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Abstract

We consider 2D flows having a homoclinic figure-eight to a dissipative saddle. We study
the rich dynamics that such a system exhibits under a periodic forcing. First, we derive
the bifurcation diagram using topological techniques. In particular, there is a homoclinic
zone in the parameter space which has a non-smooth boundary. We provide a complete
explanation of this phenomenon relating it to primary quadratic homoclinic tangency curves
which end up at some cubic tangency (cusp) points. We also describe the possible attractors
that exist (and may coexist) in the system. A main goal of this work is to show how the
previous qualitative description can be complemented with quantitative global information.
To this end, we introduce a return map model which can be seen as the simplest one which
is “universal” in some sense. We carry out several numerical experiments on the model, to
check that all the objects predicted to exist by the theory are found in the model, and also
to investigate new properties of the system.

Dedicated to the memory of Leonid Pavlovich Shilnikov,
a Master whose works strongly influenced
the mathematical theory of dynamical systems.

1 Introduction

1.1 Homoclinic figure-eight: the statement of the bifurcation problem.

The bifurcation theory, as a mathematical science, was systematized in the 1930’s due to the
classical works of Andronov, Leontovich, Mayer, Pontryagin, Van der Pol, etc. At that time, based
on the Poincaré idea to study dynamical systems up to topological equivalence, the fundamental
notion of roughness (structural stability) of a dynamical system was introduced [1], the class of
structurally stable dynamical systems on the plane was defined and principal, codimension 1,
bifurcations were studied, see for more detail [2, 3] and references herein.

One of such famous bifurcations was the bifurcation of a limit cycle from a homoclinic loop to
a saddle with σ 6= 0, where

σ := γ − λ, γ > 0, λ > 0, (1)

is the sum of the unstable, γ, and stable, −λ, characteristic roots of the saddle. Andronov and
Leontovich proved that if σ 6= 0, then exactly one limit cycle (asymptotically stable if σ < 0 and
unstable if σ > 0) is born from the loop at its appropriate splitting, see Fig. 1.

From a physical point of view, such a bifurcation describes one of the main mechanisms for
creation/destruction of self-oscillations. Other three main cases, for autonomous systems on the
plane, are related to (i) the bifurcation of a double limit cycle, (ii) the Andronov-Hopf bifurcation
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Figure 1: Scenarios giving rise to the bifurcation of a limit cycle from a homoclinic loop to a non-degenerate
saddle point: (a) σ < 0; (b) σ > 0. The splitting parameter β accounts for the relative position of the invariant
manifolds.

(birth of a limit cycle from a weak focus) and (iii) the Andronov-Vitt bifurcation1 (birth of a limit
cycle from a homoclinic loop of a saddle-node).

On the other hand, the study of bifurcations of saddle homoclinic loops has been one of the
most popular problems in the qualitative theory because it is one of a series of famous dynamical
problems where an exceptional value is related to changes in the number of limit cycles (it was ad-
dressed especially to the case σ = 0). The corresponding problem has been solved by Dulac [6] for
analytical systems, by Leontovich [7, 8] for the smooth case and, independently, by Roussarie [9].

In this paper we study a two dimensional map Tµ,ε, µ = (µ1, µ2), which can be seen as the
Poincaré map of a non-autonomous (say, 2π-periodic in time) O(ε)-perturbation of an autonomous
family of vector field fµ. The non-autonomous perturbation is assumed to be fixed and sufficiently
small (equivalently, ε is a small given value). The family of systems fµ is a 2-parameter unfolding
of the system f0, which we assume to posses a homoclinic figure-eight to a saddle point. In other
words, the system f0 has a saddle equilibrium O with σ 6= 0 whose stable and unstable invariants
manifolds (separatrices) pairwise coincide, see Fig. 2 for an sketch. More precisely, let W u+ and
W u−, resp. W s+ and W s−, be the two connected components (or branches) of W u\O, resp.
W s\O. Our assumption for the flow f0 means that W u+ coincides with W s+ and W u− coincides
with W s−.

Remark. The figure-eight is one of the possible configurations of coexistence of two homoclinic trajec-

tories. Other possibilities include the butterfly and the bellows configurations, see [5, 10]. A description

of the periodic orbits that appear in a generic 2-parameter unfolding of the homoclinic structure can be

obtained by using symbolic codes, see [21, 19, 11] for example.

We denote by Γ+ = W u+ = W s+ and Γ− = W u− = W s− the homoclinic loops of the flow f0
and then Γ0 = Γ+ ∪ Γ− is the homoclinic figure-eight of the saddle O. Let −λ and γ, as in (1),
be the eigenvalues of the Jacobian matrix Df0|O for f0 in O. We assume the saddle value σ to
be negative (i.e. O is a dissipative saddle point). This means that Γ0 is a locally asymptotically
stable invariant set of f0. We can assume that Γ0 is globally stable, i.e., Γ0 is the global attractor
(whose adsorbing domain is assumed to be quite large) of the system. Then two more equilibria,
O1 and O2, exist inside the loops to be both asymptotically unstable (foci or nodes). The exact

1This bifurcation was first discovered by Andronov and Vitt in their study of the Van der Pol equation with a
small periodic force at a 1:1 resonance [4], see also [5] for more details.
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Figure 2: A homoclinic figure-eight to a saddle point with σ < 0.

type of these points is not important for us. In the illustrations we will assume that both O1 and
O2 are repulsive foci, see Fig. 2.

Remark. This work focuses in the dissipative saddle case. In the (also interesting) setting of forced

damped Hamiltonian systems the homoclinic loop γ0 is no longer an attractor. Then the dissipative

perturbation can create a stable focus inside one of the loops (e.g. point O1 and/or O2 becomes a stable

focus). If the perturbed figure-eight invariant manifolds belong to the basin of attraction of the stable

focus no global attractors appear. It may happen, however, that the stable focus becomes a dissipative

saddle or disappears in a saddle–node bifurcation for some larger value of the dissipation parameter and

then a global strange attractor can show up. We refer to [12] for an analysis of this situation in the

context of the damped periodically forced Duffing oscillator and the effect of asymmetric perturbations

of the Hamiltonian saddle.

The bifurcations showing up in the 2-parameter unfolding fµ of the figure-eight system f0 were
studied, in a more general context, which includes the multidimensional case when the unstable
manifold of O is one-dimensional, by Turaev [13]. See also the references [19, 20, 21, 5]. For
reader’s convenience, we reproduce in Fig. 3 the typical bifurcation diagram for fµ.

The homoclinic figure-eight autonomous system became a very popular dynamical system for
studying chaotic dynamics due to the presence of attractors in the system itself as well as in
all close systems. For the family fµ these attractors are simple: stable limit cycles which exist
(and can coexist) for values of parameters from various open domains, see Fig. 3. However, non-
autonomous perturbations of the figure-eight system exhibit different regimes of chaotic dynamics
related to strange attractors.

A simple device that can be used physically to realize the figure-eight as seen in Fig. 2 can
be as follows. Consider a conservative pendulum and take into account that the phase space
is a cylinder. It is easy to see that compactifying the cylinder to S2 and doing a stereographic
projection from the elliptic point, one obtains a figure like Fig. 2 without dissipation (see [30] for
details). Then we can add dissipation to the pendulum, that can be assumed to be proportional
to the velocity. If we want to add dissipation in an asymmetric way, it is enough to give the bulk
different shapes in the left and right sides, to have different aerodynamic coefficients. But, of
course, then the elliptic fixed point becomes a stable focus. To make it unstable we can proceed
in the following way. Assume that the bulk contains a magnet and that the passages of the bulk
through the minimum are detected by a photoelectric cell and a magnetic field is activated to kick
the bulk. The kicks can be asymmetric, depending on the direction of the motion when passing
through the minimum. This instabilizes the lower equilibrium point and tuning the intensity of
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the kicks one can either recover the separatrices or break them in the desired way.
The main goal of this paper is to study the global dynamics and the main bifurcations for

small periodic perturbations of the flow f0. We assume that these perturbations, analytical and
actually small, include both autonomous and non-autonomous parts. Concerning the autonomous
part, we embed our flow into a 2-parameter family fµ of planar flows, where µ = (µ1, µ2) play
the role of parameters which split independently the homoclinic loops Γ+ and Γ−, respectively.
In other words, µ1 and µ2 are splitting parameters for the separatrices W s+,W u+ and W s−,W u−,
respectively. We analyze the system under a non-autonomous O(ε) periodic perturbation, where
ε is assumed to be fixed but sufficiently small. For the non-autonomous system, we study the
global dynamics and bifurcations for the time-2π Poincaré (stroboscopic) map Tµ,ε.

There are, certainly, several papers devoted to the study of chaotic dynamics in systems under
non-autonomous perturbations of various kinds: small, big, smooth, non-smooth or discontinuous
(impulses), periodic, quasi-periodic, chaotic (from “white noise” to a “Bernoullian process”), etc.
One can point out several works (not too many) that had a big influence in the qualitative theory
of dynamical systems. The authors would like to propose the following list (which is not complete
and has a subjective character): papers [22, 23, 24] deal with the global dynamics near a single
homoclinic loop (see also the related papers [25, 26]); papers [27, 28, 29] about the passage through
resonances and separatrices for Hamiltonian and nearly-Hamiltonian systems (see also the paper
[30]), and the references [31, 32, 12] which focus on the dynamics of well-known systems like the
forced damped Anti-Duffing oscillator.

A similar problem to the one considered in this paper, but with a figure-eight for a 3D flow
instead, was studied in [33]. The case studied was a Shilnikov-Hopf scenario, with the branches of
the unstable manifold of the periodic orbit created by Hopf bifurcation reinjecting near the stable
manifold in a general non-necessarily symmetric way. A suitable return map to a Poincaré section
formed by the union of two annuli was derived. But, under the assumption of strong dissipation,
the model was approximated by a map of the union of two circles into itself. In the present study
we keep the two annuli fundamental domain to display a very rich dynamics.

Nevertheless, as far as the authors know, a substantial qualitative analysis of non-autonomous
perturbed systems having a dissipative (σ < 0) homoclinic figure-eight was not previously con-
ducted. This paper, in particular, tries to fill such a gap in the literature while it proposes a
systematic way to proceed, in this and similar problems, to a more quantitative analysis using
(suitably adapted) semi-global return maps.

1.2 A description of the bifurcation diagram for the autonomous case

The planar autonomous system fµ can be assumed to be, without loosing generality, of the form

ẋ = −λx+ P (x, y, µ), ẏ = γy +Q(x, y, µ), (2)

with λ and γ as in (1) and σ < 0. The functions P and Q vanish, as well as its first differentials
DP,DQ, for x = y = 0. Moreover, we assume that for µ = 0 the system possesses a figure-eight
homoclinic to a saddle fixed point, see Fig. 2.

The parameters µ = (µ1, µ2) measure the distance between the separatrices of the figure-eight.
The Fig. 3 displays the bifurcation diagram for fµ according to the results in [13, 19, 20, 21, 5].

The µ1 and µ2-axes are related to the existence of homoclinic loops Γ+ at µ1 = 0 and Γ− at
µ2 = 0. Then, the axes correspond to two bifurcation curves, B− : {µ2 = 0} and B+ : {µ1 = 0}.
On the other hand, two more bifurcation curves B± and B∓ exist. They correspond to those
values of the parameters for which the flow fµ has big homoclinic loops: the loop Γ± at µ ∈ B±
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Figure 3: Sketch of the typical bifurcation diagram in the (µ1, µ2)-plane for a general 2-parameter family fµ of
flows near the original one having a homoclinic figure-eight at µ = 0. The parameters µ = (µ1, µ2) are splitting
ones. The two bifurcation curves B− : {µ2 = 0} and B+ : {µ1 = 0} correspond to the existence of small homoclinic

loops Γ+ at µ1 = 0 and Γ− at µ2 = 0. Two more bifurcation curves B± and B∓ exist here which correspond to
those values of µ for which the flow fµ has big homoclinic loops: the loop Γ± at µ ∈ B± when the separatrices
Wu+ and W s− coincide and the loop Γ∓ at µ ∈ B∓ when the separatrices Wu− and W s+ coincide.

when the separatrices W u+ and W s− coincide and the loop Γ∓ at µ ∈ B∓ when W u− and W s+

coincide. The curves B± and B∓ touch the curves B− and B+, for values of µ1 < 0 and of µ2 < 0
respectively, at µ = 0.

These four bifurcation curves divide a neighborhood of the origin µ = 0 into six open domains,
where the system (2) is structurally stable. These domains are characterized, first of all, by their
different set of (global) attractors, here asymptotically stable limit cycles. Such limit cycles will
be denoted as C+, C− and C∗. They surround only the equilibrium O1 (the upper or right one in
Fig. 5), only the equilibrium O2 (the lower or left one) and all equilibria O,O1, O2, respectively.
These limit cycles can coexist for some domains of the parameters. So, C+ and C− coexist for
µ ∈ IV, C+ and C∗ coexist for µ ∈ II and C− exists together with C∗ for µ ∈ VI.

The curves B± and B∓ are given by the equations, [13],

(a) B± : µ1 = −Â−µ
γ/λ
2 (1 + . . . ), µ2 > 0,

(b) B∓ : µ2 = −Â+µ
γ/λ
1 (1 + . . . ), µ1 > 0,

(3)

where Â− and Â+ are some positive constants (called “separatrix values”). For completeness, we
will show how to derive (3) for the case of the curve B± (the one for B∓ is derived analogously).
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Figure 4: The phase space geometry for points in the curve Γ±.

The curve B± exists for µ2 > 0 and µ1 < 0 (i.e. whenW u− splits “inside” andW u+ “outside”), see
Fig. 4. We assume, for simplicity, that the flow near O is linear, i.e. it has a form ẋ = −λx, ẏ = γy.
We rescale coordinates, if necessary, and consider the points (−1, 0) ∈ W s−

loc , (0,−1) ∈ W u−
loc and

(1, 0) ∈ W s+
loc , as well as the segments Q1 : {x = −1, |y| ≤ δ0}, Q2 : {y = −1, |x| ≤ δ0}

and Q3 : {x = 1, |y| ≤ δ0}. Then, W u− intersects the segment Q1 at the point P1(−1,−µ2) (by
definition of µ2) and, thus, W

s− intersects Q2 at some point P2(A
−µ2,−1) (the nearest to (0,−1)).

The coefficient A− appears when transporting the distance µ2, following the orbits of the flow,
from P1 to P2. When the homoclinic loop Γ± exists, the points P2 and P3 = W u+ ∩ Q3 = (1, µ1)
belong to the same orbit. Using the first integral xγyλ at P2 and P3 and taking into account that
µ1 < 0, µ2 > 0, we obtain equation (3)(a) for the curve B±.

1.3 Contents and main results

We consider the figure-eight system under a fixed non-autonomous periodic O(ε)-perturbation
(or, equivalently, the Poincaré map Tµ,ε) and we study the bifurcations taking place giving a
description of the parameter space from both qualitative and quantitative points of view. The
transitions between different dynamics are also analyzed and various attractors, including different
strange attractors, are identified. To this end we combine qualitative and analytic methods. Some
illustrations and accurate quantitative descriptions are produced using numerical tools.

First, we focus on the qualitative description of the dynamics. To put the bifurcation problem
for Tµ,ε into a suitable framework we might consider (implicitly) a family of systems of the form

ẋ = −λx+ P (x, y, µ) + εp1(x, y, t, ε),
ẏ = γy +Q(x, y, µ) + εq1(x, y, t, ε),

(4)

where the functions P,Q,DP,DQ vanish at x = y = 0 and the functions p1 and q1 are 2π-periodic
in t. For ε = 0 we recover (2) which at µ = 0 behaves as shown in Fig. 2. As mentioned, we
assume that µ = (µ1, µ2) are control parameters which split independently the invariant manifolds.
Generically, the bifurcation diagram for (2) on the µ-plane near the origin will be such as in Fig. 3.
However, when we consider the whole family (4) the bifurcation diagram (for the corresponding
Poincaré map Tµ,ε and for any small enough fixed ε) becomes much more complicated.

In Fig. 5 we show a sketch of a fragment of the bifurcation diagram for Tµ,ε in a neighborhood
of the origin of the µ-plane (for sufficiently small and fixed ε). When ε = 0 the bifurcation
diagram for Tµ,0 coincides, evidently, with the flow diagram of Fig. 3. Only equilibria, limit
cycles and separatrices should be changed to fixed points, closed attracting invariant curves and
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invariant (stable and unstable) manifolds, respectively. The latter can split in a non-trivial way
when varying ε and, hence, Poincaré homoclinic structures generically appear. In Section 3 we
construct (using qualitative methods) this bifurcation diagram and explain its main elements and
the related homoclinic bifurcations.

Figure 5: A sketch of the bifurcation diagram for the Poincaré map Tµ,ε on the µ-parameter plane at small
and fixed ε. For a more detailed description of the related dynamics see Section 3. A colour plot is used for the
electronic version, to be denoted as e.v. in what follows.

At a first glance, comparing the bifurcation diagram for Tµ,ε in Fig. 5 with the one for fµ in
Fig. 3, the familiarized reader can easily recognize most of the expected elements in the parameter
space. Each of the bifurcation curves Ba (either with a = +,−,± or∓) where the separatrices of fµ
coincide gives rise to a homoclinic zoneHZa of size O(ε). These homoclinic zones are characterized
by the fact that, for parameter values inside the zone, the fixed point O has homoclinics and,
generically, the invariant manifolds W s(O) and W u(O) intersect transversally. More precisely,
keeping ε fixed, if µ ∈ HZ−, then W s−(O)∩W u−(O) 6= ∅; if µ ∈ HZ+, then W s+(O)∩W u+(O) 6=
∅; if µ ∈ HZ±, then W u+(O) ∩W s−(O) 6= ∅; and if µ ∈ HZ∓, then W u−(O) ∩W s+(O) 6= ∅.

