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Abstract

Neutrino oscillation experiments set out to measure the differences in mass between the three neutrino flavors of

the StandardModel of particle physics, and probe the elements of the lepton mixing (PMNS) matrix encoding the

relationship between neutrino mass and interaction eigenstates. In this work, we use the results of these experiments

for a different purpose: to place constraints on parameters which, if found to be nonzero, would indicate the existence

of new physics (NP) beyond the StandardModel.

Neutrino flavor oscillations arise from differences in mass between the three neutrino mass eigenstates, which enter

the Hamiltonian in a term inversely proportional to the energy of the propagating neutrino. In the high-energy limit,

all three flavors are effectively massless, the mass splittings vanish, and the oscillation wavelength grows too large for

oscillations to be detectable.

The NP effects we consider here result from introducing new terms into the Hamiltonian with a different energy

dependence, either:

• independent of energy, for the case of “vector-like” interactions, or

• directly proportional to energy, for the case of “tensor-like” interactions.

Thus, the new physics would manifest as a deviation from the expected suppression of neutrino flavor oscillations

at high energy. If such new physics exists, and is detectable in current experiments, we would expect to observe a

contribution to the oscillation wavelength which remains constant or grows with energy.

The effects which may be represented within this generic framework include nonstandard interactions between

neutrinos and matter, couplings with spacetime torsion fields, violations of Lorentz invariance or of the equivalence

principle, and violations of CPT symmetry.

The 2004 work of Gonzalez Garcia &Maltoni [1] inferred limits on parameters encoding NP effects on two-flavor

neutrino oscillations, using atmospheric neutrino data from Super-Kamiokande, along with data from the long

baseline KEK to Kamioka (K2K) experiment.

Here, we continue to use data from atmospheric and accelerator neutrino experiments to compute upper bounds on

NP parameters. We begin by reproducing the results of [1] using updated data on atmospheric neutrino oscillations,

incorporating the latest data from Super-Kamiokande, together with new data fromDeepCore. We then consider the

NP parameters of a model with three neutrino flavors, and calculate constraints using data from particle accelerators:

Tokai to Kamioka (T2K), MINOS, and NOνA.
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Chapter 1 || Introduction

We begin by reviewing the nature of neutrino flavors in the StandardModel, and the mathematical formalism of

three-neutrino vacuumoscillations, before turning our attention to the effects of new physics on neutrino oscillations.

1.1 Neutrino flavors in the StandardModel

Neutrinos carry neither electric nor color charge, and are therefore only produced in weak interactions. Since the

weak interaction couples left-handed fields, the simplest self-consistent version of the StandardModel features only

left-handed neutrino fields, incorporated as the upper I3 = +1
2 elements of the left-handed lepton doubletsL`L:

L`L ≡
[
ν`L
`L

]
, ` = e−, µ−, τ− (1.1)

The doublet L`L has weak hypercharge Y = 1, and weak isospin I = 1
2 so that the charged leptons are assigned

electric chargeQ = I3 + Y /2 = −1 and the neutrinos are uncharged withQ = 0.

Here, the charged lepton fields `L of flavor e, µ, and τ were taken to be fields of definite mass. The neutrino fields
ν`L are labelled by the the charged lepton flavor to which they correspond: νe, νµ, ντ . These fields are called weak
interaction eigenstates since they each couple to a discrete flavor of charged lepton in weak interactions. These fields
are not required by this definition to be of definite mass, and, empirically, they are not the same as themass eigenstates.

To complete the lepton sector we have three right-handed I = 0 singlets withQ = Y /2 = −1:

`R, ` = e−, µ−, τ− (1.2)

The right-handed leptons are of importance to us due to their role in generating mass.

1.1.1 The nature of massive neutrinos

In the StandardModel, the mass of a charged fermion f arises from a Yukawa term coupling fL with fR. For the
charged leptons, this term is of form:

−Lm = m`
¯̀
R `L + h.c. (1.3)

But it’s impossible to form a Lorentz-invariant and gauge-invariant Dirac mass term using only a νL field, and so in

the StandardModel described above, with no right-handed neutrinos, neutrinos are necessarily massless.

The experimental evidence for neutrino flavor oscillations demonstrates conclusively that this StandardModel is

wrong. Neutrinos have mass, and there are at least three species of neutrino with different masses.

Therefore, a StandardModel consistent with experiment must have a Lagrangian with a mass term for the neutrino

fields. The conventional way to achieve this is to introduce right-handed “sterile” neutrinos νR with no Standard

Model interactions, along with:

• a Dirac mass term coupling νR with νL, arising from Yukawa interactions with the Higgs field, and,

• optionally, a Majorana mass term coupling νR with its charge-conjugated field (νR)
c.
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Considering the second possibility, it’s straightforward to verify that:

(f c)L = (fR)
c (f c)R = (fL)

c (1.4)

and it follows that the operator ν̄R(νR)
c = ν̄R(ν

c)L is Lorentz-invariant.

Such aMajorana mass term is permitted only if a neutrino is completely uncharged, that is, if:

νL,R = (νL,R)
c = (νc)R,L (1.5)

so that a neutrino is its own antiparticle.

But it’s impossible to define a nonzero lepton number for such a field, and so a Majorana mass results in non-

conservation of lepton number.

A gauge invariant and renormalizable Majorana mass for the three light neutrinos ν`L of the standard model is

disallowed because the light neutrinos carry both weak hypercharge and weak isospin.1 But our postulated sterile
neutrinos ναR are uncharged under all gauge fields of the StandardModel, and are therefore permitted a Majorana

mass.

1.1.2 Most general mass term

A generic Lagrangian term including both sources of mass—and accounting for the fact that the fields ν` are not
mass eigenstates—must take the following form given in [2] and elsewhere:

−Lm =MDα` ν̄αR ν`L︸ ︷︷ ︸
Dirac term

+
1

2
MNαβ ν̄αR (νβR)

c︸ ︷︷ ︸
Majorana term

+ h.c. (1.6)

Here the fields ναR are right-handed sterile neutrinos of index α.

The complex matrixMD and real symmetric matrixMN hold the coefficients of the Dirac and Majorana terms

respectively.

Alternatively, the mass term (1.6) may be written in the form:

−Lm =
1

2
νcMν ν + h.c. where ν =

[
νL

νc
R

]
νc =

[
νc
L ν̄R

]
Mν =

[
0 MT

D

MD MN

]
(1.7)

The top left corner of the matrix is zero because the left-handed fields are charged under the StandardModel gauge

group and cannot have a renormalizable Majorana mass.

Since our mass matrixMν is manifestly non-diagonal, we must diagonalize it to find the fields of definite mass, which

will in general be mixtures of the chiral fields. We observe thatMν is symmetric, even thoughMD is not.

1.1.3 Dirac neutrinos

If we takeMN = 0, and assume that there are exactly three sterile neutrino species ν`R, we obtain purely Dirac
neutrinos. The attraction of this model is that it puts the neutrinos on the same footing as all other fermion fields in

the StandardModel, with matching left and right chiral fields.

On the other hand, wemay only introduce the new fields νR without also introducing the couplingMN if we impose

lepton number as a new global symmetry.

The Dirac mass matrixMD may be diagonalized toMDirac ≡ V †
RMD VL using a biunitary transformation, yielding

a mass term of form:

−Lm = ν̄DiracMDirac νDirac (1.8)

1If we drop the requirement for renormalizability, and consider effective field theories, the dimension 5Weinberg operator could give the light
neutrinos a Majorana mass. We do not pursue this possibility here.
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where the Dirac neutrino fields νDirac k of definite mass are linear combinations of the chiral fields ν`L and ν`R:

νDirac = V †
L νL + V †

R νR (1.9)

and are not purely left-handed.

A disappointing feature of this model is that it leaves unexplained the difference in mass between the neutrinos and

the other fermions of the StandardModel, since the only sources of neutrino mass are the Yukawa interactions.

1.1.4 Majorana neutrinos

In the more general caseMN 6= 0, we may diagonalizeMν with a unitary matrix V , so thatMMaj ≡ V TMνV is

diagonal. Then, making use of the relationships:

Ψc = Cγ0Ψ? Ψc = −ΨTC† Ψc† = −CΨ? (1.10)

whereC is the charge conjugation matrix, the completely general mass term (1.7) becomes:

−2Lm = νc V ?MMaj V
† ν + ν† V MMaj V

T νc†

= −νT V ?C†MMaj V
† ν − ν† V MMajC V

T ν?

= (V †ν)
c
MMaj V

† ν + V †νMMaj (V
†ν)c

= (V †ν)
c
MMaj V

† ν + V †νMMaj (V
†ν)c + V †νMMaj V

†ν −
(
V †νMMaj V

†ν
)T

︸ ︷︷ ︸
=0

= (V †ν)
c
MMaj V

† ν + V †νMMaj (V
†ν)c + V †νMMaj V

†ν − νTV ?MMaj γ
0 V Tν?

= (V †ν)
c
MMaj V

† ν + V †νMMaj (V
†ν)c + V †νMMaj V

†ν + (V †ν)
c
MMaj (V

†ν)c

=
[
V †ν + (V †ν)

c]
MMaj

[
V †ν + (V †ν)c

]
(1.11)

If we now define the Majorana fields νMaj = νc
Maj of definite mass by:

νMaj ≡ V †ν + (V †ν)c (1.12)

then we obtain a mass term in the form:

−Lm =
1

2
ν̄MajMMaj νMaj (1.13)

Again, the fields νMaj i are states of mixed chirality.

Let’s consider three possibilities:

• If the Dirac masses vanish,MD = 0, there are no terms mixing the left-handed fields ν`L with the sterile

neutrinos, and so the left-handed neutrinos remain massless, in contradiction to the experimental detection

of neutrino flavor oscillations.

• On the other hand, we might have couplings of comparable magnitude,MN ∼ MD. This would lead to

more than three light neutrinos, each with a roughly comparable mix of left and right chirality.

• Finally, forMN �MD, we have a “see-saw”, where the three small eigenvalues ofMν are pushed downward,

resulting in three very lightMajorana neutrinos. The light neutrinos aremostly left-handed, and the remaining

heavy neutrino fields are mostly right-handed. This is very consistent with known physics, and explains the

anomalously tiny neutrino masses.

