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Proportional clearing mechanisms in financial systems: an

axiomatic approach

Pedro Calleja and Francesc Llerena

February 7, 2023

Abstract

When a financial network collapses, how should mutual obligations among all agents be cleared?

We study this problem taking an axiomatic approach and provide the first characterization of

the family of rules based on the principle of proportionality in the entire domain of financial

systems. A previous attempt to address this issue was done by Csóka and Herings (2021), but in a

tight context where all agents dispose of strictly positive initial endowments. We show that their

properties, when accommodated to the full domain of financial systems, no longer characterize the

set of proportional rules. To overcome this drawback, we formulate new properties emphasizing

the value of equity of the firms in the network. In particular, we show that a clearing mechanism

satisfies compatilibity, limited liability, absolute priority, equity continuity, and non-manipulability

by clones if and only if each agent is paid proportionally to the value of its claims. Remarkably,

our result also holds in the framework studied by Csóka and Herings (2021).

1 Introduction

A financial system is represented by a set of agents or firms (banks, individuals inverstors, hedge funds,

etc.), all of them distinguished by their endowments and their obligations towards other agents. Unlike

the standard bankruptcy problem, in which one single firm defaults, in this context agents can play

the role of debtors and creditors simultaneously, so that the bankruptcy of one firm can lead to the

default of others and therefore compromising the stability of the system. An illustrative example of

this domino effect of insolvencies is the failure of Lehman Brothers in 2008 and the subsequent crisis on

financial markets. Since then, the literature on financial contagion has increased considerably, being

the work of Eisenberg and Noe (2001) the reference for further studies. For a detailed reviews of

this topic, we refer readers to Glasserman and Young (2016), Caccioli et al. (2018), and Jackson and

Pernoud (2021).

When a financial network collapses, a central question is how to settle the mutual obligations be-

tween firms. This problem is tackled by means of financial rules that recommend, for each financial

network, a set of clearing payment matrices, suggesting the monetary transfer from each node in the

network to any other node. To address this problem, in this paper we adopt the axiomatic approach.

From a normative point of view, this approach sheds some light on the choice of appropriate mech-

anisms to clear unstable financial networks and, moreover, they can be easily justified. Thus, the

axiomatic motivation of a rule is a prior step and provides a counterpoint to the literature that focuses

on the computational challenges of the model, resulting from the complexity in determining the assets

value of the entities in the economic network at risk, as they endogenously depend on the extent to

which the liabilities of others are satisfied. In this regard, and in line with the evidence that the prin-
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ciple of proportionality is significant in practice,1 it is worth looking into what normative foundations

distinguishes proportional financial rules. That is, the family of clearing mechanisms satisfying stan-

dard conditions in most insolvency laws such as payments bounded by liabilities (claim boundedness),

limited liability of equity (limited liability), priority of creditors over stockholders (absolute priority),

and proportional repayments of liabilities. To our knowledge, Csóka and Herings (2021) is the only

attempt at investigating what properties identify the set of proportional payment matrices, but focus-

ing on a specific subdomain of financial systems where agents have strictly positive initial endowments

or cash flows. This assumption, however, is not harmless and excludes many real economic scenarios

in which some of the entities taking part in the system have a very low or zero cash flow. Think, for

instance, in the unanticipated economic shock provoked by the recent pandemic due to COVID-19 in

which many sectors were damage, turning several companies into zombies with virtually no cash flow.2

Different scenarios could be those in which one (or more) agent play only the role of debt holder with

no obligations and without any initial cash flow, or others in which one (or more) firm defaults once

it has exhausted its funds by paying some of its obligations.

As showed by Eisenberg and Noe (2001), for the aforementioned domain of financial systems a

unique clearing matrix allows to guarantee claim boundedness, limited liability, absolute priority, and

proportional repayments. As a result, Csóka and Herings (2021) restrict their axiomatic study to

single-valued solutions. Although this route simplifies the analysis to a certain extent, if the endow-

ments of some agents are allowed to be zero then several clearing payment matrices can be supported

by the principle of proportionality. Consequently, as we will show, the accommodation of their prop-

erties to multi-valued solution concepts no longer characterize all rules relying on this principle. To

overcome this gap, here we present the first axiomatic ground for the family of proportional rules in the

full domain of financial networks. Remarkably, our characterization remains valid in the framework

considered by Csóka and Herings (2021).

Together with the basic requirements of claim boundedness, limited liability, and absolute pri-

ority, they employ continuity, impartiality, invariance to mitosis, and, implicitly, single-valuedness.

Continuity simple says that small variations in both, the endowments and the liabilities, imply small

changes in the payment matrix. Impartiality imposes that two agents with the same claim to another

one must receive the same amount from the latter. Invariance to mitosis is the crucial property in

Csóka and Herings’ result. This requirement extends, in a weak form, additivity of claims (Curiel et

al., 1987) or strong non-manipulability (de Frutos, 1999; Moreno-Ternero, 2006) from the context of

bankruptcy problems to the financial systems environment. Roughly speaking, in the first context a

rule is non manipulable if it is immune to the strategic behavior of the agents by merging or splitting

their claims, and it has been widely used to characterize the proportional bankruptcy rule (O’Neill,

1982; Chun, 1988; de Frutos, 1999; Ju et al., 2007). In financial networks, a way to generalize the

notion of non-manipulability is to require that the split of an agent into multiple agents or the merge

of a group of agents should not affect the clearing payment matrices. Csóka and Herings (2021) show

that, under claim boundedness, limited liability, absolute priority, and for single-valued solutions, there

is no financial rule satisfying non-manipulability. To deal with this incompatibility, they weaken this

property introducing invariance to mitosis which requires that the division of a firm into a number

of identical firms, that is, with the same endowments, claims, and liabilities, or the fusion of a group

of identical firms should not affect the final outcome. The idea of imposing restrictions on coalition

formation when merges or spin-offs occur is not fresh and also appears in the literature on allocation

rules when characterizing extensions of the proportional rule to bankruptcy problems with multiple

1See, for instance, Regulation (EU) 2015/848 of the European Parliament and of the Council of 20 May 2015 on

Insolvency Proceedings.
2See Favara et al. (2021).
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types of assets (Ju et al. 2007; Ju, 2013) or in axiomatizing priority rules in the the context of standard

insolvencies (Flores-Szwagrzak et al., 2019), to mention some instances. Recently, Calleja and Llerena

(2022) restrict fusions and splits to agents that are or become symmetric and convey new axiomatiza-

tions of the proportional rule for classical bankruptcy problems. Some of the results of that paper will

be essential in the current work.

Except for continuity, the rest of the properties can be naturally accommodated to multi-valued

solutions by imposing the same conditions for every or, in a softer manner, some payment matrices.

Regarding continuity, there are two different generalizations for correspondences: lower hemicontinuity

and upper hemicontinuity. In words, lower hemicontinuity (upper hemicontinuity) requires that small

changes in a financial system does not make the set of recommended payment matrices suddenly

implode (explode). As we will see, in the general domain of financial systems some rules built on

the principle of proportionality do not satisfy either invariance to mitosis or lower hemicontinuity

or upper hemicontinuity, not even if they are single-valued. To handle with this drawback, we relax

lower hemicontinuity and invariance to mitosis into equity continuity and non-manipulability by clones,

respectively. Since utility maximization governs the incentives of decision-makers, these properties are

formulated in terms of equity values rather than payment matrices. Accordingly, equity continuity says

that a small impact in both, the initial endowments of the agents and the liabilities matrix, do not

imply large variations in their final equity. Non-manipulability by clones restricts attention to identical

firms or clones as invariance to mitosis does but, on the contrary, it imposes that splitting a company

into several clones or merging some clone firms should have no effect on utilities. This weak form of

immunity is in accordance with real-life bankruptcy situations where merging or splitting operations

involve firms that are or will become balanced in the sense that an insolvent firm is not allowed to

transfer all its liabilities to a spin-off and keeps the endowments and claims for itself. Our last property

is compatibility, which requires a financial rule to be supported by an inventory of bankruptcy rules

establishing the basis driving the clearing process of each defaulting firm. Most of the contributions

in the field focus on these type of financial rules as Eisenberg and Noe (2001), Groote et al. (2018),

Csóska and Herings (2018), Stutzer (2018), and Ketelaars and Borm (2021), among others. Instances

of financial rules supported by the proportionality principle but not directly derived from bankruptcy

rules can be found in Demange (2022) and Csóka and Herings (2023). From an axiomatic perspective,

Groote et al. (2018) study the extension of the Talmudic rule (Aumann and Maschler, 1985) for claims

problems to financial systems, and Ketelaars and Borm (2021) accomodate the joint axiomatization of

the proportional, constrained equal awards, and constrained equal losses rules for classical bankruptcy

problems proposed by Moulin (2000) to the setting of financial systems. These two papers, however,

take a different approach considering financial rules as recommendations over the final distribution of

equity values rather than on the clearing payment matrices. Therefore, they characterize the resulting

equity values of the agents derived from financial rules compatible with their respective bankruptcy

counterpart. An interesting explanation of why proportionality is preferred in current bankruptcy laws

over the principles of equal awards or equal losses in terms of both egalitarian and utilitarian social

welfare can be found in Kibris and Kibris (2013). Stutzer (2018) shows that the strategic justification,

coming from bargaining theory, of the constrained equal awards rule for a standard claims problem does

not hold in financial networks. Demange (2022) and Csóka and Herings (2023) axiomatize respectively

the constrained-proportional rule and the pairwise netting proportional rule.

The main result of the paper concludes that compatibility, limited liability, absolute priority, equity

continuity, and non-manipulability by clones characterize the family of financial rules supported by

the principle of proportionality. Moreover, our characterization also holds in the context analyzed

by Csóka and Herings (2021). In relation to their result, and under compatibility, we require neither

impartiality nor claim boudedness nor single-valuedness (assumed, implicitly, by these authors), while
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continuity and invariance to mitosis are replaced by the weaker properties of equity continuity and

non-manipulability by clones, respectively.

The rest of the paper is organized as follows. Section 2 introduces the model. In Section 3, we

connect financial rules and bankruptcy rules. Section 4 contains the axioms. Section 5 provides the

characterization result and the logical independence of the axioms. Section 6 concludes. The proofs

of the results in each section are relegated to the corresponding appendix.

2 The model

Before describing the model of financial systems, we first provide some basic definitions and introduce

well-known insides from the bankruptcy literature.