In general, the bifurcation diagram for Tµ,ε contains, for every small and fixed ε, 35 open
regions, see Fig. 5, corresponding to different dynamical regimes. Note that only six regions (23,
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35, 29, 7, 4 and 1) relate to simple dynamics. We label these regions also by the Roman numerals
I, II, III, IV, V and VI, the same as in Fig. 3, emphasizing that the map Tµ,ε possesses here simple
dynamics which mimics the corresponding flow dynamics. In particular, the map Tµ,ε has closed
invariant curves C+, C− or C∗ as global attractors (see Fig. 5 and the labels at the bottom-left
corner), either with quasi-periodic or periodic dynamics.

The other regions in Fig. 5 are related to possible chaotic dynamics. The closure of one of the
branches of the unstable manifold (or of both branches) can contain a quasi-attractor. By a quasi-
attractor we refer to a nontrivial attracting invariant set which contains stable periodic orbits
(sinks) and/or strange attractors SA (either made by a single piece or several pieces). Arbitrarily
small perturbations of the parameters when a SA is found can give rise to sinks. The sinks create
windows of stability and, thus, if the period is not very high, chaotic regimes can be seen (visually)
to alternate with periodic ones. It can be hard to detect sinks of high period, probably preceded by
a long transient, and even harder to show the existence of SA for concrete values of the parameters.
Furthermore we recall that even when sinks are created near a homoclinic tangency it can happen
that a nearby SA subsists. See [14] for the corresponding analysis.2

We have counted 6 main types of global SA which are marked as A+, A−, A∗, AT+, AT− and
GA. The attractors (or quasi-attractors) A+, A− and A∗ are of “torus-chaos” type, since they
are born under the break-down of the closed invariant curves C+, C− and C∗, respectively. The
global attractors (quasi-attractors) AT+, AT− and GA have another nature: they can be labeled
as “homoclinic attractors”, since their appearance is connected with the creation of various types
of homoclinic intersections of the invariant manifolds of the saddle O. So, GA exists for values of
the parameters from the domain 19 in Fig. 5 where all the homoclinic zones intersect and, thus,
every component W u+ and W u− of W u intersects with both components W s+ and W s− of W s.
In this case, GA ⊆W u+ = W u−. Regions 18 and 26 are the existence regions for AT− and AT+,
respectively. Here, exactly one pair of the connected components from W u\O and W s\O does
not intersect: W u+ ∩W s+ = ∅ in the case of AT− and W u− ∩W s− = ∅ in the case of AT+, see
Fig. 13 and Section 3 for details.

Remark. Bifurcation curves L+
2 , L

−
2 , L

±
2 and L∓

2 have very important value for analysis of the
model and the problem as whole, since they are exact bifurcation curves where crises3 of global
strange attractors occur. At crossing such a curve and entering a homoclinic zone, the corre-
sponding global attractor, A+ for L+

2 , A
− for L−

2 and A∗ for L±
2 ∪ L∓

2 , disappears or disintegrates
onto small attractors (e.g. periodic sinks of big periods) or becomes instantly bigger/smaller. An
explanation of this phenomenon is clarified by Fig. 11 where principal peculiarities of crisis for
A+ at crossing the curve L+

2 are illustrated.4 However, we note that the boundaries L−
2 and L±

2

of 18 and L+
2 and L∓

2 of 26 have a special status: the corresponding global SA, A− and A∗ or A+

and A∗, transform into the tail-attractors ( AT− for µ ∈ 18 or AT+ for µ ∈ 26) in such a way
that A+ and A− become instantly “bigger”, since orbits appear that go, respectively, around the

2The term “quasiattractor” (or “ε-quasiattractor”) was introduced by Afraimovich and Shilnikov [15] as a
unitive term for a huge class of “physical” attractors which have a complicated structure, e.g. contain nontrivial
hyperbolic subsets, and allow the appearance of homoclinic tangencies and stable periodic orbits of big periods
(> 1

ε
) at arbitrary small smooth perturbations. Therefore, quasiattractors are not, mathematically, “genuine

attractors” in contrast to SA of hyperbolic type, Lorenz attractors or wild hyperbolic attractors, see [16, 17, 18].
3The very popular word “crisis” is used here. Geometrically it corresponds to the existence of homo-

clinic/heteroclinic tangencies of invariant manifolds, giving rise to creation/destruction of different kinds of at-
tractors. See [61] for details

4The transitions 6 → 5, 13 → 12, 20 → 19, 27 → 26, 31 → 25 and 34 → 33, imply the crisis of A+. The
transitions 2 → 3, 9 → 10, 17 → 18, 25 → 26, 31 → 27 and 32 → 30 correspond to the crisis of A∗; and the
transitions 8 → 16, 9 → 17, 10 → 18, 15 → 19, 13 → 21 and 14 → 22 are related to the crisis of A−.
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focuses O2 and O1; accordingly, the attractor A∗ becomes “thinner”. In any case, the boundaries
L+
2 , L

−
2 , L

±
2 and L∓

2 can be labeled also as curves of basin of global attraction crisis.
As one can see in Fig. 5, the boundaries L±

1,2 and L∓
1,2 of the homoclinic zones HZ± and HZ∓

look to be more complicated comparing with the boundaries of the homoclinic zones HZ+ and
HZ−. Some numerical computations using the model (5), to be introduced later in Section 2,
show that L±

1,2 and L
∓
1,2 have a form of kinked curves with many steps. In Section 4 we prove that

these curves are C0 and have infinitely many steps (intervals of smoothness) which accumulate to
the points b and d of the rectangle 19 of Fig. 5. The latter points b and d as well as the points
a,c,e,f,g and h of Fig. 5 correspond to the existence of specific double primary homoclinic
tangencies, see Fig. 14 below. The non-smoothness points on L±

1,2 and L∓
1,2 also correspond to

double primary homoclinic tangencies of other types. Every such a point is the intersection of
two bifurcation curves of different quadratic homoclinic tangencies. We shall show that the latter
curves finish at some points within HZ± (or HZ∓) and are related to cubic homoclinic tangencies
of the invariant manifolds of O. Studying also the accompanying homoclinic bifurcations we prove
the existence of infinite series of codimension 2 points corresponding to cubic and double quadratic
homoclinic tangencies of O. See details in Section 4.

Up to this point, we have summarized the main qualitative results in this paper. Nevertheless,
the paper also includes other results which fit within a more quantitative approach to the problem.
Certainly, the qualitative results give a satisfactory theoretical explanation to the bifurcation
problem. However, for real applications one needs to complement these results with information
concerning questions like the ones we list below. Note that answers to these questions require
techniques which are beyond the traditional topological description of the qualitative theory of
dynamical systems. Some examples of quantitative questions related to our problem are the
following.

1. The presence of cubic tangencies (and the associated cusp points) is related to the existence
of (saddle, spring, cross-road, dovetails,...) areas of stability, see [34, 35, 25] (see also the
Appendix A for the cases that appear in our problem). Which type of configurations are
expected in the problem? Which is the size of the corresponding areas of stability? Are all
of them relevant in the phase space or they just appear in a very tiny domain?

2. Crossing a last tangency line we find a zone where we expect to have strange attractors
alternating with sinks. These zones have a “boundary line” BDa (a = +,−,+−) in Fig. 5.
Which is the size of these zones and which is the form of such boundaries?

3. Inside the regions bounded by the “bifurcation lines” BDa we expect to find strange attrac-
tors together with sinks. Which is the abundance of SA within these zones?

4. There are different zones of parameters where different attractors coexist. Which is the prob-
ability of capture for each attractor? How the basins of attraction evolve as the parameters
change?

Let us state, honestly, that our results are far from giving a complete answer to all the proposed
questions. At most we provide partial answers to some of them. However, the idea of a more
quantitative approach made us to develop a different approach to the bifurcation problem based
on what can be named the dissipative double separatrix map, which generalizes the well-known
separatrix map [36, 37, 22] but it is suitably adapted to the study of the figure-eight system
Tµ,ε and to dissipation. The model is introduced in Section 2, where we give a simple numerical
overview of the bifurcation problem, and it is used extensively in Section 5 to provide quantitative
information on the problem. It gives also valuable information on some dynamical mechanisms
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that should play a role in similar problems. It must also be said that the study of model (5) was
the seminal point of the present paper.

2 A dissipative figure-eight separatrix model

Most of the parts of the present paper deal with the topological description of the bifurcation
diagram of Tµ,ε for a fixed ε small enough. In general, this type of qualitative approaches provides
a complete map of the possible dynamics of a system, and hence it is extremely useful to understand
the system theoretically. However, this description might be completely useless in real applications
unless it is complemented with quantitative data concerning the set of the parameter space where
some dynamics appears and the real influence of such a dynamics on the domain of the phase
space where we study the system.

In this section we introduce a simple universal model to study the dynamics of a two-dimension-
al diffeomorphism with a double homoclinic loop. The model consists on a suitable return (semi-
global) map and below we use it to describe the set of bifurcations of the figure-eight. The
models obtained in this way, i.e., as return maps, have one remarkable peculiarity: they are not
very sensitive to concrete details of the initial system, that is, the model is obtained having into
account that, mainly, it is the character of the perturbations (both, the autonomous one and the
final non-autonomous one) what determines the dynamics of the system. Therefore, the study of
one model can help to observe dynamical properties of a wide class of systems. The maps obtained
are, hence, universal models which depend on some relevant parameters of the system.

The model we consider is given as

Ma,b,ψ,A,ω :





z
η
s



 7→





z + ωj + A log(|y|)
sign(y)|y|ψ
sign(y)s



 , (5)

where y = aj+η+ bj sin(2πz) and the index j takes the value 1 if s = 1 and the value 2 if s = −1.
The map (5) is similar to the so-called separatrix map [36, 37] defined on a figure-eight ho-

moclinic loop [38, 30, 39]. It can be seen as an extension of the dissipative separatrix map for a
single homoclinic loop, see [23, 40] for details on the derivation and the role of the dissipation,
to the case of a homoclinic figure-eight. The role of the dissipation was also considered in [25].
The main features of this model are described in what follows. For further details we refer to the
previous cited works.

The model (5) is defined on a fundamental domain FD which is the union of two annular
domains, one in the upper part (with s = 1) of the figure-eight and another in the lower part
(with s = −1), see Fig 6. In these domains the part of the unstable manifold is parametrized
by z ∈ [0, 1). The variable η measures the position with respect to the corresponding unstable
branch of W u, while y measures the distance with respect to W s. Both for η and y in the upper
and lower domains the positive orientation points towards the saddle. For instance, a point in the
upper part of the fundamental domain, such that it has y > 0, returns to the upper part. We are
taking the simplifying assumption that the position of the branches of W u with respect to W s,
say Ψj(z), is given by aj + bj sin(2πz), where j = 1 (j = 2) is used for the upper (lower) part.
Functions Ψj with more harmonics add more complexity to the bifurcations, but no new ideas.
We have tried to keep them as simple as possible.

The role of the exponent ψ is clear. It accounts for the passage near the dissipative saddle.
If the eigenvalues (for the discrete map) are exp(γ), exp(−λ) (λ > γ > 0), see (1), then it is
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s=1
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Figure 6: Fundamental domain FD where the return map (5) is defined.

immediate to obtain ψ = λ/γ using a simple approximation as the time 1-map of a linear flow
near the saddle.

For ψ = 1 and aj = 0, the map (5) reduces to the well-known separatrix map [36, 37] defined
on the figure-eight [38, 30] for the conservative case.

The variable z increases according to the sense of the dynamics on the manifolds: Tµ,ε maps a
point with z = 0 to a point with z = 1. The parameters aj measure the relative distance between
the averaged invariant manifolds due to the perturbative effects. The values bj can be seen as the
amplitudes of the splitting of the invariant manifolds when aj = 0. For simplicity we have used
only one harmonic in the “undulation” of the splitting, but this is also justified if the dynamics
is slow, see [41]. If aj = bj = 0, j = 1, 2, the stable and unstable branches of the upper and
lower parts of the figure-eight coincide. If bj = 0, j = 1, 2, we should have a map that mimics the
behavior of the vector field when we perturb from the figure-eight. To relate b1, b2 to ε one can
consider b1 = εB1, b2 = εB2 with B1, B2 normalized as B2

1 +B2
2 = 1 and ε small.

The constant A is related to the flight time close to the saddle. As we shall consider small
values of |η| and |y| the term log(|y|) in the expression of the value of z in the image is negative.
Hence, the coefficient A will be taken also as negative, to keep the increasing sense of z. The
variable z can be seen as a time, which increases by 1 unit in the original map, but the map that
we consider here is the return map to one of the fundamental domains. The returning time consists
of a constant part, ωj (that can be taken modulo 1) and a “flying time” near the saddle, which is
of the form A log(|y|) (see Appendix A of [25]). In the simulations we shall use ωj = 0, j = 1, 2.

2.1 Admissible ranges of the parameters a1 and a2

We briefly recall from the Introduction that our goal is to study the parameter space of a family
of planar maps Tµ,ε. To this end we fix ε and look for the 2-parameter space in µ. For ε > 0, the
invariant manifolds forming the figure-eight for Tµ,ε at µ1 = µ2 = 0, generically no longer coincide
(for conservative maps ε is a “distance-to-integrable” parameter, see [30] for a suitable definition).
Hence, roughly speaking, the role of ε is to create the homoclinic lobes. This is reflected by the
parameters b1 and b2 in (5), which measure the amplitude of the homoclinic lobes (if a1 = a2 = 0).
On the other hand, the role of the splitting parameters µ1, µ2 is played in the model (5) by a1, a2,
respectively.

Since a1, a2 are unfolding parameters they are assumed to be small enough. One of the advan-
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tages in using a model like (5) is that we can obtain quantitative information of the maps Tµ,ε.
It is important to examine how large a1, a2 can be in order to recover the properties of (2) when
ε = 0 (see the paragraph before the Lemma 2.1 for a more precise statement). Furthermore, we
should take b1, b2 also small: the passage near O is assumed to be well approximated by a linear
flow.

As ψ > 1, the passage near the saddle should give a contraction, the image value of |η| being
smaller than |y|. This requires |y| < 1 in all the iterates. Let us see also which conditions on the
values of aj follow if for bj = 0 we should recover the dynamics of a flow.

We consider the case of a1, the one of a2 being similar. If a1 > 0, b1 = 0 (that is, W s is
on top of W u on the upper part and no oscillations occur), we should look for η > 0 such that
η = (a1 + η)ψ. The attracting invariant curve C+ of the regions II, III and IV of Fig. 3 will be
found as a graph over z with constant value.

For a1 small it is clear that a solution with η small exists. Of course, another solution with
η ≈ 1 exists if a1 is close to zero. One has to prevent that the solutions disappear in a double
zero. This is a common solution of

η = (a1 + η)ψ and 1 = ψ(a1 + η)ψ−1,

from which it follows

η =
1

ψ
(a1 + η), η =

a1
ψ − 1

.

Replacing in the initial equation

a1
ψ − 1

=

(

a1 +
a1

ψ − 1

)ψ

=

(

ψa1
ψ − 1

)ψ

.

From last equalities it follows

a1 =
ψ − 1

ψ
ψ

ψ−1

,

which gives an upper bound for the admissible values of a1. In fact, it is advisable not to be too
close to that value. We want that the iterates pass close to O.

In a similar way we can consider the condition for existence of an invariant curve C∗ surrounding
the eight. This curve has to be seen as the graph of constant functions in both fundamental
domains. Let η1 < 0, η2 < 0 be the corresponding values of η in each domain. We consider the
case a1 < 0, a2 > 0 (region VI of Fig. 3), the others being similar. We recall that the boundary of
the domain should be obtained when the upper branch of W u is mapped to the lower branch of
W s. That is a2 = (−a1)ψ.

The condition for a surrounding curve is

η2 = −(−a1 − η1)
ψ, η1 = −(−a2 − η2)

ψ,

or, introducing w = −η1 > 0,

H(w) := (w − a1)
ψ − a2 − w1/ψ = 0.

It is clear that w = 0 at the boundary of the domain a2 = (−a1)ψ. Assume now that we fix a value
of a1 < 0. To look for the zeros of H it is enough to consider the graph of h(w) = (w−a1)ψ−w1/ψ

and intersect: h(w) = a2. As dh/dw < 0 when w is close to zero and

d2h/dw2 = ψ(ψ − 1)(w − a1)
ψ−2 +

ψ − 1

ψ2
wψ

−1−2
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is positive, it follows that H(w) = 0 will have a solution provided a2 is not below the minimum of
h. As we want to have solutions for the domain a2 ∈ (0, (−a1)ψ), to find the maximum admissible
value for |a1| we ask H to have a double zero for a2 = 0, which is equivalent to w = (w − a1)

ψ2

having a double zero. This condition is similar to the one encountered before for the existence of
the curve C+ for a1 > 0, but with ψ replaced by ψ2. Hence, the condition for the lower bound of
a1 is

−a1 =
ψ2 − 1

(ψ2)
ψ2

ψ2
−1

.

But, in fact, we want to be able to continue the existence of this outer curve in the domain
a1, a2 < 0. As before, we keep the value of a1 fixed and require the minimum of h to be less of equal
than a1. For the remaining part of this quadrant the roles of a1 and a2 can be exchanged. But
if in the condition for the surrounding curve curve we put a2 = a1 we obtain the same condition
found for the invariant curves confined either to the upper part or to the lower part, except by
the change of sign in a1.