So if there are sterile neutrinos with Majorana-type mass terms, then the see-saw mechanism provides an elegant

explanation for why neutrino masses are so much smaller than the masses of other elementary fermions, and this

possibility is of great interest to BSM model builders. Sadly, neutrino oscillation experiments are incapable of

distinguishing between Dirac andMajorana masses, so we do not discuss this fascinating question further.2

2Experiments to measure neutrino-less double beta decay are the most sensitive probe of whether neutrino masses are of Dirac or Majorana
form.
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1.1.5 Neutrino oscillations

In our discussion of neutrino oscillations, we’ll mostly ignore matter effects, except for a brief description in

section 1.2.7. The interaction of propagating neutrinos with matter is very important in the case of solar neutrinos—

since the density of matter in the interior of the Sun is very high—but is a subdominant effect for the atmospheric

neutrinos and accelerator experiments that are most relevant to this work.

Neutrino oscillations arise when the Hamiltonian for a free neutrino is not diagonal in the basis of fieldsL`L given

in (1.1) above, that is, in the basis where the charged lepton fields e, µ, τ have definite mass. Off-diagonal terms of
the Hamiltonian allow a free neutrino to transition between flavors in this basis.

These flavor transitions are “physical” because processes which produce neutrinos or detect neutrino flavor always

involve charged lepton mass eigenstates. For example: solar neutrinos are produced by processes involving electrons,

and atmospheric neutrinos are produced in processes involving electrons or muons. Similarly, a neutrino is observed

when it interacts weakly with matter in the detector. For atmospheric and accelerator neutrinos, this is usually a

charged current interaction, which couples states of definite flavor.

In the StandardModel, oscillations arise whenwe introduce amass termwith amassmatrixM which is non-diagonal

in this basis, and couples neutrinos of different flavors.

1.1.6 Mass and interaction eigenstates

Whatever the source of neutrino mass, we denote the three neutrinomass eigenstates obtained by diagonalizingM
as ν1, ν2, and ν3, and the corresponding eigenvalues bym1,m2, andm3. If these mass eigenstates were the same

fields that appear in (1.1), that is, ifM was already diagonal in the original basis, then any weak process producing

neutrinos would produce the mass eigenstate corresponding to the charged lepton involved in the process, and there

would be no neutrino oscillations.

For example, if ν1L were the doublet-partner of e−L , then a process involving electrons would produce only neutrinos
of type ν1, which would freely propagate without any change of flavor. The famous deficit of solar neutrinos detected
by the Homestake experiment [3] rules out this possibility.

Instead, the existence of flavor oscillations tells us that the neutrino fields which couple to the charged lepton mass

eigenstates ` = e, µ, τ aremixtures of the mass eigenstates νi.

Generically, we indicate mass eigenstates with a latin subscript, for example, νi, νj , and weak interaction eigenstates
with a greek subscript, for example, να, νβ .

1.1.7 Lepton mixing matrix

Weak interaction eigenstates |να〉 are linear combinations of mass eigenstates |νi〉.3

The lepton mixing matrixU , which is unitary, withU †U = 1, may be defined by the overlap:

Uαi ≡ 〈να|νi〉 , α = e, µ, τ ; i = 1, 2, 3 (1.14)

so that the following relationships (with implicit sums) follow quickly from the definition:

|νi〉 = |να〉 〈να|νi〉 = Uαi |να〉 , |να〉 = |νi〉 〈νi|να〉 = U?
αi |νi〉 =

(
U †)

iα
|νi〉 (1.15)

For antineutrinos, the relationship corresponding to (1.15) is obtained by applying the charge conjugation operator

C which satisfies CψR = iσ2ψ?
L for two-component spinors:

|ν̄α〉 = C |να〉 = iσ2 |να〉? = iσ2 (U?
αi |νi〉)

? = Uαi iσ
2 |νi〉? = Uαi C |νi〉 = Uαi |ν̄i〉 (1.16)

where σ2 is the second Pauli matrix. And soU † is the mixing matrix for antineutrinos:

|ν̄i〉 = |ν̄α〉 〈ν̄α|ν̄i〉 = U?
αi |ν̄α〉 =

(
U †)

iα
|ν̄α〉 (1.17)

3We suppress the subscripts indicating chirality in this notation.
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1.1.8 Parameterization of the lepton mixing matrix

With three neutrino flavors, the standard parameterization of the mixing matrix is given by [2], for example, as:

U =

1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

 cos θ13 0 sin θ13 e
−iδCP

0 1 0
− sin θ13 e

iδCP 0 cos θ13

 cos θ21 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

eiη1 eiη2

1


where the effects of the three mixing angles are separated into different matrices in the product.

Thephasesη1, η2 are nonzeroonly forMajorananeutrinos, and arenot detectable inneutrinooscillation experiments,4

so we will neglect them and use the simpler and more common form:

U =

1 1 1
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

 cos θ13 0 sin θ13 e
−iδCP

0 1 0
− sin θ13 e

iδCP 0 cos θ13

 cos θ21 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

 (1.18)

Here we have:

• three mixing angles θij , along with

• a complex phase δCP.

If the phase δCP is zero, all elements of the mixing matrix are real-valued, and CP is conserved. But nonzero δCP
results in non-conservation of CP.

If we narrow our attention to two-neutrino mixing, the 2×2mixing matrixU2ν may be parameterized as:

U2ν =

[
cos θ sin θ
− sin θ cos θ

]
(1.19)

where we have just one mixing angle θ between the two flavors, and no CP-violating phases.

Below, in 1.3, we will use a similar parameterization of NP effects, and explore the effect on neutrino oscillations.

Right now it’s time to consider the simpler case of neutrino oscillations in the absence of new physics.

1.2 Vacuum neutrino oscillations

We’re interested in a neutrino produced at time t = 0 in an interaction eigenstate α which then propagates without

interactions until arriving at a detector at some later time. Its evolution is completely determined by its kinetics.

But first we must consider the evolution of a mass eigenstate.

1.2.1 Evolution of mass eigenstates

As is standard, we treat a freely-propagating neutrino mass eigenstate of energyEi as a stationary state in quantum

mechanics, so that its time evolution is given by:

|νi(x, t)〉 = U(t) |νi(x, 0)〉 = exp(−iHkinetict) |νi(x, 0)〉 = exp(−iEit) |νi(x, 0)〉 (1.20)

where U is the time evolution operator andHkinetic is the Hamiltonian for a free neutrino.

If we take the state |νi(x, t)〉 to represent a plane wave of definite momentum pi then:

|νi(x, t)〉 = exp(−iEit+ ipix) |νi〉 (1.21)

Such a state does not represent a “physical” neutrino. Every experimentally observable neutrino is wavepacket

superposition ofmomenta and ofmass eigenstates. But for practical purposes the planewave assumption is acceptable.

4See 1.2.3
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1.2.2 Evolution of interaction eigenstates

On the other hand, the weak interaction eigenstates |να〉 are not stationary states, and their time-dependence is more
complicated. If we consider a neutrino of flavor α emitted at time t = 0, we may write:

|να(x, t)〉 = U(t) |να(x, 0)〉 = exp(−iHt) |να(x, 0)〉 (1.22)

Wemust realize that |να(x, t)〉 need not be proportional to |να〉 at time t > 0, but rathermay be amix of interaction
eigenstates, sinceHkinetic is not diagonal in the interaction basis.

On the other hand, the neutrino at emission time t = 0 is a wavepacket superimposing plane waves of different
momenta but the same interaction flavor α. Even though we’re considering just one of the momentummodes here,

we’re entitled to assume that there’s no dependence of flavor on x at the initial time. Therefore:

|να(x, 0)〉 ∝ |να〉 (1.23)

and this allows us to use (1.15) at each position in space, so that:

|να(x, 0)〉 = U?
αi |νi(x, 0)〉 = U?

αi exp(ipix) |νi〉 (1.24)

where at the second step we used (1.21) with t = 0.

Inserting a full set of interaction flavors 1 =
∑

β |νβ〉 〈νβ| into (1.22), we find:

|να(x, t)〉 =
∑
β

|νβ〉 〈νβ| exp(−iHt) |να(x, 0)〉

=
∑
β

|νβ〉
(∑

j

Uβj 〈νj |
)

︸ ︷︷ ︸
using (1.15)

exp(−iHt)
(∑

i

U?
αi exp(ipix) |νi〉

)
︸ ︷︷ ︸

using (1.24)

=
∑
β,i,j

|νβ〉Uβj U
?
αi exp(ipix) 〈νj | exp(−iHt) |νi〉

=
∑
β,i,j

|νβ〉Uβj U
?
αi exp(ipix) exp(−iEit) 〈νj |νi〉

=
∑
β,i

Uβi U
?
αi exp(−iEit+ ipix) |νβ〉 (1.25)

This equation shows explicitly that a pure interaction flavor state να evolves with time to produce amix of interaction
flavors, whenever the quantity pix−Eit varies between mass eigenstates νi.

5 On the other hand, if this quantity

were the same for every νi, as it would be if the massesmi were degenerate, then (1.25) would reduce to:

|να(x, t)〉 = exp(−iEt+ ipx) |να〉 (1.26)

and, just as expected, we would have stationary states with no vacuum oscillations.

1.2.3 Transition probability

Wemay hit (1.25) from the left with the basis bra 〈νβ| to obtain a transition amplitude we’ll denoteA(α→ β):

A(α→ β) ≡ 〈νβ|να(x, t)〉 =
∑
i

Uβi U
?
αi exp(−iEit+ ipix) (1.27)

This is the amplitude for neutrinos produced in flavor α to be observed with flavor β at a later time t and position x.

5At first glance (1.25) looks like it contains the product
∑

i Uβi U
?
αi = δβα, but notice that the index i also occurs in the energyEi and

momentum pi.
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Since our neutrinos have tiny masses compared to their momenta,mi � pi, it’s perfectly safe to treat them as highly

relativistic particles, and:

Ei =
√
p2i +m2

i = pi

√
1 +

(
mi

pi

)2

' pi +
m2

i

2pi
(1.28)

Furthermore, x ' t and pi ' E for relativistic neutrinos propagating at close to the speed of light c ≡ 1, and so:

−Eit+ pix ' −
(
pi +

m2
i

2pi

)
t+ pix = −m

2
i

2pi
t+ pi(x− t) ' −

m2
i

2E
x (1.29)

If we now consider a neutrino detector at x = L, we may write (1.27) as:

AL(α→ β) '
∑
i

Uβi U
?
αi exp

(
−i m

2
i

2

L

E

)
(1.30)

The transition probability is the square of this amplitude:

PL(α→ β) =
∣∣AL(α→ β)

∣∣2 ' ∣∣∣∣∣∑
i

Uβi U
?
αi exp

(
−i m

2
i

2

L

E

)∣∣∣∣∣
2

=

[∑
i

U?
βi Uαi exp

(
i
m2

i

2

L

E

)][∑
j

Uβj U
?
αj exp

(
−i

m2
j

2

L

E

)]

=
∑
i,j

U?
βi Uαi Uβj U

?
αj exp

(
i

2

L

E
∆m2

ij

)
(1.31)

where at the last line we defined three squared-mass splittings∆m2
ij ≡ m2

i −m2
j .

