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Abstract. Accurate segmentation of pathological tissue, such as scar
tissue and edema, from cardiac magnetic resonance images (CMR) is
fundamental to the assessment of the severity of myocardial infarction
and myocardial viability. There are many accurate solutions for auto-
matic segmentation of cardiac structures from CMR. On the contrary, a
solution has not as yet been found for the automatic segmentation of my-
ocardial pathological regions due to their challenging nature. As part of
the Myocardial Pathology Segmentation combining multi-sequence CMR
(MyoPS) challenge, we propose a fully automatic pipeline for segment-
ing pathological tissue using registered multi-sequence CMR, images se-
quences (LGE, bSSFP and T2). The proposed approach involves a two-
staged process. First, in order to reduce task complexity, a two-stacked
BCDU-net is proposed to a) detect a small ROI based on accurate my-
ocardium segmentation and b) perform inside-ROI multi-modal patho-
logical region segmentation. Second, in order to regularize the proposed
stacked architecture and deal with the under-represented data prob-
lem, we propose a synthetic data augmentation pipeline that generates
anatomically meaningful samples. The outputs of the proposed stacked
BCDU-NET with semantic CMR synthesis are post-processed based on
anatomical constrains to refine output segmentation masks. Results from
25 different patients demonstrate that the proposed model improves 1-
stage equivalent architectures and benefits from the addition of synthetic
anatomically meaningful samples. A final ensemble of 15 trained models
show a challenge Dice test score of 0.66540.143 and 0.698+0.128 for scar
and scar+edema, respectively.

Keywords: Cardiac Magnetic Resonance - Myocardial Pathology Seg-
mentation - Deep Learning - BCDU-Net - LGE - bSSFP - T2.
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1 Introduction

Myocardial viability assessment is key in the diagnosis of patients suffering from
myocardial infarction and ischemic heart disease, among others. Cardiovascular
magnetic resonance (CMR) is a well-established imaging technique that provides
anatomical and functional information of the heart. Multiple sequences with dif-
ferent properties can be acquired, registered and combined to obtain a complete
viability assessment. Late gadolinium enhancement magnetic resonance imaging
(LGE-MRI) is widely used to assess presence, location and extent of regional
scar or fibrotic tissue in the myocardium. T2-weighted CMR images are able to
identify edema and acute or recent myocardial ischemic injury, and have been
employed to distinguish acute coronary syndrome (ACS) from non-ACS as well
as acute from chronic myocardial infarction. On the other hand, balanced -
Steady State Free Precession (bSSFP) cine sequence presents clear boundaries
for the cardiac anatomical regions, often unclear in the first two modalities due
the presence of pathological regions.

LGE and T2-weighted are well-established techniques to many CMR exami-
nations, but there are challenges in their quantification and interpretation due to
a variety of factors. First, image analysis depends on image quality which can be
affected by CMR acquisition protocol. Suboptimal parameters such as inversion
time (TI), repetition time (TR), echo time (TE) need to be correctly identified
in order to maximize the difference in intensity curves between pathological and
non pathological regions, but also to minimize inter-subject acquisitions vari-
ability. Additionally, timing after contrast administration in LGE is important
to allow sufficient wash-out of the contrast agent. On top of that, the variabil-
ity in morphology and texture of infarcted, edemic areas and the combination
of both leads to a difficult automation of the process. For this reason, manual
and automated techniques with no user interaction for infarct borders detection
often results in significant within-patient variability [1-4].

In order to explore the complementary nature of existing modalities for the
purpose of myocardial pathology segmentation, the MyoPS challenge is pro-
posed. It includes a challenging data distribution of 45 multi-modality subjects
with the goal of doing an accurate automatic infarcted and edemic regions seg-
mentation.

