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Abstract

We consider a one-parameter family of APM in a neighbourhood of an elliptic fixed point. As
the parameter evolves hyperbolic and elliptic periodic orbits of different periods are created.
The exceptional resonances of order less than 5 have to be considered separately. The
invariant manifolds of the hyperbolic periodic points bound islands containing the elliptic
periodic points. Generically, these manifolds split. It turns out that the inner and outer
splittings are different under suitable conditions. We provide accurate formulae describing
the splittings of these manifolds as a function of the parameter and the relative values of these
magnitudes as a function of geometric properties. The numerical agreement is illustrated
using mainly the Hénon map as an example.

1 Introduction

Let Fδ, δ ∈ R be a one-parameter family of area preserving maps (APM) having an elliptic
fixed point pδ ∈ R2 (that is Fδ(pδ) = pδ). Without loss of generality it can be assumed that, in
local Cartesian coordinates, the fixed point is the origin and it will be denoted by E0 = (0, 0) ∈
R2. This can be achieved by a δ-depending change of coordinates. Moreover, we also assume
Spec(DFδ(E0)) = {λ, λ̄}, with λ = e2πiq/m+δ , q,m ∈ Z, 0 < q < m, δ ∈ R. From now on
through the paper, it will be assumed (q,m) = 1. We shall consider |δ| to be sufficiently small.

The dynamics of Fδ in a neighbourhood of the elliptic point is quite rich. As δ evolves the
rotation number at the elliptic point (see below for definition) changes giving rise to creation
or destruction of different resonant islands. These islands are bounded by the separatrices
associated to hyperbolic periodic points. Generically these manifolds split.

There are mainly two splittings to consider: the inner splitting and the outer one (see 5.2 for
definitions). Non-rigorously let us say that the inner splitting is the one associated to the point
q in the sketch given in figure 2 (section 3.3) while the outer one is associated to the point p.

Our interest in this work is to describe the behaviour of these splittings as δ varies and their
dynamical implications. In this sense, one of the main results shows that the inner splitting is
different from the outer one under suitable (reasonable) assumptions. Moreover, the difference
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between both splittings, at least in a relatively large neighbourhood of the elliptic point E0,
can be explained in terms of the twist properties of Fδ. Before facing the splitting problem the
different resonances are described, including the low order ones and some degenerate cases.

The difference between both splittings can be observed in many examples. For instance, consider
the conservative Hénon map ([23])

Hα :

(

x
y

)

7−→ R2πα

(

x
y − x2

)

, α ∈ (0, 1/2), (1)

where R2πα denotes a rotation of angle 2πα.

Choosing α = 0.212 we observe 5-periodic islands. The splitting between the separatrices
can be seen in an easy way close to a hyperbolic point. Hence, we focus on the 5-periodic
hyperbolic point (x, y) ≈ (0.5846661277925608, 0.1709172404939729). In figure 1 one can guess
the invariant manifolds that bound the 5-periodic island having the elliptic point located on the
symmetry axis y = tan(πα)x. Clearly there is a big difference between the size of the folds of
the manifold, as can be checked from the scales used in plots.
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Figure 1: Comparison of inner and outer splittings for map (1) with α = 0.212. Top: phase
space of the Hénon map. Bottom: outer splitting (left) and inner splitting (right). Observe that
the size of the bottom left (right) window is approximately 0.1× 0.19 (2.4 · 10−5 × 4 · 10−5). The
factor between the scales is of the order of 104.

We note that, as often happens in the analytic category, the splitting is exponentially small with
respect to a suitable parameter. On the other hand, for the Hénon map all the separatrices of
the hyperbolic periodic orbits split. This follows from Ushiki’s theorem [41] as observed in [16].

In this work we will illustrate most of the results numerically using (1) as a paradigmatic
example. The reader is referred to [23] for information about some properties of the Hénon map
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and to [38] for local/global properties of that and similar maps.

As noticed before, our goal is to analyse a generic family Fδ. Obviously, when moving the
parameter δ both splittings evolve. In particular, when δ goes to zero they tend to zero too. To
determine the evolution of these splittings of separatrices an appropriate model describing the
dynamics in a chain of resonant islands is required (section 3).

To get this model we consider a Birkhoff Normal Form (BNF for short) of Fδ around the elliptic
point. In particular, an accurate description of the dynamics in a ball containing the m-order
resonance is obtained. Generically, there exists a Cantor set of invariant curves surrounding the
elliptic point for the BNF. However in the strong resonance cases m < 5 this can be no longer
true. A detailed description of the dynamics in the strong resonance cases is given in section
4. Special interest in this section is devoted to the Hénon map. In particular, it is shown the
non-generic behaviour of this map when unfolding the fourth order resonance, while the third
order one is generic. To clarify the behaviour of the resonant zones far away from the fixed
elliptic point, a generic model, obtained as a perturbation of a twist map, is also introduced.

It turns out that it becomes necessary to keep the first and second twist terms in BNF to
describe the behaviour of the splittings as is noted in section 5 and in the computations related
to the splitting (see Appendix). The first order twist analysis is enough to conclude that for
δ sufficiently small the outer splitting is larger than the inner one. Furthermore, a suitable
scaling and the good approximation provided by the BNF allow to control quite accurately the
behaviour of the splittings in resonant zones close to the elliptic fixed point.

The reader familiarised with APM theory will recognise some parts of the topics presented,
mainly the classical BNF theory used to get the models. However, we briefly include these parts
to stress some relevant properties to be used in later discussions.

2 Preliminaries

It is assumed that all the maps involved are analytical diffeomorphisms. However many things,
excluding the exponentially small splitting of separatrices, can be generalised to the C∞ case
and even to the Cr one for sufficiently large r.

2.1 Area preserving maps

We start by briefly recalling some well-known facts of area preserving maps. From now on we
consider orientation preserving maps. Most results are still valid in the orientation reversing
case by taking F 2 instead of F , despite the square of an orientation reversing map has some
special properties.

Integrability condition. An area preserving map (APM), F : U → R2, U ⊂ R2 an open
domain, is said to be (analytically) integrable if there exists an (analytic) function G : U → R
such that G(x) = G(F (x)) for all x ∈ U . In particular, if for a suitable m ≥ 1 there exists an
autonomous Hamiltonian flow, defined on V ⊂ U , φHt , such that for some τ the time-τ map
coincides with the diffeomorphism Fm, that is, φHτ (x) = Fm(x) for all x ∈ V , then the map F
is obviously integrable in V (this is a sufficient condition for integrability).

The phase space of an integrable APM in a neighbourhood of an elliptic fixed point can be a
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foliation of invariant rotational curves but generically some resonances show up. In the last case,
the resonances are characterised by the sequence of islands (say, m islands, m ≥ 2) that form
the resonance strip. For m > 4, the phase portrait of the power m map Fm around an island
is like the one of a classical pendulum. Inside each island there is an elliptic fixed point of Fm

while at the edge of the boundary of the island a hyperbolic fixed point of Fm is located. Each
island is bounded by the separatrices of the hyperbolic periodic points. These separatrices are
barriers between the librational motion around the elliptic point and the rotational motion.

Loosing the integrability condition. When the integrability is lost the phase portrait suffers
some topological changes. In the resonance zones the splitting of the separatrices provides a set
of homoclinic points, transversal or at least topologically transversal. That is, points where the
stable manifold crosses the unstable one creating a collection of lobes that are mapped one to
each other respecting the area preserving and the orientation preserving properties of the map. In
particular, a homoclinic tangle is created and, as it is well-known, this geometrical structure gives
rise to sensitivity with respect to initial conditions and to the existence of invariant hyperbolic
Cantor sets [39]. The splitting of the invariant manifolds is bounded by a quantity of the form
N exp (−C/ log(λ)), where N > 0 is a constant, C > 0 is a constant that depends on the width
of the strip of analyticity of the separatrix of the limit Hamiltonian, and λ is the dominant
eigenvalue of the near-the-identity family considered (see [11]).

In [9] a perturbed pendulum model around an island of a resonance of a Hamiltonian flow was
constructed. Of course, a similar approach is obtained from the BNF of a symplectic map.

Twist map. It is well-known that in the case of non-strong resonances the BNF of an APM is
a twist map, provided not all the lower order Birkhoff coefficients are zero.

Let F be an APM of the annulus S1 × (0, 1). F is called twist map if the following holds:

1. F preserves orientation,

2. F preserves barrier components: there exists ǫ > 0 such that if (x, y) ∈ S1 × (0, ǫ) then
F (x, y) ∈ S1 × (0, 1/2), that is, the image of a curve {x} × (0, 1) connecting barrier
components of the annulus should connect the barrier components,

3. if F̂ = (F̂1, F̂2) is a lift of F (i.e. F̂ : R× (0, 1) → R× (0, 1), π ◦ F̂ = F ◦π, where π denotes
the projection R → S1) then ∂

∂y F̂1(x, y) 6= 0, ∀y ∈ (0, 1), ∀x ∈ R.

The most important consequence of the twist condition is Moser’s twist theorem, which provides
a condition for the existence of a family of invariant rotational curves under a sufficiently small
APM perturbation of an integrable map (see [29]). It is important to remark that a sufficient
condition on a curve to be preserved is to have a Diophantine rotation number.

Rotation number. Let g : S1 → S1 be a homeomorphism of the circle. The rotation number
is defined to be the limit

ρ(ĝ) = lim
n→∞

ĝn(x) − x

n
, (2)

where ĝ is a lift of the map g, that is, a map ĝ : R → R such that π ◦ ĝ = g ◦ π where π denotes
the projection x 7→ x (mod 1), from R to S1.

Limit (2) exists for all x ∈ R and it is independent of the initial point chosen. On the other
hand, the limit does not depend on the lift which means that ρ(g) = ρ(ĝ) (mod 1) is well-defined.

When we study the rotation number for an APM it is clear that the definition applies on the
rotational invariant curves. For an elliptic fixed point, if the eigenvalues are exp(±2πiρ), we take
ρ as rotation number. For periodic points of period m closing after performing q revolutions
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around the fixed point, we take ρ = q/m, and we can denote them as q/m-periodic points. The
same value is taken for the eventual islands around these periodic points and for the eventual
stable manifolds of them. The rotation number for other points may be not defined. This is
often used as an indicator of chaoticity.

2.2 The Hénon map

As noticed in [23] the Hénon map (1) is the simplest planar map with non-trivial behaviour which
makes it a good model for numerical exploration (it is a quadratic map and so is the inverse
map). Furthermore, any planar conservative quadratic map having an elliptic fixed point can
be reduced to the conservative Hénon map.

It is easy to check that the map (1) has two fixed points. The origin is an elliptic fixed point
while the point of coordinates Ph =

(

2 tan(πα), 2 tan2(πα)
)

is a hyperbolic fixed point. It is
important also to take into account that the map (1) is reversible with respect to the axis
y = tan(πα)x and with respect to the parabola y = x2/2 by means of the involutions (x, y) 7→
(cos(2πα)x + sin(2πα)y, sin(2πα)x − cos(2πα)y) and (x, y) 7→ (x, x2 − y), respectively.

When studying the Hénon map we will use different versions depending on the phenomena we
are looking for. In the complex variable z = x+ iy the map (1) is expressed as

z 7−→ λz − λ

4
iz2 − λ

4
iz̄2 − λ

2
izz̄. (3)

The change of variables x = γu + k1, y = βu + νv + k2, where k1 = − cot(2πα), k2 =
− cos(2πα) sec2(πα)/2, β = k2 cos(2πα)− cot2(2πα), ν = β/ cos(2πα), γ = −β tan(2πα), allows
to write Hénon map (1) as

Ha :

(

u
v

)

→
(

1 − au2 + v
bu

)

, (4)

where b = −1 and a = cos2(2πα) − 2 cos(2πα), a 6= 0. The case α = 1/4, and hence a = 0,
requires a different formulation like (1) or (5). The map (4) with |b| < 1 is the well-known
Hénon dissipative map.

In fact, map (4) is slightly more general than the original version (1). The fixed point of (1)
located at the origin has new coordinates

(u0, v0) =
(

(−1 +
√

1 + a)/a, (1 −
√

1 + a)/a
)

and it is elliptic if −1 ≤ a ≤ 3 (if a < −1 the fixed point does not exist while for a > 3 it becomes
hyperbolic with reflection). The hyperbolic fixed point of the Hénon map has coordinates

(uh, vh) =
(

(−1 −
√

1 + a)/a, (1 +
√

1 + a)/a
)

.

The change of variables x = (au+ 1)/
√
a+ 1, y = (av − 1)/

√
a+ 1, allows to write (4) as

Hc :

(

x
y

)

7→
(

c(1 − x2) + 2x+ y
−x

)

, (5)

where c =
√

1 + a. For 0 < c < 2 the variables x, y have the nice property of having the elliptic
(resp. hyperbolic) fixed point located at (1,−1) (resp. at (−1, 1)) independently of the value of
c. When c > 2 the elliptic point located at (−1, 1) becomes hyperbolic with reflexion. On the
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other hand, for c = 0 the line y = −x is made of fixed points while for c < 0 the elliptic and the
hyperbolic points interchange their role via the symmetry (x, y, c) 7−→ (−x,−y,−c).

For small c the map can be approximated by a flow. Indeed, the symplectic change

(

x
y

)

=
1√
2

(

r + s
r − s

)

and the introduction of s = q, r = dp, where d =
√

c/
√

2, gives the close to the identity map

(

q
p

)

7−→
(

q + 2dp +O(d2)
p+ d(1 − 1

2q
2) +O(d2)

)

.

A map of the form (q, p)t 7→ (q + df(q, p) + O(d2), p + dg(q, p) + O(d2))t can be approximated
by the time-d flow of (q̇, ṗ)t = (f, g)t, giving now

q̇ = 2p, ṗ = 1 − 1

2
q2, (6)

which comes from the Hamiltonian K(q, p) = p2 − q + 1
6q

3. The level K = 2
3

√
2 containing

the hyperbolic point q = −
√

2, p = 0 corresponds to a separatrix, enclosing the elliptic point
q =

√
2, p = 0. The splitting for the manifolds of the map is exponentially small in d. Also

invariant curves of the map exist at an exponentially small distance of the manifolds. These
claims will be proved later for general cases.

3 A suitable Hamiltonian model around a generic resonance

The local study of the dynamics of an APM F in a neighbourhood of an elliptic fixed point can
be elucidated by its BNF (see [29]) and the so-called interpolating Hamiltonian. This section
is devoted to obtain a Hamiltonian model describing an approximation of the dynamics in a
generic resonance. The particular case of strong resonances will be analysed in the next section.

3.1 Birkhoff resonant normal form.

A map F is said to be in Birkhoff normal form around a fixed point p ∈ Rn if it commutes
with the linear part DF (p). Given a general APM F there exists a formal canonical change
of variables such that F is in BNF around E0 in the new coordinates. If we only require
commutation up to terms of order n− 1 we shall talk about BNF to order n or simply BNFn.

Let α ∈ (0, 1) be the rotation number at the fixed point E0 and let λ = e2πiα be the associated
multiplier when the map is written in complex variables. In order to compute a coordinate
change to remove a term of the form zj z̄k , j, k ∈ N, from the Taylor series of F as a function of
z, z̄, the non-resonance condition λj−k−1 6= 1, j + k ≥ 2, should be satisfied [2]. In particular,
terms with j = k + 1 should be kept (the so-called unavoidable resonances). If λ is not a root
of the unity, then the BNF contains only the linear part and the unavoidable resonances to any
order. Otherwise some other terms have to be retained, giving rise to the so-called resonant
Birkhoff normal form. Usually we shall denote it just as Birkhoff normal form.

To study the dynamics around a resonance of order m we assume that α = q
m + δ, 1 ≤ q < m,

with δ around 0 sufficiently small to have λm−1 ≃ λ̄. Thus, when computing the BNF, the
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corresponding term cannot be removed if we want to assure the existence of a relatively large
domain, uniform for δ close to zero, where a good model could be obtained. In particular,
the resonance of order m cannot be ignored because its effect is mainly located in a small
neighbourhood of the elliptic point where the BNF approach will be used.

In terms of the (z, z̄) variables F can be reduced to the BNFm

BNFm(F ) : z 7−→ λz + a1z
2z̄ + · · · + asz

s+1z̄s + c̃z̄m−1 + R̃m+1(z, z̄), (7)

where ai ∈ C. By introducing the Birkhoff coefficients, bi, it can be expressed as

BNFm(F ) : z 7−→ R2π q
m

(

e2πiγ(r)z + cz̄m−1
)

+ Rm+1(z, z̄), (8)

where γ(r) = δ + b1r
2 + b2r

4 + · · · + bsr
2s, r = |z|.

The APM character of F implies that all the bi coefficients are real. In (7) and (8) the terms of
degree at least m+1 are denoted as R̃m+1(z, z̄) and Rm+1(z, z̄), respectively, and s = [(m−1)/2],
where [x] denotes the integer part of x. We note that if m is even there are no resonant terms
of order m while if m is odd there is an m-order unavoidable resonant term which is included
in γ(r). The remainder is, hence, Om+1 in both cases.

Remarks.

1. In the expression (8) it is assumed that the coefficient of z̄m−1 is non zero. Otherwise,
one should consider the first non-zero coefficient of a resonant monomial and the map
is reduced to a similar normal form (see next subsection). Assume that the first non-
zero coefficient is of the form dzz̄m with d 6= 0. It can happen that when we unfold the
degenerate case around δ = 0 it gives a contribution of the form cδz̄m−1 with c 6= 0. On
the resonant zone, located at r2 = O(δ), both terms are of the same order of magnitude
O(δ(m+1)/2) and can be studied together. Other cases can be analysed in a similar way.

2. In (8) one could extend the γ(r) part as much as desired by cancellation of unavoidable
resonances to high order. On the other hand, if q/m is the unique resonance up to order
2m − 1 (and this can be achieved if δ is small enough) then next resonant terms due
to the q/m one of the form zj z̄m−1+j , 1 ≤ j < m/2 can be included, by replacing c by
c+ c1r

2 + c2r
4 + . . . . In this way one can obtain a remainder O(r2m−1).