2.1 Preliminaries

Let N = {1, 2, . . .} (the set of natural numbers) represent the set of all potential agents and let N be

the collection of all non-empty finite subsets of N. An element N ∈ N describes a finite set of agents.

For each x ∈ RN and T ⊆ N , xT denotes the restriction of x to T : xT = (xi)i∈T ∈ RT . For N ∈ N ,

we denote by M(N) the set of all non-negative real N × N matrices M = (Mij)i,j∈N with a zero

diagonal, and M =
⋃

N∈N M(N). For M ∈ M(N) and i ∈ N , Mi = (Mij)j∈N ∈ RN
+ denotes the

row i of M being M̄i =
∑

j∈N Mij . By Q+ = {a/b | a, b ∈ N} we denote the set of positive rational

numbers.

An important tool in our analysis is Tarski’s fixed-point theorem on lattices (Tarski, 1955). Roughly

speaking, a lattice is a partially ordered set A in which any two elements x, y ∈ A have a supremum

(a minimum upper bound) and an infimum (a maximum lower bound) in A. A lattice A is complete

if every nonempty subset of A has a supremum and an infimum in A. The Tarski’s theorem says that

the set of all fixed-points of a monotone function f on a complete lattice A (i.e., the set of elements

x ∈ A such that x = f(x)) is a complete lattice. In order not to overload the reading of the paper,

Appendix A contains the formal statement of this result.

2.2 Bankruptcy problems

A bankruptcy problem is a problem of adjudicating claims in which a single firm defaults and its available

resources are not enough to satisfy its obligations with creditors. This distributive justice problem

has been widely studied from O’Neill (1982) and probably the most complete survey is provided by

Thomson (2019). Formally, a bankruptcy problem is a triple (N,E, c) where N ∈ N represents the

set of creditors to the firm going bankrupt; c ∈ RN
+ is the vector of claims, being ci the claim or the

liability of the firm to creditor i ∈ N ; and E ≥ 0 is the net worth or estate of the firm to satisfy

its obligations. Additionally, we assume that the issue on how to clear the debts of the firm with

the available resources is not trivial, i.e.,
∑

i∈N ci ≥ E. By B we denote the set of all bankruptcy

problems. A bankruptcy rule is a function β : B −→
⋃

N∈N RN
+ that provides for every (N,E, c) ∈ B

a unique vector or recommendation β(N,E, c) ∈ RN
+ for the problem satisfying

∑
i∈N

βi(N,E, c) = E

(budget balance (BB)) and βi(N,E, c) ≤ ci for all i ∈ N (claim boundedness (CB)). BB imposes that

the sum of the payments should be equal to the estate, requiring implicitly that the equity value of the

firm after the clearing process neither can be positive, which would ignore the priority of debt claim,

nor negative, that would overlook limited liability. CB establishes that no creditor receives more than

her claim.

In the following, we introduce a number of properties for bankruptcy rules that will play a central

role in the paper. A bankruptcy rule β satisfies:
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• resource monotonicity (RM) if for all (N,E, c), (N,E′, c) ∈ B with E′ > E, βi(N,E′, c) ≥
βi(N,E, c) for all i ∈ N ;

• equal treatment of equals (ETE) if for all (N,E, c) ∈ B and all i, j ∈ N , if ci = cj then

βi(N,E, c) = βj(N,E, c);

• continuity (CONT) if for all (N,E, c) ∈ B and all sequence
{
(N,En, cn)

}
n∈N of bankruptcy

problems converging to (N,E, c), the sequence
{
β(N,En, cn)

}
n∈N converges to β(N,E, c);

• weak continuity (WCONT) if for all (N,E, c) ∈ B and all sequence
{
(N,En, cn)

}
n∈N of bankruptcy

problems converging to (N,E, c), there exists a subsequence
{
(N,Enk , cnk)

}
nk∈N such that{

β(N,Enk , cnk)
}
nk∈N converges to β(N,E, c);

• claims continuity (CCONT) if for all sequence of bankruptcy problems
{
(N,E, cn)

}
n∈N converg-

ing to (N,E, c), the sequence
{
β(N,E, cn)

}
n∈N converges to β(N,E, c).

RM says that no one should be worse off when the firm’s assets increase. ETE is a weak impartiality

requirement meaning that agents with the same claim have to be rewarded equally. CONT imposes that

small variations in both, the estate and the claims, imply small variations in the resulting allocation

vector; WCONT is a weak version of CONT. Clearly, CONT implies CCONT, that only considers

variations in the claims.

Instances of well studied bankruptcy rules that satisfy these properties are the proportional (PR),

the constrained equal awards (CEA), and the constrained equal losses (CEL) rules. The PR rule makes

awards proportional to the claims and it is probably the most commonly used rule in practice when

a firm goes into bankruptcy. Formally, for all (N,E, c) ∈ B and all i ∈ N , PRi(N,E, c) = λ ci where

λ ∈ R+ is such that
∑

j∈N λ cj = E. The CEA rule rewards all claimants equally subject to no

one receiving more than her claim. Formally, for all (N,E, c) ∈ B and all i ∈ N , CEAi(N,E, c) =

min{ci, λ} where λ ∈ R+ is such that
∑

j∈N min{cj , λ} = E. In contrast, the CEL rule equalizes the

losses of claimants subject to no one receiving a negative amount. That is, for all (N,E, c) ∈ B and

all i ∈ N , CELi(N,E, c) = max{ci − λ, 0} where λ ∈ R+ is such that
∑

j∈N max{cj − λ, 0} = E.3

Another important property in our analysis is non-manipulability by clones (Calleja and Llerena,

2022), that weakens the classical non-manipulability property for bankruptcy rules (Curiel et al. 1987;

de Frutos, 1999) since only symmetric agents (i.e., with the same claim) are allowed to split and merge.

Formally, a bankruptcy rule β satisfies

• non-manipulability by clones (NMC) if for all (N,E, c), (N ′, E, c′) ∈ B, if N ′ ⊂ N and there is

m ∈ N ′ such that ci =
c′m

|N\N ′|+1 for all i ∈ N \N ′ ∪ {m} and c′i = ci for all i ∈ N ′ \ {m}, then
βi(N

′, E, c′) = βi(N,E, c) for all i ∈ N ′ \ {m}.

A rule accomplishes NMC if it does not provide identical agents incentives to merge, neither an

agent incentives to split into equal copies. Theorem 3 in Calleja and Llerena (2022) states that NMC

together with CCONT characterize the PR rule. Although WCONT does not imply (it is not implied)

by CCONT, it can be easily verified along the lines in the proof of the aforementioned theorem that

CCONT can be replaced by WCONT.

Theorem 1. A bankruptcy rule satisfies WCONT and NMC if and only if it is the proportional rule.

The above characterization will be important later on in our axiomatic analysis.

3For a detailed analysis of bankruptcy rules we refer to Thomson (2019).
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2.3 Financial system

A financial system is a non trivial generalization of a bankruptcy problem where agents are connected

to each other in a network of contracts that entail mutual obligations. Thus, the default of an agent

may provoke the default of others, leading to some systemic risk.4 Following Eisenberg and Noe (2001),

a financial system is described by a triple ε = (N,L, e) being N ∈ N the set of economic entities in the

system; the matrix L ∈ M(N) represents the structure of liabilities, where Lij stands for the liability

of firm i ∈ N to firm j ∈ N or, equivalently, the claim of firm j against firm i; and the vector e ∈ RN
+

indicates the initial operating cash flows (or endowments) of the agents, that is, its exogenous funds

obtained from sources outside the financial system.5 The vector of total obligations in the system is

denoted by L̄ = (L̄i)i∈N ∈ RN
+ . By F we represent the set of all financial systems. From a bankruptcy

perspective, agents play the role of firms and claimants simultaneously.

A bankruptcy problem (N,E, c) ∈ B can be translated into a financial system (N̄ , L, e) being

N̄ = N ∪ {i} the set of agents, where i ∈ N \ N represents the firm going bankrupt; the matrix of

liabilities L is given by Ljk = 0 for all j, k ∈ N , Lij = cj , and Lji = 0 for all j ∈ N ; and the initial

endowments e ∈ RN
+ by ei = E and ej = 0 for all j ∈ N .

For each financial system (N,L, e), a payment matrix P ∈ M(N) specifies a recommendation on

what monetary transfer Pij should be paid by any agent i ∈ N to any other agent j ∈ N . Associated

to a payment matrix P and an endowment vector e, the asset value of agent i ∈ N is determined

endogenously as the amount of resources of i to clear its debts, that is, by the sum of its endowment

and the payments received from other agents,

ai(P, e) = ei +
∑
k∈N

Pki. (1)

The entities participating in the system will make evaluations on different payment matrices depending

on their associated value of equity, or utility. Given a payment matrix P and an endowment vector e,

the equity value of agent i ∈ N is defined by

Ei(P, e) = ai(P, e)− P̄i, (2)

where P̄i is the total payment of agent i according to P . By E(P, e) ∈ RN we denote the vector of

equity values of the agents. Observe that, indeed,
∑

i∈N Ei(P, e) =
∑

i∈N ei. Hence, the choice of a

particular payment matrix is, in terms of utility or net worth, a recommendation on the distribution

of the total initial endowments in the system.

A financial rule associates to each financial system a non-empty set of payment matrices.

Definition 1. A financial rule σ is a correspondence that assigns a non-empty subset σ(N,L, e) of

M(N) to each (N,L, e) ∈ F .

If a financial rule σ always recommends a unique matrix, then we say that σ is single-valued

(SIVA); in a formal manner, if for all (N,L, e) ∈ F , |σ(N,L, e)| = 1.

In line with Eisenberg and Noe (2001), we are interested in financial rules fulfilling three basic

criteria: claim boundedness, which imposes that the payment of a firm to any other firm is bounded

from above by the liability to it; limited liability of equity, requiring that the payments of the firm

to others are limited to its asset value; and absolute priority of debt over equity, demanding that

stockholders of each firm can not receive a positive value unless all obligations have been completely

paid. Formally, a financial rule σ satisfies

4This point is addressed, among others, in Chen at al. (2013) and Demange (2018) which focus on measuring the

systemic risk of a financial network.
5For a discussion of why the condition of nonnegative operating cash flow is made without a loss of generality we

refer readers to Eisenberg and Noe (2001).
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• claims boundedness (CB) if, for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all i, j ∈ N , Pij ≤ Lij ;

• limited liability (LL) if, for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all i ∈ N , Ei(P, e) ≥ 0;

• absolute priority (AP) if, for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all i ∈ N , if P̄i < L̄i then

Ei(P, e) = 0.