By recovering the dynamics or properties of a flow we mean to obtain a discrete system
topologically equivalent to the time-1 map obtained from the flow of the corresponding vector
field, hence with the same qualitative properties. Summarizing, we have proved the following
lemma.

Lemma 2.1. The admissible domain for a1, a2 to recover the qualitative behavior of the flow case
when b1 = b2 = 0 is given by |a1| < M, |a2| < M, where

M =
ψ − 1

ψ
ψ

ψ−1

.

Remark. We note that M → 0 as ψ → 1+ as expected because one approaches the conservative case.

2.2 A preliminary numerical exploration of model (5)

We start by computing the bifurcation diagram from model (5) in the (a1, a2)-plane. We will see
that some homoclinic zones have an unexpected boundary shape. Here we show these boundaries
and some related bifurcation curves as a motivation to the qualitative analysis of the problem.
Later, in Section 5 we will study in detail the dynamics of the model (5) and we will provide
precise quantitative information based on the qualitative description of Sections 3 and 4.

For concreteness, we consider through the text b1 = 0.003, b2 = 0.0015, ψ = 1.6, A = 2 and
ω1 = ω2 = 0. From Lemma 2.1 it follows that |a1|, |a2| ≤ M ≈ 0.17 define an admissible domain.
Note that we are using A > 0 instead of A < 0 as explained before. This is irrelevant because it
is equivalent to a change in the orientation of z.

First, we compute the bifurcation curves which correspond to first and last homoclinic tangen-
cies between the invariant manifolds. For simplicity we label the bifurcation curves for the model
as their analogous in Fig. 5. The expressions for the local invariant manifolds in the fundamental
domain of definition of (5) are W u± = {η = 0, s = ±1} and W s± = {y = 0, s = ±1}. The condi-
tion for a primary homoclinic tangency between W u+ and W s+ (resp. between W u− and W s−) is
|a1| = b1 (resp. |a2| = b2). Hence this condition defines two vertical (resp. horizontal) lines L+

1 and
L+
2 (resp. L−

1 and L−
2 ) bounding a homoclinic strip HZ+ (resp. HZ−) in the (a1, a2)-parameter

space. See Fig. 7 left.
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On the other hand, we look for primary homoclinic tangencies between W u+ and W s−, and
between W u− andW s+. Assume that we start from a point onW u+ (resp. W u−) with coordinates
(z0, 0, 1) (resp. (z0, 0,−1)). The conditions for a quadratic tangency between W u+ andW s− (resp.
between W u− and W s+) are

y1 = 0, dy1/dy0 = 0,

where

y1 = aj + η1 + bj sin(2πz1), η1 = −(−y0)ψ, y0 = ak + bk sin(2πz0), z1 = z0 + A log(|y0|)

and j = 1, k = 2 (resp. j = 2, k = 1). These conditions define several lines in the bifurcation
diagram corresponding to primary quadratic tangency lines. The envelope of these curves can be
easily computed numerically by using a continuation method. We obtain two curves L±

1 and L±
2

(resp. L∓
1 and L∓

2 ) which correspond to the first and last homoclinic tangencies between W u+

and W s− (resp. between W u− and W s+) respectively. These two curves bound a “diagonal”
homoclinic strip HZ± (resp. HZ∓), see Fig. 7 left. Some of the details of the curves L±

1 and L±
2

can be observed in Fig. 7 right. Surprisingly, the boundary of the homoclinic zone is not given
by a smooth curve and, instead, a “stair” structure is observed. The reason why this behavior
appears will be given in Section 4.

-0.15

-0.1

-0.05

 0

 0.05

-0.15 -0.1 -0.05  0  0.05

 0

 0.01

 0.02

 0.03

-0.1 -0.08 -0.06 -0.04 -0.02  0

L±
1

L±
2

Figure 7: Bifurcation curves corresponding to first and last tangencies. They bound different homoclinic strips
in the parameter space (a1, a2). Right plot is a detail of the boundary of the homoclinic zone HZ±.

It turns out that L±
1 , L

±
2 , L

∓
1 and L∓

2 are obtained by joining different segments of bifurcation
curves corresponding to different primary quadratic tangencies. To understand this structure we
focus on the zone HZ± and we look for the curves of primary quadratic tangencies which form
the boundary of HZ±. They are shown in Fig. 8.

We observe in Fig. 8 a complicated structure of different pieces which accumulate to the limit
rectangle which bounds the region HZ+ ∩HZ−. The different pieces are interrelated and form a
kind of “chain” structure which is responsible of the “stair” structure of the boundary of HZ±.
As we can see in the right magnifications, different cusp points play a role in the structure. They
are related to cubic tangencies, see Section 4.2. Moreover, these cusp points accumulate to two of
the vertices of the limit rectangle.

Next, we look for other quadratic tangency bifurcation curves inside the pieces shown in Fig. 8
second row left. The results are shown in Fig. 9. The additional curves inside the pieces show new
cusp points which are also involved in the inner structure of the zone HZ±. These cusp points
accumulate to the other two vertices of the limit rectangle. However, as it can be observed, in the
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Figure 8: The thick lines are bifurcation curves in the (a1, a2)-parameter space which correspond to primary
quadratic tangencies that form the curves L±

1 and L±
2 . The right figures are magnifications of the left figure. The

thin line corresponds to the bifurcation curve of the autonomous limit case. The black rectangle in the figure of
the second row left corresponds to the intersection of the homoclinic zones HZ+ and HZ−. Note that on the left
plot the range of |a1| exceeds the maximum admissible value M . The purpose has been to illustrate the shape of
the boundaries. Thick (resp. thin) lines appear in red (resp. green) in the e.v.

left “link” of the “chain” shown in Fig. 9 we have not obtained any inner bifurcation curve: they
start on the link located around a1 = −0.02.

As far as the authors know, this structure of the boundary of a homoclinic zone has not been
previously observed in any example. For this reason, the next two sections are devoted to give a
more complete qualitative description of the bifurcation diagram and to study in detail the “stair”
structure of such a boundary curves, respectively. After this qualitative approach in Section 5
we will consider again the model (5) to provide a more quantitative description of the parameter
space.

3 On the structure of the bifurcation diagram on the µ-

plane at small periodic perturbations: a preliminary dis-

cussion.

Consider now the system (4), which is a periodically forced version of system (2). As it is well-
known, the dynamics and bifurcations of such non-autonomous systems for small ε can be analyzed
by means of the time-2π Poincaré map which we denote as Tµ,ε.

In this section we give a very rough picture of the “qualitative orbit structures”, typical for
Tµ,ε at small ε and µ. For definiteness, we fix ε and consider µ1 and µ2 as governing parameters.
Despite the bifurcations depend on ε we skip the explicit mention to ε through the study.

Remark. One can think, in an equivalent way, that the system has a three dimensional parameter

space (µ1, µ2, ε) and we look at an slice ε = ε0. In any case, for small ε the bifurcation diagram will be

qualitatively similar to the one shown in Fig. 5. Note, however, that the sizes of the homoclinic zones

grow, in general, when |ε| grows.
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Figure 9: Detail of the bifurcation curves inside the homoclinic zone HZ±. The figure corresponds to the Fig. 8
second row left. Note that inside the left “link” of the “chain” structure there is not a bifurcation curve related to
a primary quadratic tangency fully contained in it. In contrast, the remaining “links” from the right contain such
a curve.

All the homoclinic zones HZ−, HZ+, HZ± and HZ∓, mentioned in Section 1.3 intersect in
a rectangle surrounding the origin of the µ-plane: the chaotic zone labeled GA in the Fig. 5.
For µ ∈ GA all the branches of the invariant manifolds of O have intersections and, thus, the
well-known structure of a “figure-eight chaos” similar to that appearing in periodic perturbations
of conservative systems (such as the Duffing equation [31]) shows up. However, the system under
consideration exhibits other limit (regular and chaotic) regimes that we try now to describe. Some
of these regimes were previously observed numerically for the model (5), see Fig. 38. Here we give
a qualitative description.

Let us consider Fig. 5 in detail. As shown in the figure, there are 11 principal bifurcation
curves: 8 of them are curves of “first” and “last” homoclinic tangencies of manifolds of O and
other 3 are certain fractal “curves” corresponding to a transition from a simple big attractor
(usually a closed invariant curve) to a strange one. We enumerate these curves and “curves”.

1-2 L+
1 (and L+

2 ) are the curves of the first (and last) homoclinic tangency of W u+ and W s+,
see Fig. 10 c) and j) (and Fig. 10 d) and i)).

3-4 L−
1 (and L−

2 ) are the curves of the first (and last) homoclinic tangency of W u− and W s−,
see Fig. 10 b) and g). (and Fig. 10 a) and h)).

5-6 L±
1 (and L±

2 ) are the curves of the first (and last) homoclinic tangency of W u+ and W s−,
see Fig. 10 k) (and Fig. 10 l)).

7-8 L∓
1 (and L∓

2 ) are the curves of the first (and last) homoclinic tangency of W u− and W s+,
see Fig. 10 f) (and Fig. 10 e)).

9-11 We add into consideration also three more bifurcation “curves” BD+, BD− and BD+−.
They are some (possibly) fractal boundaries corresponding to a transition from simple at-
tractors to strange ones. Such a transition goes through the break-down of the closed invari-
ant curves C+, C− and/or C∗. After crossing these boundaries, strange attractors A+, A−

and A+− and/or periodic sinks appear for some values of the parameters. 5

5In general, such transitions are accompanied by very interesting dynamical phenomena. Beyond total or partial
period doubling cascades of sinks, leading or not to a SA, the closed invariant curves can “fold” and, after reaching
a cubic tangency with the stable foliation, they can become SA, see [25]. Thus, the lines BD are now only
conditional lines (of transition from a simple attractor to a SA). Their structure seems to be rather complex. For
some preliminary information see [24, 5]. See Figs. 30, 31, 38, 39 for illustrations using (5).
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j) k) l)

b)a)
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Figure 10: Homoclinic tangencies associated with the bifurcation curves in counterclockwise passage around the
origin in the bifurcation diagram in Fig. 5: a) µ ∈ L−

2 , µ1 < 0; b) µ ∈ L−
1 , µ1 < 0; c) µ ∈ L+

1 , µ2 < 0; d) µ ∈ L+
2 ,

µ2 < 0; e) µ ∈ L∓
2 ; f) µ ∈ L∓

1 ; g) µ ∈ L−
1 , µ1 > 0; h) µ ∈ L−

2 , µ1 > 0; i) µ ∈ L+
2 , µ2 > 0; j) µ ∈ L+

1 , µ2 > 0; k)
µ ∈ L±

1 ; l) µ ∈ L±
2 .

17



In general, these 11 curves divide the µ-plane into 35 open regions. For µ in the regions I, II,
III, IV, V and VI (numbered also as regions 23, 35, 29, 7, 4, 1, respectively) the map Tµ,ε has
a simple dynamics which mimics the dynamics of the autonomous flow (2) for the corresponding
regions in Fig. 3. On the other hand, the dynamics of Tµ,ε can be chaotic for some of the values
of µ in the other regions. Moreover, for values of the parameters from the dashed regions, sinks
and different kinds of SA can exist (and coexist).

The homoclinic zones and their boundaries play a key role to understand the dynamics of Tµ,ε
even for values of µ outside these zones. Generally, we can select two types of homoclinic zone
boundaries: 1) MS-boundaries and 2) SA-boundaries.

Figure 11: Creation of horseshoes (complicated dynamics) at MS homoclinic intersection.

The MS-boundaries correspond to the existence of a type of homoclinic tangency which is
called “first” tangency, or tangency “from below”, or tangency of the first class, see Fig. 11 (b)
(and compare it with Fig. 10 (b),(c),(e),(g),(j),(k) in which various cases with such a tangency
type are shown for Tµ,ε). The system with such a tangency can belong to the boundary of Morse-
Smale systems and then the corresponding homoclinic bifurcations lead to a type of homoclinic
Ω-explosion [42, 43, 44, 45, 46]. The trivial dynamics of the systems before the bifurcation mo-
ment (of homoclinic tangency creation) becomes immediately complicated after it, e.g., infinitely
many Smale horseshoes are born as soon as the tangency splits into two (transverse) homoclinics.
Geometrically, it may be clarified by Fig. 11. In Fig. 5, we mark by MS-arrows the corresponding
transitions (in direction from “complicated dynamics” to “trivial one”, that is from (c) to (a) in
Fig. 11). Note that in our problem if, for example, Fig. 11 illustrates the behavior on the upper
loop, the expected attractor depends on what happens in the lower loop, as can be checked in
Fig. 5 when crossing the line L+

1 at different places from top to bottom. Also, between the (b) and
(c) cases in Fig. 11, different periodic orbits are created at saddle-node bifurcations. Hence, one
expects the existence of tiny domains of µ-parameters for which Tµ,ε has sinks (and the associated
cascades) inside the upper loop.

The SA-boundaries correspond to the homoclinic tangency which is called “last” tangency,
or tangency “from above”, or tangency of the third class, see Fig. 12(b) (and compare it with
Fig. 10(a),(d),(f),(h),(i) and (l)). In this case all close systems have a complicated dynamics
[42]. However, the non-wandering set cannot contain global strange attractors inside the loop
when transversal homoclinics to O exist because, in such a case, open sets of orbits leave the
neighborhood of the homoclinic structure, see Fig. 12(c). On the other hand, the exit from the
homoclinic zone can be accompanied here by the immediate appearance of some “big” strange
attractor. Thus, in a situation like Fig. 12(a), an adsorbing domain with a nontrivial dynamics
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Figure 12: Towards attracting dynamics through a SA homoclinic intersection.

inside appears (for example, there exist Smale horseshoes). As before, if Fig. 12(c) displays the
manifolds in the upper loop, the attractor to be expected depends on the dynamics in the lower
loop. Also, in a case like (c) it can happen that some sinks (or several-pieces SA) are confined to
the lobes which remain in the upper loop.

The previous “superficial” analysis of the global dynamics allows to predict the appearance
and existence of big strange attractors of various types. We recall from Section 1.3 that, when
they exist, we denote the attracting invariant curve inside the right (resp. left) loop of the
figure-eight by C+ (resp. C−) and the attracting invariant curve surrounding the figure-eight by
C∗. Namely, without going into details, one can roughly classify the following types of strange
attractors (quasi-attractors, in fact):

Figure 13: Homoclinic intersections in the cases (a) µ ∈ 26, the “tail” strange attractor AT+ exists; (b) µ ∈ 19,
the global strange attractor GA exists.

1) A+ – it is a type of strange attractors which appear at the exit from the homoclinic zone
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HZ+ crossing the line L+
2 and which also appear as a result of the break-down of the invariant

curve C+. That is, these attractors exist in the regions of parameters 6, 13, 20, 21, 27, 28, 31
and 34, to the right of the curve L+

2 .
2) A− – it is a type of strange attractors which appear at the transition crossing the line L−

2

and which also appear at the break-down of the invariant curve C−. That is, these attractors
exist in the regions of parameters 8, 9, 10, 11, 12, 13, 14 and 15, above the curve L−

2 .
3) A∗ – it is a type of strange attractors which appear at the transition through L±

2 ∪ L∓
2 and

also at the break-down of the invariant curve C∗. Note that these attractors exist in the dashed
regions 2, 9, 17, 24, 25, 31 and 32.

4) “Tail” strange attractors AT− and AT+. Their domain of existence are two triangular
zones 18 and 26. A characteristic property of such attractors is that both branches of the un-
stable manifold W u+ and W u− intersect only one of the branches of the stable manifold, namely,
W s+ for AT+ and W s− for AT− (and do not intersect the other branch of the stable manifold).
Consequently, we have a typical “tail structure” of these attractors. For example, an orbit of the
attractor AT+ can make an arbitrary number of turns near the loop Γ+ before it makes a passage
along the global piece of W u−, see Fig. 13 (a).

5) Global (homoclinic) attractors GA on the figure-eight. Such attractors exist for values of
the parameters inside the rectangle abcd (the region 19) and are characterized by the following
property: all the branches of the unstable manifoldW u+(O) andW u−(O) intersect all the branches
of the stable manifold W s+(O) and W s−(O), see Fig. 13 (b).

Remark. One can emphasize the difference in a symbolic description of orbits from attractors A+, A−,

AT+, AT− and GA. Let Ω2 be the set of all bi-infinite sequences (. . . , α0, . . . , αn, . . . ), where αi can

take the values 1 and 2. Consider some orbit from an attractor (except for the orbit O for GA). Then,

by the geometry of the problem, every such an orbit can be trivially coded by one of the sequences from

Ω2: the symbol “1” (resp. “2) corresponds to every single whole passage of the orbit around the point

O1 (resp. O2). It is clear that GA contains O and orbits with arbitrary codes; the attractor A+ (resp.

A−) contains neither O nor those orbits whose codes have at least one symbol “2” (resp. “1”). The

tail attractor AT+ (resp. AT−) contains O (on the boundary) and those orbits with a coding sequence

without two neighboring symbols “2” (resp. “1”). In this case, the symbol “2” (resp. “1”) corresponds

to a tail of the attractor and some orbits can have infinitely many such tails.

Remark. The expected attractors for parameters in the regions 22, 5, 3, 16, 33, 30, i.e. inside the

homoclinic zones HZ+,HZ−,HZ± and HZ∓, are of local nature. The possible SA correspond to Hénon

like attractors related to Newhouse sinks near homoclinic tangencies (of secondary homoclinic points).

The interaction between the two loops of the figure-eight prevents the globalization of the SA. We remark

that our main interest in this work is in global attractors around the figure-eight loops.