3. Note that the map in (7) or in (8) is equivalent to F possibly only in a domain which is
smaller than the initial domain of analyticity of F in (x, y). This is due to the necessary
inversion of functions in the canonical transformations (given, e.g., by polynomial generat-
ing functions). One would be tempted to truncate the BNFm, that is, to skip the R̃m(z, z̄)
or Rm(z, z̄) terms, to have an approximation of F . However, in the presence of resonant
terms, these truncated maps are not APM. In 3.3 the map R−2π q

m
◦F is approximated as

the flow time-1 of a Hamiltonian. In that case the flow of truncated Hamiltonians provides
APM approximations of R−2π q

m
◦ F .

Equivalently, the normal form can be expressed as

BNFm(F ) : z 7−→ R2π q
m
◦K(z, z̄, δ),

where K(z, z̄, δ) = e2πiγ(r)z + cz̄m−1 + R̂m+1(z, z̄).
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It is important to emphasise that the map K is a near-the-identity map such that the m-jet
commutes with the rotation R2π q

m
. Scaling z = µw with a suitable complex µ allows us to

change the coefficient c of equation (8) to become the imaginary unit. Note, however, that the
Birkhoff coefficients of the map have then been modified according to b̃j = |µ|2j bj. This has
to be taken into account for quantitative estimates. Despite of this change on the coefficients
we will again denote by bj the “new” Birkhoff coefficients and also keep z as the independent
variable. As a consequence, the analysis of the BNFm can be reduced to study the map

K : z 7→ e2πiγ(r)z + iz̄m−1 +Rm+1(z, z̄). (9)

3.2 Some comments on the influence of other resonances.

To get the expression (9) we have assumed that the m-order resonance cannot be removed
when computing the normal form. Moreover, we have assumed that z̄m−1 is the first term
corresponding to an avoidable resonance that cannot be removed. These generic assumptions
are not a hard restriction in the sense that the results we will obtain can be applied also in the
case that other resonances of similar order appear.

In order to give a justification of the last statement assume that there exist two different terms
that cannot be removed when computing the normal form and that they correspond to resonances
of orders m1 and m2, with m2 > m1. Assume also that we are interested in studying the m2-
order resonance. Hence, α = q2/m2 + δ2 = q1/m1 + δ1 where (q1,m1) = (q2,m2) = 1 and δ1 and
δ2 are assumed to be irrational and small. However they cannot be too small simultaneously
because |δ1| + |δ2| ≥ 1

m1m2
.

The relation λ ≈ λ̄m1−1, since λλ̄ = 1, implies the resonant terms zj z̄m1+j−1. In the same way,
the relations λm1+1 ≈ λ and λ̄m1−1 ≈ λ provide terms zkm1+j+1z̄j and z̄sm1+j−1zj that cannot
be removed from the normal form. As a consequence, the map F can be reduced to

BNFm2(F ) : z 7→ R2π
q2
m2






e2πiγ(r)z +

[
m2
m1

]
∑

s=1

[
m2−sm1+1

2
]

∑

j=0

csjz
j z̄sm1+j−1+

+

[
m2−2

m1
]

∑

k=1

[
m2−km1−1

2
]

∑

j=0

dkjz
km1+j+1z̄j + c2z̄

m2−1






+ Rm2+1(z, z̄),

where c1j , c2 ∈ C for j ≥ 0, and being γ(r) = δ2 +
∑

i>0 bir
2i (compare with (8)).

We try to determine which is the effect of a term czj z̄m1+j−1 (corresponding to s = 1 above)
when we are in a neighbourhood of the m2-order resonance. More concretely, we are interested
in an annulus surrounding the m2 resonance, where the dynamics is almost a rotation of angle
β = 2πq2/m2 (since γ(r) ≈ 0). Let F̂ : z 7→ R2πq2/m2

(

e2πiγ(r)z + c2z̄
m2−1

)

+ Rm2+1(z, z̄), that
is, the map we obtain if we ignore the m1-resonance terms. Let z0 be a point on the annulus
surrounding the m2 resonance and let zi = F i(z0). The contribution of the term czj z̄m1+j−1

after m2 iterates has a dominant part given by

BNFm2
m2

(F )(z0)−F̂m2(z0)≈Rm2

2π
q2
m2

czj0 z̄0
m1+j−1+Rm2−1

2π
q2
m2

czj1z̄1
m1+j−1+· · ·+R2π

q2
m2

czjm2−1z̄
m1+j−1
m2−1 .

(10)
Expressing the point in polar coordinates, that is, z0 = r exp(i ψ), r = |z0|, ψ ∈ [0, 2π), using
the fact that |zk| = r+O(rm1−1) for k = 1, . . . ,m2 − 1, and that the argument of a term in (10)
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of the form Rm2−k
2π

q2
m2

czjk z̄k
m1+j−1 is, approximately,

−(ψ+2πk
q2
m2

)(m1 + j−1)+(m2−k)2π
q2
m2

+ j(ψ+2πk
q2
m2

)+β ≡ −ψ(m1−1)−2πk
q2
m2

m1 +β,

being β the argument of c, we observe that this dominant part adds to zero because m2 ∤ m1.

As a consequence, the contribution of the terms c1jz
j z̄m1+j−1 can be skipped to obtain an ap-

proximation to the dynamics. The contribution of the terms like csjz
j z̄sm1+j−1 and dkjz

km1+j+1z̄j

is analysed in a similar way obtaining the same conclusion. In particular, this means that the
study of the m2 resonance is almost independent of the existence of the m1 resonance.

Observe, however, that in the approximation (10) the second order terms are ignored (similarly
for the approximations of the dominant parts of the contributions of the terms csjz

j z̄sm1+j−1

and dkjz
km1+j+1z̄j). The terms we have ignored are of the order O(2sm1 + 2j − 3) in the case

we are dealing with a term of the form csjz
j z̄sm1+j−1, and of the order O(2km1 + 2j + 1) if the

considered term is dkjz
km1+j+1z̄j. Hence it is necessary, beyond having r small (which requires

δ2 small enough) to have 2m1 − 3 > m2, a condition which appears if j = 0 above. That is, the
reasoning above described applies to resonances of “similar” order.

Hence, we will try to describe the m-order resonance keeping in mind that the results we will
obtain can be applied to any “important” resonance.

3.3 Flow approximation of the normal form.

A near-the-identity map, like map (9), can be approximated by a planar autonomous flow. In
fact, by the interpolation lemma (see comments below) it can be expressed as a time-one map
of a Hamiltonian flow plus higher order terms.

Let us introduce the Poincaré or action-angle variables (I, ϕ) defined by z =
√

2I exp(iϕ).
Furthermore, we denote δ as b0 and define

Hnr(I) = π

s
∑

n=0

bn
n+ 1

(2I)n+1 and Hr(I, ϕ) =
1

m
(2I)

m
2 cos(mϕ),

as the non-resonant and resonant parts of the Hamiltonian, and let r∗ be such that γ(r∗) = 0,
that is r∗ ≈ (−δ/b1)1/2, where we assume b1 6= 0.

Theorem 3.1 Let K̂ denote the original diffeomorphism K expressed in Poincaré variables and
assume b1 6= 0 and m ≥ 5. Let ν > 0 a fixed value (possibly small). Then the time-1 flow φt=1

generated by the Hamiltonian

H(I, ϕ) = Hnr(I) + Hr(I, ϕ), (11)

interpolates the map (9) with an error of order m+ 1 in the (z, z̄)-coordinates, that is,

K̂(I, ϕ) = φt=1(I, ϕ) + O
(

I
m+1

2

)

,

in an annulus centred in the resonance radius r∗ of width r1+ν∗ , for |δ| sufficiently small.

Remark. Later on we shall need approximations of K̂ in a larger domain, in complex phase
space, which excludes a small neighbourhood of the origin. The error bound will be slightly
larger. But this is postponed until it will be required in Section 5.
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Proof. As the map K is close to the identity, one can construct a non-autonomous vector
field periodic with respect to the time, analytic with respect to z, such that the time-one map
coincides with the diffeomorphism. Moreover, as the map is close to the identity and analytic,
the vector field is a slow vector field and, after a suitable scaling and several averaging steps with
respect to the time variable, the vector field can be written as an analytic autonomous vector
field plus an exponentially small non-autonomous term (see [27, 7]). Moreover, the changes can
be made symplectic in order to preserve the symplectic structure (see [35]).

Besides, the vector field ż = (e2πiγ(r) − 1)z+ iz̄m−1 provides an approximation of K up to order
2. Then, we can change successively the homogeneous terms of degrees 2 to m to obtain a
new vector field that interpolates up to order m. This is a consequence of Takens theorem [40].
An important advantage of this process is that the terms of the vector field can be obtained
explicitly. Note, however, that when carrying out Takens process, which can be applied to the
C∞ case, the interpolation error is flat but not exponentially small in general. If the process is
applied to a Cω map it can be difficult to obtain sharp estimates on the terms of the expansion,
so that the bounds would be the same than the ones corresponding to a Gevrey class. Instead
of bounds like exp(−c/ǫ), for some small parameter ǫ, one can perhaps obtain bounds like
exp(−c/ǫ1/k) for some k > 1 (see [32]).

Nevertheless, observe that the map (9) is O(rm+1)-close to the map T = T2 ◦ T1(z) where
T1(z) = e2πiγ(r)z and T2(z) = z + iz̄m−1. It is a consequence of the fact that T1 is close to the
identity.

The map T1 is a rotation of angle 2πγ(r). In Poincaré variables it becomes (I, ϕ) → (I, ϕ+ω(I))
where ω(I) = H′

nr(I) = 2π
∑s

k=0 bk(2I)
k. Then the flow İ = 0, ϕ̇ = ω(I) interpolates exactly

the map T1. Expressing this vector field in (z, z̄)-coordinates it is obtained that the vector field

ż = i ω(I)z (12)

interpolates exactly the map T1.

On the other hand, the vector field
ż = iz̄m−1 (13)

provides an approximation up to order O(2m− 3) of the map T2.

We recall that the Lie bracket of two vector fields ẋ = f(x), ẏ = g(y) is the vector field
[f, g] = Df(x)g(x) −Dg(x)f(x). If the vector fields commute then the Lie bracket vanishes.

The Lie bracket of the vector fields (12) and (13) is a vector field of order higher than m+1+ ν
in an annulus of radius r1+ν∗ , for ν > 0, centred in the radius r∗ where the resonance is located.
Then, the effects of the rotation T1 and the resonance T2 can be considered independent and one
can obtain the vector field as the sum of vector fields. After changing coordinates and computing
the Hamiltonian we get the expression (11). �

Remark. In [3] was already stated that for a m-resonant fixed point the interpolating Hamil-
tonian is of the form H(I, ϕ) = I2β(I) + Im/2γ(I) cos(mϕ) + O(I1+m/2), being β(I) and γ(I)
polynomials in I. Moreover, in [15] it is observed that this form can be extended up to any
order by taking suitable advantage of the non-uniqueness of the normal form. In particular,
high order resonant terms in BNF just modify the leading coefficients of the Hamiltonian (16)
but not the format.
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3.3.1 The periodic orbits of the m-order resonance.

The results contained in the sections 3.3.1 and 3.3.2, obtained from the flow approximation given
above, describe the topology of the conservative map.

Lemma 3.1 Let F : R2 → R2 be a map having the origin as an elliptic fixed point such that
b1 6= 0. Assume also that the rotation angle at the origin is of the form α = q/m + δ, m ≥ 5,
for δ sufficiently small and that the coefficient of the resonant term of order m is non-zero.
If b1δ < 0 then the conservative dynamical system generated by F has a resonance of order
m. Moreover, in the resonant zone there are two periodic orbits of period m located near two
concentric circumferences (in the normal form coordinates). The closest orbit to the external
one is elliptic while the nearest orbit to the internal circumference is hyperbolic.

Proof. Consider the case b1 positive. First we compute fixed points of the vector field generated
by (11). Equation ∂H

∂ϕ = 0 admits as solutions, beyond the trivial one, the set

ϕj =
jπ

m
, j = 0, . . . , 2m− 1.

From equation ∂H
∂I = 0 we can obtain the following relation

∂Hnr(I)

∂I
+ (2I)

m
2
−1 cos(mϕj) = 0. (14)

Ignoring the resonance term, equation ∂Hnr(I)
∂I = 0 has

I∗ = − δ

2b1
+ O(δ2), (15)

as a solution. Last expression defines a radius, if δ < 0, which is an approximation to the radius
where the m-order resonance is located. We look for a correction term ∆I such that I∗ + ∆I is
a solution to equation (14). The values

∆Ij =
(−1)j+1(2I∗)

m
2
−1

w′(I∗)
+ . . . =

(−1)j+1(2I∗)
m
2
−1

4πb1
(1 + O(I∗))

are obtained. Then the eigenvalues at the fixed points, if mϕj = jπ, I = I∗ + ∆Ij, are given by

λ̂j = ±
[

(2I)
m
2 m(−1)j

(

∂2Hnr(I)

∂I2
+ O((2I)

m
2
−2)

)]1/2

,
∂2Hnr(I)

∂I2
= 4πb1 + O(δµ),

being µ = min{1, m2 − 2}. In particular, it allows us to ensure that the fixed points such that j
is even are hyperbolic, while the ones with j odd are elliptic.

If b1 < 0 the above computation can be carried out in a similar way (δ > 0 in this case).

To justify that the map F has also the periodic points we observe that the fixed point condition

K̂(I, ϕ) − (I, ϕ) = 0 can be written, bounding O(I
m+1+ν

2 ) by O(I
m+1

2 ), as

φt=1(I, ϕ) − (I, ϕ) + O(I
m+1

2 ) = 0.

Skipping last term, the determinant of the differential of the equation at the fixed points is

−4πb1m(2I)
m
2 cos(mϕj) (1 + O(δ)) 6= 0. The remainder terms add only to O(δ

m+1
2 ). Hence, the
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implicit function theorem implies that the map K̂(I, ϕ) has the same number of periodic orbits
located close to those of the flow φt=1. �

Note that the eigenvalues λ̂j for the flow are O(δm/4) and, hence, the ones for the map will be
λj = 1 ±O(δm/4).

For definiteness we shall denote as H = (IH , ϕH) and E = (IE , ϕE) the hyperbolic and elliptic
points of K̂. Note that, when taking into account the effect of the remainder, the corrections
will depend on the concrete value of j. But they are small enough to be neglected.

3.3.2 The islands of the m-order resonance.

The invariant manifolds of the hyperbolic points of the same resonance bound a chain of islands.
The following lemma determines the width of an island.

Lemma 3.2 Let H and E, as before, be hyperbolic and elliptic periodic points, respectively, of
the same island. Denote by p and q the points of the pendulum-like separatrices such that the
distance from the circle of radius IE reaches a maximum (see Fig. 2). Let δp and δq be these

distances. Then the width of the resonance of order m ≥ 5, δp + δq is O
(

I
m
4∗
)

.

Figure 2 is a representation of the different variables we have introduced.

Proof. We assume b1 > 0 (the other case is similar). As p, q are on the separatrices, one has
H(H) = H(p) = H(q). From Hamiltonian (11), it is obtained

H(H) = Hnr(I∗) + Hr(I∗, ϕH) +

(

∂Hnr

∂I
(I∗) +

∂Hr

∂I
(I∗, ϕH)

)

∆IH + · · · ,

H(p) = H(E) +
∂H
∂I

(E)δp +
1

2

∂2H
∂I2

(E)δ2p + · · · ,

H(E) = Hnr(I∗) + Hr(I∗, ϕE) +

(

∂Hnr

∂I
(I∗) +

∂Hr

∂I
(I∗, ϕE)

)

∆IE + · · · .

Since I = I∗ is a curve of fixed points of the Hamiltonian Hnr, then (∂Hnr/∂I)(I∗) = 0.
Moreover, as E is a fixed point of H then, (∂H/∂I)(E) = 0. Finally, since Hr(I∗, ϕH) =
−Hr(I∗, ϕE) = (1/m)(2I∗)m/2, (∂Hr/∂I)(I∗, ϕH ) = (−∂Hr/∂I)(I∗, ϕE) = (2I∗)m/2−1, and

∆IH = −∆IE + O(I
m/2
∗ ), (∂2H/∂I2)(E) = 4πb1 + O(Iµ∗ ) (recall µ = min{1, m2 − 2}), the

condition H(H) = H(p), due to the fact that non-resonant Hamiltonian terms are canceled, is
transcribed as (2/m)(2I∗)m/2 = 2πb1δ

2
p + O(Im−2

∗ , Iµ∗ δ2p, δ
3
p), from which it is obtained

δp =
(

(2I∗)
m/2/mπb1

)1/2
(1 + O(Iµ∗ )).

The same conclusion can be achieved for δq by repeating the argument for the point q. �

To obtain realistic estimates of the width of the island we recall that, at the end of section 3.1
the coefficient of the resonant term has been scaled (by a finite constant) to obtain (9).

3.3.3 A numerical illustration

The general picture described along this section can be observed for a given example, for instance,
the Hénon map. When computing the BNF for equation (3) it is found that the first Birkhoff
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I*

δq

Figure 2: Sketch of the resonance of order m.

coefficient is equal to zero only for α ≈ 0.29021531163 (i.e. cos(2πα) = −1/4), while the second
Birkhoff coefficient is zero for α1 ≈ 0.2308206101, α2 ≈ 0.3137515644 and α3 ≈ 0.3944381765
(see [10]). Birkhoff coefficients can be computed numerically but we note that the changes of
variables should be symplectic at each degree (see [24] for a general explanation about how
to compute normal forms effectively and efficiently). Figure 3 shows the first and the second
Birkhoff coefficients for the Hénon map.

-3

-2

-1

 0

 1

 2

 3

 0  0.1  0.2  0.3  0.4  0.5

2πb1

2πb2

Figure 3: First (blue) and second (red) Birkhoff coefficients for equation (3). In the x-axis it is
represented the value of α and in the y-axis the values of 2πb1 and 2πb2, respectively.

The analytical expression of the first Birkhoff coefficient as a function of α is given by

b1 =
1

64π

(−3 sin(α̂)

sin2(α̂/2)
− sin(3α̂)

sin2(3α̂/2)

)

,

being α̂ = 2πα. Note that b1 has vertical asymptotes for α = 0 and α = 1/3. The same values
of α correspond to asymptotes of b2 which also has α = 1/4 as an asymptote. The coefficient b1
becomes zero for α̂ = 2arcsin

√

5/8. Around that value non-twist phenomena occur (see [31]).