In fact, these three basic conditions ensure that the financial rule recommendations clear the debts in

the system in a feasible way. The next lemma expresses that, in the presence of CB, the combination

of LL and AP is equivalent to require that every firm pays the minimum between its asset value and

its total debt obligations. The proof is relegated to Appendix B.

Lemma 1. Let σ be a financial rule satisfying CB. Then, the following statements are equivalent:

1. σ satisfies LL and AP.

2. For all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all i ∈ N ,

P̄i = min

{
ei +

∑
k∈N

Pki, L̄i

}
. (3)

3 Financial rules compatible with bankruptcy rules

Since the entities in the system may have different tax addresses, one may ask whether the recommen-

dation proposed by a financial rule is compatible with the recommendations of the insolvency laws of

each court or administration taking part. Intuitively, clearing payment matrices should be consistent

with the legal rules (bankruptcy solution concept) allocating the value of the estate of a defaulting

firm among its debt holders. Obviously, these principles or rules may vary from one court to another,

which makes the compatibility issue relevant. Formally,

Definition 2. A financial rule σ is compatible with an inventory of bankruptcy rules β = (βi)i∈N if

for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all j ∈ N , Pjk = βj
k(N \ {j}, E, c) for all k ∈ N \ {j},

where (N \ {j}, E, c) is the bankruptcy problem faced by agent j ∈ N being E = P̄j and c ∈ RN\{j}
+

with ck = Ljk for all k ∈ N \ {j}.

If no confusion arises, we will denote by PR ≡ (PRi)i∈N, CEA ≡ (CEAi)i∈N, and CEL ≡
(CELi)i∈N the inventories of bankruptcy rules consisting of all agents applying the PR, CEA, and CEL

bankruptcy rule, respectively. The next axiom describes financial rules compatible with bankruptcy

rules. A financial rule σ satisfies

• compatibility (C) if there exists a collection of bankruptcy rules β = (βi)i∈N such that σ is

compatible with β.

Any compatible financial rule accomplish CB as a consequence of the fact that any bankruptcy

rule satisfies CB. Moreover, for any given payment matrix P , the value of the estate of any firm i ∈ N

is endogenously determined and defined to be exactly the amount payed to debt holders by the firm

according to P which ensures, by CB, that the bankruptcy problem faced by i ∈ N is well defined

(independently if the firm defaults or not). Actually,

E = P̄i =
BB

∑
k∈N\{i}

βi
k

(
N \ {i}, P̄i, (Lij)j∈N\{i}

)
≤
CB

∑
k∈N\{i}

Lik =
∑

k∈N\{i}

ck.

Given an inventory of bankruptcy rules β = (βi)i∈N, and regarding the existence of non-empty finan-

cial rules compatible with β that additionally meet LL and AP, the approach in Groote Schaasrsberg
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et al. (2018) to show existence when all bankruptcy rules are the same can be extended to the general

setting in which different bankruptcy rules apply (see Csóka and Herings, 2018). In our analysis, we

adopt the methodology of Eisenberg and Noe (2001) that makes use of Tarski’s fixed-point theorem

(see Appendix A) to prove non-emptiness for the case of all agents applying the proportional rule,

exclusively. To do it, let us introduce the following instrumental function.

Definition 3. Given a collection of bankruptcy rules β = (βi)i∈N and a financial system ε = (N,L, e),

define the function Φε,β : [0, L̄] −→ [0, L̄] as follows:

Φε,β
i (t) = min

ei +
∑

k∈N\{i}

βk
i

(
N \ {k}, tk, (Lkj)j∈N\{k}

)
, L̄i

 ,

for all i ∈ N and all t = (t1, ..., tn) ∈ [0, L̄], being 0 = (0, . . . , 0) ∈ RN .

Under LL andAP, an interpretation of Φε,β is that, for each firm i ∈ N , Φε,β
i (t) represents the total

funds it will employ to satisfy obligations assuming that such a firm will receive, from the other firms

in the system, inflows specified by the rules in β applied over the vector of payments t = (t1, ..., tn).

If FIX(Φε,β) denotes the set of fixed-points of Φε,β , a direct implication of Lemma 1 is the following

corollary.

Corollary 1. Let σ be a financial rule compatible with a collection of bankruptcy rules β = (βi)i∈N.

Then, the following statements are equivalent:

1. σ satisfies LL and AP.

2. For all ε = (N,L, e) ∈ F and all P ∈ σ(ε), P̄ = (P̄i)i∈N ∈ FIX(Φε,β)

Note that, indeed, to obtain a financial rule compatible with β that additionally fulfills LL and

AP is enough to select, for each financial system ε, a vector of payments t = (t1, ..., tn) ∈ FIX(Φε,β)

and later apply for each agent i the corresponding bankruptcy rule βi on ti to produce a payment

matrix. Remark 1 formally contains this observation.

Remark 1. Given an inventory of bankruptcy rules β = (βi)i∈N and an arbitrary non-empty subset

of fixed-points Vε ⊆ FIX(Φε,β) for every ε = (N,L, e) ∈ F , we can define a financial rule σ compatible

with β and satisfying LL and AP as follows: for each ε = (N,L, e) and each t ∈ Vε, define the matrix

P t as P t
ij = βi

j(N \ {i}, ti, (Lij)j∈N\{i}), for all i, j ∈ N , and then set σ(ε) = {P t | t ∈ Vε}. Note

that, for all t ∈ Vε and all i ∈ N , by BB of βi, we have that P̄ t
i = ti and thus P̄ t ∈ FIX(Φε,β).

Hence, the problem of combining C, LL, and AP reduces to the existence of fixed-points of Φε,β .

A way to guarantee that the set of fixed-points is non-empty is requiring RM on the bankruptcy rules

contained in β, which implies the monotonicity of the function Φε,β . These statements are summarized

in Remark 2.

Remark 2. Given an inventory of bankruptcy rules β = (βi)i∈N satisfying RM, there exist financial

rules compatible with β satisfying LL, AP, and CB. This is a direct consequence of the application

of Tarski’s fixed-point theorem to the non decreasing function Φε,β for each ε ∈ F , which ensures that

the set FIX(Φε,β) is non-empty and forms a complete lattice.

In view of Remark 1 and Remark 2, the richer structure of the set of fixed-points of the instrumental

function Φ allows us to introduce three very special financial rules associated to any inventory of RM

bankruptcy rules.
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Definition 4. Let β be a collection of bankruptcy rules satisfying RM and let t+ε , t−ε denote the

supremum and the infimum of the set of fixed-points FIX(Φε,β) for all ε ∈ F , respectively. Define the

greatest, σβ
+, the least, σβ

−, and the maximal, σβ
max, financial rules compatible with β by setting:

1. σβ
+(ε) = {P t+ε } for all ε ∈ F ;

2. σβ
−(ε) = {P t−ε } for all ε ∈ F ;

3. σβ
max(ε) = {P t | t ∈ FIX(Φε,β)}.

Observe that while σβ
+ and σβ

− satisfy SIVA, σβ
max is multi-valued.

Next, we introduce the family of financial rules based on the principles of proportionality, equal

awards, and equal losses, respectively.

Definition 5. A financial rule σ is

1. a proportional rule if for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all i, j ∈ N , Pij = λiLij where

λi ∈ R+ satisfies P̄i = min{ei +
∑

k∈N λkLki, L̄i};

2. a constrained equal awards rule if for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all i, j ∈ N ,

Pij = min{Lij , λi} where λi ∈ R+ satisfies P̄i = min{ei +
∑

k∈N min{Lki, λk}, L̄i};

3. a constrained equal losses rule if for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all i, j ∈ N ,

Pij = max{0, Lij − λi} where λi ∈ R+ satisfies P̄i = min{ei +
∑

k∈N max{0, Lki − λk}, L̄i}.

Note that, from Corollary 1 and Remark 2, proportional, constrained equal awards or constrained

equal losses financial rules are compatible with all agents applying their counterpart bankruptcy rule

(all of them being RM) satisfying, additionally, LL and AP, and vice versa.

Remark 3. It is worth noting that there exist financial rules compatible with an arbitrary inventory

of resource monotonic bankruptcy rules β that do not fulfill the requirements of LL and AP. Think,

for instance, in the following financial rules: σ1(N,L, e) = {0} where 0 ∈ M(N) denotes the zero

matrix and σ2(N,L, e) = {L} for all (N,L, e) ∈ F . Clearly, both, σ1 and σ2, are compatible with β

since any bankruptcy rule distributing an estate of value zero equals the zero vector, and any other

allocating exactly the total debts obligations equal the vector of claims (or liabilities). However, neither

σ1 satisfies AP, nor σ2 satisfies LL.

The following examples illustrate two important facts: first, Example 1 shows that proportional,

constrained equal awards, and constrained equal losses financial rules need not be SIVA; second,

Example 2 points out the existence of set-valued financial rules in which different clearing payment

matrices may induce different equity values.

Example 1. (Eisenberg and Noe, 2001) Let ε = (N,L, e) ∈ F with set of players N = {1, 2}, initial
operating cash flows e = (0, 0), and matrix of liabilities

L =

0 1

1 0

 .

Now, let σ be an arbitrary financial rule satisfying CB, LL, AP, and P ∈ σ(ε). By CB, 0 ≤ P12 ≤ 1

and 0 ≤ P21 ≤ 1. If E1(P, e) = P21 − P12 > 0 then E2(P, e) = P12 − P21 < 0, in contradiction with

LL. Thus, E1(P, e) = 0 which implies that P12 = P21 and

P =

0 λ

λ 0

 ,
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where λ ∈ [0, 1]. Hence,

σ(ε) ⊆


0 λ

λ 0

 | λ ∈ [0, 1]

 . (4)

Clearly, σ is compatible with any inventory of bankruptcy rules β. Thus, in this particular case,

the family of proportional, constrained equal awards, and constrained equal losses rules coincide and

contain multi-valued solutions.

Example 2. For all ε = (N,L, e) ∈ F , define the financial rule σ(ε) = {P1, P2} where P1 = σPR
+ (ε)

and P2 = σCEA
− (ε). Since P̄1 ∈ FIX(Φε,PR) and P̄2 ∈ FIX(Φε,CEA), by Lemma 1 it follows that σ

satisfies CB, LL, and AP. Observe, however, that it does not meet C since P1 and P2 are generated

by different bankruptcy rules.