For convenience, we now also define:

Xij ≡
1

4

L

E
∆m2

ij = −Xji Uαβi ≡ U?
βi Uαi = U?

βαi (1.32)

Considering the case where the splittings vanish,∆m2
ij = 0, we see, again from the unitarity of the mixing matrix

U , that PL(α→ β) = δαβ and there are no flavor oscillations. Similarly, and just as expected, the probability of a
flavor transition vanishes atL = 0, or in the high-energy limitE →∞.

This is not the usual form in which the result is presented. Instead, to obtain the more standard form, we may split

the sum (1.31) into terms with i = j and terms with i 6= j:

PL(α→ β) =
∑
i=j

Uαβi Uβαj exp(2iXij)︸ ︷︷ ︸
but notice∆m2

ii = 0

+
∑
i 6=j

Uαβi Uβαj exp(2iXij)︸ ︷︷ ︸
also notice∆m2

ij = −∆m2
ji

=
∑
i

|Uαβi|2 +
∑
j>i

[Uαβi Uβαj exp(2iXij) + Uαβj Uβαi exp(2iXji)]

=
∑
i

|Uαβi|2 +
∑
j>i

[Uαβi Uβαj exp(2iXij) + c.c.]

=
∑
i

|Uαβi|2︸ ︷︷ ︸
average transition probability

+2Re
∑
j>i

Uαβi Uβαj exp(2iXij)︸ ︷︷ ︸
sinusoidalL-dependence

(1.33)

AtL = 0, or in the case where the squared-mass splittings vanish,∆m2
ij = 0, the two terms in (1.33) must cancel

when α 6= β, though this is not obvious from staring at the equation.
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Now, continuing from (1.33), we find:

PL(α→ β) =

(∑
i

Uαβi

)2

− 2Re
∑
j>i

Uαβi Uβαj + 2Re
∑
j>i

Uαβi Uβαj exp(2iXij)

= δαβ − 2Re
∑
j>i

Uαβi Uβαj

+ 2Re
∑
j>i

[
Re (Uαβi Uβαj) + i Im (Uαβi Uβαj)

][
cos (2Xij) + i sin (2Xij)

]
(1.34)

= δαβ − 4
∑
j>i

sin2 (Xij)Re (Uαβi Uβαj)︸ ︷︷ ︸
CP conserving

+ 2
∑
j>i

sin (2Xij) Im (Uαβi Uβαj)︸ ︷︷ ︸
CP violating

(1.35)

Both oscillatory terms have the same underlying “normal mode” oscillation wavelengths:

λosc,ij =
π

Xij/L
=

4πE

∆m2 ij
(1.36)

With more than two flavors, these normal modes may interfere.

Notice that mixing matrix elements only occur as factors of the form U?
βi Uαi, in which the Majorana phases ηi

which we dropped back in (1.18) cancel, making no contribution to the transition probability.

1.2.4 Transition probability and CP violation

CP violation in (1.35) manifests as a difference in transition probabilities between the process να → νβ and its
CP-conjugate ν̄α → ν̄β . In light of (1.17), we see that the third term of (1.35) has opposite sign for antineutrinos,

and is thus the source of CP violation.

This term is proportional to the Jarlskog invariant, J :

J ≡
∣∣Im (U?

α1 Uβ1 Uα2 U
?
β2

)∣∣ = cos θ12 sin θ12 cos θ23 sin θ23 cos
2 θ13 sin θ13 sin δCP (1.37)

which vanishes if any of the mixing angles θij = 0, or if the phase δCP = 0.

1.2.5 Transition probability with no CP violation

A final simplification is possible if we assume conservation of CP. In this case, the lepton mixing matrixU may be

chosen to have all real elements, just by setting δCP = 0 in (1.18), and then (1.35) simplifies to:

PL(α→ β) = PL(ᾱ→ β̄) = δαβ − 4
∑
j>i

Uβi Uαi Uβj Uαj sin
2

(
1

4

L

E
∆m2

ij

)
(1.38)

In particular, for two neutrino flavors, where CP is always conserved, there’s only one term with i = 1, j = 2, and
we may plug in (1.19) to obtain the well-known formulas:

PL(α→ β) = sin2 2θ sin2
(
1

4

L

E
∆m2

)
α 6= β (1.39)

PL(α→ α) = 1− sin2 2θ sin2
(
1

4

L

E
∆m2

)
(1.40)

The probability of observing a flavor transition is maximized by placing the detector at a distance:

L =
2πE

∆m2
(2n+ 1), n = 0, 1, 2, . . . (1.41)

from the point of emission of the neutrinos.

For experimental purposes the optimal choice of n is n = 0, since a real neutrino beam has a spectrum of energies,

and the phase difference between the lowest-energy and highest-energy neutrinos accumulates with distance from

the source.
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1.2.6 Hamiltonian in the flavor basis

The HamiltonianHkinetic has so far has been implicit, but now let’s write it out explicitly. In the mass basis, the

Hamiltonian for kinetic vacuum oscillations is just:

Hkinetic =

E1

E2

E3

 =

�
���

����HH
HHH

HHH

E1

E1

E1

+

0 ∆E21

∆E31

 (1.42)

It’s acceptable to drop the uninteresting first term, as indicated, since it affects each mass eigenstate equally, and

therefore makes no contribution to flavor oscillations.

But, starting from (1.28), we also have:

Ei ' pi +
m2

i

2pi
' E +

m2
i

2E
(1.43)

for neutrino mass eigenstates νi of massmi, momentum pi, and energyEi = E. And so:

Hkinetic '
1

2E

0 ∆m2
21

∆m2
31

 ≡ 1

2E
∆M2 (1.44)

which leaves us with a Hamiltonian involving just two squared-mass splittings∆m2
21 and∆m

2
31.

By convention (see [2], for example) we take all mixing angles within the first quadrant, 0 ≤ θij <
π
2 , and then

choose the labels for our mass eigenstates such that the first of these splittings is smaller, |∆m2
21| < |∆m2

31|, and
positive,∆m2

21 > 0.

Neutrino oscillations are not sensitive to the absolute neutrino mass, which is not known, and depend only on the

mass splittings. For example, observations of solar neutrinos are sensitive to∆m2
21, and observations of atmospheric

neutrinos are dominantly sensitive to∆m2
31.

Indeed, as an aside, the ordering of the neutrinomasses is still unknown, and there are two possibilities, which cannot

be distinguished in current experiments. Given the convention just stated:

• the “normal” ordering is the case where∆m2
31 > 0, and

• the “inverted” ordering is the case where∆m2
31 < 0.

Finally, we transform our Hamiltonian to the weak interaction basis using the mixing matrixU , which—from now

on—we’ll callU kinetic to avoid confusion:

Hkinetic =
1

2E
∆M2 −→

mass basis to flavor basis
Hkinetic =

1

2E
U kinetic∆M2 U kinetic† (1.45)

The Hamiltonian we have just constructed is for neutrinos propagating in a vacuum. We have yet to account for the

effect of matter.

1.2.7 Matter effects

Depending on the zenith angle, an atmospheric neutrino arriving at the detector might have passed all the way

through the Earth. Even neutrinos in long-baseline accelerator experiments pass through the Earth’s crust on their

way to the detector. Therefore, our numerical calculations must take matter effects into account. We will not go into

much detail here, since a more complete treatment may be found in [4] or [2].

Normal matter is composed of electrons, protons, and neutrons, described by their average densities ne, np, and
nn, respectively. We assume the matter is electrically neutral so that ne = np. Matter effects may be treated as an

effective potential felt by a propagating neutrino.
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The effective potential arises from two different elastic scattering processes of form ν f → ν f :

• an electron neutrino may weakly interact with an electron via the charged current (CC), and

• a neutrino of any flavor may interact with an electron, proton, or neutron via the neutral current (NC).

The effective potentials VCC and VNC arising from these CC and NC interactions are:

VCC =
√
2GF ne VNC =

∑
f=e,p,n

√
2GF nf g

f
V (1.46)

whereGF is the Fermi constant, and gfV is the vectorial coupling factor for fermion f . Thus, for neutrino flavor `:

V` = VCC δe` + VNC

=
√
2GF neδe` +

√
2GF

(
neg

e
V + npg

p
V + nng

n
V

)
=
√
2GF neδe` +

√
2GF

(
neg

e
V + 2npg

u
V + npg

d
V + nng

u
V + 2nng

d
V

)
=
√
2GF

(
neδe` −

1

2
nn

)
(1.47)

where the superscripts u and d refer to up and down quarks, and at the last line we made use of ne = np and found
that the contributions from electrons and protons cancelled.

This effective potential leads to a contribution toHkinetic which is diagonal in the flavor basis. But since the neutral

current contribution VNC is the same for every neutrino flavor `, it does not contribute to neutrino oscillations, and
we may ignore it.

Finally, our modified kinetic Hamiltonian is:

Hkinetic =
1

2E
U kinetic∆M2 U kinetic† + V V =

VCC 0
0

 =

√2GF ne
0

0

 (1.48)

Note that the matter effect has the opposite sign for antineutrinos propagating in regular matter.

Now let’s see how the Hamiltonian changes when we add in our new physics.

1.3 Effect of new physics

In this work we’re interested in flavor transitions that result not from the standard vacuum kinematic oscillations we

considered in the previous section, but instead from some new interaction which also mixes neutrino flavors but

arises from physics outside the framework of the StandardModel.

The effect of such an interaction is in principle detectable if it changes the energy dependence of the flavor oscillations.

That is, the interaction may be distinguished from kinematic vacuum oscillations if it results in a departure from the

linear dependence of λosc onE that we previously derived in (1.36).

NP effects falling into this category include:

• nonstandard interactions between neutrinos and matter [5],

• couplings with spacetime torsion fields [6],

• violations of Lorentz invariance [7] or of the equivalence principle [8], and

• violations of CPT symmetry [9].

Certain of the effects on the list were reviewed in [10]. In the past, these effects were proposed as competing

explanations for neutrino oscillations, but today we may still consider them as subdominant effects.

We will not delve into the theory of any of this speculative new physics. Instead, we’ll see a generic way to incorporate

such effects into our Hamiltonian, along with a parametrization that’s independent of the underlying physics.
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1.3.1 Hamiltonianwith new physics

Following [1], our generic Hamiltonian for NP effects will have a structure just like the Hamiltonian we’ve already

seen in (1.45) for kinematic oscillations. However:

• there’s no reason to suppose that generic NP interactions couple to the same interaction eigenstates as the

weak interaction, and so we’ll need a newmixing matrix,UNP, and

• similarly, the resulting oscillations won’t have the same∆m2/2E dependence we saw before, and so we’ll

introduce three quantities δi, playing a similar role to the squared massesm
2
i , and

• generalize the energy dependence to a generic powerEn.