Consider the 1:5 resonance and α = 0.21. For this value b1 ≈ −0.0341669659295153, and the
corresponding radius predicted by formula (15) is r∗ ≈ 0.540999411522355. We note that this
value is affected by the near-the-identity change of variables to get the normal form from which
expression (15) is obtained. Figure 4 shows the 1:5 resonance for α = 0.21 of the map (1) and
the average radius r∗. Note that in this illustration the value r∗ is far from being small. Still a
relatively good agreement with the theory is found.

To see how the width of a resonance zone evolves when changing the parameter we have chosen
the 1:7 resonance for the Hénon map. Figure 5 shows the expected behaviour, that is, a growth
rate of order δ7/4. The oscillations with respect to the predicted behaviour can be explained in
terms of the higher order harmonics of the perturbations on the islands (see [28]). We note also
that we have measured the width in the original coordinates of (1) and not in the BNF ones.
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Figure 4: Resonance 1:5 of map (1) for α = 0.21 and the approximated radius r∗ (see text).

-1.3

-1

-0.7

-0.4

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3

Figure 5: Hénon map (1), 1:7 resonance: in the x-axis it is represented log10(δ) and in the y-axis
we plot the log10 of the width of the resonant island having the elliptic 7-periodic point located
on the symmetry axis. The fitted straight line is ax+ b with a = 7/4 and b ≈ 1.84512.

3.4 A Hamiltonian model around a generic resonance

Hamiltonian (11) describes, in particular, the dynamics in a narrow strip, of width O(I
m/4
∗ )

(for a suitable ν > 0 depending on m, e.g. ν ≤ m/2 − 2, see theorem 3.1), containing the
resonance of order m, m > 4. We can then localise the Hamiltonian around an island of the
m-order resonance. Recall that the resonance is located at a distance I∗ ≈ − δ

2b1
, such that

the frequency ω(I∗) equals zero, value that corresponds to the approximated average between
the hyperbolic and elliptic periodic point distances from the origin. Let λ be the dominant
eigenvalue of the hyperbolic m-periodic point of F . Note that log(λ) is the dominant eigenvalue
of the interpolating flow already computed in the proof of lemma 3.1.

Proposition 3.1 For a generic APM F such that α = q/m+ δ, 1 ≤ q < m, m ≥ 5, δ < 0, b1 >
0, b2 6= 0, the dynamics around an island of the m-resonance strip can be modeled, after suitable
scaling, by the time-γ map, with γ = log(λ)(1 + O(δ)) = O(δm/4), of the flow generated by
Hamiltonian

H(J, ψ) =
1

2
J2 +

c

3
J3 − (1 + dJ) cos(ψ), (16)

where

c ≈ b2
√
mπ b

6+m
4

1

|δ|m
4 , d ≈

√
m

2
√
π b

m−2
4

1

|δ|m
4
−1.

In the (J, ψ) variables the resonant zone has a width O(1) and the above approximation gives

an error O(δ
m+2

4 ) in that zone.
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Remark. Later on we shall need flow approximations in a larger domain in C2 and (16) will be
slightly modified. Details are postponed till Section 5, where this extension will be required.

Proof. By means of the translation Ĩ = I − I∗ Hamiltonian (11) is transformed to

H(Ĩ , ϕ) = π
s
∑

n=0

bn
n+ 1

(

2
(

Ĩ + I∗
))n+1

+
1

m

(

2
(

Ĩ + I∗
))m

2
cos(mϕ),

which, expanding the sum in the Hamiltonian, can be expressed as

H(Ĩ , ϕ) =

s+1
∑

k=0

1

k!

dkHnr(I)

dIk

∣

∣

∣

∣

I=I∗

Ĩ k +
1

m

(

2
(

Ĩ + I∗
))

m
2

cos(mϕ). (17)

From theorem (3.1), since Ĩ << I∗, the error of the time-one map determined by the flow defined

by the above Hamiltonian with respect to the near-the-identity map K̂ is O(I
m+1

2∗ ).

In order to focus on a concrete island we introduce J = Ĩ/m, ψ = mϕ. Assuming the studied
resonance to be close to the origin (or in general, close to the invariant object around which
we consider the normal form approach), Hamiltonian (17), truncated to third order, can be
expressed in terms of Birkhoff coefficients as

H(J, ψ) =
C

2
J2 +

D

3
J3 + (d1 + d2J) cos(ψ),

where C = 4πb1m
2 +O(δ), D = 8πb2m

3 +O(δ), d1 = 1
m(2I∗)

m
2 , and d2 = m(2I∗)

m
2
−1. We shall

take into account later the error due to the neglected terms.

Rescaling J in such a way that C becomes equal to 1, which means J̃ = CJ , one obtains that
the dynamics is described by the flow of the following Hamiltonian

H(J̃ , ψ) =
1

2
J̃2 +

D̃

3
J̃3 + (d̃1 + d2J̃) cos(ψ),

where D̃ = D/C2 and d̃1 = Cd1.

By means of the transformation J̃ = γĴ , t = γ−1τ , and skipping again higher order terms the
vector field is expressed, with respect to the new time τ , as

Ĵ ′ =

(

d̃1

γ2
+
d2

γ
Ĵ

)

sinψ, ψ′ = Ĵ + D̃γĴ2 +
d2

γ
cosψ.

By choosing γ =
√

d̃1 = O(δm/4) and using again simply J to denote Ĵ , the vector field can be
rewritten as

J̇ = (1 + dJ) sinψ, ψ̇ = J + cJ2 + d cosψ,

where d =
d2

γ
= O

(

δ
m
4
−1
)

and c = D̃γ = O
(

δ
m
4

)

. Hence, the final Hamiltonian becomes

H(J, ψ) =
1

2
J2 +

c

3
J3 − (1 + dJ) cosψ,

where the change ψ 7→ π − ψ has been done on the ψ phase in order to have the elliptic point
close to the origin. Furthermore, as the final vector field has eigenvalues ±1 + o(1), we check
that the dominant terms of γ and log(λ) coincide.

15



The dominant part of the error in the vector field, expressed in the final (J, ψ) variables,
comes from terms γ2J3 and O(δ

m
2
−2)J cos(ψ) (or O(δ

m
2
−2)J2 sin(ψ)). They give a contribu-

tion O(δ
m
2
−2). Furthermore, as we have the time-γ flow, the error in the map is O(δ

3m
4

−2). On

the other hand, the error due to the truncation of the BNF is O(δ
m+1

2 ), as stated in theorem 3.1.

It becomes O(δ
m+2

4 ) when we express it in the variables (J, ψ). The minimum of the exponents
3m
4 − 2 and m+2

4 is m+2
4 for m ≥ 5. �

Remarks.

1. The sign of c is equal to the sign of the second Birkhoff’s coefficient (if b1 > 0). On the
other hand, d is always positive. Moreover, the modulus of c is less than the one of d for
δ small enough, and both c and d are larger than the error terms for |δ| small.

2. In the scaling above it is assumed b1 > 0. Otherwise, we must take γ =
√

−d̃1 and the
Hamiltonian takes the form

H(J, ψ) =
1

2
J2 +

c

3
J3 + (1 − dJ) cosψ.

3. It is only necessary to consider one of the two cases above, for instance, b1 > 0. In fact,
changing the phase of ψ, ψ 7→ ψ + π, in order to have the elliptic point located at the
origin we reduce to the case b1 > 0 where it is necessary to assume now d < 0.

On the other hand, the change J 7→ −J , t 7→ −t, produces a change of sign of the constants.
Hence, one can reduce the Hamiltonian to the case d ≥ 0 and |c| < d. If b1 < 0 we reduce
to the same type of Hamiltonian with positive d but the sign of c is minus the sign of b2.

In order to justify our choice of model (16) some considerations must be done. When c = d = 0
the model corresponds to a classical pendulum. The first Birkhoff coefficient effect (parameter
d) becomes relevant when studying the behaviour of the inner and outer splittings of the island.
It turns out that if d 6= 0 both splittings are of different order of magnitude (see section 5).

Concerning the J3 twist term (parameter c), as observed in the proof, its effect has no dynamical
relevance (for values of δ small enough) in comparison with the d parameter which is larger.
But the coefficient c is necessary to check if the splittings of an island in a small neighbourhood
of the elliptic point do “oscillate” or not (section 5.6).

A more dynamically important reason to consider a perturbation in the twist of the map is the
following. Far from the elliptic point, that is for values of δ relatively large (see section 3.5), c
could be not necessarily small (in general, both coefficients c and d are expected to be arbitrary).
In particular, the outer splitting could be smaller than the inner or any splitting could be able
to oscillate. Some considerations on the behaviour of the splittings far from the elliptic points
are given in section 5.8.

3.5 A model away from the elliptic fixed point

Dynamics in an annulus containing a q : m, 0 < q < m, (q,m) = 1, m ≥ 5 resonance far away
from the elliptic point can be studied by means of a perturbation of an integrable twist map. To
find a Hamiltonian flow modeling a non-integrable twist map in a suitable annulus we reduce
it to a normal form and compute the m-th iterate of the map to have a near-the-identity map.
A straightforward computation of the Hamiltonian reduces the model to one similar to the one
obtained around a fixed point.
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Consider a twist map Fµ : (I, ϕ) 7→ (Ī , ϕ̄), µ a perturbative parameter, defined by Ī=∂Sµ/∂ϕ̄,
ϕ=∂Sµ/∂I, being Sµ the generating function Sµ(I, ϕ̄)=Iϕ̄−β(I)−µ∑j≥1

∑

s≥0 δjsI
s cos(j(ϕ̄−

ψjs)), with β(I) = I∆+
∑

k≥2 βkI
k/k, ∆ = 2πq/m. One can always assume I = 0 at resonance.

Introducing αjk = j(ϕ + ∆ − ψjk) and scaling I = Kν, ν2 = ±µ, the corresponding map

F̂ν : (K,ϕ) 7→ (K̄, ϕ̄) up to second order in ν is

ϕ̄ = ϕ+∆ + νβ2K + ν2
(

β3K
2 +

∑

j≥1 δj1 cos(αj1)
)

+O(ν3),

K̄ = K+ν
∑

j≥1 jδj0 sin(αj0) + ν2K
(

∑

j≥1

{

jδj1 sin(αj1)+β2j
3δj0 cos(αj0)

}

)

+O(ν3).
(18)

Let Z∗ = Z \ {0}. The near-the-identity change of variables (ϕ,K) → (θ, J) defined by
the generating function ĥ1(θ,K) = Kθ + νh1(θ), where h1(θ) =

∑

j∈Z∗
ηje

ijθ with ηj =
iδj0 exp(ij(∆ − ψj0))/(exp(ij∆) − 1), if j 6= nm, n ∈ Z∗, and ηj = 0 otherwise, allows to
cancel the harmonics with j 6= nm.

We assume that the effect of the harmonics of order higher than m that cannot be removed is
negligible (for an analytic function the amplitudes decay, so we assume they decay fast enough
to be neglected). Keeping just the first relevant term, map (18) in the new coordinates up to
order 3 reads

θ̄ = θ + ∆ + νβ2J + ν2
(

β3J
2 +

∑

j≥1 δj1 cos(αj1) −
∑

j∈Z∗
ijηj exp(ijθ)

)

+ O(ν3),

J̄ = J + νmδm0 sin(αm0)+

+ν2J
(

∑

j≥1

{

jδj1 sin(αj1)+β2j
3δj0 cos(αj0)

}

−
∑

j∈Z∗
j2ηj exp(ij(θ+∆))

)

+O(ν3).

(19)

Then, a change of variables (J, ϕ) → (T, ξ) with generating function of the form ĥ2(J, ξ) = Jξ+
ν2Jh2(ξ), where h2(ξ) =

∑

j∈Z∗
η̃j exp(ij(ξ)) with η̃j = (δj1 exp(ij(∆−ψj1))−ijηj)/(exp(ij∆)−

1) if j 6= nm, n ∈ Z∗, and η̃j = 0 otherwise, allows, as before, to cancel the harmonics with
j 6= nm, n ∈ Z. Keeping just the first non-removable harmonic the map (19) is reduced to a
map NF (F ) : (T, ξ) 7→ (T̄ , ξ̄) given by

ξ̄ = ξ + ∆ + νβ2T + ν2
(

β3T
2 + δ1 cos(m(ξ − ψ1))

)

+ O(ν3),

T̄ = T + νmδ0 sin(m(ξ − ψ0)) + ν2T
(

mδ1 sin(m(ξ − ψ1)) + β2m
3δ0 cos(m(ξ − ψ0))

)

+ O(ν3),

where δj = δmj and ψj = ψmj , j = 0, 1.

Denote by (Tm, ξm) the m iterate of the map NF (F ), that is, (Tm, ξm) = NF (F )m(T, ξ). A
direct computation gives

ξm = ξ +mνβ2T + ν2
(

mβ3T
2 +mδ1 cos(m(ξ − ψ1)) + γ cos(m(ξ − ψ0))

)

+ O(ν3),

Tm = T + νm2δ0 sin(m(ξ − ψ0)) + ν2T
(

m2δ1 sin(m(ξ − ψ1)) + κ cos(m(ξ − ψ0))
)

+ O(ν3),

where γ = m3(m−1)
2 β2δ0, and κ = m4(m+1)

2 β2δ0.

The map NF (F )m is a near-the-identity map such that can be interpolated by the time-one map
of a Hamiltonian flow. If we require interpolation up to order 3, the corresponding Hamiltonian
is H(J, ϕ) = β2J

2/2+δ0 cos(ϕ)+νβ3J
3/3+νJ(δ1 cos(ϕ−ψ)−m/2δ0β2 sin(ϕ)), which is obtained

after scaling the time by νm, changing the phase to have ψ0 = 0, denoting by ψ the new phase
in the term in J cos(ϕ) and denoting by J and ϕ the corresponding action-angle variables. This
Hamiltonian can be written in the form

H(J, ϕ) = β2J
2/2 + νβ3J

3/3 + (d0 + νd1J) cos(ϕ) + νJk sin(ϕ), (20)

for suitable parameters d0, d1 and k.
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Remark. The sinus term of the Hamiltonian above can be eliminated by choosing the change
of variables generated by ĥ1(θ,K) to cancel the corresponding O(ν)-terms such that it modifies
the m-harmonic (which cannot be canceled) in a suitable way: define ĥ1(θ,K) = Kθ + νh̄1(θ),
where h̄1(θ) = h1(θ) + 2ηm sin(m(θ − ψm0)), ηm = δm0β2/4, and proceed as before. It is, then,
a consequence of the non-uniqueness of the normal form ([15]). The model then becomes

H(J, ϕ) = β2J
2/2 + νβ3J

3/3 + (d̃0 + νd̃1J) cos(ϕ),

which reduces to a Hamiltonian of the form (16) chosen as a suitable model to study dynamics in
resonances close to an elliptic fixed point. When close to the elliptic fixed point the coefficients
of the Hamiltonian are powers of δ but β2, β3, d̃0, d̃1 can be arbitrary around an invariant curve.

4 Strong resonances.

The normal form (8) derived above has the important property of having the resonant terms
of order higher than the term which multiplies the first Birkhoff coefficient. This gives to the
BNF a local structure of twist map around the elliptic fixed point. When considering a strong
resonance, that is, α = q/m+δ with m < 5 this property is violated. It is possible that the fixed
point at the origin becomes unstable or remains stable (see [30]). In both cases the dynamics in
a neighbourhood of the fixed point suffers changes due to this fact (see [21, 2]). See also [14] for
a similar discussion for m ≤ 3.

4.1 The saddle-center bifurcation and the second order resonance.

We start our brief discussion about strong resonances by considering m = 1. The linearised
map can be the identity but generically it is a Jordan block with eigenvalues equal to 1. It
corresponds then to a particular (conservative) case of the Bogdanov-Takens bifurcation [7] or,
more precisely, to the saddle-center bifurcation (see [26, 8]). When crossing the critical value an
elliptic fixed point and a hyperbolic one are created generically, with eigenvalues close to 1. The
invariant manifolds of the hyperbolic one form a loop surrounding the elliptic point. Generically,
unless the map is integrable, the invariant manifolds do not coincide and have an exponentially
small splitting. The limit Hamiltonian flow generated by

H(x, y) = y2/2 − νx− x3/3 + O(x4, y3)

(similar to the flow interpolating version (5) of the Hénon map for c small) has a loop formed by
the separatrix of the saddle bounding a domain foliated by invariant curves if ν < 0 (otherwise
there are not fixed points). A Cantorian set of invariant curves subsists for the symplectic map,
up to an exponentially small (in c or in the relevant parameter) distance of the limit separatrix.
After the bifurcation one can consider BNF approach around the elliptic fixed point, as before.

When considering m = 2 the Jacobian of the map can be minus the identity but generically we
have a Jordan block with eigenvalues equal to -1 (see [30]). We note that F 2 has a pitchfork
bifurcation. A limit flow approximates F 2 in a similar way to the m = 1 case. In this case,

H(x, y) = y2/2 + νx2/2 ± x4/4 + O(x5, y3).

The difference with the case m = 1 is that the fixed point exists, locally, for all values around the
bifurcation point. If the sign + of the x4 term is considered the fixed point passes from elliptic
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to hyperbolic with reflexion, i.e., with negative eigenvalues when ν crosses 0 decreasing. At the
bifurcation a period two elliptic orbit appears. For ν < 0 we obtain a figure eight (the invariant
manifolds of the hyperbolic point form two loops surrounding the elliptic points). Otherwise, for
ν > 0 the origin is an elliptic fixed point. In the last case expressing the truncated Hamiltonian
H(x, y) = y2 +νx2 in Poincaré variables we found the Hamiltonian (11) for m = 2. On the other
hand, if the sign − of x4 is considered the fixed point passes from a hyperbolic (ν > 0) to an
elliptic one (ν < 0) and a period two hyperbolic point appears for ν < 0. The invariant manifolds
of the two periodic hyperbolic points form a pendulum like phase space figure surrounding the
elliptic fixed point.

4.2 The third order resonance.

When considering the strong resonance m = 3 (q = 1) the normal form around the elliptic fixed
point E0 has a term of degree two which plays a relevant role in the dynamics. The BNF, being
λ = e

2π
3
i at exact resonance, can be written as

z 7→ λ(z + c̃z̄2 + a1z
2z̄ + · · · ).