To see that P1 and P2 may induce different equity values for the firms, take ε ∈ F with set of

players N = {1, 2, 3}, initial operating cash flows e = (1, 0, 0), and matrix of liabilities

L =


0 1 2

0 0 0

0 0 0

 .

Easy calculations lead to

P1 =


0 1/3 2/3

0 0 0

0 0 0

 and P2 =


0 1/2 1/2

0 0 0

0 0 0

 .

Hence, E2(P1, e) = 1/3 ̸= 1/2 = E2(P2, e) and E3(P1, e) = 2/3 ̸= 1/2 = E3(P2, e).

Nevertheless, Lemma 2 bellow (the proof is relegated to Appendix C) highlights that uniqueness in

terms of the equity values (utilities) is guaranteed for set-valued financial rules compatible with resource

monotonic bankruptcy rules, regardless of the selected clearing matrices. This is a consequence of the

lattice structure of the set of fixed-points of the instrumental function Φ (see Definition 3).

Lemma 2. Let β = (βi)i∈N be a inventory of resource monotonic bankruptcy rules, ε = (N,L, e) ∈ F ,

and t, t′ ∈ FIX(Φε,β). Then, E(P t, e) = E(P t′ , e), where the payment matrices P t and P t′ are defined

as in Remark 1.

Two direct consequences of Lemma 2 are specified in the next Remark 4.

Remark 4. From Lemma 2 it comes that:

1. If σ is a financial rule compatible with β meeting LL and AP then, for all (N,L, e) ∈ F and all

P, P ′ ∈ σ(N,L, e), it holds that E(P, e) = E(P ′, e).

2. Moreover, if σ and σ′ are two different financial rules compatible with β meeting LL and AP then,

for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all P ′ ∈ σ′(N,L, e), it holds that E(P, e) = E(P ′, e).

Lemma 2 is especially important if solutions are multi-valued. In insolvency proceedings involving

different courts, that might apply distinct principles in the process of clearing the system, there might

be a multiplicity of recommendations compatible with these principles that fulfill LL and AP. From

Eisenberg and Noe (2001), that restrict attention to proportionality, to Csóoka and Herings (2019) that

allow for agent-specific bankruptcy rules, through Groote et al. (2018) that assume all agents apply

the same bankruptcy rule that need not be the proportional one, the problem of finding a particular
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clearing payment matrix has been central in the literature of financial networks. Among others, the

aforementioned papers study different algorithms and or mechanisms to compute one of such matrices.

Recently, Calafiore et al. (2022) offer an iterative procedure to find the whole set of proportional

clearing matrices and, in fact, to test uniqueness. Outstandingly, Lemma 2 stresses the fact that, with

respect to the value of equity, the agents in the system are indifferent on the chosen clearing payment

matrix. This invariance property will be essential in our axiomatic approach.

4 Axioms

In this section, we describe the axioms that we will employ to characterize the set of rules that are

supported by the principle of proportionality in the complete domain of financial systems. A first

axiomatization was given by Csóka and Herings (2021) in the subdomain of financial systems where

all agents dispose of a strictly positive initial endowment. This assumption, however, is not innocuous

and discards many economic settings as, for example, those where some agents are exclusively debt

holders or some firms dispose of zero cash flows. Moreover, as shown in Eisenberg and Noe (2001) for

the more general domain of regular financial systems,6 there is a unique payment matrix compatible

with all agents applying the proportional bankruptcy rule. As a result of this particularity, in the

context considered by Csóka and Herings (2021) and for the proportional financial rule, there is no

difference in working with multi-valued or single-valued solutions concepts. Unfortunately, although

this coincidence simplifies their axiomatic analysis, it is not appropriate in the general framework of

financial systems.

Together with CB, LL, and AP, Csóka and Herings (2021) impose three additional axioms: con-

tinuity, impartiality, and invariance to mitosis. Before stating our axioms, we first emphasize that the

accommodation of these properties to multi-valued solution concepts is no longer suitable on the whole

domain of financial systems to characterize the family of proportional rules. To overcome this issue,

instead of defining the axioms in accordance with the payoff matrices, and considering that utility

drives agents’ decision-making, we take the novel approach to express them in terms of the value of

equity. The proofs of this section are collected in Appendix D.

4.1 Equity continuity

Since Csóka and Herings (2021) implicitly demand SIVA, that is, define a financial rule as a function

that associates to each financial system a unique clearing payment matrix, they use the classical

notion of continuity for functions. For multi-valued solutions, there are two possible generalizations of

continuity: lower hemicontinuity and upper hemicontinuity. Formally, a financial rule σ satisfies

• lower hemicontinuity (LHC) if for all (N,L, e) ∈ F , all sequence of financial systems
{
(N,Ln, en)

}
n∈N

converging to (N,L, e), and all clearing payment matrix P ∈ σ(N,L, e), there exists a sequence{
Pn ∈ σ(N,Ln, en)

}
n∈N converging to P ;

• upper hemicontinuity (UHC) if for all (N,L, e) ∈ F , all sequence of financial systems
{
(N,Ln, en)

}
n∈N

converging to (N,L, e), and all sequence of clearing payment matrices
{
Pn ∈ σ(N,Ln, en)

}
n∈N

converging to the matrix P it holds that P ∈ σ(N,L, e);

• continuity (CONT) if it satisfies simultaneously LHC and UHC.

For functions, both LHC and UHC are equivalent to continuity. Informally speaking, these continuity

properties require that small changes in the financial system imply small changes in the payment

6See Eisenberg and Noe (2001) for a formal definition of regular financial systems.
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matrices. Unfortunately, as Example 3 below shows, in the full domain of financial systems, and

regardless of the chosen collection of resource monotonic bankruptcy rules β, there might be neither

LHC nor UHC financial rules compatible with β that also satisfy LL and AP. In particular, there

exist proportional financial rules that do not meet any of these continuity properties.

Example 3. (Eisenberg and Noe, 2001) Let ε = (N,L, e) ∈ F be the financial system described in

Example 1. Now, consider the sequence of financial systems
{
εn = (N,Ln, en)

}
n∈N with set of players

N = {1, 2}, initial operating cash flows en = (0, 0), and matrices of liabilities

Ln =

 0 1 + 1
n

1 + 1
n 0

 ,

for all n ∈ N.
Let σPR

+ be the greatest, σPR
− the least, and σPR

max the maximal proportional financial rules (see

Definition 4). From Example 1 it follows that

σPR
max(ε) =


0 λ

λ 0

 | λ ∈ [0, 1]

 .

Consequently,

σPR
+ (ε) =


0 1

1 0

 and σPR
− (ε) =


0 0

0 0

 .

Following similar arguments, we can additionally set σPR
− (εn) = {0} and σPR

+ (εn) = {Ln} for all n ∈ N.
Now, define the proportional financial rule σ as follows: for all ε′ ∈ F ,

σ(ε′) =

 σPR
+ (ε) if ε′ = ε,

σPR
− (ε′) if ε′ ̸= ε.

(5)

So, while the sequence of financial systems
{
εn

}
n∈N converges to ε when n → ∞, there is not a

sequence of matrices {Pn ∈ σ(εn)}n∈N converging to P ∈ σ(ε) = σPR
+ (ε), showing that σ fails to satisfy

LHC. To see that it neither satisfies UHC, it is enough to observe that the sequence {Pn ∈ σ(εn) =

σPR
− (εn)}n∈N converges to the zero matrix that is not contained in σ(ε) = σPR

+ (ε). Furthermore, σ is

SIVA, pointing out that eventhough we restrict ourselves (as in Csóka and Herings, 2021) to financial

rules that are functions, in the richer domain of all financial systems continuity of proportional financial

rules may fail.

It is worth noting that the arguments used in Example 3 hold if we replace the proportional

bankruptcy rule by any arbitrary collection of resource monotonic bankruptcy rules like, for instance,

the constrained equal awards or the constrained equal losses. These bankruptcy rules satisfy CONT

but, however, they don’t need to produce continuous financial rules. Thus, on the full domain of

financial systems, there are financial rules compatible with continuous bankruptcy rules satisfying

additionally LL and AP that do not fulfill either LHC or UHC. A way to solve this lack of continuity

is to formulate it in terms of the utility of the participating agents, that is, according to the value of

equity. Formally, a financial rule σ satisfies

• Equity-continuity (E-CONT) if for all (N,L, e) ∈ F , all sequence of financial systems
{
(N,Ln, en)

}
n∈N

converging to (N,L, e) and all clearing payment matrix P ∈ σ(N,L, e), there exists a se-

quence
{
Pn ∈ σ(N,Ln, en)

}
n∈N with a subsequence of clearing payment matrices

{
Pnk ∈

σ(N,Lnk , enk)
}
nk∈N such that the associated sequence of equity values {E(Pnk , enk)}nk∈N con-

verges to E(P, e).
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E-CONT simply says that small changes in the structure of liabilities and in the initial endowments

should not lead to large changes in the value of equity. That is, as long as we approach to a financial

system (N,L, e), and for any clearing payment matrix P in the solution, there exists a path to approach

to the equity values of the agents according to P . Next, we show that E-CONT is weaker than LHC.

Proposition 1. LHC implies E-CONT.

Interestingly, although there are proportional financial rules that do not satisfy neither LHC nor

UHC (see Example 3 above), all of them meet E-CONT.

Lemma 3. Let σ be a proportional financial rule. Then, σ satisfies E-CONT.

4.2 Equal treatment of equals

The second axiom imposed in Csóka and Herings (2021) is impartiality, which requires that two agents

j and k with the same claim on agent i should receive the same payment from i. We now accommodate

impartiality for set-valued financial rules. A financial rule σ satisfies

• impartiality (I) if, for all (N,L, e) ∈ F and all i, j, k ∈ N such that Lij = Lik then, for all

P ∈ σ(N,L, e), it holds that Pij = Pik.

Impartiality applies only to payments made by agent i to agents j and k, but the repayment capacity

of these two agents is not taken into account. Even though impartiality appears to be a mild condition,

it applies to pairs of agents that need not be symmetric or identical. Here, and to preserve the ideal

that equals should be treated equally, we understand that two agents are symmetric if they have the

same initial operating cash flow, the same mutual obligations to each other, as well as the same claims

and debts to the rest of agents. We interpret that symmetric agents should be treated equally, that is,

they should end up with the same utility. Formally, a financial rule σ satisfies

• equal treatment of equals (ETE) if for all (N,L, e) ∈ F and all i, j ∈ N such that ei = ej ,

Lij = Lji, Lik = Ljk, and Lki = Lkj for all k ∈ N \ {i, j} then, for all P ∈ σ(N,L, e) it holds

that Ei(P, e) = Ej(P, e).