Each NP effect exhibits a characteristic dependence on energy. The contribution of an effect with n = −1 cannot
be distinguished in our experiments from the standard vacuum oscillations. In this work, we’ll consider the cases

n = 0, “vector-like” interactions, and n = 1, “tensor-like” interactions.

According to [1]:

• violation of the equivalence principle is tensor-like, with n = 1, while

• violation of CPT, or of Lorentz invariance is vector-like, with n = 0, and

• a coupling to a spacetime torsion field is also vector-like.

We may express an NP contribution to the Hamiltonian,HNP, in the basis of weak interaction eigenstates, as:

HNP = En UNP

δ1 δ2
δ3

UNP† (1.49)

Or, just like we did in (1.44), we may subtract off a quantity proportional to δ1, and writeHNP as:

HNP = En UNP

0 ∆δ21
∆δ31

UNP† ≡ En UNP∆δ UNP† (1.50)

Note that here we’re considering just one source of new physics at a time. If there are multiple NP effects, we need

multiple contributions of the above form. But in this work, we suppose that there’s a single most-dominant NP

effect, and that it’s well-described by the equation above.

Finally, our full Hamiltonian H , incorporating kinematics, the NP contribution, and matter effects, could be

expressed as:

H = Hkinetic +HNP =
1

2E
U kinetic∆M2 U kinetic† + En UNP∆δ UNP† + V (1.51)

We already have a parameterization ofU kinetic. Now we need to parameterize the matrixUNP.

1.3.2 Parameterization of the NP mixing matrix

We will use uppercase latin indices, for example, νA, νB , to indicate eigenstates of the NPHamiltonian. This lets us

write down a definition forUNP, precisely analogous to (1.14):

UNP
αA ≡ 〈να|νA〉 , α = e, µ, τ ; A = 1, 2, 3 (1.52)

In section 1.1.8 we saw that a generic 3×3 unitary matrix may be parameterized by three mixing angles and three
complex phases. That parameterization works just as well forUNP.

Here we should keep all three phases around, since the two we dropped previously now represent relative phases

between the kinetic mixing matrix and the NPmixing matrix.
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Wemay thus writeUNP in the following form, in terms of:

• three mixing angles ξij , and

• the “internal” phase η and relative phases α1, α2:

UNP =

1 0 0
0 cos ξ23 sin ξ23
0 − sin ξ23 cos ξ23

 cos ξ13 0 sin ξ13 e
−iη

0 1 0
− sin ξ13 e

iη 0 cos ξ13

 cos ξ21 sin ξ12 0
− sin ξ12 cos ξ12 0

0 0 1

eiα1

eiα2

1


(1.53)

We’ll also consider two-neutrino mixing, in which case the 2×2mixing matrixUNP,2ν may be parameterized as:

UNP,2ν =

[
cos ξ sin ξ e−iη

− sin ξ eiη cos ξ

]
(1.54)

where we have just one mixing angle ξ between the two flavors, along with a single relative phase η.

Actually, there’s one more parameter we need to take into account.

1.3.3 NP effects and antineutrinos

Up to this point, we’ve had little to say about antineutrinos. In fact, everything we’ve said about neutrinos applies to

their antiparticles. But there is one small thing we need to accommodate them into our framework.

In writing the NPHamiltonian for an antineutrino, we will allow for the possibility that the NP effect is CPT even
or CPT odd, that is, has the same or opposite sign for neutrinos and antineutrinos. 6

To account for this, and recalling (1.17), we must modify our expression (1.51) for the full neutrino HamiltonianH
to obtain the antineutrino Hamiltonian H̄ :

H̄ = Hkinetic + σHNP =
1

2E
U kinetic†∆M2 U kinetic + σ En UNP†∆δ UNP − V (1.55)

where σ = ±1, depending on whether the NP effect changes sign under conjugation of CPT.

1.3.4 NP oscillations for two neutrino flavors

We would now like to obtain a result analogous to (1.39) for the full Hamiltonian (1.51) in the two-flavor case with

mixing matrices (1.19) and (1.54). Wemay solve this problem by simply diagonalizingH , to obtain a diagonal matrix

D satisfying:

H = UDU † D =

[
d1

d2

]
(1.56)

where the eigenvalues d1, d2 are the energies of the stationary states of the full Hamiltonian.

The matrixU may be chosen to be unitary, sinceH is Hermitian. And so we may write:

U =

[
cosΘ sinΘ
− sinΘ cosΘ

]
(1.57)

for some mixing angleΘ, just as we saw in 1.1.8.

Following our usual practice, we may subtract away any constant term and express the Hamiltonian in terms of:

∆D ≡
[
0

∆d

]
≡
[
0

d2 − d1

]
(1.58)

6Recall that the matter effects discussed in 1.2.7 are CPT odd.
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Let’s narrow our attention to the oscillation νµ → ντ , where there are no matter effects and V = 0.

With an assist fromMathematica, we obtain:

∆d =
∆m2

2E

√
1 + 4

(
E1+n

∆δ

∆m2

)2

+ 4

(
E1+n

∆δ

∆m2

)(
cos 2θ cos 2ξ + cos η sin 2θ sin 2ξ

)
(1.59)

This putsH in the same form asHkinetic in the flavor basis, aftermaking the replacement∆M
2/2E → ∆D in (1.45).

And so, simply by inspection, we may conclude that the mass splitting was “corrected” by a factorR given by:

R(E) ≡
√
1 +R2 + 2R

(
cos 2θ cos 2ξ + cos η sin 2θ sin 2ξ

)
R(E) ≡ 2E1+n ∆δ

∆m2
(1.60)

which is a result given in [1]. The corrected oscillation length is:

λkinetic+NP
osc =

4πE

∆m2R(E)
(1.61)

We may takeR to be small, at least in the limitE � ∆m2/∆δ, and then:

λkinetic+NP
osc ' 4πE

∆m2 + 2∆δ E1+n
(
cos 2θ cos 2ξ + cos η sin 2θ sin 2ξ

) (1.62)

which, in the cases we are considering, reduces to λkineticosc in the low energy limit (or when∆δ vanishes).

Most importantly, oscillations no longer disappear in the high energy limit! Instead, takingE →∞:

• for n = 0, the oscillation wavelength approaches a constant limit, and

• for n = 1, the oscillation wavelength approaches zero.

Similarly, by inspecting the elements ofU , we may obtain this formula given in [1] for the corrected mixing angle:

sin2 2Θ(E) =
1

R2(E)

(
sin2 2θ +R2(E) sin2 2ξ + 2R(E) sin 2θ sin 2ξ cos η

)
(1.63)

Similar formulas exist in certain limits for three-flavor oscillations, some are given in [11], for example.

1.3.5 NP oscillations in general

Notice that the oscillation wavelength (1.61) is a complicated function of all the parameters of the Hamiltonian,

even in the simplest case with just two flavors.

IfHkinetic andHNP are simultaneously diagonalizable, that is, if they commute, then their contributions to the

neutrino oscillation frequency combine linearly. But otherwise, the commutator [Hkinetic,HNP] encodes the first
order nonlinear “interference” between the two contributions, since the time evolution operator is:

U(t) = exp(−itHkinetic − itHNP) ≈ exp(−itHkinetic) exp(−itHNP) exp

(
t2

2
[Hkinetic,HNP]

)
(1.64)

Therefore, to extract useful information about the oscillatory behavior, we must diagonalizeH . However, with three

neutrino flavors,H may only be diagonalized analytically in some limiting cases, and the expressions obtained are

not particularly illuminating. Of course, oscillation probabilities may be found numerically.

It’s now clear that the effect of introducingHNP to the Hamiltonian was to:

• introduce a dependence on energy to the oscillation wavelength, with an effect which is negligible at low

energy, but grows with increasing energy, and

• change the stationary states, by modifying the mixing angle, with an effect which also varies with energy.

If we perform experiments at a fixed energyE, these effects are effectively indistinguishable from a shift to the mixing

angles and mass splittings of standard vacuum kinetic oscillations. But we can, in principle, tease out the NP effects

by comparing data obtained with neutrinos of different energies.
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1.3.6 Full parameterization

We now need to get used to thinking ofH as a parameterized family of Hamiltonians:

H(θ) = Hkinetic(θkinetic) +HNP(θNP) (1.65)

Our parameter space is ofN+S dimensions, the product of anN–dimensional subspace ofNP parameters, θNP,
with an S–dimensional subspace of kinetic parameters, θkinetic. But the values ofN and S depend on the whether

we’re considering two-flavor or three-flavor oscillations, and on whether we choose to neglect CP-violating phases.

With three flavors, the parameters θ include:

• as kinetic parameters, the squared-mass splittings∆m2
ij , kinetic mixing angles θij , and strictly kinetic CP-

violating phase δCP,

• as NP parameters, the splittings∆δAB , mixing angles ξAB , strictly NP “internal” phase η, and

• the relative complex phases αi betweenHkinetic andHNP which as a convention we will assign to the NP

sector.

Or, with just two flavors, we have:

• as kinetic parameters, the squared-mass splitting∆m2 and mixing angle θ,

• as NP parameters, the strength of the NP effect, δ, and the mixing angle ξ, and

• the relative phase η.

Notice that, with three neutrino flavors:

• if there are no new physics, we have exactly one complex phase from the kinetic sector, and

• similarly, if neutrinos were massless, we would have exactly one phase from the NP sector, but

• with both massive neutrinos and new physics, we have four complex phases: δCP, η, α1, and α2.

In the two-flavor case, we have no CP-violating phases unless both sectors are present—that is, massive neutrinos

with new physics–and then we have one relative phase η.

Parameter ranges are not uniquely defined. Due to symmetries of the Hamiltonian, we may sometimes trade a wider

range of one parameter for a narrower range of another parameter.

This gets extremely complicated with three neutrino flavors. But in this work, we have not done any computations

with the full set of parameters describing three-flavor mixing, so we don’t need to discuss the parameter ranges of

that description here. Some discussion may be found in Appendix B of [12].

With two neutrino flavors, the parameterization is simpler, and the parameter ranges are easier to nail down.

1.3.7 Two-flavor limit

Wemay obtain a limit with two-flavor oscillations simply by setting one of the mass splittings and two of the mixing

angles to zero. Thus, there are actually two different useful two-flavor limits, but the one we’re interested in is the

limit which describes muon neutrino disappearance in atmospheric neutrino data.

