖Λ‖1] that follows from Theorem 7 is rough. Nonetheless, its dependency
on θ2 points to suppression of PH in systems with strong covariance.

Remark 9 If we have a point cloud X of an m−dimensional random vector in Rm we have analo-
gously a covariance matrix which is a diagonal matrix composed by θ1 ≥ · · · ≥ θm ≥ 0. And similarly
to the 2-dimensional case, the persistence of loops is controlled by θ2 and formula (7) is still valid.

Remark 10 Theorem 7 can be extended to r−dimensional holes for any r ≥ 0. For any r ≥ 0, the
persistence of the r−holes is controlled by the (r + 1)−th eigenvalue, provided 0 ≤ r ≤ m− 1. That
is, connected components are bounded by L0(N)2Nθ1, loops are bounded by L1(N)2Nθ2, cavities are
bounded by L2(N)2Nθ3 and so on. Here,

Lr(N) =

i=N∑
i=2r+1

(
N

i

)
,

of course, provided N ≥ 2r+1.

3.2 Numeric experiments

To illustrate the dependency described by Theorem 6, we construct 2D point clouds of two inde-
pendent random variables by repetitive sampling of N = 50 points from joint distributions formed
by two independent univariate Normal and (separately) by two independent univariate Gamma dis-
tributions. Notice that Theorem 6 does not require components of the random vector variable to
be independent. The design of our numeric experiment is determined by simplicity of interpreta-
tion of its outcome. For each realization of the generated data set we associate the corresponding
Rips filtration, compute the persistence diagram, the corresponding persistence landscape and its
Lp-norm. We use the R-package TDA (Fasy et al. (2015)) for all related computations and calculate
the mean-values of Lp-norms at the end of each simulation, which consists of 1,000 resamplings. We
run 10 simulations per type of the joint distribution, sequentially increasing variances σ2

i (i = 1, 2)
of individual univariate distributions. For the joint Normal distribution, we set the initial values
σ1 = σ2 = σ = 1 and increase them from 1 to 10 in equal increments. For the joint Gamma
distribution, we chose the shape parameter k1 = k2 = 2. Recall that the univariate Gamma distri-
bution is determined by the shape parameter k and the rate parameter β with µ = k

β and σ2 = k
β2 .

Therefore, for simulations with Gamma distributions, we set the initial values σ1 = σ2 = σ =
√

2
and again multiply them by h growing from 1 to 10 in each simulation. Figure 2 shows the outcome
of these experiments. Notably, sampling from the joint Normal distribution (equivalently, from the
uncorrelated bi-variate Normal distribution) results in practically the same plots; not shown here
for brevity.

By design of our experiments, a uniform scaling of the underlying 2D distributions by h is equiv-
alent to scaling of the total variation, σ2, of these distributions by h2. Thus, plots on Fig.2 confirm
and illustrate the forecast of Theorem 6. Moreover, the Monte Carlo simulations clearly demon-
strate that the predicted functional dependency, Eq.(3), is not sensitive to the shape of underlying
distributions.

To illustrate the influence of changing covariance on average values of Lp-norms, we use sampling
from the bi-variate Normal distribution. The choice of this model is motivated by the simplicity
of its correlation structure. We use the mvrnorm function from the R-package MASS (Ripley and
Venables (2002)) to sample N = 50 random data points from the bi-variate Normal distribution
N (µ,Σ), where µ = (µx, µy) is the 2D mean-vector and Σ is the 2x2 covariance matrix that has
the structure given in Eq.(6). These experiments are inspired by the theoretical results obtained
in Theorem 7 and Remark 8 regarding the dependency of the average value of L1 norms on the
correlation coefficient ρ of a bi-variate distribution. In the first experiment, we run 10 Monte Carlo
simulations with σx = σy = 1 and sequentially increase ρ from 9.9% to 99.0% in 10 equal increments.
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Figure 2: Plots of the dependency of average Lp-norms on the total variation of the joint distribution
formed by two independent univariate Gamma distributions. Different markers denote the
mean-values of Lp-norms (divided by the maximum of E[L1]), computed at different values
of p. Values of σ2 are on the x-axis; see text for details.

In this case, we find that the average values of L1-norms converge with the number of repetitions
towards a smoothly decreasing function of the correlation coefficient. In the second experiment, we
keep σx = 1 and increase σy from 0.3 to 3, while simultaneously increasing ρ from 9.9% to 99.0%
in 10 equal increments. Finally, we run 10 simulations with σx = σy, both increasing from 0.3 to
3, simultaneously with ρ increasing from 9.9% to 99.0% in 10 equal increments. As expected, the
latter two experiments demonstrate strong non-monotonic dependencies of the average values of
L1-norm on ρ2. For simplicity, in all experiments we set µ = 0. Figure 3 shows the outcome of these
simulations.

Notice that the standardized generalized variance (SGV) of the bi-variate Normal distribution is
proportional to the area of the respective confidence ellipse, S; see, e.g., Tong (1990). That is

SGV =
√
|Σ| = σxσy

√
1− ρ2 ∝ S (8)

For ρ = 0 and σx = σy = σ, the bi-variate Normal distribution has the shape of a symmetric
bell-curve in three dimensions with SGV = σ2. It follows from Theorem 6 and numeric experiments
that in this case, the mean value of L1−norms is linearly increasing with σ2; see Fig.2. One could
reasonably assume that for weakly correlated random variables this dependency continues to be
valid, which could qualitatively explain the initial linear increase of the average value of L1-norms
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Figure 3: Dependency of the mean value of L1-norms (y-axis) on parameters of Σ (10, 000 repe-
titions). The line marked by triangles represents the case with σx = σy = 1. The line
marked by circles represents the outcome of simulations with σx = 1 and σy growing from
0.3 to 3 in 10 equal increments simultaneously with ρ. The line marked by squares is
derived for σx = σy growing from 0.3 to 3 simultaneously with ρ in 10 equal increments.