ETE ensures that symmetric agents should get the same value of equity. Under the basic require-

ments of CB, LL, and AP, the next result establishes that ETE is weaker than I.

Proposition 2. Under CB, LL, and AP; I implies ETE.

Outstandingly, if we impose the stronger property of C, rather than CB, we obtain that I and

ETE are equivalent. The underlying reason is that ETE of the bankruptcy rules supporting a financial

rule connects both properties.

Proposition 3. Let σ be a financial rule compatible with a collection of bankruptcy rules β = (βi)i∈N,

satisfying LL and AP. Then, the following statements are equivalent:

1. σ satisfies I.

2. σ satisfies ETE.

3. βi satisfies ETE for all i ∈ N.

A straightforward consequence of Proposition 3 is the following.

Corollary 2. Let σ be a proportional financial rule. Then, σ satisfies I and ETE.

To conclude, the next example stresses that, in general, I and ETE do not imply one another.
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Example 4. We first show that ETE does not imply I, neither under CB, LL and AP. Consider

the financial system ε′ = (N ′, L′, e′) being N ′ = {1, 2, 3}, initial operating cash flows e′ = (0, 0, 0), and

matrix of liabilities

L′ =


0 1 1

1 0 1

2 2 0

 .

Now define the financial rule σ1 as follows:

σ1(ε) =


σPR
+ (ε) if ε ̸= ε′,P ′ =


0 1/2 1

0 0 1

3/2 1/2 0


 if ε = ε′.

To see that σ1 satisfies CB, LL, and AP, it is enough to observe that, by definition, σPR
+ fulfills the

properties and, in the financial system ε′, we have E1(P
′, e′) = E2(P

′, e′) = E3(P
′, e′) = 0. To check

that it also satisfies ETE, we distinguish two cases. If agents i and j are symmetric in ε ̸= ε′, then

ETE follows since proportional financial rules satisfy the property. Otherwise, the only symmetric

players in ε′ are 1 and 2, which receive the same equity value according to P ′. However, σ1 does not

meet I since L′
12 = L′

13 but P ′
12 ̸= P ′

13.

To see that I does not imply ETE, define the financial rule σ2 as follows:

σ2(ε) =


σPR
+ (ε) if ε ̸= ε′,P ′′ =


0 1 1

0 0 0

2 2 0


 if ε = ε′.

Clearly, σ2 satisfies I as, in case that ε ̸= ε′, σPR
+ meet the property. Otherwise, if ε = ε′, L′

12 = L′
13

and P ′′
12 = P ′′

13 = 1; L′
21 = L′

23 and P ′′
21 = P ′′

23 = 0; L′
31 = L′

32 and P ′′
31 = P ′′

32 = 2. However, σ2 fails

to satisfy ETE because players 1 and 2 are symmetric in ε′ but they obtain a different equity value

according to P ′. Indeed, E1(P
′′, e′) = 0 and E2(P

′′, e′) = 3.

4.3 Non-manipulability by clones

On the setup of bankruptcy problems, O’Neill (1982) paved the route to characterize the proportional

rule on the basis of non-manipulability, requiring that agents should not have incentives to merge

or split their claims as they will. O’Neill’s result was refined in different ways by Chun (1988), de

Frutos (1999), and Ju et al. (2007). An important result in our investigation is Theorem 3 in Calleja

and Llerena (2022) that states a new characterization for this focal rule using NMC as definced in

Subsection 2.2, a weak form of non-manipulability that entitles agents to merge or split only when

they are or become symmetric, together with a standard axiom referring continuity on claims.

In the setting of financial networks, Csóka and Herings (2021) interpret non-manipulability as some

invariance conditions on the clearing payment matrices enforcing invariance not only on payments made

by and received from the merging or splitting agents, but also on payments between agents that are not

involved in the merger or split, in the spirit of additivity of claims (Curiel et al., 1987) or strong non-

manipulability for bankruptcy problems (Moreno-Ternero, 2006). Contrary to bankruptcy problems,

in financial systems no rule is immune to manipulability when combined with the basic requirements

of CB, LL, and AP. Therefore, Csóka and Herings (2021) weaken non-manipulability into invariance
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to mitosis restricting splits and mergers to situations involving identical agents. A natural extension

of this property to multi-valued solutions can be derived as follows. A financial rule σ satisfies

• invariance to mitosis (IM) if for all (N,L, e), (N ′, L′, e′) ∈ F , if N ′ ⊂ N and there is m ∈ N ′

such that

ei =
e′m

|N\N ′|+1 for all i ∈ N \N ′ ∪ {m}

ei = e′i for all i ∈ N ′ \ {m}

Lkl = 0 for all k, l ∈ N \N ′ ∪ {m}

Lij = L′
ij for all i, j ∈ N ′ \ {m}

Lki =
L′

mi

|N\N ′|+1 for all k ∈ N \N ′ ∪ {m}, i ∈ N ′ \ {m}

Lik =
L′

im

|N\N ′|+1 for all k ∈ N \N ′ ∪ {m}, i ∈ N ′ \ {m}

(6)

then,

(a) for each P ∈ σ(N,L, e) there exists P ′ ∈ σ(N ′, L′, e′) and

(b) for each P ′ ∈ σ(N ′, L′, e′) there exists P ∈ σ(N,L, e)

such that

P ′
mi = Pmi +

∑
k∈N\N ′ Pki for all i ∈ N ′ \ {m};

P ′
im = Pim +

∑
k∈N\N ′ Pik for all i ∈ N ′ \ {m};

P ′
kl = Pkl for all k, l ∈ N ′ \ {m}.

(7)

Conditions listed in (6), concerning the characteristics of the financial systems for which some

invariance is required, are the same as in Csóka and Herings (2021). Observe that only equal agents,

as introduced in defining ETE, are allowed to split or merge. On the contrary, since financial rules may

select a number of payment matrices, we demand that for every payment recommendation made by

the rule P ∈ σ(N,L, e) there exists P ′ ∈ σ(N ′, L′, e′) satisfying all conditions in (7). While equations

in (7) are exactly as in the aforementioned paper, we want to ensure that for any recommendation in

(N,L, e) there is another one in (N ′, L′, e′) that do not provide incentives to merge since payments

remain invariant. On the other hand, imposing that any P ′ ∈ σ(N ′, L′, e′) can be assigned to a

P ∈ σ(N,L, e) for which all equalities in (7) hold guarantees that the rule do not provide incentives

to split neither. Observe that, indeed, IM requires payments made by and received from agents not

involved in the split or the merge remains constant as well.

Unexpectedly, as the next example points out, there are proportional financial rules that do not

meet IM.

Example 5. Let ε = (N,L, e) be the financial system as defined in Example 1, that is, N = {1, 2},
e = (0, 0), and matrix of liabilities

L =

0 1

1 0

 .

Now consider ε′ = (N ′, L′, e′) where agent 2 splits into agents 2 and 3, being N ′ = {1, 2, 3}, e′ =

(0, 0, 0), and

L′ =


0 1/2 1/2

1/2 0 0

1/2 0 0

 .

As in Example 3, we take the proportional financial rule σ defined as follows: for all ε′′ ∈ F ,

σ(ε′′) =

 σPR
+ (ε) if ε′′ = ε,

σPR
− (ε′′) if ε′′ ̸= ε.

(8)
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Recall that,

σPR
+ (ε) =

P =

0 1

1 0

 .

Some calculations lead to

σ(ε′) = σPR
− (ε′) =

P ′ =


0 0 0

0 0 0

0 0 0


 .

Observe that, 1 = P21 ̸= P ′
21 + P ′

31 = 0, which prove that σ does not meet IM. However, E2(P, e) =

0 = E2(P
′, e) + E3(P

′, e).

Note that the financial rule in Example 5 is single-valued. Moreover, by means of comparing the

equity value of the agents, it turns out that agent 2 does not have incentives to split into 2 and 3,

neither agents 2 and 3 have incentives to merge into agent 2, although payments among agents are not

invariant. In the same fashion of continuity, a way to solve this issue is to reformulate the property in

terms of the equity value of the agents. A financial rule σ satisfies

• Non-manipulability by clones (NMC) if for all (N,L, e), (N ′, L′, e′) ∈ F , if N ′ ⊂ N and there

is m ∈ N ′ such that all conditions listed in (6) hold, then

(a) for each P ∈ σ(N,L, e) there exists P ′ ∈ σ(N ′, L′, e′) and

(b) for each P ′ ∈ σ(N ′, L′, e′) there exists P ∈ σ(N,L, e)

such that, for all i ∈ N ′ \ {m},
Ei(P

′, e′) = Ei(P, e).

NMC says that the split of an agent into identical agents or the merge of a group of identical

agents should not affect the utility of the remaining agents and, as a consequence, neither the utility

of the agents merging or splitting. Observe that,∑
i∈N

Ei(P, e) =
∑
i∈N

ei =
∑
i∈N ′

e′i =
∑
i∈N ′

Ei(P
′, e′),

which automatically implies that,

Em(P ′, e′) = Em(P, e) +
∑

k∈N\N ′

Ek(P, e).

The next proposition states that NMC is a weak version of IM.

Proposition 4. IM implies NMC.

Outstandingly, although proportional financial rules may fail to satisfy IM as illustrated in Example

5, they hold NMC

Lemma 4. Let σ be a proportional financial rule. Then, σ satisfies NMC.

5 Axiomatic characterization

In this section, we provide an axiomatic foundation for the family of proportional financial rules.

Remarkably, as a particular case we obtain a new characterization of the (unique) proportional financial

rule in the restrictive domain of regular financial systems considered by Csóka and Herings (2021)

where agents initially have a positive amount of cash at their disposal. With respect to Csóka and

Herings’ result, CB is strengthened into C, CONT and IM are weakened into E-CONT and NMC,

respectively, while SIVA and I are no longer required.
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Theorem 2. A financial rule satisfies C, LL, AP, E-CONT, and NMC if and only if it is a

proportional financial rule.

Proof. The only if part follows from the definition of a proportional financial rule that ensures C, LL,

AP, together with Lemma 3 and Lemma 4 that guarantee E-CONT and NMC, respectively.

To prove the if part, let σ be a financial rule compatible with a collection of bankruptcy rules

β = (βi)i∈N and satisfying LL, AP, E-CONT, and NMC.