Therefore, the dominant part of the Hamiltonian approximation is given, in the generic case, by

H(I, ϕ) = ǫI +AI2 +BI
3
2 cos(3ϕ),

with A,B ∈ R, as it is deduced from (11) in this particular case, where ǫ plays the role of δ,
that is, λ = exp(2π+ǫ

3 i). After scaling the I variable by Î = A2I/B2, the time t by τ = tA3/B4

and the change of the phase variable ϕ by ϕ̂ = ϕ+ π/3 if it is necessary (in case AB < 0), the
corresponding Hamiltonian has the form

H(I, ϕ) = ǫ̂I + I2 + I
3
2 cos(3ϕ), (21)

where ǫ̂ = ǫA/B2. The time-1 flow of (21) reproduces F 3 in a ball of radius Mǫ̂ (in (x, y)
coordinates), with M large enough to contain the interesting local dynamics, with error O(ǫ̂5).
See section 6 for the use of a different scaling.

The evolution of the phase space of the vector field associated to (21) when moving ǫ̂ is described
in figure 6. If ǫ̂ < 9/32 there exist hyperbolic and elliptic fixed points. The hyperbolic fixed
points (which become a single parabolic point when ǫ̂ = 0) are located at a distance O(ǫ̂2) from
the origin, while elliptic ones are located at a finite distance of the origin for all the values of
ǫ̂. Hence, the location of these elliptic points, if they exist at all, is strongly influenced by the
missing terms in (21). Fixed points of (21) become period 3 points of the map. The separatrices
of the Hamiltonian which go up to a finite distance from the origin, due to the location of the
elliptic points, are also influenced by the missing terms in (21). If they exist they typically
have a splitting of finite size. As a consequence, the rotational invariant curves surrounding the
period 3 islands in figure 6 can be destroyed by these separatrices (see [38]).

For the model (21) a saddle-center bifurcation appears at ǫ = 9/32 and the corresponding degen-
erated point is located at (3/8, π/3), hence at a finite distance of the origin (there are two more
2π/3-rotated degenerated points). Hence, the comments on previous paragraph about phenom-
ena at finite distance also apply here. On the other hand, for ǫ̂ = 0 the elliptic point is located
at (3/4, π/3) (there are two more π/3-rotated elliptic ones). None of the phenomena concerning
the elliptic points (creation/destruction, rotation number, stability domain, satellites,...) neither
the outer separatrices of the 3-periodic orbit can be then analysed by a perturbative approach
around the origin. A similar analysis of the 1:3 resonance can be found in [6].
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Figure 6: Sketch of the phase space of (21) for ǫ̂ < 0 (left), ǫ̂ = 0 (centre), and ǫ̂ > 0 (right).

4.2.1 Application to the Hénon map

Figure 7 shows the transition through the third order resonance for the Hénon map (1). We note
that coefficients A and B of Hamiltonian (21) are both finite for that map, implying a generic
behaviour. The corresponding parameter ǫ̂ is decreasing with respect to α.
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Figure 7: Dynamics of the Hénon map (1) close to the 1:3 resonance. The plots correspond to
α = 1/3 + ν (left) and α = 1/3 − ν (center and right), with ν = 1/75. Compare with figure 6.
Note that the case equivalent to the central plot in figure 6 is missing. See figure 9 for that case.

The elliptic-hyperbolic 3-periodic points E3,H3 observed in figure 7 right are created in a saddle-
node bifurcation which takes place at α = arccos(1 −

√
2)/(2π) ≈ 0.31797, or, in the notation

of (5) at c =
√

2 for x = −y = 1/
√

2, i.e., at finite distance from the elliptic fixed point E.
Increasing α the hyperbolic points H3 go to E (as predicted by the Hamiltonian approximation
(21)) and the E3 points remain at a finite distance. For α = 1/3 the H3 collide with E. At the
same value, the E3 points suffer a period-doubling bifurcation and they become hyperbolic with
reflexion. These facts, concerning the particular case of the Hénon map, can be directly verified
by the following simple computation. The symmetries of the Hénon map (5) imply that one of
the E3 and H3 points is on the axis y = −x. For these points the condition H3

c (x, y) = (x, y),
taking into account that the fixed points are located at x = ±1, can be reduced to

c2x2 − 2cx− c2 + 3 = 0 and hence x(c) =
1

c
±
√

1 − 2

c2
.

The trace Tr of DH3
c (x(c),−x(c)) can be directly computed giving

Tr = 2(1 + r) − 8r2(1 − r) where r =
√

c2 − 2.

Furthermore, the invariant manifolds of the hyperbolic fixed point H almost destroy the islands
associated to the E3 points and they surround the small region of invariant curves around the
origin. This makes not easy to observe them for the value of α considered (see figure 9).
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Another interesting feature appears when we consider the behaviour of the elliptic fixed point of
the Hénon map at the exact bifurcation. The fixed point becomes parabolic under F 3. We can
look for the existence of invariant manifolds of that point. To this end we use version (5) and,
furthermore shift the elliptic point to the origin by (ξ, η) = (x − 1, y + 1). The corresponding
value of c is 3/2. Then

F 3(ξ, η) =
(

ξ − 3(ξη − ξ2/2) + O3, η − 3(ξη − η2/2) + O3

)

,

where O3 denote terms O(|(ξ, η)|3). It is easily checked that F 3 is approximated by the time-1
flow of the Hamiltonian H = 3

2ξη(ξ−η)+O4. Using the dominant terms it is found, in particular,
that η = 0 is an approximate invariant curve. Restricted to it the map reads F 3(ξ, 0) =
(ξ + 3ξ2/2 + O3,O3). That is, the right part is unstable and the left one is stable.
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Figure 8: Left: Behaviour of the coefficients of y + 1 as a graph on x − 1 for the invariant
manifolds at the 1:3 resonance. Right: some approximations of increasing orders.

We can search for an invariant manifold of the form η = g(ξ) = (
∑

n≥2 anξ
n), computing in a

recurrent way the ak coefficients from the invariance relation. If h1, h2 denote the components
of F 3 the condition is h2(ξ, g(ξ)) = g(h1(ξ, g(ξ))). Figure 8 left shows the behaviour of the
coefficients an as a function of n. The values of log |an|/n as a function of log(n) are plotted.
A fit for large n gives a slope close to 1. In contrast to the hyperbolic fixed or periodic points
for which the invariant manifolds W u,s are analytic (in fact, they are entire because F is entire)
present manifold is only Gevrey 1. This agrees with the theoretical expectations (see [5]). It
is immediate to obtain a2 = 3/4, and it has been observed that an > 0 (resp. an < 0) if
n > 2 is congruent with 0,1 (resp. 2,3) modulus 4. The right part in Figure 8 shows low
order approximations by g(ξ) truncated to orders between 5 and 8. See [32] for estimates of
the behaviour of the error for small values of ξ for Gevrey 1 expansions. Figure 9 shows the
invariant manifolds of the 1:3 resonance for the Hénon map. Note that the unstable branches
intersect the stable manifold of the hyperbolic fixed point, whose unstable manifold goes to
infinity. This implies the escape to ∞ for points in any neighbourhood of E. Experimentally it
has been observed that all points of a neighbourhood, except E and the stable branches of the
manifold, escape. Period-3 islands are also displayed in figure 9.

4.3 The fourth order resonance.

Similarly to the third order resonance the study of the fourth order one is reduced, in generic
cases, to describe the dynamics of Hamiltonian

H(I, ϕ) = ǫ̂I +AI2 +BI2 cos(4ϕ),
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Figure 9: Invariant manifolds of the hyperbolic fixed point (red for W u, reaching x-values close
to 2.8, and green for W s) and of the degenerated fixed point of the origin (in blue the unstable
branches). The existence of intersection between them means that no rotational invariant curve
exists. The plot corresponds to (5) with c = 3/2, α = 1/3. The three small blue spots show the
period-3 islands. A magnification of one of them is shown on the right. Note that inside the
islands the period-3 points E3 are at a period-doubling for this value of c.

with A,B ∈ R and where we always assume A 6= 0. After the change of variables Î =
√

|A|I,
and changing the phase ϕ̂ = ϕ+ π/4 if it is necessary, the Hamiltonian is reduced to

H±(I, ϕ) = ǫI ± I2 + ξI2 cos(4ϕ),

where ξ = B/A and ǫ = ǫ̂/
√

|A|, the sign + corresponding to the case A > 0 and we use again

I instead of Î. Moreover, by changing the time t by τ = −t and the phase as before one can
always consider the + sign in front of I2 and ξ < 0, hence

H(I, ϕ) = ǫI + I2 + ξI2 cos(4ϕ). (22)

The dynamics is then described for a fixed parameter ξ as a function of ǫ. We distinguish
between ǫ > 0 and ǫ < 0. Figure 10 shows the different cases in the phase space when moving ǫ
and ξ and assuming the generic condition ξ 6= −1 holds. Similar to the case of the third order
resonance, the time-1 flow of (22) reproduces F 4 in a ball of radius Mǫ1/2 (in (x, y) coordinates),
with M large enough to contain the interesting local dynamics, with error O(ǫ5/2).

The fixed points of (22) are p1 = (−ǫ/(2 + 2ξ), 0) and p2 = (−ǫ/(2 − 2ξ), π/4) (besides the
π/2-rotationally symmetric ones). Point p1 appears if: (i) ǫ > 0 and ξ < −1 or (ii) ǫ < 0 and
−1 < ξ < 0. In case (i) it is hyperbolic and elliptic in case (ii). Point p2 appears if ǫ < 0 for
all ξ < 0 and it is hyperbolic. As a consequence, the families of periodic points of the map, if
they exist, are located at a distance of order ǫ from the origin in the I variable. The implicit
function theorem guarantees again that they subsist for the full map if ǫ is sufficiently small. As
said above the case ξ = −1 is exceptional.

Concerning the case ǫ < 0 and −1 < ξ < 0 (top right figure 10) note that the relative distance
between the elliptic and the hyperbolic 4-periodic points, p1 and p2 respectively, is O(ǫ). Also
the separatrices of p2 go up to a distance O(ǫ).
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Figure 10: Sketch of the phase portrait of Hamiltonian (22) for ǫ < 0 (1st row) and ǫ > 0 (2nd
row). Left (resp. right) plots correspond to ξ < −1 (resp. −1 < ξ < 0).

4.3.1 The exceptional case ξ = −1

When trying to apply the study above to the fourth order resonance of the Hénon map it is found
ξ = −1. Hence, this bifurcation is not generic for the Hénon map. We are in the exceptional case
and higher order terms in the Hamiltonian or in F 4 are needed. First we present an approach to
a general discussion in the exceptional case. Later we shall turn to the case of the Hénon map.
This case was already considered in [22] however we perform here a complete different analysis.

Note that from (11) we obtain a Hamiltonian flow that exactly interpolates the map up to order
3. In order to get an interpolating Hamiltonian up to order 6 (whose flow interpolates up to
order 5 the map) we proceed in a more direct way. Assume first that ǫ̂ = 0 (that is, the map is
exactly at the fourth order resonance) and consider the normal form up to order 5, skipping the
factor i (the rotation) and normalising the resonant term to iz̄3 as before, that is,

K(z, z̄) = z + b1z
2z̄ + iz̄3 + b2z

3z̄2 + cz5 + dzz̄4,

where b1 = b1r + ib1i, b2 = b2r + ib2i, c = cr + ici and d = dr+ idi are, a priori arbitrary, complex
coefficients.

Consider the maps

K1(z, z̄) = z + b1z
2z̄ + iz̄3 and K2(z, z̄) = z + b2z

3z̄2 + cz5 + dzz̄4.

Then
K2 ◦K1(z, z̄) = K(z, z̄) + O(|z|7).

On the other hand, the vector field ż = b1z
2z̄ + iz̄3 interpolates the map K1 up to order 3. In

order to obtain a Hamiltonian vector field the coefficient b1 must be purely imaginary. Hence,

H4(x, y) =

(

1 + b1i
4

)

(x4 + y4) −
(

3 − b1i
2

)

y2x2

is the corresponding Hamiltonian.

Moreover, the vector field ż = b2z
3z̄2 + cz5 + dzz̄4, which interpolates map K2 up to order 5, is

Hamiltonian provided b2r = 0, di = 5ci and dr = −5cr being

H6(x, y) =
1

6
(b2i+6ci)x

6+4crx
5y+

1

2
(b2i−10ci)x

4y2+
1

2
(b2i−10ci)x

2y4−4crxy
5+

1

6
(b2i+6ci)y

6
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the corresponding Hamiltonian.

As the Lie bracket of both vector fields is of order higher than 5 then Hamiltonian H(x, y) =
H4(x, y) +H6(x, y) provides an interpolating flow up to order 5 (in the (x, y) variables) of the
map K. Expressing Hamiltonian H(x, y) in Poincaré variables it is obtained

H(I, ϕ) = b1iI
2 +

4

3
b2iI

3 + I2 cos 4ϕ+ 8ciI
3 cos 4ϕ+ 8crI

3 sin 4ϕ.

When ǫ̂ 6= 0 the Hamiltonian Ĥ = ǫ̂I +H(I, ϕ) should be modified by adding the terms coming
from the Lie bracket of both vector fields. However, we observe that this adds terms with small
coefficients O(ǫ̂) that do not affect the local dynamics. Hence, after a suitable scaling, we reduce
the study of the degenerate case b1i = −1 to the study of a Hamiltonian of the form

H(I, ϕ) = ǫI + I2 +AI3 − I2 cos(4ϕ) +BI3 cos(4ϕ) + CI3 sin(4ϕ). (23)

The vector field associated to ǫI + H4(I, ϕ) (generated by Hamiltonian (23) ignoring O(I3)
terms, compare with (22)) has for ǫ < 0 a hyperbolic fixed point p1 = (−ǫ/4, π/4). On the other
hand, the vector field becomes degenerated on ϕ = 0. In this case, considering sin(4ϕ) = O(ϕ)
and cos(4ϕ) = 1 +O(ϕ2) one obtains the equation ǫ+ 3(A+B)I2 +O(ϕ) = 0 for the nontrivial
fixed points close to ϕ = 0. Then, for ǫ such that ǫ(A + B) < 0 this implies the existence of
an elliptic fixed point at a distance O(

√
−ǫ), the distances being expressed in the I variable.

Hence, two families of fixed points, hyperbolic points at distance O(ǫ) and elliptic points at
distance O(

√
ǫ), are born when ǫ goes from positive to negative provided A+B > 0. Otherwise,

if A + B < 0, there exists a family of fixed points for ǫ > 0 (elliptic points) and a family of
fixed points for ǫ < 0 (hyperbolic points). If A = −B then other scenarios could appear when
crossing ǫ = 0 depending on the value of the constant C. However, according to [15] the sinus
term can be removed by choosing suitable reduction changes to BNF. This modifies the values
of A and B but the reasoning above holds for the new coefficients.

Furthermore, the time-1 flow of (23) reproduces F 4 in a ball of radius Mǫ1/4 (in (x, y) coordi-
nates), with M large enough to contain the interesting local dynamics, with error O(ǫ7/4).

4.3.2 The 1:4 resonance of the Hénon map

As already said, the 1:4 resonance becomes degenerate for this map. To decide about the local
behaviour and the bifurcation of periodic points one has to use, at least, the order 6 discussion
above. However we shall proceed in a more direct way, to illustrate the use of a different method.

First we compute the H4
α for values 2πα = π/2 + δ using (1). For shortness we shall denote the

Hénon map for these values as Tδ. An elementary computation gives

T 4
δ (x, y) = (f, g) = (f0 + f1δ + f2δ

2 + f3δ
3 +O(δ4), g0 + g1δ + g2δ

2 + g3δ
3 +O(δ4)),

where it is enough to keep the following approximations, for fj, gj , j = 0, . . . , 3 to compute
periodic orbits and their stability

f0 =x+2x2y−x4−4xy3+8x3y2+2y5−4x5y−4x2y4−4x4y3−4xy6+16x6y2+24x3y5+y8 + . . . ,

g0 =y − 2xy2 + 4x3y + y4 − 2x5 − 4x2y3 + 6x4y2 − 4x6y + x8 + . . . ,

f1 =−4y + 2x2 + 4xy + 2x3 − 4xy2 − 4y3 − 12x2y2 + 6y4 + 4x5 + 28x4y + 22xy4 + . . . ,

g1 =4x− 4xy − 2y2 + 4x3 + 2x2y + 4y3 + x4 − 12x2y2 + 12x4y − 4x3y2 + 2y5 + . . . ,
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f2 =−8x+ 8x2 + 8xy − 4y2 − 8x3 − 27x2y − 20xy2 + . . . ,

g2 =−8y + 2x2 + 4y2 + 4x3 − 8x2y + 11xy2 − 4y3 + . . . ,

f3 =32y/3 + . . . , g3 =−32x/3 + . . .

where . . . stands for higher order terms that do not affect the computations below. To look
for period four points we use T 4

δ (x, y) = (x, y). We are interested in solutions which emanate
from the origin for δ = 0. To this end we consider the Newton polyhedra of f − x, g − y, the
generalisation of Newton’s polygon containing exponents of x, y, δ as coordinates. To decide
about the possible dominant terms in the branches of solutions it is enough to use

2x2y − x4 − 4xy3 + 2y5 + δ(−4y + 2x2) + δ2(−8x) = 0 ,

−2xy2 + 4x3y + y4 − 2x5 + δ(4x − 2y2) + δ2(−8y) = 0 ,

from which we look for x = O(δα), y = O(δβ). An analysis of these equations shows that only

α = 1/2, β = 1/2, α = 1/4, β = 1/2, α = 1/2, β = 1/4

are possible. Furthermore, due to the symmetry, it is enough to consider α ≤ β.

Using this information it is possible to solve the equations by iteration in powers of δ1/2 or δ1/4.
The solutions are

x =
√

2δ1/2 + δ + O(δ3/2), y = x+ O(δ3/2),

in which case Tr = 2 + 64δ2 + O(δ3), a hyperbolic periodic orbit, and

x = γδ1/4 + δ3/4/γ + δ + O(δ5/4), y =
√

2δ1/2 + δ + O(δ5/4),

where γ = 81/4, for which one obtains Tr = 2 − 64
√

2δ3/2 + O(δ2), an elliptic periodic orbit.