The surviving parameters are:

• in the kinetic sector, θ ≡ θ23 and∆m2 ≡ ∆m2
31, along with,

• in the NP sector, ξ ≡ ξ23 and∆δ ≡ ∆δ31, and

• the relative phase η.
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The parameter ranges are given in [1]. For arbitrary η, they are:

Table 1.1: Parameter ranges for two-flavor oscillations

Parameter Range Alternate representation

Mass splitting ∆m2 ≥ 0

NP splitting ∆δ ≥ 0

Kinetic mixing angle 0 ≤ θ ≤ π
2 0 ≤ sin2 θ ≤ 1

NPmixing angle 0 ≤ ξ ≤ π
4 0 ≤ sin2 2ξ ≤ 1

Relative phase 0 ≤ η ≤ π

But if we limit our consideration to the subspace where the relative phase η is real, that is, η ∈ {0, π}, and CP is
conserved, then we can drop η altogether if we let ξ range over negative values.

Table 1.2: Parameter ranges for two-flavor oscillations with CP conservation

Parameter Range Alternate representation

Mass splitting ∆m2 ≥ 0

NP splitting ∆δ ≥ 0

Kinetic mixing angle 0 ≤ θ ≤ π
2 0 ≤ sin2 θ ≤ 1

NPmixing angle −π
4 ≤ ξ ≤

π
4 −1 ≤ sin2 2ξ ≤ 1

Results obtained assuming the two-flavor limit are documented in section 3.2.

A first step in generalizing from the two-flavor limit to incorporate the third neutrino flavor is the hierarchical

approximation.

1.3.8 Hierarchical approximation

With three neutrino flavors, but without new physics, the hierarchical approximation described in [2] is the limit of
vanishing∆m2

21. In this limit, the νe appearance signal is effectively controlled by θ13 and the dependence on θ12
and δCP drops out, leaving∆m

2
31, θ23, and θ13 as the relevant kinetic parameters. This is a useful limit for modelling

long-baseline accelerator experiments, where the observables are νµ disappearance and νe appearance.

When addingnewphysics into themix,wemust be very careful in our selectionof parameters, and in the interpretation

we place on the results, since there is a risk of assigning effects to the NP sector which are actually explainable by

unfitted parameters of the kinetic sector of the full model. The choice of NP parameters must be consistent with the

choice of kinetic parameters.

In this case, since we excluded∆m2
21 and θ12 from the fit, we also exclude∆δ12 and ξ12.

For simplicity, and since the effect of θ13 is already subdominant in our data, we will also exclude ξ13 from our fits,

though in principle it could be included.

Furthermore, with∆m2
21,∆δ21, and ξ13 set to zero, and following the logic outlined above in 1.3.6, we have only

one complex phase, which we take to beα2. From this point of view, the hierarchical approximation is still effectively

a two-flavor limit.

A potential problemwith this parameterization is that CP violation from the kinetic sector—forwhich some evidence

exists in the appearance data—might be assigned to the relative phase between the kinetic and NP sectors.

If we further take θ13 to vanish, then we recover the two-flavor limit described in the previous section 1.3.7.
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Incidentally, in (1.51) and (1.55) it can be seen that the effect of propagation in matter takes a similar form to a CPT

odd NP effect with n = 0, and so it’s important that matter be taken properly into account in our calculations, so as
to avoid assigning its effect to the NP sector.

In section 3.3 we present the results of a number of computations performed under this hierarchical approximation.

That is, instead of fitting all the parameters describing three-flavor oscillations, we excluded the parameters which

were not well-constrained by the long-baseline dataset used in the fit, and fitted only the remaining parameters.
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Chapter 2 || Statistical method

OurparameterizedHamiltonianH(θ) corresponds to aparameterized family ofmodelsweuse to calculate probabilities
which may be compared to the distribution of real data from neutrino oscillation experiments.

A given model—that is, a given assignment θ = θ0 of parameter values—determines a probability distribution of

neutrino detection events. But, because of the complexity of the physics involved, it’s not possible to express the

distribution as a density function in closed form. Instead, it’s necessary to use a numerical algorithm to estimate the

discretized (binned) probability distribution.

Our goal in this work is to infer bounds on the parameters θNP of HNP. The approach we take, which will be

rigorously justified below, involves:

• sampling the subspace of NP parameters on a grid, and, at each grid point

• using an optimization algorithm to find the model which best fits the experimental data within the subspace

of kinetic parameters, and finally

• comparing the goodness of fit of the best model at each grid point with the best fit model across the whole

grid, to determine an excluded region of the NP parameter space.

Let’s see how we can make these statements precise.

2.1 Constructing confidence regions

Our ultimate task is parameter estimation, but to construct our confidence regions, we’re going to make use of a

statistic that’s very often encountered in the context of tests for goodness of fit. The general framework for the

methodology we adopt is presented in chapter 40 of [13], and a fascinating discussion contrasting the properties of

different statistics for evaluation of goodness of fit may be found in [14].

The goodness of fit for any model is quantified by a χ2 statistic, 1 and so a “best” fit is a model which minimizes χ2

over some parameter space. Furthermore, the difference∆χ2 of χ2 values between two different models may be

used to precisely quantify howmuch “better” the first fit is compared to the second.

In principle, it would be perfectly acceptable to take a χ2 value for a single model, and use its p-value directly to

decide whether to exclude the corresponding point in parameter space. But our goal is parameter estimation. We’re

not interested in testing the overall fit of our parameterized model; rather, we’re interested in excluding certain

parameter assignments within the parameterized family.

Therefore, we always compare the χ2 statistic for a model with the smallest value χ2
best = min(χ2) belonging to the

best-fitting model in the given parameter space. This method does not attempt to decide whether there exists a model
within the parameterized family which accurately captures all the real physics, and lends flexibility by accommodating

the possibility that our family of models leaves some of the underlying physics unmodelled.

1Note that our χ2 isn’t just a sum of squares, but something more sophisticated, derived from the theory of maximum likelihood estimation,
as we’re about to see.
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Calculating a χ2 statistic is a rather complicated and computationally expensive process.

2.1.1 Simulation and binning

The experimental data is made available in binned form, with events binned by physical variables such as energy or

zenith angle. Thus, the observed variables are the counts ni of events falling within each bin i.

These observations must be compared to the expectations µi(θ0) for each bin, predicted by a model with a given
parameter assignment θ = θ0. These predictions are obtained by numerical integration of the flux and cross section,

taking into account experimental efficiencies and resolution.

The first step of our data processing algorithm takes the ni and µi(θ0) together and produces a statistic χ
2(θ0)

representing the goodness of fit for the model at the point θ0 in the fullN+S–dimensional parameter space.

2.1.2 Goodness of fit for binned data

Each bin is modelled as an independent Poisson variableNi with parameter µi as defined above:

Ni ∼ Poiss(µi) (2.1)

If the number of events in the bin is large enough, a Gaussian approximation is acceptable:

Ni ∼ N (µi, µi) (2.2)

ForB bins with theoretical expectations µ(θ0) = (µ1, . . . , µB), the joint density function of the independent
variablesNi is:

fµ(n) =
B∏
i=1

fµi(ni) (2.3)

Now, given binned experimental datan = (n1, . . . , nB), this may be viewed as a likelihood functionLm(θ0) =
fµ(n) in the framework of maximum likelihood estimation.

This model will be evaluated by comparing it to a competing “saturated” model2 in which we discard the model

predictionsµi and estimate the parameters of fµ directly from the experimental data, that is, we setµi = µ̂i = ni, the
usualmaximum likelihood estimate of the Poisson parameter. Thus, we obtain a baseline likelihoodLs(µ̂) = fn(n).
The saturated model should be considered a member of a parameterized family withB free parameters µ̂i.

This is almost3 the textbook setup for a likelihood ratio test. The likelihood ratio in question is:

λ(θ0) ≡
Lm(θ0)

Ls(µ̂)
=
fµ(n)

fn(n)
(2.4)

Given a model with theoretical expectationsµ(θ0), the ratio λ(θ0) compares the likelihood of the observations in
the given model to their likelihood in the saturated model. A good fit is one in which λ is not much smaller than
unity.

Finally, byWilk’s theorem,the following statistic has a χ2 distribution withB degrees of freedom:

χ2(θ0) ≡ −2 logλ(θ0) = −2 log
fµ(n)

fn(n)
(2.5)

2See section 40.2.2.1 of [13].
3In the usual setup for a likelihood ratio test, our likelihood ratio would beLm(θ̂)/Ls(µ̂) and we would haveB − P degrees of freedom,
since we would be estimating the P parameters θi from the data. But here we did not yet estimate any θi from data, they are fixed numbers
baked into a model with effectively zero parameters.
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For the case (2.1) of Poisson-distributed bins:

fµ(n) =
B∏
i=1

µni
i

ni!
exp(−µi) ⇒ λPoiss(θ0) =

fµ(n)

fn(n)
=

B∏
i=1

(
µi
ni

)ni

exp(ni − µi)

And now, taking the log, we obtain equation (40.16) of [13]:

χ2
Poiss(θ0) = −2 logλPoiss(θ0) = 2

B∑
i=1

(
ni log

ni
µi
− ni + µi

)
(2.6)

In the Gaussian limit (2.2), we have something which looks initially more complicated, but is actually simpler:

fµ(n) = (2π)−
B
2

B∏
i=1

1

σi
exp

(
−1

2

(ni − µi)2

σ2i

)
⇒ λN (θ0) =

fµ(n)

fn(n)
=

B∏
i=1

√
ni
σi

exp

(
−1

2

(ni − µi)2

σ2i

)
where σ2i is the variance ofNi. We take the log and obtain:

χ2
N (θ0) = −2 logλN (θ0) =

B∑
i=1

(
(ni − µi)2

σ2i
− log

ni
σ2i

)
(2.7)

Recalling (2.2), we could now set σ2i = µi and use this statistic directly.
4

But instead, we replace σ2i with its estimator σ̂
2
i = µ̂i = ni, leading to the simpler formula:

χ2
N (θ0) =

B∑
i=1

(ni − µi)2

ni
(2.8)

which is what [14] calls a “modified” or “Neyman’s” χ2, and is asymptotically equivalent when all ni are sufficient.
5

As mentioned above, we don’t use this χ2 statistic directly when constructing confidence regions.

2.1.3 Comparing models for goodness of fit

In this work, we must compare the goodness of fit for models at different points in parameter space.

This may be done by comparing their χ2 statistics in a very trivial way since, if θ1 and θ2 are the parameter values for

two different models, then:

χ2(θ2)− χ2(θ1) = −2 log
λ(θ2)

λ(θ1)
= −2 log Lm(θ2)/Ls(µ̂)

Lm(θ1)/Ls(µ̂)
= −2 log Lm(θ2)

Lm(θ1)
(2.9)

which is itself a negative log likelihood ratio.