• Claim 1: For all i ∈ N, βi satisfies WCONT.

To show Claim 1, take i ∈ N. Let (N,E, c) ∈ B and {(N,En, cn)}n∈N be a sequence of

bankruptcy problems converging to (N,E, c) with i /∈ N . Let ε = (N̄ , L, e) ∈ F and εn =

(N̄ , Ln, en) ∈ F be the corresponding associated financial systems with N̄ = N ∪ {i} as defined

in Subsection 2.3. Next, we see that σ(ε) and σ(εn) select a unique payment matrix. Indeed,

let P ∈ σ(ε). As σ satisfies CB (received from C), Pjl = 0 for all j ∈ N, l ∈ N̄ . Moreover,

since σ is compatible with β, Pij = βi
j(N,E, c) for all j ∈ N , which is unique by definition of βi.

Hence, σ(ε) = {P}. In a similar way, we obtain σ(εn) = {Pn} for all n ∈ N, being Pn
jl = 0 and

Pn
ij = βi

j(N,En, cn) for all j ∈ N , l ∈ N̄ . Note that E = P̄i and En = P̄n
i .

Clearly, the sequence of financial systems {εn}n∈N converges to ε and, by E-CONT, there exists

a subsequence of clearing payment matrices {Pnk}nk∈N such that the associated sequence of

equity values {E(Pnk , enk)}nk∈N converges to E(P, e). Let j ∈ N and nk ∈ N. Then, we have

Ej(P
nk , enk) = enk

j +
∑
l∈N̄

Pnk

lj −
∑
l∈N̄

Pnk

jl = Pnk
ij =

C
βi
j(N,Enk , cnk)

and

Ej(P, e) = ej +
∑
l∈N̄

Plj −
∑
l∈N̄

Pjl = Pij =
C
βi
j(N,E, c).

Hence, for all j ∈ N , the sequence {βi
j (N,Enk , cnk)}nk∈N converges to βi

j(N,E, c), which means

that βi meets WCONT.

• Claim 2: For all i ∈ N, βi satisfies NMC.

To show Claim 2, take i ∈ N. Let (N,E, c), (N ′E, c′) ∈ B where N ′ ⊂ N , i /∈ N , and there is

m ∈ N ′ such that cj =
c′m

|N\N ′|+1 for all j ∈ N \N ′ ∪ {m} and c′j = cj for all j ∈ N ′ \ {m}. Let

ε = (N̄ , L, e) and ε′ = (N̄ ′, L′, e′) be the associated financial systems being N̄ = N ∪ {i} and

N̄ ′ = N ′ ∪ {i} as defined in Subsection 2.3. It can easily checked that ε and ε′ satisfy all the

conditions in (6). Moreover, following the same arguments as in the proof of Claim 1 we have

that σ(ε) = {P} where Pij = βi
j(N,E, c) and Pjk = 0 for all j ∈ N, k ∈ N̄ ; and σ(ε′) = {P ′}

where P ′
ij = βi

j(N
′, E, c′) and P ′

jk = 0 for all j ∈ N ′, k ∈ N̄ ′. By NMC, for all j ∈ N̄ ′ \ {m}, we
have

Ej(P
′, e′) = Ej(P, e).

In particular, if j ̸= i, we obtain

Ej(P
′, e′) = e′j +

∑
l∈N̄ ′

P ′
lj −

∑
l∈N̄ ′

P ′
jl = P ′

ij =
C
βi
j(N

′, E, c′)

and

Ej(P, e) = ej +
∑
l∈N̄

Plj −
∑
l∈N̄

Pjl = Pij =
C
βi
j(N,E, c),

which implies that βi satisfies NMC.
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Hence, from Claims 1 and 2, all bankruptcy rules in β satisfy WCONT and NMC which imply,

by Theorem 1, that βi = PR, for all i ∈ N. Finally, since σ is compatible with PR and, additionally,

meets LL and AP, we conclude that it is a proportional financial rule.

To finish, we show that the axioms in Theorem 2 are logically independent:

• (All except C): for all (N,L, e) ∈ F , let σ1(N,L, e) = σPR
+ (N, 2L, e). Clearly, σ1 does not meet

CB and thus neither C. Since σPR
+ satisfies LL, AP, E-CONT, and NMC, it follows that σ1

inherits these properties.

• (All except LL): for all (N,L, e) ∈ F , let σ2(N,L, e) = {L}. Obviously, σ2 satisfies C, since any

bankruptcy rule distributing an estate equal to its total liabilities equals, by CB and BB, the

vector of its liabilities. Clearly, it satisfies AP, E-CONT comes from σ2 satisfying LHC, while

NMC holds from σ2 satisfying SIVA and IM. However, σ2 does not meet LL since there might

exist firms with insufficient resources to cover all its liabilities and, consequently, ending up with

a negative equity value.

• (All except AP): for all (N,L, e) ∈ F , let σ3(N,L, e) = {0} where 0 ∈ M(N) denotes the zero

matrix. Note that σ3 satisfies C since any bankruptcy rule distributing an estate of zero equals

the zero vector. Clearly, σ3 satisfies LL, E-CONT and NMC comes from LHC, SIVA, and

IM. However, it does not meet AP since the equity value of each firm coincides with its initial

endowment but it could be positive.

• (All except NMC): for all (N,L, e) ∈ F , let σ4(N,L, e) = σCEA
− (N,L, e). Clearly, σ4 meets C,

LL, and AP. Obviously, σ4 is a constrained equal awards financial rule. Moreover, the proof

of Lemma 3 can be followed almost step by step, if we take a constrained equal awards rule,

instead. Thus, σ4 satisfies E-CONT. Finally, to see that it fails to satisfy NMC, consider the

financial system ε as defined in Example 2. Then,

σ4(ε) =

P =


0 1/2 1/2

0 0 0

0 0 0


 .

Suppose now that agent 3 splits into clones 3 and 4, defining the corresponding four agents

financial system ε′. Some easy algebra yields to

σ4(ε′) =


P ′ =


0 1/3 1/3 1/3

0 0 0 0

0 0 0 0

0 0 0 0




.

Observe that E3(P, e) = 1/2 < 2/3 = E3(P
′, e′) + E4(P

′, e′), showing that constrained equal

awards financial rules provide incentives to split.

• (All except E-CONT): Define first the bankruptcy rule β∗ that gives priority to positive non-

rational claims, i.e, belonging to the set R \Q+, over claims in Q+, and distributing any amount

proportionally in each group. Formally, let (N,E, c) ∈ B and NQ+
be the set of agents with a

positive rational claim:

– If
∑

k∈N\NQ+
ck ≥ E, then

β∗
i (N,E, c) = PRi(N \NQ+ , E, cN\NQ+

) for all i ∈ N \NQ+
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and

β∗
i (N,E, c) = 0 for all i ∈ NQ+ .

– If
∑

k∈N\NQ+
ck < E, then

β∗
i (N,E, c) = ci for all i ∈ N \NQ+

and

β∗
i (N,E, c) = PRi

NQ+
, E −

∑
k∈N\NQ+

ck, cNQ+

 for all i ∈ NQ+
.

Note that β∗ is RM but not CCONT. So, the financial rule σ5(N,L, e) = σβ∗

+ (N,L, e) is well

defined. Obviously, σ5 satisfies C (with respect to β∗). This rule was first introduced in Csóka

and Herings (2021) and, as they point out, it also meets LL,AP, and IM. Thus, from Proposition

4, it also satisfies NMC. To see that is does not satisfy E-CONT, consider the financial ε =

(N,L, e) ∈ F with set of players N = {1, 2, 3}, initial operating cash flows e = (1, 0, 0), and

matrix of liabilities

L =


0 1 1

0 0 0

0 0 0

 .

Now, consider the sequence of financial systems
{
εn = (N,Ln, en)

}
n∈N with set of players N =

{1, 2, 3}, initial operating cash flows en = (1, 0, 0), and matrices of liabilities

Ln =


0 1 +

√
2

n 1

0 0 0

0 0 0

 ,

for all n ∈ N. Clearly, {εn}n∈N converges to ε. It is not difficult to check that

σ5(ε) =

P =


0 1/2 1/2

0 0 0

0 0 0


 and σ5(εn) =

Pn =


0 1 0

0 0 0

0 0 0


 , for all n ∈ N.

Note that {E(Pn, en)}n∈N converges to (0, 1, 0) while E(P, e) = (0, 1/2, 1/2). Hence, σ5 does not

meet E-CONT.

Table 1 bellow collects the financial rules and the axioms they satisfy.

Table 1: Solutions and Properties

σ1 σ2 σ3 σ4 σ5

Compatibility No Yes Yes Yes Yes

Limited Liability Yes No Yes Yes Yes

Absolute Priority Yes Yes No Yes Yes

Non Manipulability by Clones Yes Yes Yes No Yes

Equity-CONTinuity Yes Yes Yes Yes No
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6 Final comments

In this paper, we provide an axiomatic ground for the family of proportional financial rules in the whole

domain of financial systems. Assuming that all agents dispose of a strictly positive operating cash flow,

Csóka and Herings (2021) identify a set of axioms that characterizes the unique proportional clearing

mechanism. However, allowing some agents to initially have zero cash flow may result in a multiplicity

of proportional payoff matrices, which requires a different set of axioms, putting the focus on the equity

value of the entities rather than on the clearing matrices themselves. Outstandingly, our axiomatic

characterization (Theorem 2) is also valid in the restricted subdomain of financial networks considered

by Csóka and Herings (2021). We impose weaker non-manipulability and continuity axioms and

get rid of single-valuedness, claim boundedness, and impartiality to the price of restricting solutions

to be compatible with bankruptcy rules. This characterization establishes a parallelism with the

axiomatiation of the proportional bankruptcy rule by means of weak continuity and non-manipulability

by clones (Theorem 1). Recently, Calleja and Llerena (2022) show that claims monotonicity can

replace weak continuity. In this sense, and given that monotonicity principles are widely accepted,

an interesting open question is whether or not some suitable monotonicity requirements on liabilities

could be used to provide new characterizations of proportional financial rules.

An important result in the literature of bankruptcy problems is owing to Young (1987), who char-

acterizes the so-called parametric rules by means of symmetry (or equal treatment of equals), resource

continuity, and consistency, a classical invariant principle with respect to variations of population (see

Thomson, 2012). A possibility for future research could be to introduce parametric rules in the context

of financial networks and extend Young’s result to this setup. As noted by Csóka and Herings (2021),

the main issue in applying the principle of consistency is that the reduced problem may be outside of

the original domain. A natural way to address this drawback is using conditional consistency, a weak

form of consistency imposing that the initials payments must be reconfirmed in the reduced problem

only when it is a financial network.