Figure 11 illustrates how the bifurcation of a hyperbolic and an elliptic periodic orbits occurs
when crossing the 1:4 resonance. In particular this shows stability at the exact resonance, a fact
already discussed in [30] using different tools. Topologically the transition occurs as in the stable
−1 < ξ < 0 non-degenerate case. The main difference in the present case is the location of the
elliptic periodic orbit and the invariant manifolds of the hyperbolic periodic orbit which go to a
distance (in the (x, y) variables) O(δ1/4) instead of O(δ1/2) from the central elliptic point.
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Figure 11: From left to right: some orbits of the Hénon map for α/(2π) = 0.2499, 0.2500 and
0.2501, respectively.
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5 Behaviour of the splittings in a generic resonance

An estimation of how far is an APM from being integrable is given by the splitting of separatrices
in a resonance of the phase space. This “distance to integrable”, hence, depends on the region
where we are studying the map and on the resonance that we consider. In the zones where the
map is close to integrable a good description of the dynamics is given by the interpolating flow.
A different approach, dealing directly with the diffeomorphism for instance, has to be developed
to understand dynamics where the map is not so close to integrable.

As the maps we consider (or a power of them) are ǫ-close to the identity for some small ǫ, the
distance between a homoclinic point and its image is O(ǫ). Hence, we consider a fixed domain
in phase space and in that way we capture homoclinic points for ǫ small enough.

In this section we present first in 5.1 some facts about the splitting of separatrices in generic
resonances. Some of the facts rely on rigorous proofs. Other rely on “experimental evidence” but
they are presented because they suggest “reasonable assumptions” to be done for the statement
of the main result in section 5.6. The result is presented after giving several definitions, several
considerations on the location of the singularities and a precise statement of the assumptions.
To enhance clearness we add also section 5.5 where the steps to be checked to obtain bounds
on the splittings are detailed. Numerical examples on location of singularities and estimates of
inner and outer splittings are shown in section 5.7, and some considerations about the behaviour
of splittings at finite distance close present section.

5.1 Some preliminary facts about splitting of separatrices

Bounds of the splitting of the separatrices depend on the width of the analyticity strip of the
homoclinic orbit of the interpolating Hamiltonian and on the characteristics of the map. The
reader is referred to [11] to look for details on the upper bounds of such splitting. It is convenient,
however, to sketch here some of the key ideas in [11].

Consider a family of analytic APM ǫ-close to the identity, for 0 < ǫ < ǫ0, and being close to
the time-ǫ flow of an autonomous Hamiltonian H whose flow is denoted by ϕt and which has a
homoclinic loop to a hyperbolic fixed point H: Fǫ(x) = x+O(ǫ) = ϕt=ǫ(x) + O(ǫ1+α) for some
α > 0. Keep in mind, as an example, the Hénon map and the limit flow presented in section 2.2.
One can assume also that H is the corresponding hyperbolic fixed point for all the family Fǫ and
that the dominant eigenvalue is λ(ǫ) = 1 + O(ǫ). To measure the distance between the stable
and unstable manifolds W s,u

ǫ of Fǫ we can approximate both manifolds by the separatrix of H.
Assume this separatrix is given by some real analytic function σ(t), which can be extended to
t ∈ C until |Im t| < τ , where some singularity of σ appears. Choose a value η, perhaps small
but fixed, independently of ǫ and consider the strip S = {t ∈ C | |Im t| ≤ τ − η}. If the maps Fǫ
are entire, then W s,u

ǫ can be extended to the image of S by σ. In the non-entire case one has to
take a larger value of η so that σ(S) do not reaches the singularities of Fǫ. By the compactness
of σ(S) and the proximity of Fǫ and ϕt=ǫ one has that both W s

ǫ and W u
ǫ are O(ǫ1+α)-close to

σ(S) and, hence, they are close to each other.

On the other hand the BNF around H (which is convergent in a domain, uniformly in ǫ, see [11])
allows to define a local first integral, to be seen as an energy and transport it along W u

ǫ . Let us
denote that energy as Eu. Then one can evaluate that energy on W s

ǫ . This function depends on
the (complex) parameter used to describe W s

ǫ and gives a measure of the distance between the
manifolds. If a suitable parametrisation of W s

ǫ is used, say with a parameter q, it turns out that
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Eu(q) is periodic with period h(ǫ) = log(λ(ǫ)) = O(ǫ). Then the amplitudes of the harmonics of
Eu(q) can be computed by shifting integrals from some real interval t0 to t0 + h(ǫ) to integrals
from t0 ± i (τ − η) to t0 + h(ǫ) ± i (τ − η). It follows that, for k 6= 0, the k-th order harmonic is
bounded by O(−2π|k|(τ −η)/h(ǫ)). Furthermore the zero-th order harmonic is also bounded by
O(−2π(τ −η)/h(ǫ)) because the maps Fǫ must have homoclinic points (they are APM and close
to a flow with a loop. The precise bounds depend on the selected value of η and can be difficult
to evaluate in general. Note that as soon as Eu(q) is known, one can compute the distance
between W s

ǫ and W u
ǫ . In an equivalent way, one can consider, close to some selected homoclinic

point and in local coordinates, that W u
ǫ is the graph of a trivial function q → 0 and W s

ǫ is the
graph of a function G, as before h(ǫ)-periodic in q.

Bounds obtained in such a way are very accurate and, generically, of the same order of magnitude
as the splitting. To measure the splitting one can use either the angle between the manifolds
on some domain away from the related hyperbolic periodic points or symplectic invariants, like
the area of a lobe or the so-called homoclinic invariant (see, e.g., [18]).

To analyse the behaviour of the splittings we note that they are expected to behave not only
with an exponentially small bound but more precisely according to an expression like

σ ∼ A(log λ)B Re (exp(−C/ log(λ))) , (24)

where A > 0, B real, C complex with ReC > 0 and where λ, as before, is the eigenvalue of
modulus greater than one of the hyperbolic fixed/periodic points. This fact has been observed
numerically in several examples (see [11, 18]) and it has been proved for some particular cases
([12], based on ideas in [25]). Strong evidences lead to believe that for large families of analytic
maps a formula like (24) holds. Later on it will be checked numerically for several resonances in
the case of the Hénon map. Hence, suitable assumptions, A2, A3 will be made in section 5.6.

The real part Cr of the constant C of (24) is related to the width of the analyticity strip of
the homoclinic orbit of the interpolating Hamiltonian (see above) with the said exception if the
maps are not entire. To be precise, let t = τ denote the closest singularity of the separatrix σ of
the interpolating Hamiltonian to the real axis. Then, Cr = 2π |Im τ |. Moreover, the imaginary
part Ci of C is also determined by the position of the singularity τ . In particular, Ci = 2πRe τ .
We recall that here, and hence in expression (24), the time parametrisation of the solutions of
the Hamiltonian is such that the time-h = log(λ) flow approximates the map.

Hence, according to (24),

σ ∼ A(log λ)B exp(−Cr/ log(λ)) (cos(Ci/ log(λ)) + o(1)) , (25)

where some phase can also appear in the cos term (eventually, and non-generically, several cos
terms with the same value of Cr can appear, see [18]). The angle between the separatrices
generically “oscillates”, that is, changes sign, provided Ci 6= 0 [17, 18]. We will illustrate the
agreement of the observed behaviour with formula (24) when dealing with the splitting of the
separatrices of hyperbolic periodic points. Oscillatory behaviour is also found in the strong
resonance of order four (section 6) and, in particular, for the Hénon map. See comments after
assumption A3 for additional information on these oscillations.

As a preliminary example where the behaviour predicted by (24) is the proper one figure 12 shows
the invariant manifolds of the hyperbolic fixed point of the Hénon map (1). As it is expected
[11, 13, 16] the splitting is of the form (24) with C = Cr and Ci = 0. For α < 0.1 the splitting
is small. The corresponding values of the parameter c (see Section 2.2) are, approximately, less
than 0.2. The dynamics is close to the one of the flow (6).
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Figure 12: Splitting of the separatrices of the hyperbolic point of the Hénon map (1). Left: The
decimal logarithm of the splitting (vertical axis) is represented as a function of α (horizontal
axis). Right: The same logarithm is represented as a function of 1/λ(δ). The asymptotic slope
gives the constant −C in (24).

The importance of the splitting of the separatrices of the fixed point of an APM F relies on the
observation made in [20] about the fact that this splitting plays a role when determining the
boundary of the stability region of the elliptic fixed point (see also [19, 38, 33, 37, 34]).

Along this section we will analyse the splittings of the resonant islands. Generically, an island
of a m-order resonance has different splittings depending on which manifolds (inner or outer)
intersect. The goal of this section is to give a proof of this fact in the non-strong resonant case
for an APM satisfying suitable conditions and to illustrate it numerically. Section 6 is devoted
to the case of low order resonances.

5.2 Inner and outer splittings of a generic island

We start by making precise the idea of inner and outer splittings of an island. As said, we
restrict our attention along section 5 to resonances of order m > 4. However the inner and outer
splitting idea will be used in the strong resonant case also.

Definition 5.1 Let F be a planar map having a chain of islands R surrounding the origin. Let
I be an island of the resonance strip R. The inner (outer) splitting σ− (σ+) of I is the one with
the property of having the closest (farthest) primary homoclinic point to the origin (see Figure 2).

In the definition “primary” homoclinic points are such that the differences of arguments between
the k-periodic hyperbolic points H and the homoclinic ones are close to π/k and, furthermore,
the arcs of stable and unstable manifold used to produce the homoclinics intersect only once the
ray with the argument of the homoclinic.

5.3 Previous considerations on the location of the singularities

As was stated before the exponential small part of the splitting depends on a constant C ∈ C
which is itself determined by the position of the singularities of the separatrix of the limit
Hamiltonian. The explicit computation of the position of the singularity will be carried out in
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the next subsection. In the present one we discuss where they are expected to be in a more
general framework.

Consider, in general, a Hamiltonian function of the form

H(J, ψ) = P (J) −Q(J) cosψ. (26)

Let h be the separatrix level of energy. At this level of energy we have cosψ =
P − h

Q
. On the

other hand, J̇ = Q sinψ, and the relation above implies

J̇ = ±
√

Q2 − (P − h)2. (27)

Equation (27) describes the variation of J when restricted to the separatrix. We will consider
the corresponding equation associated to Hamiltonian (16) and use it to determine the position
of the singularities.

We recall that model Hamiltonian (16) has been obtained after suitable scalings. The error in
this model is not only small, for δ small enough, but even small with respect to the relevant
parameters c and d. Following the approach of [11], we are interested in the Hamiltonian
because the invariant manifolds of its separatrix provide a good approximation of the invariant
manifolds of the map in the complex phase space, for complex t, provided the imaginary part of
t is slightly below the singularities of the separatrix. Restricting t to a compact complex strip
whose boundary is close, but bounded away from the singularities, the influence of higher order
terms in the map or in the Hamiltonian, can be neglected if δ is small.

Concerning the position of the singularities we note that Hamiltonian (16) can be considered as
a perturbation of the classical pendulum H(J, ψ) = J2/2 − cosψ. It is easy to check that the
nearest (to the real axis) singularity τ of the classical pendulum is located (both for the inner
and outer separatrix) over the imaginary time axis, that is, Re τ = 0, Im τ = π/2. However,
there is no general theory about how perturbation changes the position of the singularities.
Moreover, new singularities could appear and, maybe, they are closer to the real time axis
than the old ones. It is not known even how the type of singularities changes under a generic
perturbation. But the location of the singularities relevant for the splitting changes mildly for
small perturbations. See also assumption A4 and how it is used in the proof of theorem 5.1.

Nevertheless, it is not hard to see that a homoclinic orbit of the complex flow generated by
(16) has singularities on the imaginary time axis. The following proposition, based on results
included in [4], assures that, at least, a singularity is on the imaginary axis.

Proposition 5.1 Consider a system of the form H(J, ψ) = P (J) −Q(J) cos(ψ) where P (J) is
a polynomial of degree ≥ 2 and Q(J) is such that Q2(J) is a polynomial. Assume

1. deg(P 2) > deg(Q2), and

2. there exist a point p= (pJ , pψ), on the separatrix H(J, ψ) = h such that z ≤ pJ for any z
real fixed point of (27) and if z = pJ then z is a zero of Q2− (P−h)2 with multiplicity one.

Then the homoclinic orbit has a singularity on the imaginary axis.

Proof. Let S(J) = Q2(J) − (P (J) − h)2. The singularities of the homoclinic orbit are given by

τ = ±
∫ k

pJ

dJ
√

S(J)
,
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where |k| = ∞, following a suitable complex path, and pJ is the first coordinate of a point p
that satisfies assumption 2. We choose the real path of integration (pJ ,+∞). Then,

I := ±iτ =

∫ +∞

pJ

dJ
√

−S(J)
.

By assumption 1, limJ→+∞ S(J) = −∞, hence for J > pJ one has −S(J) > 0 by assumption
2. In particular, I ∈ R ∪ {+∞}. Clearly, the convergence of I would imply the result. For any
q > pJ assumption 2 provides the convergence in the interval [pJ , q]. By hypothesis S(J) is a
polynomial. Put S(J) = a0 +a1 + · · ·+amJ

m being m = deg(S) = deg(P 2) ≥ 4, am < 0. Then,
using the change of variables J = w−1, it follows

∫ +∞

q

dJ
√

−S(J)
=

∫ +∞

q

dJ√
−a0 − a1 − · · · − amJm

=

∫ η

0

dw

w2
√

−a0 − · · · − am
wm

,

with η = q−1 a finite value. This integral converges since m ≥ 4. �

Remark. When computing the position of the singularities as an integral on a path going to
∞ one has to take into account that the only singularities of interest for our purpose are the
so-called “singularities visible from the real axis”. See [18] for definition and details.

5.4 Analytic estimate of the position of the singularities

To analytically compute the singularities τ+ and τ− related to the outer and inner separatrices,
respectively, of the limit Hamiltonian (16) we note that the equation on the separatrix (27)
becomes

J̇ =
√

p̃(J), so that dt =
dJ

√

p̃(J)
,

being p̃(J) = Q2 − (P − h)2, P (J) = J2/2 + cJ3/3, Q(J) = 1 + dJ and h = 1 + (1 − 6cd− (1 −
4cd)3/2)/12c2. The value J = Jh corresponding to the position of the hyperbolic points should
be a root of p̃(J) with multiplicity 2 (since J̇(Jh) = 0 and because the symmetries of the BNF).
Let p(J) be the polynomial of degree four such that p̃(J) = (J − Jh)

2p(J).

As we want to estimate the time to reach the singularity for the external and the internal part
of the separatrix we have to consider the following integrals

• Singularity of the outer separatrix: τ+ =

∫ k1

z1

dJ

(J − Jh)
√

p(J)
,

• Singularity of the inner separatrix: τ− =

∫ k2

z2

dJ

(J − Jh)
√

p(J)
,

where z1 and z2 are the maximum of the external branch of the separatrix and the minimum
of the internal branch, respectively. In particular, z1 and z2 are zeros of the polynomial p(J)
since they are fixed points of equation (27). On the other hand we expect the singularities to be
found when integrating on a real path of the J variable (hence, when the limits of integration
are such that |kj | = ∞, j = 1, 2).

We look for the closest singularity τ± to the real axis. In a singularity either |J | = ∞ and/or
|ψ| = ∞. Consider the restriction of a Hamiltonian system of the form (26) to the separatrix
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level h of energy. The corresponding vector field has |ψ| = ∞ with |J | finite if, and only if,
Q(J) = 0. For instance, if Q(J) = 1 + dJ then J = −1/d is a particular value where a
singularity is found. Nevertheless, in our study of the behaviour of the splittings this singularity,
say τ∗ defined by Q(J(τ∗)) = 0, plays no role. In fact, τ∗ is not a singularity of the separatrix
σ(τ) = {(J(τ), ψ(τ)) |H(J(τ), ψ(τ)) = h}, last assertion meaning that σ(τ) can be extended
analytically over it. The reason is that it is not a singularity of the vector field itself but of the
change from Cartesian coordinates to a Poincaré variables. Note that the factor Q(J) comes
(after some scalings) from the factor (2I)m/2 of the resonant part of Hamiltonian (11). Hence,
Q(J) = 0 if, and only if, I = 0. The original vector field in Cartesian coordinates is well-defined
but Poincaré variables are not defined at the origin.

Remark. In particular, the elliptic point E0 around which the BNF is considered is generically
(and with infinity codimension) in the closure of the separatrix of any resonance when considering
the separatrix as a one-dimensional complex submanifold of C2.

For simplicity, in the computation of the singularities we distinguish different cases according
to the c and d parameters of the limit interpolating Hamiltonian (16).

Case c = d = 0. Hamiltonian (16) becomes H(J, ψ) = J2/2 − cos(ψ). As said before it
corresponds to the non-perturbed pendulum Hamiltonian. The closest outer τ+ and inner τ−
singularities to the real axis are such that Re τ+ = Re τ− = 0 and Im τ+ = Im τ− = π/2.

Case d > 0, c = 0. Hamiltonian (16) reads H(J, ψ) = J2/2 − (1 + dJ) cos(ψ). The equation
on the separatrix is J̇ = (J + d)

√

p2(J), being p2(J) = −(J + 2 − d)(J − 2 − d)/4. The outer
(resp. inner) splitting has closest singularity τ+ (resp. τ−) such that

Re τ± = 0, Im τ± =

∫ ±∞

±2+d

dJ

(J + d)
√

−p2(J)
=

1√
1 − d2

(π

2
∓ arcsin d

)

.

Hence the difference between the distances to the closest singularities of the outer splitting and
the inner one is given by τ+−τ−≈−2d+O(d3) and, as a consequence, it is of the order O(δ

m
4
−1).

When J = −1/d we have |ψ| = ∞ and the corresponding time value τ∗ verifies τ∗ = τ+. As said
before, this point τ∗ plays no role at all when studying the splitting behaviour.

Case d > 0, c 6= 0. The role of c on the position of the singularities is to introduce a real part
on them. As a consequence the splitting is able to oscillate depending on the ratio of the real
part of the singularity and the logarithm of the dominant eigenvalue of the hyperbolic point.
The following analysis shows that oscillation is not possible, at least close to the creation of the
resonance, in the case under consideration. We recall that c << d (see remarks in section 3.4).

The differential equation over the separatrix is given by J̇ = −
√

p6(J) (we use pi(J) to denote
a degree i polynomial). Note that the value J = Jh is a double zero of the vector field. So that

J̇ = (J − Jh)
√

p4(J).