Conveniently, the dependence on the saturated model has disappeared. And this trick generalizes to any case where

two χ2 values were computed from likelihood ratios with the same denominator.

Let’s see how we can generalize this idea even further, to parameter subspaces.

2.1.4 Profile likelihood and nuisance parameters

Given some likelihoodL(θ) defined on a parameter spaceθ, wemay segregate the parameter space into two subspaces
so that θ = (φ,ν) and, of course:

max
θ
L(θ) = max

φ

[
max
ν
L(φ,ν)

]
(2.10)

4This formula is much simpler than the formula one would obtain using the MLE for a Gaussian distribution to estimate the µi in (2.4).
5Note that a textbook χ2 statistic is usually given for a multinomial distribution, and has one less degree of freedom than the χ2 statistic we
just derived for our Poisson-distributed data.
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This allows us to define the profile likelihood:6

Lprofile(φ) ≡ max
ν
L(φ,ν) = L(φ, ν̂(φ)) where ν̂(φ) ≡ argmax

ν
L(φ,ν) (2.11)

so that the maximum likelihood estimators ofφ and ν are:

φ̂ = argmax
φ

Lprofile(φ), ν̂ = ν̂(φ̂) (2.12)

This is a useful trick if theφ are the parameters we’re really interested in estimating, and theν are nuisance parameters
that we would like to “profile out”. In our work, theφwill be NP parameters, and the ν are usually a combination

of kinetic parameters, NP parameters, and variables that encode systematic uncertainties.

We’re not interested in the estimators, but in the profile likelihood ratio:7

λprofile(φ) ≡
Lprofile(φ)

Lprofile(φ̂)
=
L(φ, ν̂(φ))

L(φ̂, ν̂)
(2.13)

A straightforward application of Wilk’s theorem shows that:

∆χ2
profile(φ) ≡ −2 logλprofile(φ) = 2 logL(φ̂, ν̂)− 2 logL(φ, ν̂(φ)) (2.14)

approaches a χ2 distribution where the degrees of freedom are the same as the number of parameters inφwhen the

sample size is very large.

This is a great result: it tells us that we can profile away the nuisance parameters simply by finding the best-fitting

model within the nuisance parameter subspace, and still meaningfully compare models within the complementary

subspace of parameters of interest.

2.1.5 Excluding models

Best of all,∆χ2
profile is easy to calculate. Reversing the logic of (2.9), we see that:

∆χ2
profile(φ) = −2 log

Lprofile(φ)

Lprofile(φ̂)
= −2 log λ(φ, ν̂(φ))

λ(φ̂, ν̂)
= χ2(φ, ν̂(φ))− χ2(φ̂, ν̂) (2.15)

Thus, to determine an excluded region of parameter space—for any selection of NP parameters—we simply:

1. place a gridφij over the selected parameter space, and then,

2. at each grid vertex (i, j), minimize χ2(φij) over the parameters we’re not interested in, and finally

3. evaluate∆χ2
profile(φij) at each vertex (i, j) by subtracting the best (smallest) χ

2 on the whole grid from the

value χ2(φij) at the vertex.

We may use the p-value of∆χ2
profile(φij) to determine if the vertexφij is excluded.

2.1.6 Systematic uncertainties

Systematic uncertainties—that is, errors which do not converge to zero with increasing sample size—may also be

treated as nuisance parameters. Without loss of generality, we will take each of thesem parameters ξi to be “centered”

at zero. That is, we normalize the parameters so that our best prior estimate of ξi before fitting is ξ̂i = 0.

We must also incorporate our best estimate of the magnitude of each uncertainty, and for this we introduce a

regularization factor (a Gaussian prior) for each parameter ξi, which modifies the likelihood functionL.

6See section 40.2.2.2 of [13].
7See section 40.3.2.1 of [13].
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The regularized likelihoodLreg is given by:

Lreg(θ, ξ) = L(θ, ξ) (2π)−
m
2

m∏
i=1

1

σi
exp

(
−1

2

ξ2i
σ2i

)
(2.16)

where the σi encode our prior uncertainty about the values of ξi.

Now, after dropping constant terms, the regularized log likelihood is just:

logLreg(θ, ξ) = logL(θ, ξ)− 1

2

m∑
i=1

ξ2i
σ2i

(2.17)

and, making use of (2.5), we may obtain the statistic:

χ2(θ, ξ) = −2 logλreg(θ, ξ) = −2 logλ(θ, ξ) +
m∑
i=1

ξ2i
σ2i

(2.18)

If we now assume a model with Gaussian-distributed bins, as above in (2.8), we obtain:

χ2(θ, ξ) =

B∑
j=1

1

nj

[
µj(θ, ξ)− nj

]2
+

m∑
i=1

ξ2i
σ2i

(2.19)

'
B∑
j=1

1

nj

[
µj(θ, 0) +

m∑
i=1

ξi
∂µj
∂ξi

(θ, 0)− nj

]2
+

m∑
i=1

ξ2i
σ2i

(2.20)

Following the logic of section 2.1.4, we should minimize this χ2 over the nuisance subspace ξ.

But at a minimum of χ2 we must have, for each ξi:

0 =
∂χ2(θ, ξ)

∂ξi
'

B∑
j=1

2

nj

∂µj
∂ξi

[
µj +

m∑
k=1

∂µj
∂ξk

ξk − nj

]
+

2

σ2i
ξi (2.21)

and this is a system of linear equations for the ξi, and can be easily solved.

A difficulty here is obtaining the derivatives ∂µj/∂ξi, but if analytic expressions are not available, they may be
estimated using numerical differentiation.

2.2 Optimization

In the previous section we encountered the need to find the best-fitting model over a subspace of the whole parameter

space. In fact, this need arises in three scenarios:

1. when marginalizing over systematic uncertainties, as discussed above in 2.1.6, although, as we’ve just seen, this

is a special case with an easy solution,

2. when, given P parameters φ, we find the best-fitting model over the remaining subspace of N+S−P
parameters ν , as discussed in 2.1.4, and

3. whenwe compare thebest-fittingmodel for a givenφ to thebest-fittingmodel over the entireN+S–dimensional
parameter space, as discussed in 2.1.5.

Here we discuss how best fits were obtained in each scenario. Actually, we’ve already seen the solution used in the first

scenario. For the second scenario, we must resort to the use of optimization algorithms. But for the third scenario, a

brute force approach is possible, so let’s review that option first.
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2.2.1 Brute force approach

A brute-force approach to finding the best fit is always possible. For example, in a two-dimensional subspace, we

might place a grid φij over the space, evaluate χ
2(φij) for the model at each grid vertex, and then simply select

the smallest value. This approach is perfectly acceptable in two dimensions, but scales badly to higher-dimensional

subspaces. Since, as mentioned above, the evaluation of χ2 is computationally expensive, we quite quickly saturate

our performance constraints.

Nevertheless, brute force is the approach we take for the third item on the list above. The reason it’s appropriate in

that case is that we are already evaluating χ2 at every point on a grid when determining an excluded region in NP

parameter space. Furthermore, in practice, P = 2 here, since we produce two-dimensional plots.

On the other hand, we do not use brute force to find the best-fitting model for a givenφ since our ultimate goal is to

develop a methodology suitable for fits over the full set of standard and NP parameters, whereN+S−P is large

enough that a brute force search is prohibitively computationally expensive. Instead, we must use an optimization

algorithm to minimize χ2 over the subspace.

2.2.2 Optimization algorithms

Our optimization problem is not a trivial one since:

• evaluations of the χ2 function we’re trying to minimize are very expensive,

• theχ2 function itself does not varymonotonically in all directions as wemove away from the global minimum,

having oscillations in certain directions in some regions of the parameter space, and

• the parameter space has up to 14 dimensions.

In this section, we suppose that our task is to minimize an objective function f(x) over values of the parameters
x = (x1 . . . xP ). In this work, f is almost always χ

2, and x represents the same parameters we called θ in the

previous section.

The optimization algorithms we consider belong to three families:

• gradient descent, relying on numerical differentiation to determine the slope of the objective function,

• direct methods, which do not require the use of a local gradient, and

• population methods, which are inspired by analogy to biological systems, and work by propagating successful
traits between members of the population.

We now discuss the algorithms we used, which the author implemented in C, based on descriptions in the excellent

reference [15].

2.2.3 Gradient descent

In the most basic gradient descent method, we choose a learning rate α, then pick an initial point x and iteratively

move in the opposite direction of the gradient∇f of f , according to:

x← x− α∇f(x)

Some variations on gradient descent also feature a decayingmomentum–it’s actually just a velocity—which helps

prevent the algorithm taking many iterations to traverse a flat region. With momentum v we have:

x← x+ v

v ← βv − α∇f(x)

where the hyperparameter 1−β must be some sort of linear drag, the author supposes.

Gradient descent algorithms are very susceptible to getting stuck in local minima, but this problemmay be partially

alleviated by sampling many random initial points in the parameter space, and choosing the best result.
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Our objective function has no expression in closed form, and so we can’t differentiate it. This makes gradient descent

a potentially-poor choice for our needs. Nevertheless, we may use numerical differentiation to obtain an estimate of

the gradient at any given point.

We tested two gradient descent algorithms:

• gradient descent withNesterov momentum[16], a slightly fancier version of what we just described, and

• Adam[17], or adaptive moment estimation, a sophisticated gradient descent algorithm that’s very popular in

the Machine Learning community.

Nesterov momentum evaluates the gradient not at the current positionx, but at a projected positionx+ βv. Thus,
the rule to update the momentum becomes:

v ← βv − α∇f(x+ βv)

We did have some success with the Nesterov algorithm as long as we started it with sufficiently-many random initial

points. However, it was not as efficient as other methods considered below. This is hardly surprising, since numerical

differentiation of an objective function like ours is not exactly a thing that’s obviously going to work.

We had little success with Adam, and quickly discarded our implementation.

Ultimately we did not use gradient descent to obtain the results presented here.

2.2.4 Direct methods

More promising, for our particular objective function, are what [15] calls direct methods. A direct method uses only

the objective function f and none of its derivatives.

The Nelder-Mead simplex method[18, 19] is a very famous direct method. A simplex is a generalization of a triangle

or tetrahedron to arbitrary dimensions. In P dimensions, a simplex is characterized by its P+1 vertices, and is thus
the simplest geometric figure with the given dimensionality.

