
Citation: Santolino, M.; Céspedes, L.;

Ayuso, M. The Impact of Aging

Drivers and Vehicles on the Injury

Severity of Crash Victims. Int. J.

Environ. Res. Public Health 2022, 19,

17097. https://doi.org/10.3390/

ijerph192417097

Academic Editor: Paul B. Tchounwou

Received: 12 October 2022

Accepted: 11 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

The Impact of Aging Drivers and Vehicles on the Injury
Severity of Crash Victims
Miguel Santolino 1 , Luis Céspedes 2 and Mercedes Ayuso 1,*

1 Department of Econometrics-Riskcenter-IREA, University of Barcelona, 08034 Barcelona, Spain
2 Zurich Insurance and Riskcenter-IREA, 08034 Barcelona, Spain
* Correspondence: mayuso@ub.edu

Abstract: Against a general trend of increasing driver longevity, the injuries suffered by vehicle
occupants in Spanish road traffic crashes are analyzed by the level of severity of their bodily injuries
(BI). Generalized linear mixed models are applied to model the proportion of non-serious, serious,
and fatal victims. The dependence between vehicles involved in the same crash is captured by
including random effects. The effect of driver age and vehicle age and their interaction on the
proportion of injured victims is analyzed. We find a nonlinear relationship between driver age and
BI severity, with young and older drivers constituting the riskiest groups. In contrast, the expected
severity of the crash increases linearly up to a vehicle age of 18 and remains constant thereafter at
the highest level of BI severity. No interaction between the two variables is found. These results are
especially relevant for countries such as Spain with increasing driver longevity and an aging car fleet.
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1. Introduction

Road traffic crashes constitute a major public health concern worldwide. Approx-
imately 1.3 million people die each year as a result of traffic accidents, and between 20
and 30 million people suffer non-fatal injuries [1]. To design effective strategies to limit
the number of victims of such events, we need a better understanding of the risk factors
affecting the likelihood of being involved in a road crash and of its severity. This study
seeks to take a step in that direction.

Our aim here, therefore, is to analyze the road crash risk factors that affect the expected
proportion of bodily injury (BI) victims by level of severity. To do so, this paper analyzes the
injuries suffered by vehicle occupants in traffic crashes on Spain’s roads using a BI severity
level. We use official police data recording crashes involving victims in 2016 and examine a
series of risk factors associated with the vehicle, the driver, and the crash itself considered
as having a significant impact on the expected proportion of vehicle occupants suffering
non-serious (slight), serious, and fatal injuries in a crash. Identifying the factors that affect
road safety and understanding the impact of different vehicle attributes should help in
the development of new safety features and improved transportation safety programs. In
our analysis of factors that affect the expected number of injured occupants by level of
BI severity, we pay particular attention to driver age, vehicle age, and the interaction of
the two.

The contribution of this study is threefold: First, the methodology we employ is able
to capture the heterogeneity attributable to the involvement of more than one vehicle in the
same crash; second, any prior form of association between driver age and vehicle age, on
the one hand, and the expected severity of the motor crash, on the other, is not stated, but
rather is determined by the data; and, third, the potential interaction between driver age
and vehicle age that might enhance the impact on expected BI severity is fully investigated.

A number of studies indicate that the effect of driver age is nonlinear both with
crash severity—with young and old drivers constituting the riskiest groups [2–4]—and
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with the probability of causing a crash [5]. Recent research efforts have focused on older
drivers, given their increasing longevity and the impact of aging on road traffic crash injury
rates [6–8]. Researchers have also been interested in the shape of the relationship between
crash severity and vehicle age. Here, the accelerated incorporation in recent decades of
technological safety improvements in newer vehicles means the latest generations of cars
are associated with lower probabilities of injury and fatality in road crashes [9–14]. Narváez-
Villa et al. [15] report that drivers of all ages reduce their mileage as their vehicles age,
suggesting that at equal exposure, the probabilities of crashes and, therefore, of potential
injury are even smaller. Against a backdrop of increasing longevity, and with drivers
driving until later ages, a certain association might also be expected between the aging of
the driver and the aging of their vehicle, reflecting a lower expected tendency to change
vehicles after a certain age. As such, an association between these two factors and the
severity of injuries suffered in a traffic accident can be expected. Whereas Ayuso et al. [12]
reported an increase in the probability of fatal and serious injuries in drivers over the age
of 75 and in vehicles older than the average age of the car fleet, here we aim to capture the
existence of this interaction in more global terms, first, by demonstrating whether longevity
in drivers and aging vehicles are statistically correlated, and, second, by measuring whether
the simultaneous inclusion of the two variables as a covariate has a significant effect on the
probability that the injuries resulting from a crash present a certain level of BI severity.

A vast number of studies, conducted from a range of different perspectives, have
analyzed the risk factors that affect BI severity following a road traffic crash. Some focus
on the type of vehicle involved and the resulting injuries [16–19]. For instance, two-
wheeled motor vehicles are associated with a greater risk of serious injury or fatality [20–23],
whereas heavier vehicles cause more damage to other vehicles but provide better protection
for their occupants [24]. Other studies have examined differences between crash type
and BI severity, the latter increasing, for example, when the accident involves a frontal
rather than rear impact [25]. In rollover crashes and drops, passengers are more likely
to suffer serious head and cervical spine injuries [26,27]. Similarly, analyses show that
driving under non-optimal conditions of light and on non-optimal road surfaces play an
important role in crash severity [28–30]. However, as Eluru et al. [31] indicate, there is
strong evidence of the presence of correlated unobserved factors affecting BI severity levels
among vehicle occupants.