3.1 Recovering the homoclinic zones and primary double homoclinic
tangencies.

The bifurcation curves B−, B+, B± and B∓ for the flow (2) intersect (all of them) at the point
µ = 0. This implies that, typically, the pointed out homoclinic zones HZ+, HZ−, HZ± and HZ∓

are recovered and this can look, for example, as in Fig. 5. In this case, the boundary curves
of the homoclinic zones intersect and the intersection points correspond in the phase space of
Tµ,ε, in general, to double quadratic homoclinic tangencies. We can compute 8 (types of) double
homoclinic points labeled as a, b, ..., h.
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e f
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Figure 14: Primary double homoclinic tangencies corresponding to the points d,b,e,f,h,g of Fig. 5.

Six of these points, concretely the points b,d,e,f,g and h, do not lie inside homoclinic zones
and they correspond to primary double homoclinic tangencies, that is, there are no any other
homoclinic points to the saddle O (e.g. transversal ones) except for points of the indicated
homoclinic tangencies. We illustrate in Fig. 14 these primary double homoclinic tangencies (of
“figure-eight” type).

The two remaining points a and c correspond to not primary double homoclinic tangencies,
since they are located inside the homoclinic zones HZ± and HZ∓, respectively. This implies
the existence of other (e.g. transverse) homoclinic points belonging either to W u+ ∩W s− or to
W u− ∩W s+, see Fig. 15.

Note also that the points a,b,c and d belong to the boundary of the chaotic zone 19. We
remark that the points a and c also correspond to primary (single) tangencies, when W u+ touches
W s+ and W u− touches W s− respectively, and the point O has only those two homoclinic orbits,
see Fig. 15. Obviously, infinitely many homoclinic orbits of all types appear immediately after
splitting the two of these primary tangencies (at the transition from regions 18, 15 and 20, 26
to region 19).
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a c

Figure 15: Not primary double homoclinic tangencies at the boundary of the chaotic zone 19 of Fig.5.

4 The boundary structure of the homoclinic zones HZ±

and HZ∓.

As reflected in the bifurcation diagram in Fig.5, the boundaries L±
1,2 and L∓

1,2 of HZ± and HZ∓

look to be more complicated in comparison with the boundaries of HZ+ and HZ−. The numerical
computations performed in Section 2 for the model (5) show that L±

1,2 and L∓
1,2 have the form of

kinked curves with many steps. In this section we establish (see Figs. 19 and 29 below) that these
curves are C0 and have infinitely many steps (intervals of smoothness) which accumulate to the
double tangency points b and d (see Fig. 14 first row) of the rectangle 19. More concretely, in
this section we consider the following questions:

• why the boundaries of HZ± and HZ∓ are non-smooth?

• which bifurcations occur when crossing these boundaries?

• which dynamical meaning have the non-smoothness points?

• why the boundaries of HZ± and HZ∓ have infinitely many steps?

It turns out that such unexpected (but universal for systems having a figure-eight) structure
of the boundaries of the homoclinic zones is explained by the existence (and abundance) of spe-
cific cubic and (primary) double quadratic homoclinic tangencies of the corresponding invariant
manifolds of the point O: the manifolds W u+ and W s− in the case of HZ± and the manifolds
W u− and W s+ in the case of HZ∓. Note that there are no main differences in the study of the
boundaries for HZ± and HZ∓. Therefore, below we focus our attention in the zone HZ±.

4.1 Non-smoothness of the boundaries.

In Fig. 10 (k) and (l), we represent the position of the manifolds W u+ and W s− when they have
quadratic homoclinic tangencies either at µ ∈ L±

1 (MS tangency – Fig. 10 (k)), or at µ ∈ L±
2

(SA tangency – Fig. 10 (l)). Analogous pictures of the manifolds W u− and W s+ are shown in
Fig. 10(e) for µ ∈ L∓

2 and in Fig. 10(f) for µ ∈ L∓
1 . One can see that the manifolds near some of

the points of tangency have a “sinusoidal” form.6

This “sinusoidal” form is typical for those homoclinic points appearing near the bisectrix
y = −x, x > 0 of the fourth quadrant of the phase plane. Hence Fig. 16 left sketches the
general position of the manifolds between the double tangencies of Fig. 10(k) and (l), compare
also with Fig. 25 below. Note that Fig. 16 sketches a situation in which there are four different

6Of course, the form may be more complicated than a sinus-like function. This is not so relevant: the main
effects related to double quadratic and cubic homoclinic tangencies will be always present.
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Figure 16: Sketch of the form Wu+ and W s− at µ ∈ HZ±. Four homoclinic trajectories (points 1, 2, 3, 4) are
created. We sketch the location of the homoclinic points 1, 2, 3, 4 by displaying details on the manifolds near the
bisectrix y = −x, x > 0 (left) and in a neighborhood of W s−

loc close to O (right).

homoclinic trajectories in a fundamental domain (which contains the “horizontal” and “vertical”
sinusoids) capturing the full dynamics near the separatrices W u+ and W s−. However, there are
other configurations expected at different µ values. Generically, depending on µ, there are up to
eight different homoclinic points in a fundamental domain (see the homoclinic tangle in Fig. 15(a)
and also Fig. 25 left where one counts six homoclinics in a fundamental domain but two more
will appear when splitting the cubic tangency c1). At different iterates of the same homoclinic
trajectories the form of the manifolds W u− and W s+ near them may look sharply different. For
example, in the simple situation of Fig.16 left, for homoclinic points on W s+

loc (with negative x-
coordinate) the corresponding piece of W u+ will have a form of “distorted parabola” and, in this
case, W u+ “makes a signature” around W s+

loc , see Fig. 16 right.

W
u+

W
s−

Tangency "a"

Tangency "b"
a)

 Point S

W 
s−

u+
W 

Tangency "a"

Tangency "b"
b)

Point S

Figure 17: (a) µ ∈ L±
1 ; (b) µ ∈ L±

2 .

In Fig. 17(a) we show the corresponding fragments (which extend more than two fundamental
domains and represent the pattern shown at the fourth quadrant in Fig. 15(a)) of the manifolds
W u+ and W s− for µ ∈ L±

1 . The analogous situation for µ ∈ L±
2 is shown in Fig. 17(b).

In a situation like the one shown in Fig. 17(a) top, we can vary µ along the curve L±
1 in such a

way that the tangency of type “a” does not split. However, this can be done only till the moment
when a double homoclinic tangency appears. It means that the curve L±

1 has always points S
corresponding to the existence of two different quadratic homoclinic tangencies. After meeting
the point S, we can continue the boundary curve L±

1 but the homoclinic tangency “a” disappears
and the new quadratic tangency “b” is kept. Thus, the point S has to be a singular point on L±

1

created by the intersection of two bifurcation curves of quadratic homoclinic tangencies (of types
“a” and “b”, see Fig. 18(a)). In general, these curves intersect transversely. This implies that
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Tangency "a"

Tangency "b"

a)                                                                    b)

Figure 18: Bifurcation curves for tangencies “a” and “b” near the point S (left) and S̄ (right) on the (µ1, µ2)
parameter plane.

the point S is a point where L±
1 loses smoothness. The same happens to the point S̄ on L±

2 , see
Figs. 17(b) and 18(b).
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Figure 19: Structure of the bifurcation diagram in a piece of the zone HZ±. We can select two series of closed
curves. One of them consists of curves containing cusp points c1 and c4 while the curves from the other series have
cusp points c2 and c3. We explain below (in Section 4.2) the principal details of this bifurcation diagram.

4.2 Cubic and double quadratic single-round homoclinic tangencies in

HZ± and HZ∓.

It is interesting to trace “from beginning to end” those bifurcation curves which correspond, in
Fig. 18, to the existence of tangency “a” and tangency “b”. The corresponding tracing (for a
typical two parameter unfolding) is demonstrated by pictures in Figs. 20, 21 and 22 and the
related bifurcation curves (in the µ-plane) are shown in Fig. 19. In Figs. 20, 21, 22 and also
27, the vertical dotted lines denote some boundaries of fundamental domains. We carry out our
tracing in several steps.
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g)  cubic tangency c h)  point d

i)  point S

Figure 20: Sketch of double quadratic and cubic tangencies that are found following the path S → c1 → S̄ →
c4 → S. In this figure, and in several forthcoming ones, the vertical dotted lines represent the boundaries of a
fundamental domain.

Step 1. Tracing a closed way S → c1 → S̄ → c4 → S from Fig. 19.

Let us consider Fig. 20. Here we start at the point S, Fig. 20(a), and move the parameters µ1

and µ2 to keep the tangency marked by a circle and index 1 (this is tangency “b” from Fig. 17
(left)). Entering inside zone HZ± we first meet a new quadratic homoclinic tangency, point d1,
marked in Fig. 20(b) by a bold point. Moving next we can keep the first quadratic tangency
only till a cubic tangency c1 appears as represented in Fig. 20(c). This is a final point for the
bifurcation curve corresponding to the quadratic tangency 1. However, the cubic tangency gives
rise to a new bifurcation curve corresponding to the existence of another quadratic homoclinic
tangency labeled as 2. Following this curve we first find the point d2, where another quadratic
tangency appears, see Fig. 20(e). Next we meet the point S̄ belonging to the curve L±

2 . At this
moment we have two homoclinic tangencies, labeled as 2 and 3 in Fig. 20(e). Next, we move the
parameters µ1, µ2 keeping the tangency point 3, see Fig. 20 (right). First we meet point d3, where
another quadratic tangency appears, see Fig. 20(f), and next we meet the point c4, see Fig. 20(g),
where the bifurcation curve related to the tangency 3 finishes at a cubic tangency (cusp point).
Again, a new quadratic homoclinic tangency, labeled as 4, appears. Keeping the tangency 4 we
meet, first, the point d4 (where another quadratic homoclinic tangency is born) and, finally, we
return to the point S closing the way.

Step 2. Tracing a way S → S ′ → c′4 → S̄ ′ → S̄ from Fig. 19.

We return again to the point S in Fig. 20(a) but we move now the parameters µ1 and µ2

to keep the tangency 1 following the boundary curve L±
1 . The corresponding double and cubic

tangencies taking place are sketched in Fig. 21.
Starting at S (Fig. 21 (a)) we reach first the point S ′ (Fig. 21 (b)), next a new double tangency
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Figure 21: Sketch of double quadratic and cubic tangencies that are found following the path S → S′ → c′4 →
S̄′ → S̄.

d′4 (Fig. 21(c)) and we end at c′4 (Fig. 21(d)) which corresponds to a new cubic tangency. Next
we can follow the other branch of quadratic homoclinic tangencies, starting at c′4. Then, we
meet, successively, the point of double tangency d′3 (Fig. 21(e)), the new point S̄ ′ (Fig. 21(f))
and, following now the boundary curve L±

2 , we come to S̄ (Fig. 21(g)), which is the same as in
Fig. 20(e). We have traced the closed way c1 → S → S ′ → c′4 → S̄ ′ → S̄ → c1 from Fig. 19.
Obviously, this procedure can be repeated again and we obtain new “links” containing new steps
in L±

1 and L±
2 with other end points like c1 and c4.

Step 3. Tracing the way d4 → c3 → d′1 → d′2 → c2 → d3 → d4 from Fig. 19.

In Fig. 19 we observe two paths inside the zone HZ± which join S to S̄ following the curves
of quadratic homoclinic tangencies: S → c1 → S̄ and S → c4 → S̄. Each one of these paths
has two points of double quadratic tangency: d1, d2 and d3, d4 respectively. We have traced the
bifurcation curves corresponding to quadratic tangencies that emerge from the cusp points c1 and
c4. However, it remains to follow the other branches related to d1, d2, d3 and d4, which belong to
(generically transverse) intersections of two bifurcation curves corresponding to different single-
round homoclinic tangencies.

We start now at d4, as in Fig. 20(h). However, we will follow another curve of homoclinic
tangency, the one obtained by keeping the tangency labeled by a circle in Fig. 22(a). Changing
the parameters µ accordingly, we first meet the point c3 (Fig. 22(b)) which corresponds to a new
type of cubic tangency. Then, keeping another homoclinic tangency point, we reach successively
the points d′1 (Fig. 22(c)), the point d′2 (compare with Fig. 20 (b) and (d)) of double homoclinic
tangencies, and the point c2 (Fig. 22(e)). The last point corresponds again to a new type of cubic
tangency. Then, following another branch keeping another quadratic homoclinic tangency, we
meet the point d3 and finally, d4, see Fig. 22 (f) and (a). Thus, the way is closed.

Note that this path is regular except at two points: c2 and c3. Similarly, one could consider

26



a) point d
4

b) cubic tangency c
3

c) point d
1

d) point d

2

2

f) point d
3
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Figure 22: Sketch of double quadratic and cubic tangencies that are found following the path d4 → c3 → d′1 →
d′2 → c2 → d3 → d4.

the path c1 → S̄ → S̄ ′ → c′4 → S ′ → S → c1.

4.2.1 Remarks on the cubic single-round homoclinic tangencies for µ ∈ HZ±.

A cubic (homoclinic) tangency can be created if the manifolds W s and W u near a tangency point
have a form of “vertical” and “horizontal” parabolas. Moving in a suitable way these parabolas
we get a position such that they touch each other cubically. For example, the parabolas y = b−x2
and x = b − y2 have a cubic tangency at b = 3/4 (then the system {y = b − x2, x = b − y2} of
equations has a triple root), see Fig. 23. It is clear that this construction can be also realized for
“vertical” and “horizontal” sinusoidal lines. In that case we can have many more intersections.

The main bifurcations of cubic homoclinic tangencies were studied in [47, 48, 49, 34, 35, 25].
For completeness, in Appendix A we give a short review of some of the related results.

We have shown that, moving along a bifurcation curve corresponding to a simple quadratic
homoclinic tangency, we meet either some point of double homoclinic tangency (points di, d

′
i, d̃i

in the figures through the text) or a point of cubic tangency (points ci, c
′
i, c̃i in the figures). As

stated before, for perturbations like ε sin t, there exist generically four cubic tangencies which give
rise to the cusp points c1, c2, c3 and c4 in the parameter plane, see Fig. 19.

Figure 23: The creation of cubic tangency between parabolas y = b− x2 and x = b− y2.

There are essentially two types of cubic tangencies which depend on the sign of a coefficient
d in a suitable return map. The details are given in Appendix A. Let (x, y) be straighten up
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coordinates around the saddle, that is, coordinates such that W u
loc is given by x = 0 and W s is

given by y = 0. Assume that the cubic tangency takes place at the point (x+, 0) ∈ W s ∩ W u

and at the pre-image (0, y−). The coefficient d appears in the so-called global map, which maps
a point (x, y) in a domain D− around the point (0, y−) to a point (x̄, ȳ) in a domain D+ of the
point (x+, 0). The first order truncation of this global map can be written as (compare with (7)
in Appendix A)

x̄− x+ = ax+ b(y − y−),
ȳ = cx+ d(y − y−)3.

(6)

The unstable manifold in D− is given by x = 0. The relative position of its image in D+ with
respect to the stable one y = 0 determines four different cases according to the signs of b and d.
We sketch these four basic cases in Fig. 24.

(a)

y−

x+

(b) (c) (d)

Figure 24: Primary cubic homoclinic tangencies: (a) and (b) are cubic tangencies of type “+” while (c) and (d)
correspond to cubic tangencies of type “−”, see text for definition. In the cases (a) and (c) the parameter b of the
global map is positive, while in the cases (b) and (d) it is negative.

For d positive the unfolding of a single-round periodic orbit close to the cubic tangency shows,
in the limit case, a saddle-area type region of stability in the phase space (see Fig. 41 left in
Appendix A). For d negative the region of stability is of spring-area type (see Fig. 41 right
in Appendix A). The names saddle-area and spring-area are suggested by the pattern of the
bifurcation locus in the parameter plane. We will refer to cubic tangency (or to cusp point) of
“+” or “−” type according to the sign of d.

Lemma 4.1. The primary homoclinic cubic tangency points (or the primary cusp points) c1, c2,
c3 and c4 are, all of them, of “−” type (i.e. spring-area). Concretely, c1 and c4 are similar to the
cubic tangency (d) of Fig. 24 (i.e. b < 0), while the cubic tangencies c2 and c3 are similar to the
cubic tangency (c) shown in Fig. 24 (i.e. b > 0).

Proof. It is enough to sketch the position of the invariant manifolds corresponding to each of the
cusp points and check the orientation. We sketch the situation for the cusp points c1, . . . , c4 ∈ HZ±

in Fig. 25. Analogously one can check the situation for the cusps in HZ∓. �

Recall that in a 2-parameter family (unfolding) of a cubic tangency there are, in general, two
branches beginning in the cusp point which correspond to the existence of different quadratic
(homoclinic) tangencies.

The appearance of cubic homoclinic tangencies (and also of tangencies of arbitrary orders) at
bifurcations of quadratic homoclinic tangencies was established in [50, 51]. However, the corre-
sponding homoclinic orbits are, in general, multi-round. For example, the new cubic homoclinic
tangencies near a given quadratic homoclinic tangency in [50, 51] were only three-round. This is
not the case for our situation: the cubic homoclinic tangencies which we have found are single-
round. This means that their related stability domains in the phase space are expected to be larger
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c1

Q1

Q2
c2

c3

c4

Figure 25: Sketch of the relative position of the invariant manifolds at the primary homoclinic cubic tangencies
c1, c2, c3 and c4 for the zone HZ±. On the left plot the point Q1 is mapped to Q2, hence the arcs of the manifolds
from Q1 to Q2 are in a fundamental domain.