The simplex method starts with an initial simplex (x(1) . . .x(P )), along with hyperparameters α, β, and γ, and at
each iteration determines the best and worst vertices x(best) and x(worst), computes the centroid x̄, and then either:

• reflects the worst vertex about the centroid:

x(worst) ← (1+α) x̄− αx(worst),

• reflects the worst vertex about the centroid and also expands the simplex:

x(worst) ← (1+αβ) x̄− αβ x(worst),

• contracts the simplex away from the worst vertex:

x(worst) ← (1− γ) x̄+ γ x(worst),

• or shrinks the simplex by moving all vertices toward the best vertex:

x(p) ← 1

2

(
x(best) + x(p)

)
.

A complete definition of the algorithm, including the criteria for choosing the action to take at each step, may be

found in any of the references cited above.

We found that this method worked very well for our problem.
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2.2.5 Population methods

A population method begins with a population of randomly-sampled individuals x(p). Each iteration attempts to

improve the average “fitness” of the population bymoving individuals in directions that reduce the objective function,

and—unlike other optimizationmethods—the individuals are allowed to share information so that successful “traits”

propagate within the population.

Note that this is quite different to simply starting a descent algorithm frommany randomly-chosen initial points. In

a population method, the individuals cooperate to discover the optimal solution.

The population methods we tested were:

• differential evolution[20, 21], which works by recombining individuals in the population, retaining only those
recombinant individuals with improved fitness compared to the previous generation, and

• particle swarm[22], which uses a sort ofmomentum, and each individual is accelerated toward the best position

it has visited, and the best position found by the whole population.

Differential evolution updates a population member x(p) by “crossing” it with three other individuals:

1. For three distinct randomly-selected individuals x(q), x(r), x(s), let:

z = x(q) + w
(
x(r) − x(s)

)
where the weightw is a hyperparameter.

2. Construct a recombinant individual x′ from x(p) and z. For each component j, make a random choice:

x′j =

{
zj if rj < p

x
(p)
j otherwise

where the 0 ≤ rj ≤ 1 are random numbers, and the probability p is a hyperparameter.

3. If f(x′) < f(x(p)), set x(p) ← x′. Otherwise, retain the previous individual.

There are many possible minor variations on this basic scheme.

Differential evolution is sometimes known in the particle physics community by the name “Diver”, referring to a

particular implementation in Fortran [23]. The author invested some time in testing this package and reviewing the

implementation. Finding nothing special in its feature set, and considering the implementation rather bloated and

over-complex, the author quickly implemented a generic differential evolution algorithm in a few lines of C, and, by

luck rather than design, found that it slightly outperformed Diver configured with default settings, at least for our

particular χ2 objective function. We made no further use of the Diver package.

Our implementation has a number of tunable hyperparameters, some copied from [23]. We were unable to

demonstrate that any of these knobs and switches improved performance over the most generic implementation of

differential evolution. For some other objective function, these extra options would surely be useful.

Particle swarm is, if we squint, similar to gradient descent with momentum, except that there’s no need to compute a

local gradient. Instead, the direction of acceleration is determined by positions visited in the past. Each population

member has its position x
(i)
p and momentum v

(i)
p updated according to:

x(p) ← x(p) + v(p)

v(p) ← wv(p) + c1r1

(
x
(p)
best − x(p)

)
+ c2r2

(
xbest − x(p)

)
where the 0 ≤ ri ≤ 1 are random numbers, c1, c2, andw are hyperparameters, x

(p)
best is the best position visited by

the individual, and xbest is the best position found so far by the whole population.

For our objective function, the particle swarmmethod was quite similar differential evolution when the twomethods

were compared by efficiency.
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2.2.6 Hyperparameters

Each of the optimization algorithms we considered came with several “knobs”, hyperparameters that in principle

allow the algorithm itself to be tuned for better performance. These hyperparameters may be adjusted by hand, but a

better approach is an automated search of the hyperparameter space, a practice that’s routine at least in in the context

of Machine Learning.

It naturally occurred to us then, that since we happened to have some nice optimization algorithms on hand, why not

use the optimization algorithm itself to optimize its own hyperparameters? For this problem, the objective function

is not the χ2 function, but the number of evaluations of χ2 that are required for the algorithm to converge and

terminate.

Unfortunately, what we found was that the optimization algorithm did not usually converge when optimizing its

own hyperparameters, or, when it did converge, it converged to what were obviously local minima. We attribute

this failure to the inherent nondeterminism in the algorithms themselves—even the deterministic algorithms were

started at randomly sampled initial points—combined with the tricky oscillatory behavior of our χ2 function.

If this explanation is correct, then attempting to tune the hyperparameters by hand is even less likely to be successful,

and, indeed, we were not successful when we tried.

2.2.7 Comparison of optimization algorithms

The most efficient optimization algorithm is the one which evaluates the objective function the fewest times on its

way to convergence. Implicit in this definition is that the convergence criteria of the algorithms should be sufficiently

similar for this comparison to be fair, and that they should be converging to the same global minimum. It’s not very

clear if these conditions are perfectly satisfied here.

A semi-qualitative method of evaluating an algorithm is to:

1. select two NP parameters of interest, and place a grid on the two-dimensional parameter space,

2. set up the algorithm to find the minimum of χ2 over the remaining parameters, and then

3. by trial and error, determine a sufficiently-large population size (or, equivalently, a sufficiently-large sample

size of random initial points) such that a visually-smooth heatmap is produced when χ2 is plotted against the

two parameters of interest, and

4. report howmany evaluations of χ2 were performed by the algorithm.

We found that non-smoothness of the heatmap produced in step 3 was an effective way to detect when an algorithm

was failing to converge, getting lost in noise, or stuck in local minima. These failures tend to result in curves of

discontinuity, or visible “speckling” in the heatmap, as seen, for example, in figure 2.1.

Figure 2.1: Heatmap of χ2
profile values produced by particle swarm optimization with population sizes 5 (plots on left)

and 20 (plots on right).

By this method we were able to narrow our selection of algorithms to the following three: the Nelder-Mead simplex

method, differential evolution, and particle swarm. To decide between them, we’ll need something a bit more

quantitative.
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Figure 2.2 plots the average (over a 2×2 grid) number of evaluations of the objective function for a model with
four free parameters which we will meet in section 3.3, against the average minimized value of χ2 obtained by the

algorithm, while varying the population size or number of tries per grid point, for the three algorithms which were

found to be competitive.

Figure 2.2: Comparison of optimization algorithm performance

We emphasize that this is far from a truly “fair” evaluation:

• we have not tuned the hyperparameters of each algorithm for best performance, and

• the convergence criteria for the population methods is by nature quite different to that used for the simplex

method.

But our objective in this work is not a rigorous evaluation of optimization algorithms. We’re merely trying to pick an

algorithm that produces acceptable results, efficiently, and with a minimum of fuss. We didn’t have time to spend

weeks tuning hyperparameters.

The results we present in the next chapter were all obtained using the simplex method.
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Chapter 3 || Results

Here we present the results of our computations. We began by fitting the parameters of the two-flavor limit from

section 1.3.7 to data sensitive to the mass difference∆m2
31 and mixing angle θ23, mainly as a way of validating

our code, and providing a baseline for comparison. We then moved on to fitting the parameters of the hierarchical

approximation described in section 1.3.8, by introducing θ13 into the fit.

3.1 Experimental datasets

The results in this section have been produced using data from two different sorts of experiment.

• Experiments with atmospheric neutrinos, measuring the disappearance of muon neutrinos. When cosmic

rays interact with the atmosphere, pions are produced, and rapidly decay. Decaying pions produce muon

neutrinos and muons. The muons themselves decay, producing more muon neutrinos, along with an equal

number of electron neutrinos.

Experiments of this sort are Super-Kamiokande (SK) and DeepCore. Neutrinos detected by SK have energies

between 10−1 and 104 GeV.

These experiments aremost sensitive to the “atmospheric”mixing angle θ23, that is, to the oscillation νµ → ντ ,
but θ13 plays a subdominant role.

• Long-baseline accelerator experiments, measuring the disappearance of νµ from a muon neutrino beam, over

distances of hundreds of kilometers. In a long-baseline experiment it’s also possible to observe the appearance

of electron neutrinos, due to the oscillation νµ → νe.

Compared to atmospheric neutrinos, the muon neutrinos have relatively low energies in the realm 1−10
GeV. Note that it’s very difficult to observe appearance of tau neutrinos, since the energy of the beam is small

compared to the τ mass.

Experiments include KEK to Kamioka (K2K), Tokai to Kamioka (T2K), MINOS, and NOνA. These
experiments are sensitive to θ23 which controls νµ and ν̄µ disappearance, and to θ13 which controls νe
appearance.

Both kinds of experiment are most sensitive to∆m2
31, and so the (by definition) smaller difference∆m

2
21 may be

neglected in performing fits to these datasets.

We have not used data from solar neutrino observations, which measure the disappearance of low-energy electron
neutrinos, and are dominantly sensitive to the “solar”mixing angle θ12. Nor dowe include data from reactor neutrino
experiments, which are sensitive to both θ12 and θ13.

3.2 Results from the two-flavor limit

A natural place to start our work was with the easily-understood two-flavor oscillations described in section 1.3.6,

where the parameters to fit are the parameters listed in table 1.1. So we began by attempting to reproduce the results

of [1] with updated atmospheric neutrino data from Super-Kamiokande.
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3.2.1 Reproducing prior results

The previous work fitted these parameters to atmospheric neutrino data from Super-Kamiokande and long-baseline

data from K2K. It wasn’t possible to exactly reproduce this fit, since we didn’t have the K2K data available to us in

the two-flavor code. Instead, the plots in figure 3.1 below were obtained using only SK data. Partly compensating for

the lack of K2K, we havemore SK data than before.

In this and all following figures,∆m2 is given in eV2 and∆δ in GeVn+1.

Figure 3.1: Comparison of excluded regions from two-flavor fits with SK data.

(a) Previous results borrowed directly from [1], which considered
three cases, from top to bottom: n=1, CPT even; n=0, CPT
odd; n=0, CPT even.

(b) Excluded regions from two-flavor fits to SK atmospheric data. Plots on left show
confidence regions for kinetic parameters; plots on right show confidence regions
for NP parameters.

The excluded regions we found are clearly very similar to those obtained by [1] in both shape and extent. Some

differences were expected, given the differences in the datasets.

Of course, as a double-check, we fitted the data using three different optimization algorithms described in 2.2, and

verified that the excluded regions were invariant under the choice of algorithm.

These results gave us confidence in the correctness of our numerical code and optimization algorithms.