with the rise of variability. On the other hand, for a small non-zero ρ, SGV and the area of the
confidence ellipse are linearly decreasing with ρ2; see Eq.(7). This could qualitatively describe the
linear decrease of E[L1], when σx = σy = σ; see Fig.3. With a growing correlation, contours of
isodensity stretch more in the direction of the main diagonal. As ρ2 → 1, contours degenerate into a
straight line segment having zero persistence of k = 1 homologies and, therefore, the average value of
p-norms of persistence landscapes approaches zero. Generally, this behavior follows from Theorem
7, see Eq.(6) and Remark 8, when ρ2 approaches one. Figure 3 illustrates a complex dependency
of the mean value of L1-norms on variance and covariance of the bi-variate Normal distribution. In
particular, it demonstrates that an increase of covariance between random variables can completely
suppress the rise of norms of persistence landscapes due to a growing variability of the underlying
multivariate distribution.

4. Empirical results

To be applied, the TDA-based dimensionality reduction requires an embedding of the data set into
some, e.g., Euclidean, metric space. Any portfolio-like ‘mixture’ of financial time series naturally
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defines the dimensionality of such a space, whereas the size of the sliding window determines the
size of a point cloud; see Gidea and Katz (2018) for details. The time-resolved TDA methodology
was successfully applied in multiple studies ranging from signal processing to financial forecasting;
see Seversky et al. (2016); Berwald et al. (2014, 2015); Donato et al. (2006); Gidea (2017); Gidea
et al. (2020); Harer and Perea (2015); Khasawneh and Munch (2016, 2018); Kramár et al. (2016);
Vejdemo-Johansson et al. (2013); Maletić et al. (2016); Perea et al. (2015), and recent reviews in
Ravishanker and Chen (2019) and D lotko et al. (2019). We use Yahoo Finance API to obtain time

Figure 4: (Color online) Combined time series of S&P 500 (black line), L1-norm (purple line) and
estimated variability (blue line) of the mixture of daily log-returns of four indices; see text
for details.

series of four broad US equity indices – DJI (DJI), S&P 500 (GSPC), NASDAQ (IXIC), and Russell
2000 (RUT) as well as four European indices FTSE 100 (FTSE), DAX 30 (GDAXI), CAC 40 (FCHI),
IBEX 35 (IBEX) between January 1, 1998 and March 30, 2020. To synchronize trading dates on
different European markets, we drop 3.9% of the data points. We arrange the mean-stationary time
series formed by the daily log-returns of these indices, ln(pi,t+1/pi,t), where i identifies the index
and t determines the trading day. We group them into two portfolio-like ‘mixtures’ - one with four
US indices and another with four European indices. To derive the temporal changes in the relevant
variance-covariance matrices as well as in the persistence of 1D loops, we use a sliding window of
n = 50 trading days with the rolling step of one trading day to obtain two ordered in time sets
of 4D point clouds, Xi

n, where i = 1, 2 determines the regional portfolio. The algorithm computes
the corresponding Rips filtration R(Xi

n, ε), ε > 0, the persistence diagram D1(Xi
n), the respective

persistent landscape Λ(Xi
n), and its L1-norm, ‖Λ(Xi

n)‖1, per point cloud.

Figure 4 shows the time series of S&P 500 (in black) as well as the time series of L1-norm (in
purple) and the total variation (in blue), derived for portfolio of U.S. indices. Notably, the time
series of these features derived for portfolio of European indices with the rolling window of 50 trading
days are practically the same and not shown here for brevity. The striking differences in the time
series of L1-norms at the early stages of the technology crash of 2000, the global financial crisis of
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2008-2009, and the meltdown caused by COVID-19 pandemic (March, 2020), are clearly visible on
these figures. First, notice that spikes in variability during the two prior systemic market crashes
were always accompanied by peaks in the time series of L1-norms. Remarkably, this behavior is not
observed at the beginning of the latest global crash. Another noticeable observation is related to
an exceptionally strong cross-correlation between indices, which was 95% or above for most of them
in March 2020. These findings reflect the fundamentally different character of the global financial
crisis triggered by a strong exogenous shock - COVID-19 pandemic.

5. Concluding remarks

TDA offers methods allowing for dimensionality reduction as well as means to infer ’shapes’ of noisy
data sets. Thereby, it provides a new perspective on many problems in the domain of complex
systems. This paper combines the rigorous theoretical analysis with numerical experiments and
the empirical study of a real-world complex multivariate system. We uncover the dependency of
the expected value of Lp-norms of persistence landscapes on changes in the underlying multivariate
probability distributions. This strong and complex dependency is rooted in general geometric and
topological properties of these distributions. Our results are intuitively clear and should be taken
into account in a growing number of applications utilizing Lp-norms of persistence landscapes as a
key topological feature.

We demonstrate that if covariance between time series under study is low, the expected value
of Lp-norms always moves in the same direction as the total variation in a system. This behavior
was observed at early and later stages of the technology crash of 2000 and the global financial crisis
of 2008 - 2009. Notice, however, that these market meltdowns were due to endogenous economic
forces. On the other hand, the simultaneous drop of all market indices, triggered by the exogenous
COVID-19 shock, in March 2020, leads to an unusually strong correlation between indices. The
latter translates into a ’line flattening’ of the respective point clouds, which nullifies persistence of
all k-dimensional homologies (k > 0). Consequently, despite the strong spike in the total variation,
we do not find any rise of the time series of Lp-norms till the end of March 2020.
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