In this work, we propose a challenge solution based on a stacked BCDU-NET
late fusion architecture including localisation and segmentation stages. Addition-
ally, we tackle the insufficent training size by means of state-of-the-art generative
adversarial models [5}[6]. To do so, we propose an image synthesis strategy based
on Semantic Image Synthesis with Spatially-Adaptive Normalization [7]. The
results demonstrate that the proposed model improves 1-stage equivalent ar-
chitectures and benefits from the addition of synthetic anatomically meaningful
samples.
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2 Materials and methods

2.1 Dataset

A set of 45 cases of multi-sequence CMR are collected for the challenge. Each case
refers to a patient with three CMR sequences, i.e., LGE, T2 and bSSFP CMR.
All clinical data have got institutional ethic approval and have been anonymized.
The data released have been pre-processed using the MvMM method [9,/10] to
align the three-sequence CMR into a common space and to resample them into
the same spatial resolution.

The provided gold standard labels of interest for the challenge are LV my-
ocardial edema (label 1220) and LV myocardial scars (label 2221). Additional
annotations of cardiac structures are provided: left ventricular (LV) blood pool
(label 500), right ventricular blood pool (label 600) and LV normal myocardium
(label 200). Thus, the evaluation of the test data will be focused on the myocar-
dial pathology segmentation, i.e., scars and edema. The inter-observer variation
of manual scar segmentation, in terms of Dice, was 0.524340.1578, which gives
an insight of the difficulty of the task.

2.2 Proposed Method

An overview of the proposed automated segmentation method is presented in
Figure [I] The approach consists of two stacked segmentation networks. In brief,
after preprocessing, we employ a computationally efficient U-Net [12] on the
bSSEFP CMR to localize the rounded shape of myocardium which includes the
LV normal myocardium, LV myocardial edema and scar tissue. Subsequently,
the bSSFP, T2-weighted and LGE CMR, are cropped using the bounding box
of the localized myocardium. Histogram normalization is then applied on the
cropped part of imgages. During the second stage, the cropped multi-sequence
CMR is passed to a higher capacity model, the BCDU-Net [11], to segment
the myocardium scar and edema. The output is finally post-processed based
on anatomical constrains to refine output segmentation masks. The individual
stages are explained in detail in the following sections.

Preprocessing Before the training process, all images were cropped so that
they had a pixel size of 256 x 256. Furthermore, all images were normalised
between 0 and 1 within the Region Of Interest (ROI) for each independent
modality.

Localization Network The pathological tissue is located within LV blood pool
and LV normal myocardium. Therefore, we first employ a network to localize
the myocardial ROI, i.e. a binary segmentation, using cine-MRI as the input
modality. Cine-MRI was chosen over the other modalities for this task because it
is the most accurate for myocardial boundary detection due to its clear structure
definition and lack of appearance of pathological regions. This task will reduce
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Fig. 1. Overview of the proposed stacked network.

the search space when dealing with scar and edema segmentation by the stacked
network. To do that, the myocardium, edema, and scar labels are considered as
the foreground, and the other labels (left ventricular blood pool, right ventricular
blood pool) as the background. U-Net, [12], is a popular convolutional network
architecture for fast and precise segmentation of images which is built upon the
Fully Convolutional Network (FCN). The main advantages of this network is
that is capable to work well with few training samples, and the network has the
potential to make use of the global location and context information at the same
time.

This symmetric network is separated in three parts of encoding (contracting),
Bottleneck, and decoding (expanding) paths. The encoding path is composed of
4 blocks. In each block we have two 3 x 3 convolutional layers followed by one
2 x 2 Max Pooling function and ReLU. In each block, the number of feature
maps are doubled, and the size of feature get half. The contracting path aims at
progressively capturing context of the input image and increasing the dimension
of feature representation block by block. These coarse contextual information are
then transferred into the decoding path through skip connections. The output of
the last block of the encoder is first passed to the bottleneck which is built by two
3 x 3 convolutional layers. At the end of bottleneck we have a high dimensional
image representation with high semantic information.