A simple calculation gives

Jh =
−1 +

√
1 − 4dc

2c
,
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and

p4(J) =
1

3
− 1

72c2
+

5d

36c
− 4d2

9
+

2

3

√
1 − 4cd+

√
1 − 4cd

72c2
− d

√
1 − 4cd

9c

+

(

1

36c
+

2c

3
−

√
1 − 4cd

36c
+

4

9
d
√

1 − 4cd

)

J +

(−1

12
+
cd

3
− 1

6

√
1 − 4cd

)

J2

+

(−2c

9
− 1

9
c
√

1 − 4cd

)

J3 − c2

9
J4.

The computation of zeros of p4(J) gives

z1 = (2 + d) + 1
3

(

−4 − 6d− 3d2 − d3
)

c+ O(c2), z3 = − 3
2c + 2d+ 2d2c+ O(c2),

z2 = (−2 + d) + 1
3

(

−4 + 6d− 3d2 + d3
)

c+ O(c2), z4 = − 3
2c − 2d+

(

8
3 + 2d2

)

c+ O(c2).

Assume c > 0. The outer splitting singularity τ+ is purely imaginary and is given by

Im τ+ =

∫ +∞

z1

dJ

(J − Jh)
√

−p4(J)
.

On the other hand the inner splitting singularity τ− is given by

Re τ− =

∫ z4

z3

dJ

(J − Jh)
√

p4(J)
,

Im τ− =

∫ z3

z2

dJ

(J − Jh)
√

−p4(J)
+

∫ −∞

z4

dJ

(J − Jh)
√

−p4(J)
.

In the case c < 0 it is the outer splitting singularity the one that has a real part different from
zero while the inner splitting singularity is purely imaginary.

By means of the reduction of the elliptic integrals to standard Legendre kinds (see Appendix A)
it can be deduced that the outer singularity admits the expansion

Im τ+ =
1√

1 − d2

(π

2
− arcsin(d)

)

+
4

3
c log |c| + O(c), (28)

with Re τ+ = 0 if c > 0 and Re τ+ = −4c+ O(c2) otherwise.

In a similar way it is found that the inner one is given by

Im τ− =
1√

1 − d2

(π

2
+ arcsin(d)

)

− 4

3
c log |c| + O(c), (29)

with Re τ− = 4c+ O(c2) if c > 0 and Re τ− = 0 otherwise.

Remark. As in the case c = 0, the value τ∗ = 1√
1−d2

(

π
2 − arcsin(d)

)

+ 2
3 c+O(c), corresponding

to the time for which J = −1/d and |ψ| = ∞ plays no role and, hence, has been ignored in the
computation of the position of the closest singularities.

5.5 Sketch of the steps to follow

To study both outer and inner splittings in our problem we need several ingredients. The main
goal is to be able to “separate” the exponential rates of decrease of inner and outer splittings.
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According to section 5.4 the respective singularities are located at points whose distance to the
real time axis differs by 2d(1 + O(δβ)) for some β > 0. This is based of the simple model (16)
which, in principle, is only suitable for the resonance strip. On the other hand, as described in
5.1, the approximation of W u,s

ǫ by the separatrix holds only, in general, on a strip of the form
S with η finite and one would like to have η small compared to d. Consider the following items:

• A first important question is how one has to formulate the problem. We assume that the
initial family of maps is given in Cartesian coordinates, say (x, y), having the elliptic fixed
point at the origin. After the normal form step, to a suitable order, we change to action-
angle coordinates (I, ϕ) and one has to take into account that a small neighbourhood of
the fixed point must be excluded because of the choice of coordinates.

We are interested in a real phenomenon, the splitting of real separatrices at a resonant
zone. This can be measured, in an equivalent way, either in (x, y) or in (I, ϕ) coordinates.
But, according to 5.1, this requires a complex extension. The extension is done in (I, ϕ)
variables. Note that this is different to what it is obtained by just considering (x, y) as
complex variables. But the estimates on the real phase space will be the correct ones.

• It turns out that the approximating Hamiltonian H(J, ψ) given in (16) is, in principle, not
enough for our purposes. To be concrete, for the derivation of (16) one has used Ĩ = I− I∗
assuming Ĩ/I∗ < 1 (in fact << 1) to be able to expand H(Ĩ , ϕ) on the resonant zone. Now
we need an approximation in a very large domain in the complex phase space in the (J, ψ)
variables.

Indeed, we would like to reduce the width of the analyticity strip of the separatrix of the
Hamiltonian not by a finite amount η independent of δ as stated in section 5.1 but by a
quantity which is small compared to d = O(δm/4−1) in (16), as mentioned above. Hence,
the values of J have to be large and tend to ∞ when δ tends to zero.

Essentially what we plan to do is to use the Hamiltonian (11) using the changes introduced
in 3.4, without any further simplification. See the proof of theorem 5.1.

• Changing the approximating Hamiltonian implies changes in the location of the singulari-
ties of the separatrix. Hence, one has to check that the difference of these locations is still
small compared to d.

• The bound of the difference between the APM and the time-γ map of the Hamiltonian
derived in Proposition 3.1 has to be modified because of two reasons: the approximating
Hamiltonian has changed and the domain in the (J, ψ) variables will be now larger. As we
shall see, a key role is played by suitable scalings. The domain in the J variable will be
large, but going back to the I variable, as in Theorem 3.1, we will see that it is still small.

• Finally one has to pay attention to the fact that the APM needs not to be an entire
function. It can have singularities at some finite distance of the elliptic fixed point in the
(x, y) or (I, ϕ) variables. Again the scaling used will show that the singularities move far
away in the (J, ψ) variables, so that they become irrelevant.

5.6 Main result: difference between inner and outer splitting

The information on the position of the singularities given in subsection 5.4 and the minor
corrections to be done below allows to rigorously prove the difference between the upper bounds
of inner and the outer splitting for non-strong generic resonances of a one-parameter family Fδ
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of APM. We will skip, as usual, the δ dependence of Fδ and write F when no confusion can be
produced. Let us make precise the assumptions before writing the statement of the theorem.

First assumption. This assumption concerns the genericity of the family of APM. We have
seen that F can be reduced to a BNF around E0 (section 3.1). We assume that

A1 The first Birkhoff coefficient b1(δ) is non zero for δ = 0. This condition is generic.

Second assumption. This assumption concerns the behaviour of the exponential small part
of the inner and outer splittings. We comment on the outer one, the inner one being similar,
replacing the subscript + by −.

Let p0+ be a transversal homoclinic point associated to the outer separatrix of a hyperbolic
m-periodic point PH of the m-resonance strip of F . Let p1+ = F (p0+). It is well known (see,
e.g., [11] and subsection 5.1) that between p0+ and p1+ the invariant stable manifold W s

+(PH)
can be represented as the graph of a periodic function Gs+ = Gs+(q), while W u

+(PH) is the graph
of the zero-function. The period is equal to h = log(λ) and can be scaled to 2π for convenience.
Let us denote as G+(s) this scaled function. We can write G∗(s) =

∑∞
k=−∞ ck exp(ik 2πs) which

depends on δ. Furthermore the splitting is real for real values of s. Hence c−k is the complex
conjugate of ck for all k ≥ 0. We refer to the contribution coming from the terms having
coefficients ck and c−k as the “k-th harmonic”. Observe that if in the original q variable, that is,
before the scaling, the manifolds can be extended up to |Im s| ≤M+ then the amplitude of this
harmonic is O(exp(−2πkM+/ log(λ))). If the family of maps is approximated by the time-log(λ)
of a limit Hamiltonian having a separatrix γ+(t) then M+ can be taken slightly smaller than
the half-width of the strip of analyticity of γ+.

Definition 5.2 We say that a splitting is generic if in the scaled s variable the coefficients of
the first harmonic c1, c−1 are bounded away from zero when the small parameter in the family
of maps tends to zero.

We explicitly assume that

A2 The splittings are generic in the sense of the above definition.

Third assumption. It deals with the exact behaviour of the splitting. According to [11] given

η̂ > 0, then an upper bound of the splitting is of the form σ ≤ N exp
(

−2πRe τ−η̂
log(λ(ǫ))

)

for ǫ small

enough, N = O(1) and τ is the closest singularity to the real axis of the separatrix γ of the limit
Hamiltonian. For concreteness we assume here that ǫ is the small parameter in the family. It
is obvious that the effect of N can be included in η̂ with a minor modification of η̂. Comparing
with (24) it is clear that the role of η̂ is to take care of the factors of the form A log(λ)B which
are due to the behaviour of the manifolds (of the families of maps and of the limit flow) in
γ(t) for t close to τ . To this end it is enough that η̂ = O(log(λ) log(log(λ))). A more flexible
assumption is

A3 There exists a fixed α > 0, sufficiently small, such the splittings (inner and outer) satisfy
the condition

σ± = exp

(

−2πRe τ± − η±
log(λ(ǫ))

)(

cos

(

2π Im τ±
log(λ(ǫ))

− φ±

)

+ o(1)

)

,

where |η±| < log(λ(ǫ))1−α for ǫ sufficiently small. Here τ± denote the position of the relevant
singularities of the separatrices γ± associated to inner and outer splittings and φ± are suitable
phases.
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Note that in the case of oscillation assumption A2 does not hold on a vicinity of the values of
ǫ for which cos(Ci/ log(λ)) = 0 in (25). Then the second harmonic is the one which dominates,
generically. This occurs in exponentially small intervals in ǫ. At these places new homoclinic
points can appear or disappear. Several kinds of “pathological” phenomena can occur, like a
dependence of the splitting as a function of ǫ which tends to a quasiperiodic function in the
parameter 1/ǫ, see [18].

Fourth assumption. This assumption concerns the possible singularities of F . First we
comment on the entire case. Under the assumptions A2 and A3 the splittings of the m-order
resonance for a family of entire maps behaves as exp(−C/ log(λ)), with C close to 2πτ±.

The entire condition of the paragraph above is due to the fact that it is necessary to extend
Fǫ analytically to a domain which contains the image under the separatrix γ± of the temporal
complex strip |Im t| < τ±− η̂. The existence of singularities of F can make this extension impos-
sible. However a key point is played by the fact that to derive an approximating Hamiltonian
to describe a resonance a scaling has been introduced. The scaling is, essentially, of the order
of magnitude of the width of the resonance.

We are interested in a domain D, complex extension of a domain of finite size, in the (I, ϕ)
variables, for all ǫ sufficiently small, containing the elliptic fixed point E0 and the resonance
zone that we are analysing. Assume that F = Fǫ is a meromorphic family of maps (when
expressed in (I, ϕ) variables and complexified) such that they have the closest singularity to D
at a distance D(ǫ) from D. We assume

A4 The value D(ǫ) is bounded from below by D̂ > 0 when ǫ goes to 0.

Note that, assumption A4 is also generic for m-resonances of an area preserving family of maps.
We remark that in theorem 5.1 below it is not assumed the map to be an entire map, being our
results on the inner and outer splittings valid for the meromorphic case under the hypothesis
that the singularity remains at a finite distance when the current small parameter (which will
be a power of δ depending on the order of the resonance) goes to zero.

We can now make precise the statement of the theorem concerning the inner and outer splittings.

Theorem 5.1 Let F be an APM. Assume that it has an m-order resonance strip, m > 4,
located at an average distance I = I∗ = O(δ) from the elliptic fixed point and δ is sufficiently
small. Under the assumptions A1, A2, A3 and A4, the following conclusions hold.

a) The outer splitting is larger than the inner one being the difference between the position of
the corresponding nearest singularities O(δm/4−1).

b) Neither the inner nor the outer splittings oscillate.

Proof. Assume first that F is entire. We start working in the (I, ϕ) variables and then, after
locating the resonance zone, we pass to (J, ψ) variables with the changes introduced in section
3.4. But after writing (17) we do not expand in powers of Ĩ because now we are interested
in values of Ĩ which are large compared to I∗. Instead (I∗ + Ĩ)m is written as Im∗ (1 + Ĩ/I∗)m.
Then we return to the Hamiltonian (11). Written in the (J, ψ) variables of 3.4, the Hamiltonian
becomes

Hnew(J, ψ) =
1

2
J2 +

c̃3
3
J3 +

c̃4
4
J4 + . . . − (1 + d̃J)m cosψ, (30)

where c̃j = O(δ(m/4)(j−2)) and d̃ = O(δ(m/4)−1).
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Let us now consider a domain of size O(δ1−µ) in I where 1 > µ > 0 will be chosen later. The
domain should be simply connected and should avoide a neighbourhood of I = 0 to prevent
from problems with the angle. In this domain the difference between the m-th power of the map
and the time-1 flow of (17) was estimated in theorem 3.1. The error has two contributions:

• The error due to the normal form, which turns out to be O(δ
m+1

2
(1−µ)).

• The error due to the lack of commutativity of vector fields (12) and (13). In section 3.3 this
was estimated on an annulus of size O(δ1+ν), with ν > 0, in the r variable. Now should

be studied in a domain of I of size O(δ1−µ). This produces a final error O(δ
m+1−µ

2
(1−µ)),

which is the dominant one.

Passing to the (J, ψ) variables the domain has size O(δ−
m
4

+1−µ) and the difference between the

m-th power of the map and the time-γ flow of (30) is O(δ
m+1−µ

2
(1−µ)−m

4 ). The error is still of
an order in δ which is greater than m/4, the order which appears in γ, provided µ < 1/(m+ 2),
for instance. Hence the flow of (30) is sufficiently good for our purposes.

Next step is to see how big has to be the domain in J , that is, how big must be δ−
m
4

+1−µ so
that the difference in the integrals in subsection 5.4 when the improper integrals are replaced
by integrals in a large but finite domain, up to some big Jb, is small compared to d. Taking, for
instance, the case d > 0, c = 0 we have

∫ ∞

Jb

dJ

(J + d)
√

−p2(J)
≈
∫ ∞

Jb

dJ

J2
= J−1

b ,

which is small compared to d if Jb >> δ−
m
4

+1. Hence, any positive value of µ is enough. The
same results are obtained in the other cases for the Hamiltonian (16) or with Hamiltonian (30).

Finally we must check that the difference of the integrals of the type considered in proposition
5.1 using either the simplified Hamiltonian (16) or the Hamiltonian (30), both of them along
the corresponding separatrix, can also be neglected. That is, it is small compared to d. One has
to estimate differences of integrals like

∫ Jb

J0,new

dJ
√

(1+d̃J)m − (1
2J

2+ c̃3
3 J

3+ c̃4
4 J

4+. . .− hnew)2
−
∫ Jb

J0

dJ
√

(1+md̃J) − (1
2J

2+ c̃3
3 J

3 − h)2
,

where J0,new, J0 are the lower limits, zeros of the corresponding polynomial, which are only
slightly different. The values of h and hnew correspond to the energies on the separatrix, both
of them close to 1. It is convenient to write the integrals as

∫ δ−
m
4 +1+ν

J0

+

∫ δ−
m
4 +1−ν

δ−
m
4 +1+ν

+

∫ δ−
m
4 +1−µ

δ−
m
4 +1−ν

,

where 0 < ν < µ, to check the dominant contributions in each piece. In all cases the differences
are small compared to d. Therefore, the changes in the location of the singularities are irrelevant
compared to the computations done in 5.4. This includes, in particular, the changes in the real
part, which are checked to be small compared to c.

By assumptions A2 and A3 the statement a) of the theorem is now a direct consequence of the
computations of the section 5.4 and the estimates just done. Note that the role of the allowed
changes in the exponents, η± = |δm/4|1−α (see A3), is dominated by the fact that the difference
of the location of the singularities of the inner and outer separatrices is O(|δ|m/4−1).
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Concerning the statement b) it is enough to observe that the effect of the parameter c in the
position of the singularity adds a real part of the same order than log λ, both are O(|δ|m

4 )
provided b1 6= 0 (assumption A1) and hence, the splittings do not oscillate. In other words,
the corresponding cosine factor of the splitting behaviour has a dominant part which remains
constant when changing δ.

It remains to clarify the role of the singularities of F . The important fact is that, due to the
scaling in I to produce the final Hamiltonian (16), which essentially consists in dividing the
action by |δ|m/4, the singularities of F are sent to a distance bounded from below by D̂|δ|−m/4
by assumption A4. When using a path in J to estimate the location of the singularities, as done
in section 5.4 we loose control of what happens beyond D̂|δ|−m/4. But the contribution to the
integral from D̂|δ|−m/4 to ∞ in all cases considered in section 5.4 with dominant parts of the
integrands of the form 1

J2 or 1
cJ3 is O(|δ|m/4). Hence, it is dominated by the difference of the

location of the singularities, 2d = O(|δ|m/4−1). �

Remarks.

1. Assumptions A1 and A4 are very easy to check on a given family. Assumptions A2 and
A3 can require more work, as they are related to global properties. Despite this is true
for general splitting phenomena, in present case, the m-order resonance, the simplicity of
the Hamiltonian (16) can make checks easier.

2. If b2 = 0 the role of c is played by the J4 skipped term of Hamiltonian (16) (or, in general,
by the first coefficient non zero of a Jk, k ≥ 4 term). As noticed in the proof of proposition
3.1 it is expected to be of order δm/2 (or, in general, of higher order). In particular, in this
degenerate case the splitting never oscillates (for δ small enough).

3. For δ small enough the outer splitting is greater than the inner one (just because d > 0).
However, for δ large enough it is possible that the inner splitting becomes larger than the
outer (see comments in subsection 5.8).

4. If we assume that the angle between the invariant manifolds at both homoclinic points
σ± to behave as (24), then from expressions (28) and (29) we estimate the ratio of the

splittings σ+/σ− to behave as Ã(log λ)B̃ exp (−2π(τ+ − τ−)/(log λ)) , where B̃ is the dif-
ference between the constants B of the outer and inner splittings, Ã is the ratio between
the constants A of the outer and inner splittings and τ+−τ− = −2d+ 8

3c log(|c|)+O(c, d2).

5. Note that the angle between the separatrices decreases as the distance of the singularity
from the real axis increases. Hence, σ+ > σ−, at least for λ close enough to 1, that is,
close to the creation of the resonance, if, and only if, Im τ+ < Im τ−. As d is positive
last inequality is verified for δ small enough. As a conclusion, the outer splitting is larger
than the inner one. Of course, as said in the second remark, high order terms affect the
conclusions above for λ not too close to 1, that is, for larger values of δ.