A closely related result to Young’s can be found in Ju (2002), who characterizes the set of parametric

rules that are not manipulable via (pairwise) merging or splitting. Although non-manipulability via

splitting is incompatible with the basic requirements of claims boundedness, limited liability, and

absolute priority, Calleja et al. (2021) identify a broad class of financial rules immune to manipulations

via merging and compatible with these properties. Therefore, an interesting line of research could be

the identification of the class of financial rules that fulfill non-manipulability via (pairwise) merging.

Appendix A: Tarski’s fixed-point theorem

A lattice is a pair (A,≤) formed by a non-empty set A and a transitive and antisymmetric binary

relation ≤ on A that determines a partial order on A such that, for any two elements x, y ∈ A, there

is a supremum (join), denoted by x ∨ y, and an infimum (meet), denoted by x ∧ y. We write x < y if

x ≤ y but x ̸= y. The supremum x∨ y is the unique element of A such that x, y ≤ x∨ y and if z ∈ A is

such that z ≥ x, y, then z ≥ x∨y. The infimum x∧y is the unique element of A such that x, y ≥ x∧y

and if z ∈ A is such that z ≤ x, y, then z ≤ x ∧ y. The lattice (A,≤) is called complete if every

non-empty subset B ⊆ A has a supremum and an infimum. Given two elements x, y ∈ A with x ≤ y,

we denote by [x, y] the interval with the endpoints x and y, i.e., [x, y] = {z ∈ A | x ≤ z ≤ y}. Clearly,
([x, y],≤) is a lattice, and it is a complete lattice if (A,≤) is complete. We shall consider functions

f : B → C, where B,C ⊆ A. Such a function f is called non-decreasing if, for any pair of elements

x, y ∈ B, x ≤ y implies f(x) ≤ f(y). A fixed point of f is an element x of B such that x = f(x). Let

FIX(f) denote the set of fixed-points of f . The Tarski’s fixed-point theorem states that if (A,≤) is a
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complete lattice and f : B → C is a non-decreasing function, then (FIX(f),≤) is a complete lattice.

Appendix B: Proofs of Section 2

Proof. (Lemma 1) Let σ be a financial rule satisfying CB, LL, and AP, (N,L, e) ∈ F , and P ∈
σ(N,L, e). By LL, Ei(P, e) ≥ 0 for all i ∈ N . If Ei(P, e) = 0, then ei+

∑
k∈N Pki = P̄i ≤ L̄i, where the

inequality comes fromCB. If Ei(P, e) > 0, byAP andCB, P̄i = L̄i and thus ei+
∑

k∈N Pki > P̄i = L̄i.

Hence, P̄i = min
{
ei +

∑
k∈N Pki, L̄i

}
. To see the reverse implication, let σ be a financial rule fulfilling

CB, (N,L, e) ∈ F , and P ∈ σ(N,L, e). If P̄i = min
{
ei +

∑
k∈N Pki, L̄i

}
, for all i ∈ N , then

Ei(P, e) = ei +
∑

k∈N Pki − P̄i ≥ 0, which proves LL. To check AP, select i ∈ N and suppose that

Ei(P, e) > 0. Then, ei +
∑

k∈N Pki > P̄i and thus P̄i = L̄i.

Appendix C: Proofs of Section 3

Proof. (Lemma 2)

Let β = (βi)i∈N be a inventory of resource monotonic bankruptcy rules and ε = (N,L, e) ∈ F .

Since, for all i ∈ N , βi satisfies RM, by Tarski’s theorem the set of fixed-points FIX(Φε,β) is non-empty

and forms a complete lattice. Let t ∈ [0, L̄] be an arbitrary element of FIX(Φε,β) and P t ∈ M(N)

defined by P t
ij = βi

j

(
N \ {i}, ti, (Lij)j∈N\{i}

)
for all i, j ∈ N . As P̄ t = t, for all i ∈ N we have that

Ei(P
t, e) = ei +

∑
k∈N

P t
ki − P̄ t

i

= ei +
∑
k∈N

P t
ki −min

{
ei +

∑
k∈N

P t
ki, L̄i

}
= max

{
0, ei +

∑
k∈N

P t
ki − L̄i

}
.

(9)

Let t+ be the supremum of FIX(Φε,β) and P t+ ∈ M(N) the corresponding matrix. Since t+ ≥ t, by

RM of βi for all i ∈ N , we have that P t+ ≥ P t and thus, from (9), Ei(P
t+ , e) ≥ Ei(P

t, e). If there

is i ∈ N such that Ei(P
t+ , e) > Ei(P

t, e), then
∑

i∈N ei =
∑

i∈N Ei(P
t+ , e) >

∑
i∈N Ei(P

t, e) =∑
i∈N ei getting a contradiction. Thus, E(P t+ , e) = E(P t, e), which finishes the proof.

Appendix D: Proofs of Section 4

Proof. (Proposition 1)

Let ε = (N,L, e) ∈ F and
{
εn = (N,Ln, en)

}
n∈N be a sequence of financial systems converging

to ε. Let σ be a financial rule satisfying LHC and P ∈ σ(ε). By LHC, there exists a sequence of

clearing payment matrices
{
Pn ∈ σ(εn)

}
n∈N converging to P . Then, for the associated sequence of

equity values {E(Pn, en)}n∈N we have, for all i ∈ N ,

lim
n→∞

Ei (P
n, en) = lim

n→∞

(
eni +

∑
k∈N

Pn
ki −

∑
k∈N

Pn
ik

)
= ei +

∑
k∈N

Pki −
∑
k∈N

Pik

= Ei(P, e)

which proves E-CONT of σ.

Proof. (Lemma 3)
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Let σ be a proportional financial rule. Hence, σ satisfiesCB, LL, andAP. Let
{
εn = (N,Ln, en)

}
n∈N

be a sequence of financial systems converging to ε = (N,L, e), P ∈ σ(ε), and
{
Pn ∈ σ(εn)

}
n∈N be a

sequence of clearing payment matrices. By CB, 0 ≤ Pn ≤ Ln for all n ∈ N. Therefore, by the Bolzano-

Weierstrass theorem,7 we can suppose, w.l.o.g., that the sequence
{
Pn ∈ σ(εn)

}
n∈N converges to P ∗.

Let
{
E(Pn, en)

}
n∈N be the associated sequence of equity values. We claim that

{
E(Pn, en)

}
n∈N

converges to E(P, e).

To prove it, we first see that

E(P ∗, e) = E(P, e). (10)

By LL, AP, and Corollary 1, P̄n ∈ FIX(Φεn,PR) for all n ∈ N. Taking the limit when n → ∞ we have

that

P̄ ∗
i = lim

n→∞
P̄n
i

= lim
n→∞

min

{
eni +

∑
k∈N

PRk
i

(
N \ {k}, P̄n

k ,
(
Ln
kj

)
j∈N\{k}

)
, L̄n

i

}

=
CONT of PR

min

{
ei +

∑
k∈N

PRk
i

(
N \ {k}, P̄ ∗

k , (Lkj)j∈N\{k}

)
, L̄i

}
,

for all i ∈ N , where the last equality follows from the continuity of the proportional bankruptcy rule.

Thus, P̄ ∗ ∈ FIX(Φε,PR) and, consequently, E(P ∗, e) = E(P, e), which follows from Lemma 2 and the

observation that since P ∈ σ(ε), by LL, AP, and Corollary 1, P̄ ∈ FIX(Φε,PR).

Finally, for all i ∈ N , we obtain

lim
n→∞

Ei (P
n, en) = lim

n→∞

(
eni +

∑
k∈N

PRk
i

(
N \ {k}, P̄n

k ,
(
Ln
kj

)
j∈N\{k}

)
−

∑
k∈N

PRi
k

(
N \ {i}, P̄n

i ,
(
Ln
ij

)
j∈N\{i}

))
=

CONT of PR
ei +

∑
k∈N

PRk
i

(
N \ {k}, P̄ ∗

k , (Lkj)j∈N\{k}

)
−

∑
k∈N

PRi
k

(
N \ {i}, P̄ ∗

i , (Lij)j∈N\{i}

)
= Ei(P

∗, e)

=
(10)

Ei(P, e),

which concludes the proof.

Proof. (Proposition 2)

Let σ be a financial rule satisfying CB, LL, AP, and I. Let (N,L, e) ∈ F , P ∈ σ(N,L, e), and

i, j ∈ N such that ei = ej , Lij = Lji, Lik = Ljk, and Lki = Lkj for all k ∈ N \ {i, j}. For all

k ∈ N \ {ij}, since Lki = Lkj , by I we have that

Pki = Pkj . (11)

By LL, Ei(P, e) ≥ 0 and Ej(P, e) ≥ 0. If Ei(P, e) = Ej(P, e) we are done. If not, it is sufficient to

consider two cases: (a) Ei(P, e) > 0 and Ej(P, e) > 0; (b) Ei(P, e) > 0 and Ej(P, e) = 0.

In case (a), by AP and CB, Pik = Lik and Pjk = Ljk for all k ∈ N . In particular, Pij = Lij =

Lji = Pji. Hence, since Lik = Ljk for all k ∈ N \ {ij}, we have P̄i = L̄i = L̄j = P̄j . Moreover, by (11)

and Pij = Pji, we obtain

Ei(P, e) = ei +
∑

k∈N\{i}

Pki − L̄i = ej +
∑

k∈N\{j}

Pkj − L̄j = Ej(P, e).

7In real analysis, this result states that every bounded sequence in the finite-dimensional Euclidean space Rn has a

convergent subsequence.
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In case (b), by AP and CB, Pik = Lik for all k ∈ N and thus

P̄i = L̄i (12)

Then,

Ej(P, e) = ej +
∑

k∈N\{i,j}

Pkj + Pij − P̄j

= ej +
∑

k∈N\{i,j}

Pkj + Lij − P̄j

=
(11)

ei +
∑

k∈N\{i,j}

Pki + Lji − P̄j

≥
CB

ei +
∑
k∈N

Pki − L̄j

= ei +
∑
k∈N

Pki − L̄i

=
(12)

ei +
∑
k∈N

Pki − P̄i

= Ei(P, e),

in contradiction with Ei(P, e) > Ej(P, e) = 0.