The decoding path is composed of four blocks. Each block starts with per-
forming a deconvolution (up-sampling) over the output of previous layer. The
corresponding feature maps in the encoding path are then copied to this layer,
and are then concatenated with the output of deconvolutional layer. These fea-
tures are then go through one 3 x 3 convolutional layers. In each block of the
decoder, the size of the feature maps gradually increases and the number of
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feature maps gradually decreases. The target of decoder in U-Net is to enable
precise localisation by using transposed convolutions and recovering the size of
the segmentation. Since that data is imbalanced and most of the pixels have
background label, we use the weighted binary cross entropy loss to train the
network.

In our U-net implementation, for efficiency purposes, the number of classes
is used as the number of feature maps in the deconvolutions of the decoding
path, as shown in [8]14]. It is also worth mentioning that we do not need a very
accurate segmentation result here, since we just crop the smallest bounding box
around the myocardium with a small margin of 10 pixels.

Normalisation The output of the localisation network provides the approxi-
mate location of the myocardial region. Therefore, by considering the fact that
the myocardial infarcted and edemic regions are within such ROI, we can ignore
unwanted background information by finding the smallest bounding box with
a small margin around the myocardium. Moreover, an histogram equalisation
is applied by modality, avoiding the effect of unuseful background pixels in the
pixel histogram redistribution.

Segmentation We exploit the BCDU-Net [11] to segment the myocardial scar
and edema from the normalized myocardium of the three input modalities. The
BCDU-Net is an extension of U-Net by including bidirectional convolutional
LSTM (BConvLSTM) [13] in the skip connection and reusing feature maps with
densely convolutions. The output features of the deconvolutional layer contain
more semantic information while the features extracted by the corresponding
encoding layer have higher resolution. To combine these two kinds of features, the
authors replaced the simple concatenation of the skip connection with nonlinear
functions, i.e. BConvLSTM in the BCDU-Net which resulted in more precise
segmentation output.

Moreover, the idea of densely connected convolutions is utilized in the bottle-
neck of the BCDU-Net. By having a sequence of convolutional layers, the network
may learn redundant features, therefore, in the bottleneck of the BCDU-Net, fea-
tures which are learned in each block are passed forward to the next block. The
dense blocks help the method to enhance information flow and learn a diverse set
of features based on the collective knowledge gained by previous layers. Further-
more, the convergence speed of the network is accelerated by employing Batch
Normalization (BN) after the up-convolution filters.

Like U-Net, the encoding path of the BCD-Net includes four steps. Each
step comnsists of two 3 x 3 convolutional filters followed by a 2 x 2 max pooling
function and ReLU. The depth of feature maps are doubled at each step and
the size of each feature map get half. There are two states of BConvLSTM in
the skip connection of the BCDU-Net. The second state receives the output of
the previous deconvolutional function and the input data of the first one its
corresponding feature maps in the encoding path. The output of the second
BConvLSTM is then passed to the two 3 x 3 convolutional filters. Like original
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U-Net, the decoding path doubles the size of each feature map and halves the
number of feature channels layer by layer to reach the original size of the input
image after the final layer. To train the network, we use Dice score-based loss.

We propose to combine the three input modalities with a late fusion ap-
proach. In other words, the network is trained separately for the three modalities
and before the last convolutional layer after the last deconvolutional layer, the
three networks are merged.

Implementation Details All trainings were performed on a NVIDIA 1080
GPU with a batch size of 8. The Adam optimization function with learning rate
equal to le — 4 was used to train both networks. Each network is trained with
50 as the number of epochs. The input size was 256 x 256 for both localization
and segmentation networks.

2.3 Data augmentation strategy

Online augmentation A series of common augmentation techniques were ap-
plied to each batched image independently. For the first stacked u-net, these
augmentations included random rotations between -15° and 15° and random
scaling and offsets of a maximum of 30 pixels. For the second stacked u-net
the offset augmentation is avoided due to the fact that images were already
center-cropped.