5.7 Numerical computations of the singularities and the inner-outer split-

tings

The position of the singularities can be computed by direct integration of the vector field gener-
ated by the Hamiltonian (16) along a suitable complex path of time. Figure 13 shows the results
obtained. The behaviour is the one expected according to the approximations on the location
of the singularities given above.
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Figure 13: Position of the singularities with respect c (d = 0.1). Left: Imaginary part of the
singularities (τ− blue, upper increasing curve, τ+ red, decreasing curve). As an extra information
the time τ = τ∗ when the origin is reached and |ψ| = ∞ is shown (green, lower increasing curve).
The crosses show the value when c = 0, being the distance between them ≈ −2d. Right: Real
part of the singularity of the outer separatrix (c < 0).

Concerning the behaviour of the splittings we want to give a numerical evidence that they behave
as predicted. Consider the 1:7 resonance for the Hénon map (1). Figure 14 shows the splitting
of separatrices of this resonance as a function of the parameter α of the map. Multi-precision
has been used to compute small splittings. We refer to [18] for additional information on this
type of computations.

We recall that Hamiltonian (16) generates a flow ϕH such that ϕH
t=γ(I, ϕ) = F (I, ϕ) + O(δ),

where γ = log(λ)(1+O(δ)) being λ the dominant eigenvalue of the m-periodic hyperbolic point
associated to the m-order resonant island. According to this and the theory in [11], assume that
the behaviour of the inner and outer splitting is, as predicted before, of the form

σ± ∼ A±(log λ)B± exp(−2π(Im τ±)/ log λ), (31)

where

Im τ+ =
1√

1 − d2

(π

2
− arcsin d

)

+
4

3
c log |c| + O(c) =

π

2
− d+

4

3
c log |c| + O(c, d2),

Im τ− =
1√

1 − d2

(π

2
+ arcsin d

)

− 4

3
c log |d| + O(c) =

π

2
+ d− 4

3
c log |c| + O(c, d2).

Hence,
h log σ± = Ã±h+B±h log h− 2π(Im τ±),

being h = log λ and Ã± = log(A±). Taking into account that d = O(δ
m
4
−1) = O(h

m−4
m ) and

c = O(δ
m
4 ) we obtain

h log σ± = −π2 − k±h
m−4

m + Ã±h+B±h log h,

where, according to the theory we have developed, it is expected

k+ = −k−.

If we fit the splitting data (Figure 14) by a function of the form

f(x) = C + k(x
3
7 ) +Ax+Bx log(x),
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Figure 14: Left: Decimal logarithm of the inner and outer splitting of the 1:7 resonance for the
Hénon map (1) as α varies. The step size in α is 10−4. The bifurcation of the period 7 orbits

is produced for α = 0.1̂42857. The inner splitting is the smaller one. Right: The same log10 of
the splittings as a function of 1/λ(δ).

in the interval [0, 0.2] we obtain the values

C = −9.87632, k = 1.65482, A = 8.35777, B = −2.60782,

for the outer splitting, while for the inner one

C = −9.87895, k = −1.42068, A = 7.69933, B = −1.75694.

According to the theoretical results τ± → π/2 as δ → 0, hence C → −π2 ≈ −9.869604 in good
agreement with the values obtained.

Figure 15 shows splitting results for several resonances and ranges of α for the Hénon map (1).
As expected, in all the cases, at least for the relatively small values of δ considered for each
resonance, the outer splitting is larger than the inner one.
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Figure 15: From left to right, it is represented the decimal logarithm of the splitting of the
resonances 1:9, 1:8, 1:7, 1:5, 2:9, 2:7, 3:8, 2:5, 3:7 and 4:9, respectively. Each pair of red and
blue lines corresponds to the outer and inner splitting, respectively, of a different resonance.
Note that in all the cases shown the outer splitting (red) is greater than the inner one (blue).
In the x-axis it is represented the value of α.
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5.8 On the behaviour of the splittings at finite distance

In general we can consider not only what happens in a neighbourhood of the elliptic fixed point
but far away, in a given annulus. The limit Hamiltonian can be reduced to a Hamiltonian like
(20) as was stated in section 3.5. We recall that the map considered in that section is assumed
to be a perturbation of a twist map F0 when µ = 0. Let ρ(I) be the rotation number of F0.

Then, a result similar to Theorem 5.1 follows by replacing b1 and b2 (which appear in the con-

stants c and d of the Hamiltonian) by derivatives of the rotation number dρ
dI

∣

∣

∣

I=I∗
and d(2)ρ

dI2

∣

∣

∣

I=I∗
,

respectively. The main difference concerns the order of magnitude of the corresponding con-
stants c and d, since in particular, it can be |c| > d. Also higher order resonant terms, not
considered in the reduced Hamiltonian model we are dealing with, can play a relevant role.

When c and d are arbitrary numbers the position of the inner and outer closest singularities can
change and it can happen that the inner one has imaginary part smaller than the imaginary
part of the outer singularity. It is possible, then, to have the inner splitting greater than the
outer. From the computation of the position of the singularities it is expected in this case to
have c < 0 (see expressions (28) and (29), and figure 13), but higher order terms can change
this behaviour.

An evidence that for finite distance the largest splitting can be the inner one is the shape of
the pairs of splittings in figure 15. For large values of δ some of them become closer. In fact, in
figure 16 it is represented the behaviour of the inner and outer splittings of the 2:11 resonance.
Clearly, at some distance the inner one becomes larger.
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Figure 16: Outer splitting (red), the larger one for α < 0.223, and inner splitting (blue) of the
2:11 resonance for the Hénon map in the form (1). The x-axis shows the value of α.

Moreover, the following example, contained in [36], shows that the inner splitting can be expected
to be larger than the outer for δ big enough. Consider an integrable twist map expressed in
Poincaré coordinates

T :

(

I
θ

)

7−→
(

I
θ + α(I)

)

,

where (I, θ) ∈ (0, 1)×(0, 2π). Assume α(I) = b0+b1I+b2I
2, that is, only the first and the second

Birkhoff coefficients are different from zero. Let G denote the generating function associated to
T , that is G(θ̂, I) = θ̂I − S(I), where S(I) = −b0I − (b1/2)I

2 − (b2/3)I
3. By perturbing the

generating function
G̃(θ̂, I) = θ̂I − S(I) + ǫ sin θ̂,
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we construct a non-integrable map Tǫ close to the map T ,

Tǫ :

(

I
θ

)

7−→
(

I + ǫ cos (θ + α(I))
θ + α(I)

)

. (32)

Figure 17 displays the invariant manifolds for the 1:2 resonance for different sets of parameters
of the model (32). One checks that for some values the inner splitting is greater than the outer
one and how changing torsion coefficients the inner becomes smaller than the outer one.
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Figure 17: Different splittings observed for the model (32) with b0 = 0. For the left (right) plot
the values b1 = 0.2, b2 = 4 and ǫ = 0.14 (b1 = 6, b2 = −2 and ǫ = 0.14) have been used.

6 Inner and outer splitting for low order resonances

The analysis of the behaviour of the splittings of the strong resonances differs from the one
obtained for generic ones (see also [14]).

6.1 Behaviour of the splittings in the 1:3 resonance

Inner splitting. Hamiltonian (21) allows to study the splitting of the inner separatrix for ǫ̂ < 0
as well as the corresponding one for ǫ̂ > 0. The change of coordinates J = I + ǫ̂/2, ψ = 3ϕ,
gives (after removing a constant from the Hamiltonian)

H(J, ψ) = P (J) −Q(J) cos(ψ), (33)

where P (J) = J2, and Q(J) = −(J − ǫ̂/2)3/2. The equation on the separatrix (at energy level
h) is given by J̇ =

√

p4(J) being p4(J) = (J − ǫ̂/2)3 − (J2 − h)2.

Let ph = (Jh, ψh) be the hyperbolic point. Then p4(J) = 0 has J = Jh as a double solution. On
the other hand the maximum J = JM on the separatrix (at finite distance) is also a solution
because J̇ = 0. Last zero of p4(J) is located at O(ǫ̂) of J = 0 which is the value obtained for
the unperturbed case ǫ̂ = 0.

The singularities of the homoclinic orbit are given by τ =
∫ +∞
JM

dJ/
√

p4(J) and, as Hamiltonian
(33) satisfies the hypothesis of proposition 5.1, τ is imaginary. As a consequence, the splitting
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of separatrices does not oscillate. The behaviour of this splitting is expected to be similar to
the case of generic resonances m > 4.

We can proceed in a more direct way to estimate the constant of the exponential decay of the
splitting. Note, see equation (14), that the radius I∗ in this case is of order O(δ2) and, hence,
log(λ) = O(δ). This suggests to introduce Inew = I/µ2, tnew = µ t, where µ = |ǫ̂|. Keeping the
names I, t for the new action and time, Hamiltonian (21) becomes

H = σI + I
3
2 cos(3ϕ) + O(µ), σ = sign(ǫ).

When expressed in Cartesian coordinates (x =
√

2I cosϕ, y =
√

2I sinϕ) the above Hamiltonian
becomes

H(x, y) =
σ

2
(x2 + y2) +

1

2
√

2
(x3 − 3xy2) + O(µ)

For σ = 1 the hyperbolic 3-periodic orbit is located at I = 4/9 + O(µ) and ϕ = π/3, π, 5π/3.
On the other hand, for σ = −1 the hyperbolic 3-periodic orbit is located at I = 4/9 +O(µ) and
ϕ = 0, 2π/3, 4π/3. In both cases the separatrices approximately form an equilateral triangle and
the line x = σ

√
2/3 approximates one of the separatrices. The restriction of the Hamiltonian

vector field to this separatrix can be reduced to

ẏ =

√
2

2
− 3

2
√

2
y2 + O(µ).

Ignoring the O(µ) terms it is easy to check that the singularity is located at τ = ±iπ/
√

3.
Hence, the splitting does not oscillate and σ ∼ A(log(λ))B exp(−C/(log(λ)) with C = O(1), is
the expected behaviour of the splitting.

Outer splitting. Concerning the outer splitting of the 1:3 resonance we note that it cannot be
studied by normal form analysis around the elliptic fixed point. It remains finite when crossing
the 1:3 resonance as is shown in figure 18 for the Hénon map (5). In this formulation of the
Hénon map the elliptic-hyperbolic bifurcation (saddle-center) takes place at c = c3 =

√
2 and

the 3-periodic parabolic orbit on the symmetry axis y = −x has x = 1/
√

2.

Considering H3
c the distance between the elliptic and the hyperbolic points behaves as

√
c− c3

(similar to the saddle-center bifurcation of the origin for the map Hc). The splitting seems to
be exponentially small with respect the natural parameter c − c3. This explains the behaviour
close to c = c3 observed in the figure.

Increasing c the splitting becomes finite. It has a maximum at c ≈ 1.44794 and for greater
values seems to monotonically decay. The 1:3 resonant bifurcation takes place at c = 1.5.

6.2 Behaviour of the splittings in the 1:4 resonance

We recall that the Hénon map has a not generic behaviour at the fourth order resonance.
Hence, we first describe the non-degenerate case and later we analyse the changes due to the
non-genericity.

6.2.1 Order four resonance: the non-degenerate case

Let be ψ = 4ϕ. According to (22) the Hamiltonian is

H = H(I, ψ) = ǫI + I2(1 + ξ cos(ψ)).
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Figure 18: Outer splitting for the 1:3 resonance of the Hénon map (5). Note that the splitting
is finite when crossing the value c = 1.5 where the bifurcation takes place.

We can always take ξ < 0, ξ 6= −1. No fixed points appear, beyond the origin, if ǫ > 0, ξ > −1
(see figure 10). Assume first ǫ > 0, ξ < −1 and scale I, t by ǫ (Inew = I/ǫ, tnew = ǫt). We keep
the name I for the action. Then

H = I + I2(1 + ξ cos(ψ)).

From
ψ′ = 1 + 2I(1 + ξ cos(ψ)), I ′ = ξI2 sin(ψ),

we have the fixed point ψ = 0, I = −1/(2(1 + ξ)), which is hyperbolic on the level H =
−1/(4(1 + ξ)). From this it follows

I ′ =
√

P4(I), P4(I) = (ξI2)2 −
(

I + I2 +
1

4(1 + ξ)

)2

.

The coefficient of I4 is ξ2 − 1 and the zeros are located at

I1 =
−1 −

√

2ξ/(1 + ξ)

2(1 − ξ)
, I2 =

−1 +
√

2ξ/(1 + ξ)

2(1 − ξ)
, I3 = I4 = − 1

2(1 + ξ)

satisfying I1 < 0 < I2 < I3 = I4. The singularity of the inner separatrix has

Re =

∫ I1

−∞
dI/
√

P4(I), Im =

∫ I2

I1

dI/
√

−P4(I).

Now consider ǫ < 0. The scaling by µ = |ǫ| leads to

H = −I + I2(1 + ξ cos(ψ)).

If ξ < −1 only the hyperbolic fixed point ψ = π, I = 1/(2(1 − ξ)) appears, while for ξ > −1
there is an elliptic fixed point on ψ = 0, I = 1/(2(1 + ξ)) and a hyperbolic one on ψ = π, I =
1/(2(1 − ξ)). In both cases the level of energy of the hyperbolic point is −1/(4(1 − ξ)). As
before, one has

I ′ =
√

P4(I), P4(I) = (ξI2)2 −
(

I − I2 − 1

4(1 − ξ)

)2

and the polynomial has ξ2 − 1 as coefficient of degree 4 and zeros

I1 =
1 +

√

−2ξ/(1 − ξ)

2(1 + ξ)
, I2 =

1 −
√

−2ξ/(1 − ξ)

2(1 + ξ)
, I3 = I4 =

1

2(1 − ξ)
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both in the case ξ < −1 and ξ > −1. But now

0 < I2 < I3 = I4 < I1 if ξ > −1, I1 < 0 < I2 < I3 = I4 if ξ < −1.

Hence, if ξ > −1 the inner and outer separatrices have purely imaginary singularities given,
respectively, by

Imin =

∫ I2

−∞
dI/
√

−P4(I), Imout =

∫ ∞

I1

dI/
√

−P4(I),

while for ξ < −1 the singularity of the (inner) separatrix has

Re =

∫ I1

−∞
dI/
√

P4(I), Im =

∫ I2

I1

dI/
√

−P4(I).

We note that as all these integrals reduce to the form
∫

dI

(I−A)
√

(I−B)(I−C)
for ξ-depending values

of A,B,C, the singularities can be computed as functions of ξ, obtaining the following result

ǫ > 0, ξ < −1 :

Re =
√

(1+ξ)
2ξ log

(

(3ξ−1)+2
√

2ξ(ξ−1)

1+ξ

)

, Im =
√

2(ξ+1)
ξ π

ǫ < 0, ξ > −1 :

Imin =
√

ξ−1
2ξ

(

π + 2arctan
(√

−2ξ
1+ξ

))

, Imout =
√

ξ−1
2ξ

(

π − 2 arctan
(√

−2ξ
1+ξ

))

ǫ < 0, ξ < −1 :

Re =
√

2(ξ−1)
ξ log

(√
−2ξ−

√
−(1+ξ)√

1−ξ

)

, Im =
√

2(ξ−1)
ξ π

6.2.2 Order four resonance: the degenerate case

In the degenerate case ξ = −1 the relevant Hamiltonian, according to (23), is of the form

ǫI + I2(1 − cos(ψ)) + I3(a+ b cos(ψ) + c sin(ψ)).

We shall assume ν := a+ b 6= 0, that is, we study a problem of codimension exactly 1. Topolog-
ically the phase portrait is similar to the non-degenerate case. The parameter ǫ plays the same
role as before and the conditions 1 + ξ > 0, 1 + ξ < 0 are replaced by ν > 0, ν < 0, respectively.
The parameter c plays a minor role.

Let be µ = |ǫ| as before. Scaling I, t by µ leads to

H = ±I + I2(1 − cos(ψ)) + µI3(a+ b cos(ψ) + c sin(ψ)),

where the ± sign is the sign of ǫ. The corresponding equations are

ψ′=±1+2I(1−cos(ψ))+3µI2(a+b cos(ψ)+c sin(ψ)), I ′=−I2sin(ψ)+µI3(b sin(ψ)−c cos(ψ)).

We discuss the behaviour for the different ǫ, ν cases. If ǫ > 0, ν > 0 there are no fixed points
beyond the origin.

• Case ǫ > 0, ν < 0. Only a hyperbolic point located at

ψ = O(µ1/2), I = (3µ|ν|)−1/2(1 + O(µ1/2)),
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appears, on the level of energy 2
3(3µ|ν|)−1/2(1 + O(µ1/2)). The hyperbolic point has an

inner separatrix. Let

P3 = I + I2 + aµI3, P1 = 1 − bµI, Q3 = cµI3.

The values of cos(ψ), sin(ψ) can be obtained from the energy level and then

I ′ = −
√

P6, P6 = P 2
1 I

4 +Q2
3 − P 2

3 .

The coefficient of I6 in P6 is µ2(b2 + c2 − a2) and the zeros are

I1 =
2ν

µ(b2+c2−a2)
, I2 =

−2

(3µ|ν|)1/2 , I3 =
−1

(27µ|ν|)1/4 , I4 =
1

(27µ|ν|)1/4 , I5 =I6 =
1

(3µ|ν|)1/2 ,

where only the dominant terms are displayed. All the corrections are of the form 1+o(1) for
ǫ→ 0. If we assume b2+c2−a2 > 0 the zeros are ordered: I1 < I2 < I3 < I4 < I5. Anyway
I1 plays no role. This is natural: undoing the scaling it is located at a finite distance
and, hence, influenced by higher order terms. Furthermore, it is immediately checked that
integrals like

∫ I1
−∞ dI/

√

P6(I) are O(µ). The value I5 corresponds to the hyperbolic fixed
point and I4 to the approximate intersection of the (inner) separatrix of that point with
ψ = π.

The singularities of the separatrix have dominant terms with

Re =

∫ I3

I2

dI/
√

P6(I), Im =

(
∫ I2

I1

+

∫ I4

I3

)

dI/
√

−P6(I).

To compute the last integral we introduce K = (27µ|ν|)1/4I. Expressions like I − Ij, j 6=
3, j 6= 4, can be replaced by −Ij(1 + o(1)). The integral is then equal to

∫ I4

I3

dI/
√

−P6(I) =
π

2
(27µ|ν|)1/4.

We introduce now J = (3µ|ν|)1/2I to compute the first part of Im. The dominant terms
give

(27µ|ν|)1/4
∫ −2

−∞

dJ

J(J − 1)
√
−4 − 2J

=
1

6
(3 −

√
6)(27µ|ν|)1/4π.