Hence, in both cases, Ei(P, e) = Ej(P, e), which implies ETE.

Proof. (Proposition 3)

First, we show that [1] =⇒ [2]. Let σ be a financial rule compatible with β = (βi)i∈N fulfilling

LL and AP. Then, from CB of all βi, σ satisfies CB. Hence, by Proposition 2, if σ satisfies I then

also ETE.

Secondly, we show that [2] =⇒ [3]. Suppose that σ satisfies ETE, we prove that each bankruptcy

rule in β fulfills ETE. Indeed, select an arbitrary i ∈ N and let (N,E, c) ∈ B with i ∈ N \ N and

j, k ∈ N such that cj = ck. Define the associated financial system (N̄ , L, e) ∈ F , as in Subsection

2.3, being N̄ = N ∪ {i}; Llh = 0 for all l, h ∈ N , Lil = cl and Lli = 0 for all l ∈ N ; ei = E and

el = 0 for all l ∈ N . Next, we see that σ(N̄ , L, e) selects a unique payment matrix P . As σ satisfies

CB (received from CB of all βi), Plh = 0 for all l, h ∈ N and Pli = 0 for all l ∈ N . Moreover,

since σ is compatible with β, Pil = βi
l (N,E, c) for all l ∈ N , which is unique by definition of βi.

Thus, Ej(P, e) = ej +
∑

l∈N̄ Plj −
∑

l∈N̄ Pjl = Pij = βi
j(N,E, c) and, analogously, Ek(P, e) = Pik =

βi
k(N,E, c). To finish, observe that since ej = ek = 0, Ljl = Lkl = 0 for all l ∈ N̄ , Llj = Llk = 0 for

all l ∈ N and Lij = cj = ck = Lik, players j and k are symmetric in (N̄ , L, e) and then, by ETE,

βi
j(N,E, c) = Ej(P, e) = Ek(P, e) = βi

k(N,E, c), which proves ETE of βi.

Finally, we show that [3] =⇒ [1]. Let (N,L, e) be a financial system with i, j, k ∈ N such that

Lij = Lik, and let P ∈ σ(N,L, e). Then, as σ is compatible with β, by ETE of βi it holds that

Pij = βi
j(N \ {i}, P̄i, (Lil)l∈N\{i}) = βi

k(N \ {i}, P̄i, (Lil)l∈N\{i}) = Pik, which shows that σ satisfies

I.

Proof. (Proposition 4)

Let σ be a financial rule satisfying IM. Let (N,L, e), (N ′, L′, e′) be two related financial systems

as described in (6). Let P ∈ σ(N,L, e) then, by IM, there exist P ′ ∈ σ(N ′, L′, e′) satisfying the
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conditions in (7). From the relation between P and P ′, for all i ∈ N ′ \ {m}, it follows that

Ei(P
′, e′) = e′i +

∑
k∈N ′

P ′
ki −

∑
k∈N ′

P ′
ik

= e′i +
∑

k∈N ′\{m}

P ′
ki + P ′

mi −
∑

k∈N ′\{m}

P ′
ik − P ′

im

= ei +
∑

k∈N ′\{m}

Pki + Pmi +
∑

k∈N\N ′

Pki −
∑

k∈N ′\{m}

Pik − Pim −
∑

k∈N\N ′

Pik

= ei +
∑
k∈N

Pki −
∑
k∈N

Pik

= Ei(P, e).

Following parallel arguments, by IM, for all P ′ ∈ σ(N ′, L′, e′) there exist P ∈ σ(N,L, e) satisfying the

conditions in (7) and, consequently, for all i ∈ N ′ \ {m} we also obtain Ei(P
′, e′) = Ei(P, e). Thus, σ

satisfies NMC.

Proof. (Lemma 4)

Let σ be a proportional financial rule and ε = (N,L, e), ε′ = (N ′, L′, e′) two financial systems as

described in (6).

First, we prove item (a). Let P ∈ σ(ε) and define P ′ ∈ M(N ′) as in (7) from P . Observe that P ′

is well defined and unique. We are going to prove that P ′ ∈ σPR
max(ε

′). Suppose, w.l.o.g., L̄′
i ̸= 0 for

all i ∈ N ′. Then, for all i, j ∈ N ′, we claim that

P ′
ij =

L′
ij

L̄′
i
P̄ ′

i. (13)

First, let us note that if i ∈ N ′ \ {m}, then

P̄ ′
i =

∑
j∈N ′ P ′

ij

=
∑

j∈N ′\{m} P
′
ij + P ′

im

=
∑

j∈N ′\{m} Pij + Pim +
∑

k∈N\N ′ Pik

= P̄i.

(14)

Otherwise, if i = m we have that

P̄ ′
m =

∑
j∈N ′ P ′

mj

=
∑

j∈N ′

(
Pmj +

∑
k∈N\N ′ Pkj

)
=

Pkj=Pmj

∑
j∈N ′

(
Pmj +

∑
k∈N\N ′ Pmj

)
=

∑
j∈N ′ (Pmj + (|N \N ′|)Pmj)

= (|N \N ′|+ 1)
∑

j∈N ′ Pmj

= (|N \N ′|+ 1)P̄m,

(15)

where the last equality comes from the fact that Pmj = 0 for all j ∈ N \N ′.

Now, to prove (13) we distinguish three cases:

Case 1: i, j ∈ N ′ \ {m}. In this situation,

P ′
ij = Pij =

Lij

L̄i
P̄i =

(14)

L′
ij

L̄′
i
P̄ ′

i.
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Case 2: i ∈ N ′ \ {m} and j = m. In this situation,

P ′
im = Pim +

∑
k∈N\N ′ Pik

=
(
Lim +

∑
k∈N\N ′ Lik

)
P̄i

L̄i

= L′
im

P̄i

L̄′
i

=
(14)

L′
im

L̄′
i
P̄ ′

i.

Case 3: i = m and j ∈ N ′ \ {m}. In this situation,

P ′
mj = Pmj +

∑
k∈N\N ′ Pkj

=
Pkj=Pmj

Pmj +
∑

k∈N\N ′ Pmj

=
Lmj

L̄m
P̄m(|N \N ′|+ 1)

=
(15)

Lmj

L̄m
P̄ ′

m

=
L′
mj/(|N \N ′|+ 1)

(
∑

k∈N ′\{m} L
′
mk)/(|N \N ′|+ 1)

P̄ ′
m

=
L′
mj

L̄′
m
P̄ ′

m.

Thus, (13) holds.

Next, we show that P̄ ′ ∈ FIX(Φε′,PR). Indeed, if i ∈ N ′ \ {m}, then

P̄ ′
i = P̄i

= min

ei +
∑

k∈N ′\{m}

Pki + Pmi +
∑

k∈N\N ′

Pki, L̄i


= min

e′i +
∑

k∈N ′\{m}

P ′
ki + P ′

mi, L̄
′
i


= min

{
e′i +

∑
k∈N ′

P ′
ki, L̄

′
i

}

=
(13)

min

{
e′i +

∑
k∈N ′

L′
ki

L̄′
k
P̄ ′

k, L̄′
i

}

= min

{
e′i +

∑
k∈N ′

PRk
i

(
N ′ \ {k}, P̄ ′

k,
(
L′
kj

)
j∈N ′\{k}

)
, L̄′

i

}
.

In a similar way, and taking into account that P̄ ′
m = (|N \N ′|+ 1)P̄m, we obtain

P̄ ′
m = min

{
e′m +

∑
k∈N ′

PRk
m

(
N ′ \ {k}, P̄ ′

k,
(
L′
kj

)
j∈N ′\{k}

)
, L̄′

m

}
.

Hence, P̄ ′ ∈ FIX(Φε′,PR). Moreover, since σ satisfies CB, LL, and AP, for all P ′′ ∈ σ(ε′) it holds that

P̄ ′′ ∈ FIX(Φε′,PR). Finally, making use of Lemma 2, we have that E(P ′, e′) = E(P ′′, e′). But then, for
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all i ∈ N ′ \ {m}, we obtain

Ei(P
′′, e′) = Ei(P

′, e′)

= e′i +
∑
k∈N ′

P ′
ki −

∑
k∈N ′

P ′
ik

= ei +
∑

k∈N ′\{m}

P ′
ki + P ′

mi −
∑

k∈N ′\{m}

P ′
ik − P ′

im

= ei +
∑

k∈N ′\{m}

Pki + Pmi +
∑

k∈N\N ′

Pki −
∑

k∈N ′\{m}

Pik − Pim −
∑

k∈N\N ′

Pik

= ei +
∑
k∈N

Pki −
∑
k∈N

Pik

= Ei(P, e).

To conclude, we prove item (b). Let P ′ ∈ σ(ε′) and define P ∈ M(N) as follows: for all i, j ∈
N ′ \ {m}, Pij = P ′

ij ; for all i ∈ N ′ \ {m} and all j ∈ N \ N ′ ∪ {m}, Pij = P ′
im/(|N \ N ′| + 1) and

Pji = P ′
mi/(|N \N ′|+1); and for all i, j ∈ N \N ′∪{m}, Pij = 0. Note that P̄i = P̄ ′

i for all i ∈ N ′\{m};
P̄j = P̄ ′

m/(|N \N ′|+1) for all j ∈ N \N ′ ∪{m}. From this point, the same arguments as before lead

to P̄ ∈ FIX(Φε,PR) and that Ei(P, e) = Ei(P
′, e′) for all i ∈ N ′ \ {m}. This concludes the proof.

References

[1] Aumann R, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the Talmud.

Journal of Economic Theory 36: 195-213.

[2] Caccioli F, Barucca P, Kobayashi T (2018) Network models of financial systemic risk: a review.

Journal of Computational Social Science 1: 81-114.

[3] Calafiore G, Fracastoro G, Proskurnikov A (2022) Optimal payments in a financial contagion

model. arXiv:2103.10872.

[4] Calleja P, Llerena F, Sudhölter P (2021) On manipulability in financial systems. Discussion Papers

on Economics No. 8/2021. University of Southern Denmark (SDU).

[5] Calleja P, Llerena F (2022) Non-manipulability by clones in bankruptcy problems. Economics

Letters, 221, 110921.

[6] Chen C, Iyengar G, Moallemi CC (2013) An axiomatic approach to systemic risk. Management

Science 59(6): 1373-1388.

[7] Chun Y (1988) The proportional solution for rights problems. Mathematical Social Sciences 15:

231-246.
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