Offline augmentation The rationale behind the proposed image synthesis is
the insufficient training sample size. Low number of images, variability in modal-
ity acquisitions, in location and extent of pathological regions can cause loss of
generalisation in CNN-based segmentation algorithms. Thus, in an effort to in-
crease the number of annotated multi-sequence images, semantic image synthe-
sis from annotated mask to multi-sequence CMR is performed in such way that
new multi-modality images can be generated from altered versions of real anno-
tations. To achieve this, the Semantic Image Synthesis with Spatially-Adaptive
Normalization (SPADE) method [7] was implemented using the PyTorch library
provided at this linkf. Previous methods [6] directly feed the semantic layout as
input to the deep network, which is then processed through stacks of convolution,
normalization, and nonlinearity layers. In [7], is shown that this is suboptimal
as the normalization layers tend to wash away semantic information, desired for
accurate pathology tissue and cardiac structure generation. To address the is-
sue, SPADE uses the input semantic annotation for modulating the activations
in normalization layers through a spatially-adaptive, learned transformation. A
general overview of the SPADE multi-modality generative model is represented
in Figure [2|
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Fig. 2. Overview of the proposed SPADE generative model.

Two SPADE models were generated. For the training/validation subset, a
model with 71 training images (17 subjects) was used and 31 validation images
(8 subjects) were kept aside. For the final model, all the subjects were used to
train an additional SPADE model.

Both models were trained during 45 epochs with a morphological augmenta-
tion consisting of warping epicardium contours between pairs of subjects. Both
trainings took 24 hours on a NVIDIA 1080 GPU with a batch size of 2. The
Adam optimizer was used with learning rate of 2x10e — 4, with first and sec-
ond moment decay rates of 0 and 0.9, respectively. The Variational Autoencoder
(VAE) was generated with a latent dimension of 200.

Once the models were trained, a set of morphological operations were de-
fined in order to generate different versions of real annotations. The resulting
anatomical consistent annotations were used then to feed the SPADE models
and generate synthetic multi-modality images with controlled characteristics:

Style transfer. By training the SPADE with a Variational Autoencoder (VAE),
the style of the images can be transferred, generating a variety of images with
different pathology appearances for the same morphology. The encoder and gen-
erator of our SPADE architecture form a VAE, in which the encoder tries to
capture the style of the image, while the generator combines the encoded style
and the segmentation mask information via the SPADESs to reconstruct the orig-
inal image. The encoder also serves as a style guidance network at test time to
capture the style of target images. For training the VAE, KL-Divergence loss
term was used.

Every training image was used to generate a set of latent representations
of size 200. The latter were used alone -with random linear combinations and
scaling factors- or in conjunction with the methods described below in order to
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produce the final synthetic multi-modality images. The effect of this technique
is shown in Figure [3] where an original image in first row is transferred to two
additional pseudo-random styles, rows 2 and 3.

PI0|®~
SlO® ~

DR

Fig. 3. Style modifications.

Epicardium warpings. As shown in Figure[4] a set of 8 equidistant landmarks
were placed in the epicardial contour of the source and target annotations. Epi-
cardial contours were then warped between pairs of training subjects by means
of piecewise affine transformations.
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Fig. 4. Epicardial contour warping between a pair of subjects.

Scar and edema rotations. As shown in Figure[7] scar, edema and myocardium
labels were combined in a binary mask. The epicardium was then converted to a
circular shape, rotated and reconverted to the original shape taking profit of the
same technique used in the Epicardium warpings section. This set of transforma-
tions was then also applied to the original labels, generating a rotated version of
the scar and edema within the myocardium. To ensure that the generated seg-
mentations were not too far from the distribution seen by the SPADE generator
while covering the label space, the rotation was fixed to four possible values of
[-30°, -20°,20°,30°].

20332

Fig. 5. Morphological operations involved in the scar rotation process.

Scar and edema dilations and erosions. A set of random complementary di-
lations and erosions with a random kernel radius from 1 to 3 pixels were applied
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to the training annotations. By fixing one of them for the scar label and ap-
plying the opposite one for the edema label, we avoid an empty gap between
both. Random deletion of edemic labels is also included in this stage. In Figure
[l shows the effect of an eroded scar and dilated edema.

Fig. 6. Morphological operations involved in the scar and edema dilation and erosion
process.