(see Fig. 32 where these domains are shown for model (5)). We shall see that these single-round
cubic tangencies play a relevant role in the dynamics within HZ± and HZ∓ and in some nearby
domains (like, for example, in region 24).

4.3 The complicate structure of the bifurcation diagram inside HZ±.

Our next goal is to analyze the structure of the zones HZ± and HZ∓ as µ approaches to the
vertices a,b,c,d of the GA rectangle in Fig. 5. In what follows, we focus on HZ±. By symmetry,
similar considerations also hold for the homoclinic zone HZ∓.

Lemma 4.2. The point b is the final point of the boundary curves L±
1 and L∓

1 and the point d is
the final point of the boundary curves L±

2 and L∓
2 .

Proof. In Fig. 26 we show the relative position of the manifolds W u+ and W s− for values of
µ on the bifurcation curves L±

1 (left) and L±
2 (right). We observe that in the left plot there is

also an intersection between the manifolds W u+ and W s+. This means, that we can continue the
curve L±

1 (moving down) until we find the double primary quadratic tangency when the manifolds
W u+ and W s+ have the “last” homoclinic tangency and the manifolds W u− and W s− have the
“first” homoclinic tangency. This corresponds to the existence of the double primary homoclinic
tangency b from Fig 14. The same consideration follows for L±

2 which terminates at the moment
of creation of the double homoclinic tangency d from Fig 14. The symmetry implies that L∓

1 (resp.
L∓
2 ) also finishes at the point b (resp. point d). �

Figure 26: Behaviour of Wu+ and W s− near the double primary homoclinic tangency point b for µ ∈ L±
1 (left)

and near the point d for µ ∈ L±
2 (right).

Let us consider again Fig. 19. As observed before, a point x (where x refers to any point S,
di, ci, i = 1, 2, ...) is in correspondence with a point x′. The points x and x′ correspond to (either
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double or cubic) tangencies related to homoclinic orbits of the same type but for different values of
µ. The structure of the bifurcation diagram is repeated as we move “down”, towards the rectangle
abcd, within the zone HZ±.

However, the following has to be taken into account: in the transition “from picture to
picture ′ ” new double tangency and cubic tangency points can appear. Indeed, as we move
down along HZ± and we get close to the rectangle abcd, the “steepness” of the sinusoidal curves
W u+ and W s− grows, meaning that more double and cubic tangency points (cusps) must appear
in the bifurcation diagram. See Fig. 29 for an sketch of the structure of HZ± and HZ∓ close to
the rectangle abcd.

Let us analyze why this growth of the steepness takes place as we approach the rectangle abcd.
In Fig. 27 we sketch the growth of the “steepness” which leads to a complication of the bifurcation
structure inside HZ± (or HZ∓) as moving “down” for HZ± (or moving “up” for zone HZ∓) and
approaching the rectangle abcd. The Figs. 27 (a), (b) and (c) correspond to values of µ ∈ L±

1

which are (a) far away from abcd; (b) not far from abcd (and µ corresponds to some point S) and
(c) near abcd (µ corresponds again to some S ′).

(a) (b) (c)

Ws+

W

Wu+

s−

Figure 27: Growth of the steepness of the stair structure.

If we consider a case like the one shown in Fig. 27(a) there are no bifurcation curves related
to primary quadratic tangencies inside HZ±. In particular, we cannot meet cubic tangencies
between the curves L±

1 and L±
2 for such values of µ. This is the expected situation far away from

the rectangle abcd, as shown in Fig. 9 for the model (5).
On the other hand, assume that the manifolds have a middle size of steepness as in Fig. 27(b).

In such a situation, keeping the quadratic tangency point marked by a circle in the figure, we find
the cubic tangencies c1 and c4 inside HZ±, see Fig. 19. Moving along the bifurcation curve from
S to c4 shown in Fig. 19 we find only few double quadratic tangency points like the point d4 (also
other mechanisms may create new types of quadratic double tangency, see Corollary 4.3.2 below).
This is also the situation shown in Fig. 9 for the model (5) where, for the pieces of the bifurcation
diagram shown, only one double quadratic tangency point is observed when moving from S to c4.

Finally, consider a case like Fig. 27(c). In such a situation, following the bifurcation curve
from S to c4, we expect to meet many double quadratic tangency points. This is due to the
accumulation process towards the rectangle abcd.

There are infinitely many such reconstructions when moving down towards the rectangle abcd.
To clarify the full picture the following lemma states the way in which the cubic tangencies
accumulate.

Lemma 4.3. For parameters µ inside HZ± the following considerations hold.

1. The primary cubic tangencies of type c1 can exist only ifW u+∩W s+ = ∅ andW u−∩W s− = ∅.
This means that c1 can only exist in the regions 3 and 10 of the bifurcation diagram Fig. 5.
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2. The primary cubic tangencies of type c2 can exist if W s+ ∩W u+ = ∅. Thus, they can exist
within the regions 3, 10 and 18 of Fig. 5.

3. The primary cubic tangencies of type c3 can exist if W s− ∩W u− = ∅. Thus, they can exist
within the regions 3, 10 and 15 of Fig. 5.

4. In the region 19 of Fig. 5 only primary cubic tangencies of type c4 can exist.

Proof. We follow the notation of Fig. 28, see also Fig. 24 and Fig. 25 for the different types
of cubic tangencies. Since we consider µ ∈ HZ± the cubic tangencies can only exist in the region
of the phase space which is below the local manifold W s+ and to the right of the local manifold
W u−. Then, if W u+ ∩W s+ 6= ∅, the point m1 is located above W s+

loc . This implies that the cubic
tangencies c1 and c2, which involve the point m1, cannot exist. Similarly, if W u− ∩W s− 6= ∅ then
the point m3 is located to the left of W u−

loc and the cubic tangencies c1 and c3 cannot exist. Finally
we note that for parameters µ ∈ HZ±, a set which includes the rectangle abcd (region 19), the
points m3 and m4 are always in the region where we can have a cubic tangency of type c4. �

Figure 28: Domain where we can have primary cubic tangencies c1, c2, c3 and c4.

Corollary 4.3.1. The cusp points c1, c2, c3 and c4 accumulate to the points a,d,b and c respec-
tively, which are the vertices of the rectangle bounding the zone GA.

In particular, the accumulation of the c1 and c4 type points to different vertices means that, at
some moment, the bifurcation points c4 and c

′
1 must interchange position inside HZ±. That is, the

µ1 coordinate of c4 becomes larger than the one of c′1 (see Fig. 29). See details in Fig. 8 (second
row right) concerning the model (5). This creates new double primary quadratic homoclinic
tangencies.

Corollary 4.3.2. There exist infinitely many primary double quadratic tangencies corresponding
to the intersection of the homoclinic branches related to the primary cubic tangency points of type
c1 and c4.

Similar considerations hold for HZ∓. As a result, we obtain the global bifurcation diagram
related to the homoclinic tangencies (quadratic and cubic) inside the zoneHZ±∪HZ∓, see Fig. 29.
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Figure 29: Structure inside the homoclinic zone HZ± ∪HZ∓. This qualitative picture sketches the continuation
of Fig. 19 for parameters close to the rectangle abcd. In Fig. 19 we showed three links of HZ± (and we denoted
by c̃i, ci and c

′
i, i = 1, ..., 4, the cusp points of each link of the structure) while. Here we show many links of both

HZ± and HZ∓ (and for simplicity we denote the cusp points ci for all the links). Compare with the quantitative
structure shown in Fig. 9 computed directly from the model.
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5 A quantitative approach to the bifurcation problem

Let us proceed now to a more quantitative analysis of the parameter and phase spaces of the map
Tµ,ε. To this end, we consider again the model (5) introduced in Section 2.

For simplicity of the presentation we consider again the same parameters that were considered
in Section 2, that is, b1 = 0.003, b2 = 0.0015, ψ = 1.6, A = 2 and ω1 = ω2 = 0. Other sets of
parameters have been also considered in simulations, the corresponding figures displaying a similar
behavior to the ones shown below.

As shown in Fig. 5, when leaving a homoclinic zone through an SA-boundary there is a region
of the parameter space where one expects that Tµ,ε exhibits different types of chaotic attractors
together with periodic sinks. To have a good picture of these regions we compute the maximal
Lyapunov exponent (MLE or Λ) of an orbit starting in the unstable invariant manifold (in both
domains of the FD). For each point in the (a1, a2)-plane we consider the initial condition (i.c.)
(z0, η0, s0) with z0 = 0.5, η0 = 0 and s0 either 1 or −1. To compute Λ we have used the MEGNO
approach (see [52] and also [53] for an application to conservative maps). For each initial data,
after a transient of 105 iterates, a maximum of 106 iterates has been used to compute Λ, but if a
periodic orbit up to a period k ≤ 103 is detected, the computation is stopped, the periodic orbit
is refined and Λ is obtained from DMk, where the map M is given by (5). A threshold Λ0 is used
to decide whether Λ is positive, zero or negative: Λ > Λ0, |Λ| ≤ Λ0, Λ < −Λ0, respectively. The
value used for Λ0 is 10

−6. The concrete values of a1, a2 in the computations go, in both cases, from
−0.15996 to 0.15996 with step 0.00008. This is relevant because other choices can change minor
details in the left plot in Fig. 30 for a1 > b1, but close to b1, and in the right plot for a2 > b2,
but close to b2, as we shall explain. Another detail to point out is the choice of the i.c. As we
can expect multiplicity of attractors, for some values of (a1, a2) the result depends on the i.c. To
check this effect a computation has been done using 106 pixels in the domain of Fig. 30 with 12
different i.c. (both for s0 = 1 and s0 = −1). The total fraction of cases in which not all the
i.c. give the same attractor is ≈ 0.002. We also did similar computations with smaller ε (e.g., by
dividing (b1, b2) by 2 and 3), obtaining similar results but with a minor presence of SA and sinks,
as one could expect.

5.1 Results of scanning the (a1, a2) parameter plane

The results are shown in Fig. 30. The left plot shows the computation for s = 1 while the right
one corresponds to s = −1. In the figure, the parameters (a1, a2) for which Λ > 0 and, hence, the
used initial point tends to a SA, are shown in dark grey. We plot in light grey the set of points for
which Λ = 0 and, hence, the initial point tends to an invariant curve. White regions correspond
to sinks, Λ < 0. As mentioned, some changes are produced if the initial point changes, because of
the possible multiplicity of attractors, but they have a minor impact on the global figure. We note
that, as expected, inside the light and dark grey regions there are infinitely many white domains
which correspond to sinks. Next we shall comment on such a structure in more detail.

Let us compare the Fig. 30 left with Fig. 5 (the following comments apply also to the right
one in an analogous way by exchanging the roles of a1 and a2). At a1 = −0.15, going from top to
bottom, we see a transition from a light grey domain to a dark grey one. It corresponds to the
bifurcation line L±

2 , while L
±
1 (in top of L±

2 ) is not observed in the figure. As discussed in Section
3 the homoclinic zone HZ± bounded by L±

1 and L±
2 corresponds to a situation between tangencies

of types k) and l) in Fig. 10. A SA surrounding the full figure-eight is not possible because points
to the left of W s− are trapped by the attractor around O2. Typically, on top of L±

2 it will be

33



-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

Figure 30: Maximal Lyapunov exponents (Λ) for the orbit with initial condition (0.5, 0, s0) with s0 = 1 (left) and
s0 = −1 (right). Dark grey points correspond to Λ > 0 (chaotic attractor), light grey points to Λ = 0 (invariant
curve) and white points to Λ < 0 (periodic sink). Some white domains are narrow and can be seen by magnifying.
Dark (resp. light) grey appears in red (resp. green) in the e.v.

an invariant curve, Λ = 0, or a sink, Λ < 0. However, it can happen that for (a1, a2) ∈ HZ±

an attractor, surrounding the figure-eight, is located “inside” W u+ but “outside” W s−, in the
homoclinic lobes. It can be either a high period sink or a “many-pieces” SA (see again Fig. 10 k)
and l)). And, in fact, attractors of this type have been located when either one uses many i.c. to
compute the orbits or for fixed a1 one proceeds to scan a2 with small stepsize (e.g. 10−6). The
same phenomenon has been observed in all other homoclinic zones displayed in Fig. 5 but which
can not be “seen” in Fig. 30.

The rectangle abcd is a very small rectangle located inside the mostly dark grey colored region
close to a1 = a2 = 0. The vertical (resp. horizontal) dark grey regions in Fig. 30 left (resp. in
Fig. 30 right) are located in the zone between the bifurcation curves L+

2 and the boundary “curve”
BD+ (resp. between L−

2 and BD−). The possible attractors, either sinks, SA or invariant curves,
for parameters (a1, a2) from the right part (resp. above) of L+

2 (resp. L−
2 ) are located inside the

upper (resp. the lower) loop of the figure-eight when we take s0 = 1 (resp. s0 = −1). Hence they
are independent of the value of a2 (resp. a1). This is the reason why we observe vertical (resp.
horizontal) lines in the Fig. 30 left (resp. in the Fig. 30 right).

The bifurcation “curve” BD+ (resp. BD−) is essentially a horizontal (resp. vertical) “curve”.
A point worth to stress is that BD+ and BD− determine a domain where the attractive invariant
curves of the map (in the light grey parameter region) are destroyed because they “fold” when
they have a tangency with the stable foliation of O (see [25] for details). The first one of these
tangencies is a cubic one. Then they become either a SA or a sink. As the curves attract the
unstable manifold, one can find a rough estimate of the size of this domain by asking that already
the first image of W u in a fundamental domain is no longer a graph. Points with z ∈ [0, 1), η = 0
are mapped to (z + A log(|y|), sign(y)|y|ψ), where now y = aj + bj sin(2πz) with j either equal to
1 or 2. The condition to stop being a graph is d(z + A log(|y|))/dz = 0. It is easily checked that
this gives the values aj = Cbj , where C =

√

1 + (2πA)2. For smaller values of |aj| already the
first image of the unstable manifold in a fundamental domain is no longer a graph.
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Consequently, the domain between HZ+ and BD+ (resp. HZ− and BD−) is expected to be
O(b1) (resp. O(b2)). For the present parameters (A= 2, b1 = 0.003 and b2 = 0.0015) the above
estimate gives C≈12.6061 and, hence, BD+ is expected to be at a1≈0.0378 while BD− is roughly
given by a2 ≈ 0.0189. Both values agree well with the Λ computations shown in Fig. 30.

Finally, we note the nice structure for BD+− observed in Fig. 30, looking like a curve between
dark and light grey with large oscillations. Crossing this “curve” the attractive invariant curves
surrounding the figure-eight are expected to be “folded”, becoming (possibly) SA. This has been
checked by scanning narrow intervals crossing the “curve” with small steps in a1, a2. Such a
structure depends on the concrete parameters b1 and b2 considered and on the representation of
the W u with respect to W s in the FD. As in the BD+ and BD− cases, folding starts with a cubic
tangency of the invariant curve with the stable foliation of O.
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Figure 31: Set of (a1, a2)-parameters of computed Λ < 0, as in Fig. 30 left, for the trajectory with initial condition
(0.5, 0, 1). Many details can be seen by magnifying the plot (in blue in the e.v.), computed with 16× 106 pixels, as
in the previous and next figures.

As previously mentioned, the white pixels in Fig. 30 correspond to periodic sinks (Λ < 0). The
global structure of this set of parameters in the (a1, a2)-plane is shown in Fig. 31 (in blue pixels
in the e.v.). This fills the white regions of Fig. 30 left.

5.2 Some details on the parameter domains related to sinks

The Fig. 32 magnifies the structure shown in Fig. 31 close to the rectangle abcd. We remark
that the homoclinic zone HZ+ is given by the condition |a1| ≤ 0.003 and HZ− by |a2| ≤ 0.0015.
Hence, comparing with Fig. 5, in Fig. 32 we show the rectangle (region 19) and part of the regions
17 and 18 within HZ−, part of the regions 25 and 26 in HZ+ and part of the region 24. The
dark grey points correspond to periodic sinks of all (detected numerically) periods, while the light
grey points are those which have period 2. Periods are counted on the FD. Hence, light grey
points correspond to periodic trajectories with i.c. in the s = 1 domain, the first iterate is in the
s = −1 domain, then go back to the s = 1 domain and close.

Let us try to explain the structure observed in Fig. 32. Concretely, we focus on the structure
of the 2-periodic sinks (in light grey in the figure, while dark grey corresponds to higher period
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Figure 32: In dark grey we represent the set of (a1, a2)-parameters with computed Λ < 0 for the trajectory
with initial condition (0.5, 0, 1). For these parameters the attractor is a periodic sink. In light grey we show those
parameters for which there is a 2-periodic sink as attractor. Periods are counted on the FD. Dark (resp. light)
grey appears in blue (resp. red) in the e.v.

sinks). In Section 4 we stated that the bifurcation diagram in the homoclinic zone HZ± (and
HZ∓) is organized by the cubic tangencies ci, i = 1, . . . , 4 and that these cubic tangencies ci
accumulate themselves to the corresponding vertex of the limit rectangle abcd.

On the other hand, we recall from Section 4.2.1 that the cubic tangencies are of “−” type (ci
are spring-area cusp points). As it is well-known, see [25, 34, 35], one of the possible (and most
frequently) configurations around a tangency of “−” type is such that the corresponding area of
stability in the parameter plane corresponds to a cross-road area, see Appendix A. Concretely, in
Fig. 33 we sketch the position of the fold bifurcation curves L+

1 and L+
2 , and the flip bifurcations

curves L−
1 and L−

2 . In particular, we observe that in a cross-road scenario the flip curves accumulate
to two different fold curves at different regions of the parameter space. This is the type of the
main stability areas shown in Fig. 32.