The integral from I2 to I3 is a little bit more delicate. Let 0 < m << 1, Ĩ = −m
(3µ|ν|)1/2 and

m̃ = m(µ|ν|/3)−1/4. We write
∫ I3
I2

=
∫ Ĩ
I2

+
∫ I3
Ĩ
. For the second part we use K as before

and the integral becomes

∫ I3

Ĩ

dI
√

P6(I)
=

1

2
(27µ|ν|)1/4

∫ 1

−m̃

dK√
K2 − 1

=
1

2
(27µ|ν|)1/4

(

log(2m)+
1

4
log(3/(µ|ν|))

)

.

To obtain the value of
∫ Ĩ
I2

we use J as above and have the contribution

∫ Ĩ

I2

dI
√

P6(I)
= (27µ|ν|)1/4

∫ −m

−2

dJ

J(J − 1)
√

4 + 2J
= −1

2
(27µ|ν|)1/4 log(m) + O(1).

This cancels, as it should be, the term in log(m). Hence the real part of the singularity is
of the order µ1/4 log(1/µ).
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• Case ǫ < 0, ν < 0. An hyperbolic point is found close to ψ = π, I = 1/4. It has only an
inner separatrix. Proceeding as in the previous case we obtain

I ′ =
√

P6(I), P6(I) = µ2(b2 + c2 − a2)Π6
j=1(I − Ij),

where, keeping only dominant terms, the zeros are located at

I1 =
2ν

µ(b2+c2−a2)
, I2 =−(µν)−1/2, I3 =

1

8
, I4 =I5 =

1

4
, I6 =(µν)−1/2.

It is clear that I2 = −I6 are imaginary. Only imaginary part appears in the singularity,
and its dominant contribution is given by

∫ 1/8

−∞

dI

(1
4 − I)

√

1
4 − 2I

= 2π.

• Case ǫ < 0, ν > 0. This is the most interesting case. It has an hyperbolic fixed point located
near ψ = π, I = 1/4, which has inner and outer separatrices, and an elliptic fixed point
near ψ = 0, I = (3µν)−1/2. The expression of P6 and Ij is as in the previous case, but now
I2 = −I6 are real. Note that I3 and I6 give, approximately, the minimum distance from
the inner separatrix to the origin and the maximum distance from the outer separatrix to
the origin, respectively.

The dominant part of the location of the singularities for the inner splitting is

Rein =

∫ I2

−∞

dI
√

P6(I)
, Imin =

∫ I3

I2

dI
√

−P6(I)
, and Imout =

∫ I1

I6

dI
√

−P6(I)

for the outer splitting. In particular Rein = Imout. The value Imin equals 2π, according to
a computation done in the previous case. Let us compute Imout. Similar to the first case
we introduce K = (µν)−1/2I, obtaining

∫ I1

I6

dI
√

−P6(I)
≈ (µν)1/4√

2

∫ ∞

1

dk

K3/2
√
K2 − 1

=
(Γ(3/4))2√

π
(µν)1/4.

For readers’ convenience we summarize the results obtained for the strong resonances in table
6.2.2. From inspection of the table and the bounds of the error given after (21), (22) and (23),
the proof of theorem 5.1 can be adapted to prove

Theorem 6.1 Let F be an APM. Assume that it has an m-order resonance m = 3 or m = 4,
either non-degenerate (ξ 6= −1) or degenerate (ξ = −1, ν 6= 0), as described in section 4. Then,
close to the bifurcation parameter, and under conditions A1, A2, A3 and A4 the outer splitting
is larger than the inner one when both of them exist.

7 An example of dynamical consequences: the 1:4 and higher

order resonances for the Hénon map

The different size of both splittings has some dynamical consequences to be analysed in future
works. Let us consider first the 1:4 resonance to sketch some ideas. As was established in section
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Limit Hamiltonian
(σ = sign(ǫ), µ = |ǫ|) Param.

Inner splitting
singularity (Re+i Im)

Outer splitting
singularity (Re+i Im)

1:3 res. σI + I
3
2 cos(3ϕ) Re = 0, Im = π

√

3
O(1)

ǫ > 0

ξ < −1

Re =
√

(1+ξ)
2ξ log Ω

Ω =
(3ξ−1)+2

√
2ξ(ξ−1)

1+ξ

Im =
√

2(ξ+1)
ξ π

∄

ǫ > 0

ξ > −1
∄ ∄1:4 res.

generic
case

σI + I2(1 + ξ cos(4ϕ))

ǫ < 0

ξ < −1

Re =
√

2(ξ−1)
ξ log Ω

Ω =
√

−2ξ−
√

−(1+ξ)
√

1−ξ

Im =
√

2(ξ−1)
ξ π

∄

ǫ < 0

ξ > −1

Re = 0

Im =
√

ξ−1
2ξ (π + Ω)

Ω = 2 arctan
(√

−2ξ
1+ξ

)

Re = 0

Im =
√

ξ−1
2ξ (π − Ω)

Ω = 2 arctan
(√

−2ξ
1+ξ

)

ǫ > 0

ν > 0
∄ ∄

1:4 res.
non-

generic
case

ǫ > 0

ν < 0

Re ≈ Ω
8 µ

1

4 log 1
µ

Im ≈ π(1 − 1
√

6
)Ωµ

1

4

Ω = (27|ν|) 1

4

∄
σI + I2(1 − cos ψ)+

µI3(a+ bcos ψ+c sin ψ)

ǫ < 0

ν < 0

Re ≈ 0

Im ≈ 2π ∄

(ψ = 4ϕ)

Notation: ν = a+ b ǫ < 0

ν > 0

Re ≈ (Γ(3/4))2
√

π
ν

1

4µ
1

4

Im ≈ 2π

Re ≈ 0

Im ≈ (Γ(3/4))2
√

π
ν

1

4µ
1

4

Table 1: Strong resonances. Position of the singularities in the studied cases.
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Figure 19: Left: logarithm (log10 |σ|) of the inner (red) and outer (blue) splittings as a function
of α. Right: magnification where different places where the inner splitting becomes zero can be
guessed (see text). The marked points correspond to α ≈ 0.2524.

4 this resonance has a non-generic behaviour for the Hénon map. In particular, the invariant
manifolds related to the outer splitting go to a distance O(δ1/4) instead of O(δ1/2). This is
reflected in the behaviour of the splittings. Figure 19 shows the behaviour of the splittings of
this resonance as a function of α.

Two considerations concerning the figure have to be done:

• There is a big difference in the order of the size of the splittings. For instance, for c = 1.015
(α ≈ 0.25238741368) corresponding to the value marked in figure 19 left, the outer splitting
is σ+ ≈ 2.5238741368 × 10−1 while the inner one is σ− − 2.986620731 × 10−59.

• The inner splitting oscillates (see case ǫ < 0, ν > 0 of 6.2.2). This is the reason why we
observe the “peaks” in figure 19 right, which correspond to zeros of the splitting (in the log
scale used in the figure we would observe vertical asymptotes if an extremely small step in α
would be used). According to the theory it is expected σ− ∼ AδB exp(−Cr/δ) cos(−Ci/δ),
with Ci = O(δ1/4). Figure 20 shows the corresponding behaviour.

Moreover, the ten first observed zeros of the splitting decreasing α from α = 0.267 on
are, approximately: 0.265492, 0.256837, 0.254073, 0.252793, 0.252078, 0.251631, 0.251327,
0.251111, 0.250949, 0.250824. According to the theory, the real part of the position of the
singularity is at a distance O(δ1/4). This means that the zeros of the splitting should be
equidistributed with respect to x = δ−3/4 or, equivalently, that the fitting of the zeros by
a function of the form axc + b should have c = 1. Ignoring the three first zeros and fitting
the others it is obtained c ≈ 1.00286 which is quite in agreement with the expectations.

The splitting of the resonances plays a key role in destroying the rotational invariant curves.
This holds both for low order and high order resonances. It is also well-known that the effects
it produces can be analysed in terms of the separatrix map. In particular, it can be shown that,
if the splitting is exponentially small with respect to δ, so is the distance from the separatrix at
which invariant curves exist. Moreover, the qualitative dynamics in Birkhoff zones (for instance,
between two invariant rotational curves) can be understood in terms of the biseparatrix map.
An explanation of these ideas and a derivation of the proper models can be found in [38].

The interaction of different resonances and the homoclinic tangle help to understand the be-
haviour of the stability domain. In the case of the Hénon map “stability domain” refers, simply,
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Figure 20: It is represented δB exp(Cx)σ−, with B = 5, C = 0.374, as a function of 1/δ1/4. The
values of B and C have been obtained experimentally.

to the set of points which do not escape to ∞ (letting aside sets of zero measure, like the stable
manifold of the fixed hyperbolic point). For other maps a suitable definition should be given.
The stability domain contains points in invariant curves and also points in confined chaotic
zones. Sudden changes in the size of the stability domain are due to the destruction of “outer”
rotational invariant curves surrounding islands and this destruction is due to the splitting of
separatrices of different resonances. As an example consider the Hénon map in the form (5)
close to the 1:4 resonance (that is close to c = 1). See also [34] for several additional examples.
We show in figure 21 how the stability domain drastically changes close to the value c = 1.015
where it has been observed such a big difference in the order of the size of the splitting. Figure
22 shows the evolution of the size of the stability domain. Clearly there are big jumps in the
size of the stability domain when invariant curves surrounding large islands and the chaotic
orbits associated to the tangle of the corresponding hyperbolic periodic points, are destroyed.
The most relevant jumps in size correspond to the 1:3 and 1:4 resonances, but many other can
be identified, including secondary resonances, i.e., the resonances inside the islands. Similar
patterns occur for other resonances when the invariant rotational curves are destroyed and the
corresponding islands are “thrown away” from the central component of the stable domain which
contains the elliptic fixed point.

Indeed, one could suspect that the behaviour of the 1:4 resonance is exceptional for the Hénon
map because of the non-generic character of this resonance. To illustrate that this is not the
case figure 23 shows the domain of stability shortly after the destruction of the invariant curves
surrounding islands of periods 6 and 5, respectively. Despite the parameter δ is far from being
small, the different size of inner and outer splittings has the following effect: The outer splitting
is large enough to destroy all outer rotational invariant curves, while the inner one is so small
that invariant curves rather close to the hyperbolic periodic points still subsist. These curves
have “quite sharp” behaviour close to these points and the instability channels which separate
the curves from the large islands are narrow. Compare, e.g., with the inner and outer splittings
for the 1:5 resonance shown in figure 15.

8 Conclusions and final remarks

The use of Birkhoff normal form and the interpolating Hamiltonian have allowed to study the
dynamics in chains of resonant islands that emanate from the elliptic point when changing the
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Figure 21: Stability domain of the Hénon map (5) for c = 1.014 (left) and for c = 1.015 (right).
See text for additional information. In the electronic version one can magnify the plots to check
details of the domain. This applies also to figure 23.
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Figure 22: Number of points in the stability region of map (5) as a function of the parameter
c. We have chosen a mesh of N ×N points, with N = 3100, in the region [−1, 2.1] × [−2.1, 1].
We use the “orbits method” which, roughly speaking, consists in iterating enough times, say
m > 107 times, using a value m which depends on the point in such a way that the number of
points that remain stable when doing m̃ = 104 additional iterates to each point in the domain
is not changing (see [38] for details).
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rotation number at that point. The accuracy of the interpolating Hamiltonian (11) becomes
relevant when studying the splitting of separatrices (section 5).
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Figure 23: Stability domain of the Hénon map (5) for c = 0.621 (left) and for c = 0.721 (right).
These values are close to the values of c for which all the invariant curves surrounding islands
of periods 6 and 5, respectively, are destroyed.

As mentioned in the introduction there are several examples of APM where the difference be-
tween the inner and outer splitting has been observed. In this work a precise description in
terms of the twist properties was given.

As both splittings, according to the theory developed, are generically different the distance at
which the ‘last’ invariant curve is expected to be is generically different in the upper and lower
part of an island. These invariant curves determine the chaotic domain containing the manifolds.
As a consequence the chaotic region surrounding the pendulum-like separatrices that determine
a generic resonance is not of the same size in the top and bottom part of the island. Note that
this also affects the transport properties of the map.

On the other hand, there is a big interest in the study of weakly dissipative maps. An important
point is to describe how the phase space evolves as we approach the conservative case. In this
conservative limit the different size of both splitting plays a relevant role in determining the
probability of capture in a resonance (see [36]).

These topics will be considered in future works.
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A The behaviour of the splitting: elliptic integrals

The study of the inner and outer splitting in the case c, d 6= 0 has been reduced to study the
width of analyticity of the separatrix of the flow by means of elliptic integrals. For the outer
splitting one has

τ+ =

∫ +∞

z1

dJ

(J − Jh)
√

p4(J)
, (34)

and for the inner one

τ− =

∫ −∞

z2

dJ

(J − Jh)
√

p4(J)
, (35)

as was explained in Section 5.2.

We use Legendre’s reduction of elliptic integrals to estimate them. The reader is referred to [1]
to get an overview of the methods. We just recall that the fundamental functions of Legendre
theory are defined by

F (φ, k)=

∫ φ

0

du
√

1−k sin2 u
, E(φ, k)=

∫ φ

0

√

1−k sin2 udu, Π(N,φ, k)=

∫ φ

0

du

(1−N sin2 u)
√

1−k sin2 u

and are known as a elliptic integrals of first, second and third type, respectively.

Lemma. Assume 0 < c < d. Then

Re τ+ = 0, Im τ+ =
1√

1 − d2

(π

2
− arcsin d

)

+
4

3
c log c+ O(c),

Re τ− = 4c, Im τ− =
1√

1 − d2

(π

2
+ arcsin d

)

− 4

3
c log c+ O(c).

Proof. Any quartic polynomial q4 can be written as

q4(J) = (a1J
2 + 2b1J + c1) (a2J

2 + 2b2J + c2) = s1(J)s2(J).

We compute Im τ+. For q4(J) = −p4(J), we choose s1(J) = (J − z1)(J − z2) and s2(J) =
c2

9
(J − z3)(J − z4). Then, we obtain a decomposition of the polynomials si(J) in the form

si(J) = Ai(J − α)2 +Bi(J − β)2,

where α and β are defined by

α =

√

c1 − λ1c2
a1 − λ1a2

= d+ O(c), β = −
√

c1 − λ2c2
a1 − λ2a2

=
−3

2c
+ O(c),

being λi roots of the equation p(λ) = (a1 − λa2)(c1 − λc2) − (b1 − λb2)
2 = 0.
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Constants Ai and Bi are defined by

A1 =
λ2(a1 − λ1a2)

λ2 − λ1
=

−16d2c2

9
+ O(c3),

A2 =
a1 − λ1a2

λ2 − λ1
=

c2

9
+ O(c3),

B1 =
−λ1(a1 − λ2a2)

λ2 − λ1
= 1 + O(c2),

B2 =
−(a1 − λ2a2)

λ2 − λ1
=

−16c4

81
+ O(c5).

We focus our attention on the outer splitting, that is, on the integral (34). We observe that in
(z1,+∞) there is no root of the polynomial p4(J).

The change of variables t = (J − β)/(J − α) reduces the integral (34) to a sum of integrals

I1 + I2 =

∫ 1

z1−β
z1−α

Reven(t)
√

(B1t2 +A1)(B2t2 +A2)
dt+

∫ 1

z1−β
z1−α

tRodd(t)
√

(B1t2 +A1)(B2t2 +A2)
dt,

where

Reven(t) =
β − Jh + (Jh − α)t2

(β − α) ((β − Jh)2 − (α− Jh)2t2)
and Rodd(t) =

−1

((β − Jh)2 − (α− Jh)2t2)
.

The right term I2 can be computed in terms of elementary functions. A simple calculation gives

I2 =
1√

1 − d2

π

2
+

(

4

3
+
π

4

(

2d− d2 − 2d3

(1 − d2)
3
2

))

c+ O(c2).

We split integral I1 as a sum of two integrals

I1 = I11 + I12 =
1

(β − α)(α − Jh)

∫ 1

z1−β
z1−α

dt
√

(B1t2 +A1)(B2t2 +A2)

+
Jh − β

α− Jh

∫ 1

z1−β
z1−α

dt

((β − Jh)2 − (α− Jh)2t2)
√

(B1t2 +A1)(B2t2 +A2)

The integral I11 can be reduced to a first kind of Legendre. In fact, I11 can be expressed as

I11 = C1
1√

1 − k

(

F

(

arctan
√
m1 − 1, 1 − k

k − 1

)

− F

(

arctan

√

m1
z1 − β

z1 − α
− 1, 1 − k

k − 1

))

,

where m1 = −B1

A1
, m2 = −B2

A2
, k =

m2

m1
, and C1 =

1

(β − α)(α − Jh)
√
−A1A2m1

.

We approximate the above integral using

1 −
(

1 − k

k − 1

)

sin2(u) ≈ k

k − 1
+ cos2(u), (36)

and the consequent integral can be calculated directly

I11 =

(

1

d
−
(

2

3
− 2

d2

)

c+ O(c2)

)

(− log c+ O(1)) .

The integral I12 can be reduced to Legendre third kind

I12 = C2

(

Π

(

N

N − 1
, i arccosh

√
m1,

k

k − 1

)

− Π

(

N

N − 1
, i arccosh

√
m1(z1 − β)

z1 − α
,

k

k − 1

))

,
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where

C2 =
−i(Jh − β)

(1 −N)(β − Jh)2(α− Jh)
√

−A1A2m1(1 − k)
,

m1 = −B1

A1
, m2 = −B2

A2
, k =

m2

m1
, N =

(

α− Jh
β − Jh

)2

.

By using the approximation (36) the integral above can be reduced to a sum of two integrals, I121
and I122. The first one is similar to the one obtained for the integral I11 and can be calculated
directly to obtain

I121 =

(−1

d
−
(

2

3
+

2

d2

)

c+ O(c2)

)

(− log c+ O(1)) .

The second one can be evaluated by using the change of variables t = cosh(x) and it is obtained

I122 =
−1√
1 − d2

+ O(c).

To sum up, the singularity of the outer splitting behaves according to

Re τ+ = 0, Im τ+ =
1√

1 − d2

(π

2
− arcsin d

)

+
4

3
c log c+ O(c).

In a similar way, it is obtained the behaviour of the singularity for the inner splitting both for
the imaginary part and the real part. �
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