Offline datasets A group of datasets is generated by means of the augmen-
tation strategies described above. More precisely, for each of the transformable
labels, i.e. non-empty annotations, the original images are used up to three
times to keep the training size relatively small. This methodology leads to the
creation of a set of four datasets, one per type of augmentation, i.e. style transfer
alone, pathology rotations, epicardial warping and pathology dilation/erosion. It
should be noted that the resulting datasets contain the same amount of real and
synthetic data. Additionally, for all datasets, random style transfers are applied
after the annotation manipulation in the synthesis stage. In total, each dataset
contains 415 images. A fifth dataset is generated by combining all individual four
datasets. This dataset consists of 1660 images and is used to train and validate
the models. The same procedure is repeated for the final ensemblea using the
SPADE trained over all the training data. This leads to datasets of 597 and 2388
images, for the partial augmentations and the addition, respectively.

2.4 Post-processing

The myocardium, scar and edema-scar segmentations produced from the stacked
networks were morphologically processed to satisfy certain anatomical constraints.
In short axis CMR, the shape of the myocardium closely resembles that of a ring
throughout the apex-base slices. Therefore, slices for which the automatically
segmented myocardium is a partial ring must be detected and corrected. To this
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end, the skeleton of the myocardium was calculated for each slice. Subsequently,
spur skeleton branches, i.e. branches consisting of pixels with only one neigh-
boring pixel, were iteratively pruned. For non-complete rings, iterative pruning
results in the removal of the entire skeleton. In such cases, the missing arc of the
partial ring was completed by adding a circular ring whose thickness is equal
to the maximum thickness of the detected myocardium. To construct the ring,
the centroid of the convex hull of the detected myocardial region was used as
its center. The thickness of the myocardium was given by the distance of the
skeleton points to the closest non-myocardial pixel and the maximum among all
points was considered. The corrected myocardium was subsequently used to re-
fine the scar segmentation, while an additional step was necessary in the case of
the edema-scar region. More precisely, edema can be noticed in the myocardium,
but also in the LV blood pool close to the border with the myocardium. There-
fore, an extended myocardial mask was created, which contained neighboring
LV regions where edema could be localized. In order to achieve this, an artificial
ring was constructed by using the myocardium skeleton and the distance of ev-
ery pixel to it. Pixels belonging to the myocardium or the region enclosed by it
were considered to belong to the extended myocardial mask if they were within
a distance smaller than a threshold from the skeleton points. This threshold is
defined as the maximum myocardium thickness plus a small margin of 6 pixels
to account for errors in the myocardium segmentation.

As a first step in the process of refining the scar tissue, 3D components smaller
than 100 voxels were considered to be artifacts and were, therefore, excluded
from the segmentation mask. Despite good localization of the scar region by
the network, we observed a tendency to underestimate the scar region and to
produce multiple disconnected components instead of one continuous region.
To tackle this issue, the components were connected by using their convex hull
in cases where the output of the network consisted of more than one connected
components. The area of the convex hull inside an eroded version of the extended
myocardium was eliminated. For the erosion, a disk element with radius equal to
20% of the maximum myocardium radius was used. Furthermore, morphological
closing of the image with a disk object of radius equal to 90% of the myocardium
maximum thickness was performed to enlarge the component’s border without
losing the form of the original shape boundary in cases where only one component
was observed. Lastly, areas outside the corrected myocardium and the joined
edema-scar mask regions were excluded from the final scar segmentation.

In the case of the refinement of the joined edema-scar mask, 3D components
of size smaller than 300 voxels were considered as artifacts. In addition, regions
of edema-scar outside the extended myocardial area were excluded from the
final segmentation by performing element-wise multiplication of the artificial
extended myocardium region mask with the edema-scar segmentation.
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3 Results

3.1 Protocol and Metrics of the challenge

In order to train our models and generate the ablation study, the training set
is divided in two partitions. From the original 25 subjects, 8 of them are kept
aside for validation, with the aim of preserving a large pool of subjects in the
validation stage. The decision is motivated by the variability in image quality
and the presence of difficult cases that may lead to a sub-optimal model selection.
Moreover, this allows us to have a sufficient validation size to evaluate the post-
processing algorithm. For the same reason, we avoided to preserve a test partition
that leads to a conflict between validation and testing results and generates
additional uncertainty when selecting the best method. After model generation,
selection, evaluation and post-processing, 3D Dice scores are computed to select
the final models taking into consideration the post-processing gains. For all the
experiments, 2D Dice score is used as objective loss function, except for the
localisation U-net, where the selected loss is binary weighted cross-entropy.