As it is known, see [47, 25] and also the Appendix A, related to each one of the cusp points
ci one expects to observe a cascade of cusp bifurcations (cubic tangencies) which accumulates to
it. Accordingly, in Fig. 32 we observe four families of what looks like cross-road stability regions
(large “triangular” regions basically in light grey) which accumulate to cubic points of the type ci,
i = 1, . . . , 4 in HZ± and HZ∓. Each type of cross-road (with different orientation) accumulates
to a different cubic tangency ci. We recall that from a cross-road configuration emanate four strips
of stability which can be easily observed in the Fig. 32. Two of them correspond to the strips
between the fold and the two flip bifurcation curves (i.e. between the curves L+

1 and L−
1 ,L

−
2 in

Fig. 33), while the other strips are bounded by the flip curves and a fold curve (i.e. between the
curves L−

1 ,L
−
2 and L+

2 in Fig. 33). By “the orientation of the cross-road” we refer to the direction
towards which it “points” the cusp point on L+

1 in Fig. 33. For instance, the cross-road in that
figure has the orientation (0,−1).
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Figure 33: Parameter representation of a cross-road area. The fold bifurcation curves are labeled with “+” while
the flip bifurcation curves are labeled with “−”. The dashed region corresponds to the cross-road stability area.

The structure around a cross-road can be clearly observed in the Fig. 32. For example the
largest cross-road area observed in Fig. 32 is located at (a1, a2) ≈ (−0.0038,−0.0023) and we
clearly distinguish the four strips. This cross-road has approximately the orientation of the vector
(1, 1). It is related to two cubic points of type c3: one in HZ

± and the other in HZ∓ (see Fig. 29).
Hence we observe that this cross-road is part of a (vertical) sequence of (roughly) cross-road
configurations which accumulate close to the top part of HZ± and, at the same time, it is part of
a (horizontal) sequence of (roughly) cross-road configurations which accumulate to the right part
of HZ∓.

At this point it is worth to stress that the results shown in figures 30, 31 and 32 have been
obtained starting at some fixed values of z, η, s. Due to the multiplicity of attractors and the
changes on its basins when we change (a1, a2) it can happen, for instance, that a sink of a given
period subsists for a domain slightly larger than what is shown. Indeed, this happens in Fig. 32.
In Fig. 34 we have been using a different method, by “following the attractor”. That is, starting
the computations for given (a1, a2) at the last iterate computed in the attractor found for nearby
values of (a1, a2).

Let us examine one of the sequences of (roughly) cross-road configurations mentioned. For
example, let us consider the horizontal sequence related to the cross-road located at (a1, a2) ≈
(−0.0038,−0.0023) in Fig. 32. Assume that this configuration is related with the return map
close to the cubic tangency c3 in HZ∓ for some (large) period k (see Appendix A for the details
of the derivation of the return map). The next cross-road configuration, located at (a1, a2) ≈
(−0.0011,−0.0023), is obtained as the stability region of the return map with period k + 1. For
a cubic tangency of “−” type, like the cubic tangency c3, we prove in Appendix A that, in
the limit k → ∞, the only possible configuration for the stability region related to the return
map is a spring-area configuration (see Fig. 41 right). We expect, then, to observe a spring-area
configuration in the limit of the sequence related to the cross-road at (a1, a2) ≈ (−0.0038,−0.0023)
as a1 approaches the cubic tangency c3 in HZ∓, i.e. for values a1 ≈ 0.003. This is exactly what
is observed in Fig. 34. 7

As an example we focus on some domains of sinks near a2 = 0.00059 in GA moving to HZ−

(see Fig. 5). These domains are so small that even the first one, which is the larger one, is not
visible in Fig. 32. Concretely, the Fig. 34 top left shows the last configuration of the cascade with

7In [34, 35] a transition scenario from cross-road to spring-area configuration was described, however it seems
that the one observed here might differ from that one. A complete description of the possible evolution scenarios
is needed to clarify this point. We postpone this analysis for future works.
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a1 < b1, that is, the last one inside the homoclinic zone HZ+. We clearly see how a spring-area
has separated from the fold curve, and that a flip curve appears bounding a strip (in black) at
some distance from the spring-area. Let k be the period of the return map close to the cubic
tangency c3 in HZ∓, see Appendix A. Then k = k1 + k2 where k1 is the number of iterates from
the domain s = 1 to the domain s = −1 and k1 from s = −1 to s = 1. Then, Fig. 34 top left
corresponds to (k1, k2) = (14, 22). We note that almost any initial condition on W u with s = −1
converges to the sink attractor related to this stability region.

The next stability domain is obtained for (k1, k2) = (14, 23) and it is shown in the Fig. 34
top right. In this case, there are few initial conditions of W u with s = −1 that converge to the
corresponding sink attractor. That is, the basin of attraction of the periodic sink intersects W u

in the s = −1 domain in a very small interval (or a collection of tiny intervals). Scanning the
values of z ∈ [0, 1] with a small step gives an estimate of the measure of this interval which is
≈ 0.002083. For this reason, to show the spring-area configuration, when for some (a1, a2) an
initial condition converges to a sink (or maybe a SA) related to the spring-area, we have used
the last iterate computed for these parameters (a1, a2) as initial condition for some nearby set of
parameters (a kind of continuation technique). This explains why some parts of the configuration
that are expected to correspond to 2-periodic sinks (in black) are observed in dark grey or even
ligh grey, which correspond to sinks of larger periods, or in white (for white small spots inside)
which correspond to strange attractors. We invite the reader to magnify the Fig. 34 top right close
to the crossing of the stability strips emanating from the spring-area configuration to observe the
details. We note that this is a consequence of the phenomenon of coexistence of attractors for
some of the parameters.

Keeping k1 = 14 fixed, for k2 = 24 and k2 = 25 we obtain the next two elements of the
cascade related to the cubic tangency c3 in HZ±. We see the spring-area configurations and how
they separate from the strip of stability which previously was part of the cross-road configuration.
Note the size of the configuration, which agrees with the scalings obtained for the size of the
spring-areas for different k values in Appendix A.

Similar considerations concerning the accumulation of the stability areas apply to the other
types of cross-road configurations which have a different orientation. Hence the cross-roads with
orientations (1,−1), (−1, 1) and (1,−1) accumulate to cubic tangency points of type c4, c1 and
c2 in HZ±, respectively. The last type of oriented cross-road (i.e. (1,−1)) might be difficult to
observe in Fig. 32. The largest one of these domains is located at (a1, a2) ≈ (−0.0054,−0.0028)
slightly above a much larger cross-road with orientation (−1, 1). The reader can also observe
another transition from cross-road to spring-area related to the vertical sequence of the previous
large cross-road with orientation (−1, 1), for values of a2 ≈ −0.0015 the spring-area separates
from the previous cross-road configuration in the same way that is observed in Fig. 34.

We remark that the previous considerations follow from a local study around the cubic tangency
and around the fixed points of the return maps of period k. On the other hand, the Fig. 32 displays
a fascinating global structure which needs a different approach to be analyzed. In this sense, it
is interesting to note that each of these cross-road configurations is connected with the others by
four large strips of stability (also in light grey, hence for these parameters there are 2-periodic
sinks) which emanate from the main part of the stability region. This is related with the structure
of the bifurcation diagram inside HZ± (and HZ∓) which also joins the different cubic tangency
points, see Figs. 19 and 29. In Fig. 35 we sketch the global structure observed in Fig. 32 where
we represent the fold and flip bifurcation lines and how they intertwine.
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Figure 34: Some details of a cascade of stable configurations accumulating to a cubic tangency c3 in HZ∓. It
corresponds to a near horizontal cascade for a2 close to 0.00059. We observe that in the limit of the cascade, i.e.
for periods k large enough, we have a spring-area configuration. In black we plot the parameters (a1, a2) for which
M has a 2-periodic sink, in light grey those for which it has a 4-periodic sink and in dark grey those parameters
for which a periodic sink of period less than 2000 has been found. Light (resp. dark) grey appears as pale blue
(resp. red) in the e.v.
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Figure 35: Sketch of the structure of the stability zones in the parameter plain. Detail of the joining strips and
main stability islands shown in Fig. 32 related to the homoclinic zone HZ±. The thick lines correspond to fold
bifurcation curves, the thin ones to flip bifurcation curves.
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Figure 36: We show in dark grey and light grey the zones of the (a1, a2)-plane where we expect to have tail
strange attractors AT− and AT+ respectively. The grey color corresponds to the domain where global attractors
GA are expected, that is, the abcd rectangle. In particular, we can identify the points e and g in Fig. 5. The white
domains contained in these colored regions correspond to sinks. Dark grey, grey and light grey appear as blue, red
and magenta in the e.v.

5.3 Tail and global attractors

As a next step in our description of the parameter space we look for the region where tail strange
attractors (together with periodic sinks) are expected. See Fig. 13 for an sketch of the manifolds
giving rise to a (possible) tail attractor AT+. We recall that the model (5) is defined in the union
of the s = 1 and s = −1 domains and that in both domains the positive orientation of y points to
the point Os (or to the saddle if the domains are suitably chosen) of the Fig. 13. A tail attractor
AT+ (resp. AT−) can be easily identified using the model (5) because the trajectories starting on
W u verify that

1. most of the iterates correspond to s = 1 (resp. s = −1) and have y > 0,

2. few iterates, however, have s = 1 (resp. s = −1) and y < 0,

3. there are no iterates with s = −1 (resp. s = 1) with y > 0.

Using this characterization one can easily identify the regions 18 and 26 in Fig. 5. These
regions, for the selected values of b1, b2, ψ and A of the model, are shown in Fig. 36. Note that
one can give explicit quantitative information on the size and concrete shape of these (and most
of the other) zones in the parameter space as a function of the parameters of the model (5).

5.4 Details on Lyapunov exponents along a line in the parameter plane

To conclude the comments about the model and the parameter space, we give some details on Λ
computed along the horizontal line a2 = 0 in the (a1, a2)-plane with step in a1 equal to 10−6. This
line is inside the homoclinic zone HZ−. We use z = 0.123456789, η = 10−5 and either s = 1 or
s = −1 as i.c. The results are shown in Fig. 37. We remark that the fraction of values of a1 such
that s = 1 and s = −1 lead to different attractors is less than 1.9%.

Let us explain the Fig. 37 and give some details on the attractors observed. For values of
a1 < −0.1432 in Fig. 37 (2nd row left) we mainly observe an invariant curve as global attractor,
with tiny sink intervals and, exceptionally, some SA. An example of such an invariant curve is
shown in Fig. 38 (1st row left) for a1 = −0.145.

As expected in a general intermittency route to chaos scenario, see [54, 24, 25] for an overview
of some related results, the structure of the set of parameters for which the attractor is either a
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Figure 37: We display in the vertical axis Λ computed along a2 = 0 as a function of a1. The initial point of the
orbit is (0.5, 0, s). First row left: s = 1. Right: s = −1. All the other plots are magnifications of the previous ones
where we display the cases s = 1 (dark grey) and s = −1 (light grey) together. The values obtained using s = 1
and s = −1 coincide in many cases. The values for s = −1 are plotted after the ones for s = 1. Hence, the light
grey is hidding dark grey in most of the plots. Dark (res. light) grey appears as blue (resp. magenta) in the e.v.
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Figure 38: Detail of the attractors observed for the model (5) with a2 = 0 for different values of a1. We consider
the i.c. (z, η, s) = (0.123456789, 10−4, 1) and we perform a transient of 2 × 105 iterates. Next we plot 105 iterates
of the trajectory. The light grey (resp. dark grey) points correspond to iterates of the trajectory in the s = 1 (resp.
s = −1) domain. From left to right, 1st row: invariant curve (a1 = −0.145), SA of type A∗ with a global nature
(a1 = −0.129), detail of the fold in the previous SA (a1 = −0.129) and a SA of type A∗ with a local periodic nature
(a1 = −0.073). 2nd row: Detail of the Hénon-like structure of the previous SA (a1 = −0.073), SA of type A∗ with
a local nature (a1 = −0.034), globalization of the previous SA (a1 = −0.033) and a SA of type A− (a1 = 0.006).
Light grey (resp. dark grey) appears as red (resp. blue) in the e.v.

SA or an invariant curve has a fractal structure. Accordingly, between the SA and/or invariant
curves we detect many (infinitely many should exist) small platforms corresponding to periodic
sinks of different period. For −0.1431 . a1 . −0.1344, Λ shows a relatively large platform, see
Fig. 37 (2nd row left and center left plots). This corresponds to a periodic sink attractor and, on
this interval, the attractor has exactly one point in each one of the components of the FD for (5).

Now we comment on the observed SA. Around a1 ≈ −0.1343 we observe SA, that is Λ > 0.
It is checked that the SA looks like a folded invariant curve. This mechanism giving rise to a SA
was described in [24, 25]. We show the SA for a1 = −0.129 in Fig. 38 center-left and a detail
of the fold in center-right plots. We note that these SA have a global nature: they project on
the z variable covering the full [0, 1) interval, both for s = 1 and s = −1. We recall that the
existence of SA of global nature was proved in [55] to be a prevalent property in the context of
the one-parameter unfolding of a saddle-node cycle. We also want to draw the attention to the
recent works [56, 57] where the theory of rank one attractors is applied to prove the existence of
global attractors for the dissipative separatrix map (as derived in [23, 40]) for suitable ranges of
the parameters. In the present case the situation is similar for curves around the full figure-eight.

After a large platform, for a1 ≈ −0.1125, we observe again an invariant curve as a global
attractor, see Fig. 37 (1st row right).

For −0.1125 . a1 . −0.092 several transitions from invariant curve to periodic sinks and
vice-versa are detected, see for example Fig. 37 (2nd row right and center-right plots).

In many of the illustrations in Fig. 37 one can detect transitions between SA and periodic
sinks. Most of the SA detected have a local nature, that is, the projection on z consists of one
or several intervals not covering [0, 1). For example in Fig. 38 (right) we show the attractor for
a1 = 0.073. As stated in [58], these local nature attractors are persistent (the prevalence was
also proved in [55]) in families unfolding a saddle-node point. These are local periodic Hénon-like
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Figure 39: Detail of the attractors observed for the model (5) with a2 = −10−3. We consider the initial condition
(z, η, s) = (0.123456789, 10−4, 1) and we perform a transient of 2 × 105 iterates. Next we plot 105 iterates of the
orbit. Colour codes as in Fig. 38. Left: Tail attractor of type AT− (a1 = −0.0095). Center: Magnification of the
previous figure. Right: Global SA of type GA (a1 = 0).

attractors [59, 60] which appear for parameters at the end of a period-doubling cascade. These
period-doubling cascades can be of direct or inverse type, can be total or only partial, and can
be observed in many of the figures. See, e.g., [61] for details on the cascades of SA. For example,
they can be clearly observed in the Fig. 37 (3rd row right, 4rd row center-left and right, 5th row
right plot and 6th row left), where we also observe partial cascades which at some point undo the
process.

Typically, by a small change of the parameter a1 these local attractors globalize and become
of global nature. This transition takes place for a1 = −0.034 where a SA of local nature is shown
in Fig. 38 (2nd. row center-left). For a1 = −0.033 we observe in Fig. 38 (2nd. row center-right)
how the attractor has a global nature.

All the SA commented before are related to the A∗ SA. For a1 > 0 we also observe SA of type
A− as shown in Fig. 38 (2nd. row right) for a1 = 0.006.

As a final remark concerning SA, we note that for a2 = 0 we have not detected tail attractors
AT− nor global strange attractors GA. This might be related to the properties of the model (5) for
a2 = 0. To show these “homoclinic” SA, consider for a moment a2 = −0.001. For a1 = −0.0095
we illustrate in Fig. 39 (left) a tail attractor of type AT−. As can be observed in Fig. 39(center)
some of the iterates of the orbit which are in the s = −1 domain have y > 0. Finally, for a1 = 0
we show a global SA of type GA.

As it has been commented, between the SA and/or the invariant curve attractors we should
have (infinitely many intervals of) periodic sinks. In Fig. 40 left we display some periods observed
as a function of a1, also along the line a2 = 0. These are periods for the model, i.e., we count the
number of points in the FD. The period for the figure-eight map is much higher. Near 68% of the
values of a1 taken in [−0.15, 0.05] have sink attractors. Among them near 72% have either period
1 (and appear in s = 1, mainly for a1 > 0) or period 2 (with one point in s = 1 and another
in s = −1, mainly for −0.1431 < a1 < −0.02, or with both points in s = −1 for a1 > −0.02),
independently of the initial value of s. In Fig. 40 left one can also check the behavior of the
period as a function of the distance to a saddle-node bifurcation. If a s-n appears for a critical
value a1 = a1,c, then the period of nearby sinks behaves as constant×|a1 − a1,c|−1/2, as usual. See
Appendix B for details. Of course, this behavior takes place around every one of the saddle-node
bifurcations. In particular at the creation of sinks of the different periods by this mechanism.