3.2.2 Two-flavor oscillations with additional data

Even though we don’t have the K2K data available, we do have other new data that was not available in 2004:

• we may include new atmospheric neutrinos data fromDeepCore in our fit, and

• we may even include data from long-baseline accelerator experiments MINOS, NOνA, and T2K, which are
sensitive to the same mass splitting and mixing angle as atmospheric neutrinos.

However, we encountered a subtlety here. When we initially included all the long-baseline data, we found that the

raw χ2 values of 2.1.2 produced were much larger than expected, indicating a poor model fit.
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The explanation is that the T2K andNOνA experiments are sensitive not only to muon neutrino disappearance,

but also to electron neutrino appearance, a phenomenon which cannot be explained in the two-flavor limit. But

this doesn’t affect nor undermine our estimates of the two-flavor NP parameters, since they can’t explain electron

neutrino appearance either. Therefore, the contribution of the appearance signal to χ2 is just an overall constant

offset, and we still obtain sensible and meaningful excluded regions from∆χ2
profile where the constant offset cancels.

Figure 3.2 shows the results of such fits. It may be seen that the additional data provides much tighter constraints on

the standard parameters θ and∆m2, without much affecting the excluded region of the NP parameter space.

This result is expected for data from long-baseline accelerator experiments, where the energy of the neutrinos is

lower than for atmospheric neutrinos. These experiments are therefore less sensitive to the NP effects we’re looking

for. Conversely, they have higher energy resolution and high statistics, which allows for a much more accurate

determination of the standard kinetic oscillation parameters.

Figure 3.2: Two-flavor fits with SK and additional data fromDeepCore, MINOS, NOνA, and T2K.

(a) Excluded regions from two-flavor fits with SK and DeepCore
atmospheric data.

(b) Excluded regions from two-flavor fits with atmospheric data together
withMINOS, NOνA, and T2K long-baseline accelerator data.

We used the same dataset to establish updated bounds on the magnitude of NP effects in the two-flavor limit.

3.2.3 Updated bounds onNP effects

To establish updated bounds on∆δ, an additional, higher-resolution fit was performed on a one dimensional grid,
with ξ treated as a nuisance parameter. The fit was performed twice, with two different datasets:

1. first, the fitwas performedwith data from all the experiments listed above: SL,DeepCore, and the long-baseline

experiments, and then

2. the fit was re-run with the data fromDeepCore excluded, to determine what impact it had on the results.

In table 3.1, the 3σ bounds are compared to the previous bounds reported in [1].
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Overall, the bounds were improved by a factor of two. This modest improvement is not surprising, given that the SK

data is already limited by systematic uncertainties, while, on the other hand, the DeepCore dataset is still limited

in size. Nevertheless, we have verified that the inclusion of DeepCore data is relevant in the improvement of the

bounds on the NP parameters. This is also understandable, since DeepCore is sensitive to higher-energy events. 1

Table 3.1: Updated bounds on NP effects from two-flavor fits

NP scenario Previous bound New bound (DeepCore included) New bound (DeepCore excluded)

n = 1, CPT even 1.6× 10−24 8.5× 10−25 1.0× 10−24

n = 0, CPT even 6.3× 10−23 2.7× 10−23 3.5× 10−23

n = 0, CPT odd 5.0× 10−23 2.4× 10−23 2.6× 10−23

3.3 Results from the hierarchical approximation

We’re not yet ready to run fits with all the parameters describing three-flavor oscillations, since:

• these fits are extremely computationally expensive, and require execution in a clustered environment, and

• we don’t yet have code to perform fits involving solar or reactor neutrinos, which are essential to constrain the

∆m2
21 and the solar mixing angle θ12, along with their NP friends∆δ21 and ξ12.

2

However, as a first step toward such computations, and as a validation of the code and methodology, we performed

some computations with the parameters of the hierarchical approximation of section 1.3.8, that is, with just one

additional parameter compared to the two-flavor limit above.

Asmentioned above, some long-baseline experiments detect the appearance of electron neutrinos (and antineutrinos)

in addition to measuring the disappearance of muon neutrinos. This appearance signal cannot be explained in the

two-flavor limit used in the previous sections. But it can be explained when we add θ13 to the fit.

3.3.1 Estimating θ13 from long-baseline data

As a warmup, we estimate θ13 by fitting the long-baseline data with:

• only the kinetic parameters of the hierarchical approximation, but no new physics, and

• both the kinetic and NP parameters of the hierarchical approximation. Here we must minimize χ2 over a

5-dimensional parameter space.

Figure 3.3 shows the dependence of∆χ2 on θ13.

Figure 3.3: Dependence of∆χ2 on θ13 for fits with (red) and without (blue) new physics

1So we could expect a substantial improvement of the bounds with the upcoming data release fromDeepCore.
2In fact, we don’t yet even have code to perform three-flavor fits to the atmospheric neutrino data.
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Intersections with the dashed horizontal lines determine the 1σ and 3σ confidence limits.

• The confidence interval for the scenario without new physics is consistent with the best present determination

of this mixing angle from long-baseline experiments. For example, in [24], the T2K collaboration obtained

0.0268+0.0055
−0.0043 for normal ordering, or 0.0300

+0.0059
−0.0050 for inverted ordering.

• Furthermore, the constraints on θ13 are only slightly relaxed in the scenario with new physics. This confirms

that the data has sufficient information to meaningfully constrain the fitted parameters.

3.3.2 Constraints from νe appearance signal

We have argued above that the νe appearance signal is an important feature of the long-baseline experiments, that it is
a feature which cannot be explained in the two-flavor limit, and that it can be explained by the introduction of θ13 to
the fit. If all this is true, then it follows that excluding the appearance signal:

• should not affect the confidence regions obtained from a two-flavor parameterization, but

• should cause problems for a fit to the parameters of the hierarchical approximation, where one of the degrees

of freedom would be insufficiently constrained.

This allows for a useful test of our model and code.

The following figures show the results of fitting:

• with and without θ13 as a free parameter to be estimated, and

• with and without the appearance signal.

For the CPT even case with n = 1we obtain the fits shown in figure 3.4, where the difference between the lower and
upper plots arises from the inclusion or exclusion of the νe appearance signal, and only the four plots on the right
include θ13 as a free parameter to be estimated.

Figure 3.4: Fits with CPT even, n = 1 to disappearance and appearance signals in MINOS, NOνA, and T2K long-
baseline accelerator data.

(a) Excluded regions from fit with θ13 = 0 to disappearance signal. (b) Excluded regions from fit with θ13 free to disappearance signal.

(c) Excluded regions from fit with θ13 = 0 to both disappearance and
appearance signals taken together.

(d) Excluded regions from fit with θ13 free to both disappearance and
appearance signals taken together.

These plots confirm our predictions, showing that exclusion of the appearance signal does not affect the confidence

regions obtained under the two-flavor parameterization, but that the appearance signal plays a very important role in

constraining both the kinetic parameters and the NP parameters as soon as we introduce θ13 into the fit.
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For the CPT even and odd cases with n = 0we obtain the fits shown in figures 3.5 and 3.6.

Figure 3.5: Fits with CPT even, n = 0 to disappearance and appearance signals in MINOS, NOνA, and T2K long-
baseline accelerator data.

(a) Excluded regions from fit with θ13 = 0 to disappearance signal. (b) Excluded regions from fit with θ13 free to disappearance signal.

(c) Excluded regions from fit with θ13 = 0 to both disappearance and
appearance signals taken together.

(d) Excluded regions from fit with θ13 free to both disappearance and
appearance signals taken together.

Figure 3.6: Fits with CPT odd, n = 0 to disappearance and appearance signals in MINOS, NOνA, and T2K long-
baseline accelerator data.

(a) Excluded regions from fit with θ13 = 0 to disappearance signal. (b) Excluded regions from fit with θ13 free to disappearance signal.

(c) Excluded regions from fit with θ13 = 0 to both disappearance and
appearance signals taken together.

(d) Excluded regions from fit with θ13 free to both disappearance and
appearance signals taken together.

In both cases the confidence regions are consistent with our predictions.

We now draw attention to a particular feature of the confidence interval for sin2 θ23 when θ13 is included in the fit
to the νµ disappearance data, with the νe appearance signal excluded. In this under-constrained fit, the range for
sin2 θ23 extends to its maximum allowed value.
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This can be understood by considering this approximate analytic expression for the νµ survival probability:

PL(µ→ µ) ' 1− sin2 2θµµ sin2
(
1

4

L

E
∆m2

23

)
sin2 θµµ ≡ cos2 θ13 sin

2 θ23 (3.1)

Setting θ13 = 0 as in the two-flavor limit leads to θµµ = θ23, and we recover equation (1.40).

Now, given a constraint from data on the survival probability, if θ13 is nonzero then cos
2 θ13 < 1, and so sin2 θ23

must increase to compensate. This is precisely what we observe in subfigures 3.4b, 3.5b, and 3.6b.

On the other hand, with the νe appearance signal included, θ13 is constrained to the small value found in 3.3.1 above,
such that cos2 θ13 is very close to unity, and so the confidence interval for sin

2 θ23 stays close its usual estimate in
subfigures 3.4d, 3.5d, and 3.6d.

The plots also show that the inclusion of θ13 does not much affect our bounds on the NP parameters when the
appearance signal is present, suggesting that our bounds obtained above in 3.2.3 are at least somewhat robust. On

the other hand, we are unsurprised to observe that exclusion of the atmospheric data results in overall looser bounds

on the strength of the NP effect.

3.4 Summary

Using a parameterization of the two-flavor limit to model muon neutrino disappearance, we have reproduced

the previous work reported in [1] and updated the bounds reported there, obtaining a modest (factor of two)

improvement in the constraint on∆δ31 via the incorporation of new data from SK, DeepCore, MINOS, NOνA,
and T2K.

We have taken a first step toward generalizing these results to a full parameterization of three-flavor neutrino

oscillations, by establishing the infrastructure for performing the much more computationally intensive fits required.

Our evaluation of a range of standard optimization algorithms concluded that the simplex method exhibited slightly

better performance than population methods for our particular objective function, at least for optimization over a

three or four dimensional parameter space.

The infrastructure for fitting such three-flavor parameterizations was validated under the hierarchical approximation,

which introduced θ13 as a free parameter. We showed that our algorithms were able to obtain the accepted value of

θ13 from the long-baseline accelerator data, and we saw the importance of the electron neutrino appearance signal in

constraining the fitted parameters. On the other hand, we also confirmed that the inability of the two-flavor limit to

account for the appearance signal did not render invalid the constraints on NP parameters which were obtained by

assuming this limit to hold.

In the next phase of this work we will introduce data from solar neutrinos and reactor experiments and fit a

full parameterization of three-flavor mixing. This is a far more computationally-intensive task due to the extra

dimensionality of the parameter space.
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