3.2 Ablation study

We performed a detailed ablation study in order to quantify the effect of every
component of the proposed methodology individually. The results in terms of
2D Dice score (mean + standard deviation), which is the accuracy evaluation
metric used in the loss function of this work, are summarized in Table[I] In brief,
our first experiment involved segmenting the scar and scar+segmentation using
solely the original data without performing inter-stage normalization or offline
augmentation. This resulted in a Dice score equal to 0.202 + 0.286 and 0.170 +
0.253 for scar and scar+edema, respectively. The low accuracy demonstrates the
extremely challenging nature of the task and the need for incorporating a ROI-
based normalization between stages and novel augmentation strategies. To test
our assumption, we added the inter-stage cropping and normalization step to
enhance the contrast between scar and edema and the rest of the tissue within
the myocardial ROI where the pathological tissue is expected to localized. The
mean dice score increased by 24.70% for scar and 33.80% for scar+edema.

We then compared the improvement offered by any of the four types of offline
augmentation, i.e. style transfer alone, pathology rotations, epicardial warping
and pathology dilation/erosion. Style transfer produced an improvement in terms
of Dice by 9% and 14.4% for scar and scar+edema, respectively. The effects of
epicardium warping and scar and edema rotation, were lower than that of style-
transfer, but yet non-negligable. More precisely, the mean dice increased by 4.1%
for scar and 7.8% for scar+edema in the case of epicardium warping. Similarly,
when scar and edema rotation were applied the offered improvement was 1.7%
for scar and 4.6% for scar+edema. Interestingly, scar and edema dilation and
erosion did not provide any significant improvement in the scar tissue, but offered
a 10.4% mean improvement in Dice for the scar+edema region. Subsequently,
we combined the four types of data-augmentation. We observed a Dice score
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Fig. 7. Segmentation examples combining different sets of training data, showing the
improvement of SPADE synthesis.

example 1

of 0.518 + 0.286 and 0.617 £ 0.253 for scar and scar+edema, respectively. This
indicates that for the case of pathological tissue segmentation the most effective
augmentation type is style transfer, while morphological augmentations have
a more limited effect. We speculate that this might be related to the highly
irregular shape of the pathological tissue. However, these types of morphologi-
cal augmentations might be important in other more regular structures. In this
work, to account for possible variability found in the test sample non present in
the training set, for the final model, we decided to use the combination of all aug-
mentation types, presented as ” All spade” in Table [I| Nonetheless, future work
will focus on using the style transfer only for pathological tissue segmentation.

Lastly, we evaluated the improvement offered by applying post-processing on
the outputs of the localization and segmentation networks. A visual example of
the improvement can be seen in Figure 8] Post-processing produces a continuous
scar region, while both edema and scar after post-processing are localized within
the myocardial area and in the close vicinity of left ventricle, as physiologically
expected.

Table 1. 2D Dice score (mean £ standard deviation) of the proposed method for scar
and scar+edema for different data.

lData [ Scar [Scar + Edema‘
Original data 0.202 £ 0.286| 0.170 4+ 0.253
Original data + cropping and normalizing|0.449 £ 0.261| 0.508 4 0.243
Style transfer 0.548 £+ 0.250| 0.640 + 0.192
Epicardium warping 0.490 £ 0.260| 0.586 + 0.222
Scar and edema rotation 0.466 + 0.241] 0.554 4+ 0.224
Scar and edema dilation and erosion 0.458 + 0.299| 0.600 £ 0.224
All spade 0.518 £ 0.286| 0.617 4+ 0.253
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3.3 Challenge results

In order to obtain the final predictions, two ensembles are generated. For the first
ensemble, a set of 5 models is generated with 10 consecutive training samples and
5 consecutive validation samples, with a roll factor of 5. For the second ensemble,
a set of 15 models is generated with 22 consecutive training samples and 3
consecutive validation subjects, with a roll factor of 2, making the validation set
to share one subject between consecutive models in the case of the 15 models
ensemble.