In the Fig. 40 right we check in detail this behavior. We select the domain a1 ∈ [a1,c−e−8, a1,c−
e−20], where a1,c is the value for the first appearance of period 2 with a1 > −0.15 (see Fig. 37
second row left). In the selected range all the periodic orbits alternate points in s = 1 and s = −1.
To fix ideas consider as relevant map M2 instead of M and, hence, the periods are halved. A
fixed point appears for a1 = a1,c as a saddle-node bifurcation. To the left of a1,c (in the present
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Figure 40: On the left we display the period (vertical axis) of the sinks detected (up to period 40) as a function of
the parameter a1 (horizontal axis). The right side shows log(Per) as a function of log(a1,c−a1), where Per denotes
the period of the sink and a1,c ≈ −0.143170413565918 is the value for the first appearance of period 2 orbits with
a1 > −0.15. The line from (−20, 6) to (−14, 3) with slope −1/2 is just for reference. See also Fig. 37 second row
left and the text for details.

interval; in other ranges exchange left by right) there are points of increasing period, tending to
∞ as a1 → a−1,c. They have rotation numbers of the form 1/k, k > k1. Also periodic points of
rotation numbers of the form j/k, k > kj for j = 2, 3, 4, . . . should appear. The theoretical value
k/j tends to behave as constant×|a1−a1,c|1/2. The agreement with Fig. 40 (right) is excellent. For
the primary (with j = 1) periodic orbits detected, scanning the range [a1,c − e−8, a1,c − e−20] the
periods (under M) go from 24 to 11026. All of them have been detected without exceptions. The
scanning has been made with a small constant step in the variable log(a1,c−a1). Furthermore, the
range of values of a1 for which a primary sink of period k (under M2) exists, tends to be a given
fraction of the distance between the creation of the sinks of period k and k + 1. See Appendix B
for more quantitative details.

We also remark that, before reaching the value a1,c some SA have already been detected. They
appear when the graph of the invariant curve attractor starts to develop folds and becomes a SA.
This occurs for a1 ≈ −0.143236. From that point until a1,c the maximum value of Λ between the
end of sinks of period 2k and the beginning of the ones of period 2k+2 increases up to a maximum
for a1 ≈ −0.143190 (2k = 100) to decrease later tending to 0 when k → ∞ and, hence, a1 → a−1,c.

The right hand side of Fig. 40 right deserves a comment. It is seen that for values of log(a1,c−a1)
between ≈ −9.5 and −8 there are few sinks detected. The reason is that the width of the intervals
of existence of these sinks is small compared with the step used to scan the variable a1 in that
zone.

We conclude this section by noting that all the predicted types of attractors have been observed
in the model (5) and all the regions in the parameter space have been numerically obtained. The
evolution of the parameter and phase space in terms of the parameters of the model (5) has been
described providing a more detailed approach to the figure-eight bifurcation problem considered.

6 Conclusions and outlook

We have studied the bifurcation diagram related to the unfolding of a planar dissipative figure-
eight under a non-conservative periodic forcing.

First, using a topological approach, the stair structure of one of the borders related to a
homoclinic zone has been analyzed. We have shown that this is due to the distribution pattern of
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the cusp points in the parameter space. All the related bifurcations curves have been described.
Moreover, concerning the phase space of the system, all the possible different attractors have been
described and we have discussed about the possible transitions between them.

Second, we have introduced a suitably adapted return map model to study the bifurcation
problem. We have detected all the attractors predicted by the theory giving further quantitative
details on the parameter zones and bifurcations that take place in the system. We think that such
a more quantitative approach, which combines topological, analytical and numerical techniques,
is essential for real applications.

This work leaves open several related questions to be studied in future works. Let us briefly
mention some of them.

1. Concerning the bifurcation diagram in Fig. 5 it must be interesting to determine the bound-
ary BD+− of the region 24, to study its evolution with respect the parameters and to
determine the size of such a region.

2. Also, the mechanisms of creation/destruction of folds, specially in the regions 2,9,17,24,25,
31 and 32, should be analyzed.

3. Another question concerns the rate of accumulation of the stairs that form the lines L±,∓
1,2

when approaching to the limit square abcd. This might be relevant because of the univer-
sality of the figure-eight problem studied.

4. The same universality criterion applies to the amazing structure displayed in Fig. 32, which
certainly deserves further investigations to be clarified.

5. A related question to the previous item concerns the detachment mechanisms of the spring
areas of stability from a cross-road configuration. It might necessary to look for more global
return map close to cubic tangencies (or local but to higher order, for example considering
different types of generalized cubic maps).

6. Another point is related to the orientation-reversing case, see Fig. 42 right in Appendix A.
Note that, in such a situation, the stability domains are related to cubic tangencies of type
“+” and “−” and, consequently, one expects the stability configurations to be different from
those displayed in Fig. 32.

We believe that the techniques presented in this work, which can be adapted to other situations
and problems (including multidimensional ones), can be also useful for further investigations in
these (and maybe other) directions.
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A On cubic homoclinic tangencies: a review of results.

Bifurcations of cubic homoclinic tangencies were studied in [47] for the general case (see also
[48, 49, 62]). Here we give some review of results from [47]. However, for simplicity, we consider
only the two-dimensional case (although, in [47] a multidimensional case was studied).

Let F0 be a two-dimensional Cr-smooth, r ≥ 6,8 diffeomorphism satisfying the following con-
ditions.

• C1) F0 has a saddle fixed point O with multipliers λ and γ such that 0 < λ < 1 < γ;

• C2) the saddle value σ ≡ λγ is less than 1; 9

• C3) the stable W s
0 and unstable W u

0 invariant manifolds of O have a cubic tangency at the
points of some homoclinic orbit Γ0.

Let Fµ, µ = (µ1, µ2) be a two parameter family which unfolds generically the initial cubic
homoclinic tangency, i.e. the parameters µ1 and µ2 can be chosen as the splitting parameters of
W s

0 (µ) and W u
0 (µ) (see (7) below for the concrete role of µ) with respect to some point of the

homoclinic orbit Γ0.
Consider a small fixed neighborhood U of the contour O ∪ Γ0. Such a neighborhood U is the

union of a small neighborhood (disk) U0 containing the point O with a number of small disks
surrounding those points of the orbit which do not belong to U0.

The main problem here is to study bifurcations of single-round periodic orbits from U within
the framework of the family Fµ. Every point of such an orbit can be considered as the fixed point
of the corresponding first return map.

A.1 Derivation of the return map

As usual, the first return maps are constructed as a composition of two maps: the local map T0(µ),
where T0 ≡ Fµ

∣

∣U0, defined on U0, and the global map T1(µ) : U0 → U0 defined by the orbits close
to a global piece of Γ0. Then the first return maps can be represented as Tk = T1T

k
0 for every

sufficiently large integer k (k = k0, k0 + 1, ...).
For simplicity, we assume that there are Cr-coordinates in U0 in which the local map T0

is linear, that is, given by x̄ = λx, ȳ = γy.10 Accordingly, the map T k0 can be written as
xk = λkx0, yk = γky0 or as xk = λx0, y0 = γ−kyk. The latter form is called the cross-form of the
map T k0 .

For µ = 0, let M+(x+, 0) ∈ W s
loc and M

−(0, y−) ∈ W u
loc be a pair of homoclinic points of the

orbit Γ0 and Π+ and Π− be small neighborhoods of the points M+ and M− respectively. Let q be

8such smoothness is required for the correct study of certain codimension 2 bifurcations of periodic orbits.
9in fact, we only exclude the case σ = 1, the case σ > 1 can be reduced to the case σ < 1 for the inverse map.

10As it is well-known, a sufficiently smooth linearization is not always possible. However, we can introduce
Cr-coordinates on U0 in which the local map T0(µ) has the so-called main normal form, [47, 63, 64],

x̄ = λx+ h1(x, y, µ)x
2y, ȳ = γy + h2(x, y, µ)xy

2.

Then the map T k
0 for all k can be written in the cross-form as follows

xk = λkx0 +O(λkγ−k), y0 = γ−kyk +O(γ−2k),

where (xk, yk) = T k
0 (x0, y0). These formulas show that there are no principal differences between the linear and

nonlinear cases.
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such integer that M+ = F q
0 (M

−). Then the global map T1(µ) = F q
µ : Π− → Π+ can be written as

x̄− x+ = ax+ b(y − y−) +O (x2 + (y − y−)2) ,
ȳ = µ1 + µ2(y − y−) + cx+ d(y − y−)3 +O (x2 + |x||y − y−|+ (y − y−)4) ,

(7)

where (x, y) ∈ Π−, (x̄, ȳ) ∈ Π+, d 6= 0 since the homoclinic tangency is cubic and bc 6= 0, since the
map T1 is diffeomorphism.

When a cubic tangency splits, new quadratic tangencies can appear. This fact takes place for
our family Fµ for which the following result, stated in [47] holds.

Proposition A.1. On the (µ1, µ2)-parameter plane there exists a bifurcation curve B0 given by

µ1 = ±2d
[

−µ2

3d
(1 +O(µ))

]3/2

, (8)

such that at µ ∈ B0 the map Fµ has a close to Γ0 (single-round) homoclinic orbit consisting of
points of quadratic tangency of W u

µ and W s
µ.

Now we consider single-round periodic orbits and study their bifurcations. For every such an
orbit one can consider its first return map having the following representation

Tk = T1T
k
0 : Π+ → Π− → Π+,

where k can take any integer value beginning at some k̄, i.e. k ∈ {k̄, k̄ + 1, . . . }. Denote the
coordinates (x, y) in Π+ and Π− as (x0, y0) and (x1, y1), respectively. From (x1, y1) = T k0 (x0, y0) it
follows that x1 = λkx0 and y0 = γ−ky1. Thus, by (7), we can write the map Tk in cross-coordinates
(x0, y1) as follows

x̄0 − x+ = aλkx0 + b(y1 − y−) + . . . ,
γ−kȳ1 = µ1 + µ2(y1 − y−) + d(y1 − y−)3 + cλkx0 + . . .

(9)

Introduce shifted coordinates ξ = x0−x+ + ν1, η = y1− y−+ ν2, where νi = O(λk) for i = 1, 2, in
such a way that the first equation does not contain constant terms and the second one quadratic
terms in η. Then system (9) is recast as follows

ξ̄ = aλkξ + bη +O
(

λ2kξ2 + η2
)

,
η̄ = m1 +m2η + dγkη3 + cλkγkξ + γkO

(

λ2kξ2 + λk|ξη|+ |η|4
)

,
(10)

where m1 = γk
(

µ1 − γ−ky−(1 + . . . )
)

, m2 = γk
(

µ2 +O(λk)
)

. Now we rescale coordinates as
follows

ψ =
b

√

|d|
|γ|−k/2X, η =

1
√

|d|
|γ|−k/2 Y. (11)

Then the system (10) is recast as

X̄ = Y +O(|γ|−k/2),
Ȳ =M1 +M2Y + αY 3 + bcλkγkX +O(|γ|−k/2), (12)

where α = sign d,

M1 =
√

|d|γ3k/2
(

µ1 − γ−ky−(1 + . . . )
)

, M2 = γk
(

µ2 +O(λk)
)

. (13)

47



Evidently, the rescaled parameters M1 and M2 for large k can take arbitrary finite values when
varying µ1 and µ2 near zero. Also, since the rescaling factors in (11) are asymptotically small as
k → ∞, the domain of definition for new coordinates X and Y is (asymptotically) large. Then,
since |λγ| < 1, the rescaled map (12) is asymptotically close to the following cubic map

X̄ = Y, Ȳ =M1 +M2Y + αY 3 (14)

which is, in fact, a one-dimensional cubic map with α = sign d. Thus, we can now recover
the bifurcations of the fixed points. However, we need to take into account that our map is a
diffeomorphism. Therefore, we have to keep the small term bcλkγkX in (12). That is, we must
consider the normal rescaled form as the following two-dimensional diffeomorphism

X̄ = Y, Ȳ =M1 +M2Y + βkX + αY 3, (15)

where βk = bcλkγk is the (main part of the) Jacobian of the first return map Tk.

A.2 Bifurcation diagram of the return map (15)

The bifurcation diagram for the map (15) is shown in Fig. 41 (a) for the case α = +1 and in
Fig. 41 (b) for the case α = −1. The bifurcation curves are: L+ – for the fixed points with the
multiplier +1; L− – for the fixed points with the multiplier −1; C+

1,2 – for the period 2 points with
the multiplier +1; C−

1,2 – for the period 2 points with the multiplier −1 (second period doubling).
Their equations are given by

L+ : M1 = ±2

3

(

1 + βk −M2

3α

)3/2

L− : M1 = ±2

3

(−1 − βk −M2

3α

)1/2

(2 + 2βk −M2)

C+
1,2 : M1 = ± 2

3
√
3
(−M2 − 2(βk + 1))3/2 in the case α = +1

C+
1,2 : M1 = ± 2

3
√
3
(M2 + 2(βk + 1))3/2 ,M2 > −2

3
(βk + 1), in the case α = −1

C−
1,2 : M2

1 =
1

216α
[6(βk + 1) +M2 ± S]2 [−5M2 − 6(βk + 1)± S] , where

S =
√

(3M2 + 2βk + 2)2 − 8(β2
k + 1).

(16)

We should remember that βk is small and it tends to zero geometrically when k → ∞.
The regions I Fig. 41(a) and (b) correspond to those values of the parameters M1 and M2 for

which the map (15) has only one fixed point and has no periodic orbits. In both cases this point
is a saddle. However, in the case α = +1, it is the saddle-plus (both multipliers are positive), and
in the case α = −1, the point is the saddle-minus (both multipliers are negative). The dashed
regions in Fig. 41(a) and (b) correspond to those values of the parameters M1 and M2 at which
the map (15) with α = +1 and α = −1, respectively, has an asymptotically stable fixed point.
These regions are bounded by the curves L+ and L−.
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Figure 41: Bifurcation curves of the map Tk(µ): a) the case of tangency of “+” type: d > 0, γk > 0, b) the case
of tangency of “−” type: d < 0, γk > 0.

The stable fixed points appear in different ways depending on the case. In the case α = +1 such
points are born under the saddle-node bifurcation through the curve L+ and, in the symmetric
case M1 = 0, a pitch-fork bifurcation I → II takes place when crossing the cusp point P1.

In the case α = −1, at the transition I → II (when crossing the segment [P1, P
′
1] of the

curve L−), a period doubling bifurcation occurs: here the fixed point becomes stable in II and
two saddle points of period two are born in its neighborhood. Along the path I → III(III’) → II
on the parameter plane, we meet, first, a saddle-node bifurcation of period 2 when crossing the
line C+

1 or C+
2 . This bifurcation is non-degenerate, and, as result, a stable period 2 point appears

when (M1,M2) ∈ III (III’). In turn, this period 2 point undergoes a period doubling bifurcation
on the curve L−: the stable period 2 cycle merges with the saddle fixed point and, as result, the
latter becomes stable at (M1,M2) ∈ II. However, when the parameters move to the domain IV,
one more stable fixed point appears due to a saddle-node bifurcation when crossing the curve L+.
Thus, at (M1,M2) ∈ IV two stable fixed points exist and here the cusp point P2 corresponds to
the pitch-fork bifurcation: 1 stable fixed point gives rise to 2 stable and 1 saddle fixed points. For
values of the parameters from the domain V(V’), the map has again only one stable fixed point,
since the other stable point undergoes a period doubling bifurcation at the transition IV→ V(V’).

A.3 Cascades of periodic sinks at a cubic homoclinic tangency

Having into account the relations (13) and the formulas (8) and (16) for the bifurcation curves,
the following result was obtained in [47].

Theorem A.1. Concerning the existence of a cascade of periodic sinks at a cubic homoclinic
tangency, the following two assertions hold:

(i) In any neighborhood of the origin of the (µ1, µ2)-parameter plane, there exist infinitely many
domains Sk accumulating, as k → ∞, at a bifurcation curve B0 and such that the map Fµ
has at (µ1, µ2) ∈ Sk an asymptotically stable single-round periodic orbit of period k.

(ii) The curve B0 has the equation (8). The boundary of the domain Sk consists of the curves
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L−
k and L+

k whose equations are as follows11

L+
k : µ1 = γ−ky−(1 + . . . )± 2d

(

γ−k(1 + . . . )− µ2

3d

)3/2

,

L−
k : µ1 = γ−ky−(1 + . . . )± 2

3

(

µ2 − 2γ−k(1 + . . . )
)

√

−µ2 − γ−k(1 + . . . )

3d
,

(17)

where the dots stand for terms tending asymptotically to zero as k → ∞.

The bifurcation diagram associated to this theorem is shown in Fig. 42 left and center plots.
The stability regions Sk are marked by the hatching. They correspond to the stability zones
of Fig. 41: either zone II for the case d > 0, γk > 0 (a), or zone II∪ IV∪V∪V’ (b), in the
rescaled parameters M1 and M2. Since these zones have size of order 1 in Fig. 41, then their sizes
in the (µ1, µ2)-parameter plane are of order γ−k along the µ2-direction and order γ−3k/2 along
the µ1-direction. Thus, we can see that, although the stability zones near cubic tangencies are
asymptotically small, they are larger than those in the case of a quadratic homoclinic tangency,
where such zones have order γ−2k along the µ1-direction.

Remark. Similarly one derives a return map when γ < 0 (e.g. orientation reversing case), see [47]. It

might happen that both sides of the cascade show a different type of stability area. This is illustrated,

for completeness, in Fig. 42 right.
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Figure 42: Main bifurcations curves near a point µ1 = µ2 = 0 that corresponds to a cubic homoclinic tangencies.
We display here also the curves C+

k1 and C+
k2 (the dotted lines) from (16).

A.4 The cross-road scenario

The map (15) is obtained as a limit return map for k → ∞. The ignored terms are sufficiently
small for k large enough meaning that, at the end of a cascade of cusp points accumulating to
a concrete cubic tangency, the stability area expected should be either a saddle-area of stability
or an spring-area one. However, in concrete applications these limit cases might be observed for
large values of k and other scenarios, giving rise to other types of stability area, can be observed

11see the corresponding equations for the curves L− and L+ (16) in the rescaled parameters M1 and M2
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for moderated values of k, see [25]. For completeness, here we comment on the cross-road scenario
because this is one of the observed in the Fig. 32 for the model (5).

Consider a two parameter family of maps fa,b : R
2 → R

2, a, b ∈ R. For a fixed k ∈ N, the
family F k

µ is an example of such a biparametric family. Denote by S the set of fixed points of fa,b,
that is, S = {(a, b, x, y) ∈ R4 such that fa,b(x, y) = (x, y)}, and denote by Λ : S → R the map

Λ(a, b, x, y) =
trDfa,b

detDfa,b(x, y) + 1
.

Let (a0, b0, x0, y0) be a regular point of S and assume that fa,b has a cusp point at (x0, y0) for
(a, b) = (a0, b0) of “−” type. We say that fa,b displays a cross-road area near (a0, b0, x0, y0) if there
is a domain W ⊂ S such that

1. the map Λ|W has one, and only one, non-degenerated critical point of saddle type(a1, b1, x1, y2)
with −1 < Λ(a1, b1, x1, y2) < 1, and

2. (a0, b0, x0, y0) is the only one cusp bifurcation point in W .

If fa,b displays a cross-road area, then the projection onto the (a, b)-plane of S gives a bifurca-
tion pattern like the one shown in Fig. 33, which corresponds to the pattern observed in Fig. 32
related to the cascade of the cubic tangency points c1, . . . , c4 of “−” type.

At the end of the cascade of cusp points which accumulate to a cubic tangency point of “−”
type, we should observe areas of stability of spring area type. The reader is referred to [34, 35]
for a description of one of the possible scenarios to evolve from a cross-road area to a spring area.

It turns out that the cross-road scenario appears quite frequently in codimension 2 unfoldings
near a cubic tangency. The universal model (5) considered in this work is an example of such a
fact. However, the cross-road scenario might be (a priori) expected in codimension 3 unfoldings
near a quartic tangency instead. See related comments in [25]. Further investigations are required
to provide an explanation of the so common presence in (5) and other scenarios.

B Creation of sinks close to a saddle-node bifurcation in

S
1

As pointed out in Section 5, when the attractor is an invariant curve and the rotation number
tends to zero periodic sinks of period k and rotation number 1/k show up generically. They appear
at a saddle-node (s-n) bifurcation of the k-th power of the map and are destroyed at another such
s-n. Using the k-th power of the map the process is repeated again and again in a self-similar way.
Also sinks of rational rotation number of the form j/k, k → ∞ are found generically.

Here we want to discuss some simple scaling properties. To this end we consider an analytic
diffeomorphism, Fa(x), in S1 = R/Z of the form

x 7→x+ a+ bf(x) with f(x)>0 ∀x∈S
1\{0}, f(0)=0, df/dx(0)=0, d2f/dx2(0)>0, b≫ a>0.

(18)
Note that it is not restrictive to assume d2f/dx2(0) = 2, which amounts to rescale b. For a fixed

value of b we are looking for the behavior when a → 0. Let a
(k)
sni, a

(k)
snf be the initial and final

s-n of creation and destruction of sinks of period k. We want to emphasize that any analytic
diffeomorphism in S1 is of the form x 7→ x+a+f(x). However, we keep the expression depending
on b to make clear that some results depend on b for a fixed f . We have the following result.
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Proposition B.1. Assuming the analytic diffeomorphism x 7→ Fa(x) = x+a+ bf(x) satisfies the
properties in (18) then

i) the values of a
(k)
sni and a

(k)
snf behave generically as c1/k

2 +O(1/k3) for k sufficiently large,

ii) the ratio (a
(k)
sni − a

(k)
snf)/(a

(k)
sni − a

(k+1)
sni ) tends to a limit (depending on b) when k → ∞, and

iii) the minimal value of the multiplier of the periodic orbits of period k for a ∈ [a
(k)
snf , a

(k)
sni] tends

to a limit (also depending on b) when k → ∞.

Proof. As a first step, for a given value of a we consider a vector field x′ = h(x) defined
on an interval [−m(a), m(a)] such that the time-1 flow ϕht=1 of h in that interval differs from Fa
by a quantity O(a2). This vector field can be obtained by the usual periodic suspension and
averaging technique (see, e.g., [65]) based on [66]. If a is negligible in front of m(a) the map
Fa differs from the identity by a quantity O(m(a)2) and, hence, the difference between Fa and
ϕht=1 is O(exp(−c/m(a)2)) for some c > 0. This will be O(a2) if we take m(a) = O(| log(a)|−1/2)
which is, indeed, much larger than a for a sufficiently small. It is also clear that the same interval
[−m(a), m(a)] can be used for some range of smaller values of a, with the same bounds. Later we
shall be more precise on the size of that range.

Any point p ∈ [F−1
a (m(a)), m(a)] can be parametrized by a “local time” z ∈ [0, 1] such

ϕht=z(F
−1
a (m(a))) = p. Due to the errors in the approximation and the size of the vector field,

the error in z can be bounded by O(a2| log(a)|). As we shall see, it is necessary to bound all the
errors in time. Then, any point q in the circle, say from the vicinity of m(a) to the vicinity of
2π − m(a) can be parametrized as follows. Compute preimages of q under Fa until it lands in
[F−1
a (m(a)), m(a)], for the first time, at a point p. Let j be the number of required preimages.

Then, the parameter associated to q will be j+z. The point F−1
a (m(a)) can be seen as the “origin”

of the parametrization. But it is clear that this origin is arbitrary and later it will be changed to
a more convenient place. For any point in an interval of the form [r, Fa(r)] we can refer to the
parameter simply as z, without explicit mention of j if it is not necessary.

It is also clear that preimages of points in [F−1
a (m(a)), m(a)] under Fa will reach the vicinity

of points “to the left” of x = 0 but at a small distance from x = 0, for the first time, under j̃
iterates and we can associate to one of these points a parameter of the form −j̃+ z̃. The condition
for periodicity is to have a point to the left of x = 0 with (fractional part of the) parameter z̃
such that when it returns nearby after making a tour to the circle, it has (fractional part of the)
parameter equal to z with z = z̃. Any equivalent formulation can be used. Then this point will
have period j + j̃.

The steps to impose the periodicity condition are as follows:

1. First we take a small quantity m, independent of a, and consider a point of parameter z
in [m,Fa(m)]. It is not restrictive to assume that m has parameter z = 0 (by redefining
the origin of z) and that the point x = m is mapped, by iteration under F0 to the point
of x = −m. Otherwise one can do a tiny change in m (of the order of m2). By iteration
under F0 (note that that map does not depend on a) of the point of parameter z we reach
a point close to −m. The final one has parameter z̃ := z + g(z), where g(z) measures the
“distortion” produced by the fact that F0 (in the “outer” part, away from x = 0) generically
differs from a flow. By construction g(0) = 0, g(1) = 0. Let N0 be the number of iterates,
depending only on bf . As it is fixed, independent of a, the error in position due to the use
of F0 instead of Fa is O(a) and also the error in time O(a/(bm2)) = O(a). The map z 7→ z̃
can be named as “outer” or “gluing” map.

2. Then we consider iterations between the vicinity of m(a) and the vicinity of m, but again
using F0 instead of Fa. The number of iterates, N1, is constant (it depends only on bf) for
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relatively large ranges of a. Indeed, if a point near m lands near m(a) under F−N1

0 , in one
more iterate under F−1

0 will be close to m(a)− bm(a)2. If we write this value as m(a′) one
has a′ = aO(exp(−2b| log(a)|1/2)), as shown by a simple computation. Then, for a relatively
large range below a′ we shall need N1 + 1 iterates instead of N1 and so on. The errors in
position and time due to the use of F0 instead of Fa will be bounded later. In a completely
similar way we can consider the number of iterates, N−1 required to go from the vicinity of
−m to the vicinity of −m(a) under F0 and to derive the corresponding error bounds.

3. Next we consider the passage from the vicinity of −m(a) to the vicinity of m(a). To this end
we use the flow approximation and then we bound the errors due to the difference between
Fa and ϕht=1. For concreteness we consider as point near m(a) the point F−N1

0 (m) and as

point near −m(a) the point F
N

−1

0 (−m). As discussed, these points do not depend on a (at
least for relatively large ranges of a; going below these ranges requires to increase them by
1 unit and then they can be used again in a relatively large domain in a). But the flow

ϕht certainly depends on a. Let us denote as t(a) the time of passage from F
N

−1

0 (−m) to
F−N1

0 (m). It is clear that t(a) increases when a decreases.

4. Finally let us take a point with parameter z ∈ [0, 1) near m. It returns to a point with
parameter equal to z+N0+g(z)+N−1+ t(a)+N1 plus the errors mentioned in 1., 2. and 3.
above that we denote simply as E. To have a periodic point of period k the new parameter
must be k + z. Generically the function g is not identically zero (see also the comments
concerning Fig. 43 right, below). Let g1 = minz∈[0,1] g(z) ≤ 0, g2 = maxz∈[0,1] g(z) ≥ 0, and,
for simplicity, let us introduce N = N0 +N−1 +N1. Therefore the largest value of a to have

a point of period k (that is a = a
(k)
sni) is obtained when N + g2 + t(a) + E = k, while the

smallest one (that is a = a
(k)
snf) is obtained when N + g1 + t(a) + E = k.

To bound the errors in the different steps we recall that in 1. they are O(a). Concerning 2., as
we use F0 instead of Fa we have an error of size a at each iterate. Let x0, x1, x2, . . . the points in
an orbit of F0 between the vicinity of m(a) and the vicinity of m. A local error a when computing
x1 will be amplified by

ΠN1−1
j=1 DF0(xj) = ΠN1−1

j=1 (1 + 2bx+O(x2)) = exp

(

N1−1
∑

j=1

(2bx+O(x2))

)

,

where the sum can be estimated by the integral
∫ m

m(a)
2bxdx/(b̂x2), where b̂ is slightly less than

b and b̂x2 is a lower estimate for a vector field which approximates F0 (but going slower). An
upper bound for the integral is −2.5 log(m(a)) and, hence, the amplification of error is bounded by
m(a)−2.5. We can proceed in a similar way for the errors originated when we compute x2, x3, . . .,
but a very rough bound as if all errors originate at x1 is enough. We should multiply by N1 which
can be bounded by

∫ m

m(a)
dx/b̂x2 < 1/b̂m(a). Finally this error in position should be converted to

error in time, but the rough approximating field is O(m2), independent of a. Summarizing, the
total error introduced in the step 2. is largely bounded by O(am(a)−3.5). This applies for the N1

and N−1 iterates.
Now we should estimate t(a) and bound the errors with respect to the dominant term. The

point F
N

−1

0 (−m) is close to −m(a), it can be considered as independent of a and the same thing
happens for F−N1

0 (m), close to m(a). As also m(a) can be considered as independent on the
concrete value of a for a relatively large range of values of a, we can just compute the time to go
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from −m(a) to m(a) and modify it by a fixed quantity ∆ = O(1) with error O(a). Letting aside
∆ the time t(a) is estimated as

∫ m(a)

−m(a)

dx

h(x)
.

The field h(x) can be written as a + bx2 + x3ĥ(x), where ĥ(x) is a analytic function starting at
degree 0 (or higher). The integrand in the above integral can be written as

1

h(x)
=

1

a + bx2
− x3ĥ(x)

(a+ bx2)2
+

(x3ĥ(x))2

(a+ bx2)3
+ . . . .

The first part of the integral gives (π − 2 tan−1(
√

a/b/m(a)))/
√
ab = π/

√
ab−O(m(a)) and this

is the dominant part. The other terms involve integrands of the form xj/(a + bx2)n, n ≥ 2, j ≥
3(n − 1), whose integral is zero if j odd because of the symmetry. The first non-zero integral
corresponds to j = 4, n = 2 and the value is 2m(a) +O(a1/2). That is, there is a part depending
on m(a) and the part depending on a tends to zero if a→ 0. It is immediate to check that this is
also the behavior for all other terms.

The errors due to the difference between Fa and ϕ
h
t=1 can be bounded by O(a2t(a)), negligible

in front of terms O(a1/2). Also the errors due to the definition of z can be neglected by the same
reason.

Summarizing, the total expression for the error E(b) in time in our estimates, including the
non-dominant term in t(a), contains ∆ and powers of m(a). The remaining terms are O(a1/2) and
O(a| log(a)|d for some positive d. It is clear that for a small enough the dominant part is O(a1/2).
We reach the conditions

π
√

ba
(k)
sni

= k −N −E(b)− g2 +O((a
(k)
sni)

1/2),
π

√

ba
(k)
snf

= k −N −E(b)− g1 +O((a
(k)
snf)

1/2).

From this i) and ii) follow. It can happen that g has several minima (resp. maxima) at which
a saddle-node bifurcation gives rise to (resp. destroys) a sink. The relevant interval is the one
corresponding to first creation and last destruction.

To prove iii) we consider that, for a ∈ [a
(k)
snf , a

(k)
sni] we are looking for a fixed point z∗ of a

map of the form z → z + g(z) − γ for γ ∈ [g1, g2], that is g(z∗) = γ. The stability is given by
1+ dg/dz(z∗) plus corrections which tend to zero as a→ 0. Hence, the minimum multiplier tends
to 1 + minz∈[0,1] dg/dz(z). �

As an illustration of the results of proposition B.1 we consider the Arnold map on the circle
[67] that we write in the form

Fa(x) = x+ a + b(1− cos(x)),

perhaps the simplest example satisfying the conditions (18). For a fixed value b = 0.8 we have
computed domains of a for which periodic sinks are found. The results are shown in Fig. 43 left
for a wide range of the period k.

Concretely in Fig. 43 left we plot, as a function of log(k),

1. The value of log(a
(k)
snm) + 2 log(k)− 2.5, seen as the lower curve. The value a

(k)
snm is the mean

value between a
(k)
sni and a

(k)
snf . The term −2.5 has been added to display the three lines in a

suitable vertical range.
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Figure 43: An illustration of the accumulation and scaling of sinks near a saddle-node for the Arnold map of the

circle. Left: limit behavior of (a
(k)
sni + a

(k)
snf )/2, a

(k)
sni − a

(k)
snf and the minimum of the eigenvalue in a sink interval as

a function of log(k). See the text for details. Right: the behavior of the amplitude ∆g = g2 − g1 of the g function
as a function of b. The variables plotted are b, log(∆g).

2. The value of log(∆a
(k)
sn ) + 3 log(k), seen as the middle curve, where ∆a

(k)
sn = a

(k)
sni − a

(k)
snf .

3. The value of the multiplier for a ∈ [a
(k)
snf , a

(k)
sni] at which it reaches a minimum, seen as the

upper curve.

The three lines show clearly the tendency to a limit.
On the right part of Fig. 43 we display the amplitude ∆g = g2 − g1 of g as a function of b.

To this end, given a value of b we have computed a point x0, close to m = 0.01, such the image
under F n+1

0 is −x0. Hence, the interval [x0, F
n
0 (x0)] is mapped to [F−1

0 (−x0),−x0] under F n
0 . A

high order vector field x′ = h(x) (depending on b) has been obtained so that for x ∈ (−m̃, m̃),
with m̃ slightly larger than m, ϕht=1(x) coincides with F0(x) except by tiny roundoff errors (below
10−16). Then we follow the procedure described before to obtain g. Given z ∈ [0, 1] we compute
z̃ such that ϕt=z̃(F

−1
0 (−x0)) = F n

0 (ϕt=z(x0)) and define g(z) = z̃ − z. The extreme values of g, g1
and g2, as defined above, have been computed and this gives ∆g. The plot shows log(∆g) as a
function of b.

The expected result is to have a dominant term in ∆g of the form exp(−c/b) for some constant
c > 0. This follows from the standard time-periodic suspension and averaging technique (see again
[65]). Indeed, the map F0 differs from the identity by O(b) and it can be approximated by an
autonomous flow up to exp(−c/b) terms. If we only consider the autonomous flow effect one would
have g(z) = 0. The exponentially small terms are the responsible of having g(z) 6= 0. As shown
in [41] upper bounds for these terms are related to the closest singularity to the real axis of the
solutions, in our case of the limit scaled field x′ = 1 − cos(x), which tend to the critical point
x = 0. If the distance from the singularity to the real axis is δ then c = 2πδ. In general the real
bounds are close to the upper ones, as discussed at the Appendix in [30], where a method to check
this condition is also presented. In the present example the closest singularity has imaginary part
equal to 1. Hence, it should not be seen as a surprise that, with the data displayed in Fig. 43 right
the values of −b log(∆g), when fitted by polynomials of increasing order, give an independent
term which approaches 2π.

Similar examples with functions f(x) which are not even have been also considered, with the
same kind of results.
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[44] O.V. Stenkin and L.P. Shilnikov. Homoclinic Ω-explosion and hyperbolicity domains. Math.
Sbornik, 1998, 189(4), 125–144.

[45] K. Alligood, E. Sander and J. Yorke. Explosions: global bifurcations at heteroclinic tangencies.
Erg. Th. & Dyn. Systems, 2002, 22, 953–972.

[46] S.V. Gonchenko and O. Stenkin. Homoclinic Ω-explosion: hyperbolicity intervals and their
bifurcation boundaries. To appear in the book “Nonlinear Dynamics: new approaches”
(Springer, 2012).

[47] S.V. Gonchenko. On a two parameter family of systems close to a system with a nontransversal
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moclinic curves. Phys. D, 1993, 62(1-4), 1–14.

58



[51] S.V. Gonchenko, L.P. Shilnikov and D.V. Turaev. Homoclinic tangencies of an arbitrary order
in Newhouse domains. Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 1999, 67,
69–128 ; English transl. in J.Math.Sci., New York, 2001, 105(1), 1738–1778.
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