The confidence maps of each one of the 5 models are averaged together.
The final predictions of the 20 unseen test subjects provided by the challenge
organization are defined as the maximum probability of each pixel belonging to
each class, maximizing the expected results and reducing the variance. The same
procedure was applied to the 15 models ensemble. After that, post-processing,
as described in Section 2.4, is applied to further enhance the model’s output.
The effect of the ensemble size can be observed in Table 2] The bigger ensemble
obtained better results due to the bigger training sizes. The effect of the low
validation size was noticeable as a noisier validation curve, and attenuated by
means of a greater regularisation power, with an overall improved accuracy.
The quantitative effect of post-processing is also appreciated. The 15 models
ensemble captured a greater number of non-trivial unconnected components. In
combination with the convex hull process described in Section 2.4, for the 15
models ensemble the post-processing generated an improvement in accuracy of
2.9% for scar and 1.1% for scar+edema, respectively.

Table 2. 3D Dice score for the final testing set of 20 subjects.

lData [ Scar [Scar + Edemal
5 models ensemble 0.62540.255| 0.677£0.146
5 models ensemble 4 post-processing [0.635+0.281| 0.692+0.143
15 models ensemble 0.636+0.243| 0.687+0.131
15 models ensemble + post-processing|0.6654+0.241| 0.6984+0.128

4 Discussion

This work proposes a novel approach to address automatic multi-sequence CMR
pathology segmentation. The method is based on a two-staged process and lever-
ages advanced state-of-the-art deep learning techniques. CMR pathology seg-
mentation is a particularly challenging task even for the expert clinician due to
the large variability in imaging quality and morphology of pathological regions.
To tackle this limitation, we focus on reducing the task complexity. To this end,
a localisation U-net is used to localize the myocardial ROI. Subsequently, the
detected ROI is used to partially address the problem of intra- and inter-subject
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Fig. 8. Improvement offered by applying post-processing on the outputs of the local-
ization and segmentation networks. On the top row, a slice from the bSSFP (left),
T2-weighted (middle) and LGE (right) CMR are provided for one subject of the train-
ing dataset used as validation subject during training. On the bottom row, the corre-
sponding manual segmentations for myocardium, scar and edema (left), the combined
output of the two networks before (middle) and after (right) post-processing are pro-
vided. Post-processing permits to connect the two disconnected components produced

by the network and constrain the segmentation within the myocardial area and neigh-
boring LV area.
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variability in signal intensity by using the bounding box of the ROI to crop the
CMR images and perform a refined normalisation within the cropped region. The
normalised CMR are then fed to a BCDU-net in order to perform the pathologic
tissue segmentation. BCDU-net effectiveness has been previously demonstrated
and is related to the bidirectional flow of the gradient. In addition, we address the
problem of insufficient training examples by means of multi-modality semantic
image synthesis using morphological and style transformations. This approach
increases the variability of the training samples in terms of the location of the
infarcted and edemic tissues within the myocardium, as well as, in terms of
their appearance. The validation shows the effect of the stacked architecture
with inter-stage normalisation, giving an insight about the importance of stan-
darisation for multi-modality medical imaging acquisitions. Moreover, consistent
results across the different semantic manipulations and their respective synthesis,
indicate the potential of this set of transformations for enriching and improv-
ing generalization of multi-modality cardiac pathology segmentation algorithms.
Future work includes the implementation of an end-to-end model as well as the
exploration of the generated synthetic data in detail with the aim of enhancing
interpretability and quality of the image synthesis methods.
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