Some authors have used random parameter models to account for the heterogeneity
attributable to unobserved factors related to road geometrics, vehicle types, and spatial
areas [32–34]. Anastasopoulos and Mannering [35] suggest that ignoring the possibility
of random parameters when estimating count data models can result in changes to the
magnitude of the effect of factors impacting crash frequency. Anastasopoulos and Manner-
ing [36] draw a similar conclusion when demonstrating that random parameter models
using less detailed crash-specific data are still able to provide a reasonable level of accuracy.
Osman et al. [37] argue that injury severity conditional on crash occurrence can depend on
numerous factors, none of which are included in crash databases. They go on to stress that
the unobserved heterogeneity derived from these unobserved factors can moderate the
influence of other observed covariates in the model, leading to variation in the parameter
effects across different observations. Finally, Hosseinpour et al. [38] estimate crash counts
for four multi-vehicle collision types and report dependencies between collision types and
a spatial correlation between adjacent sites.

In this paper, we seek to further analyze the dependencies between driver and vehicle
ages and BI severity in road traffic accidents. In so doing, we also include the effect
of unobserved factors that might influence the correlation between the two variables.
Previous studies show that older drivers drive older vehicles more frequently [6,12]; here,
we aim to test whether this correlation is statistically significant in explaining differences in
crash severity. We apply generalized linear models (GLMs) with random effects—that is,
generalized linear mixed models (GLMMs)—to examine the dependence between vehicles
involved in the same crash. Specifically, we apply a binomial regression model with
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random effects, which is a particular case of random parameter models. By including
random effects in fixed linear models, we are able to analyze multilevel data when those
data have more than one source of random variability. As Mannering et al. [32] point out,
multivariate issues are likely to arise in the case of crashes involving multiple occupant
injuries incurred in the same accident. In such instances, unobserved factors that influence
the severity of the injuries—such as the structural characteristics of the vehicles involved,
among others—would be correlated [31–33]. Indeed, the structural characteristics of new-
and older-generation vehicles can vary considerably. The GLMM framework assumes
a linear relationship between the dependent variable and the covariables. Additionally,
a semiparametric GLMM is fitted to the data to determine the real form of dependence
between driver and vehicle ages and the severity of the motor traffic crash.

The rest of this paper is structured as follows. Section 2 defines the GLMM used to
model the proportion of injured victims in a crash by level of BI severity when including
random effects. Section 3 describes the dataset and presents the key descriptive statistics.
Results related to the model selection and the binomial GLMM estimated are reported
in Section 4, where a detailed analysis of the impact of driver age and vehicle age on BI
severity is carried out. Discussion is provided in Section 5, and Section 6 concludes.

2. Generalized Linear Mixed Models

Our analysis focuses on the relationship between a set of risk factors and the number
of victims in a vehicle involved in a crash according to the severity of their injuries. We
deal with three discrete variables: the number of non-seriously injured occupants in the
vehicle, yns; the number of seriously injured occupants, ys; and the number of fatally injured
occupants, yf, where injuries are considered non-serious if the victim suffered only minor
personal injuries and did not require hospitalization or was hospitalized for less than 24 h;
serious if they required hospitalization for more than 24 h; and fatal if the victim’s death
occurs as a result of the crash within a 30-day period following the accident. The unit of
observation in our analysis is the vehicle involved in the crash.

The number of injured victims is a function of vehicle occupancy. The set of vehicles
included in the analysis has different passenger capacities and, even if they had the same
capacity, the number of occupants at the time of the crash is likely to differ. The number of
injured occupants per level of BI severity are modeled in relative terms, i.e., the proportion
of injured victims in relation to the total vehicle occupancy. GLMs with a binomial error
distribution is the appropriate regression when the dependent variable is expressed in
relative terms. The GLM relates the conditional mean of the distribution µ and the linear
regression through the link function g as follows: g(µi) = ηi = xT

i β for the ith vehicle, i =
1, . . . , I, where ηi is the linear predictor, β is the vector of the regression coefficients, and
xi is the vector of regressors. The dependent variable yj reflecting the relative number of
injured victims in the vehicle according to the level of severity j = (ns,s,f) follows a binomial
distribution, yj ∼ B

(
s, πj

)
, where s is the number of occupants in the vehicle and πj is the

proportion of victims injured with a severity level j. If the canonic link function selected is
ln
(

πj
1−πj

)
, the binomial specification is equivalent to the logit regression model [38].

When multiple vehicles are involved in a crash, the number of victims presenting the
same level of BI in each vehicle is assumed to be correlated [31]. When a dataset presents
correlated clusters, GLMMs are a more appropriate specification. GLMMs are an extension
of GLMs that incorporate random effects for the analysis of multilevel data. Now, we
introduce a Q-dimension vector of cluster-specific parameters θn =

(
θn1 , . . . , θnQ

)
and a

vector zni of predictors corresponding to the random effects, for n = 1, . . . ,N. In our case, n
indicates the crash and only one cluster-specific parameter is considered, so θn and zni are
scalars. In the GLMM with a cluster-specific variable, the conditional mean µni is regressed
on the predictors as follows: g(µni) = xT

niβ+ zniθn. The constant term of the linear predictor
is no longer the same for all observations but now varies for each group of vehicles involved
in the same crash. Thus, unobserved individual-specific heterogeneity associated with the
crash in which the vehicle was involved is introduced into the regression modeling.
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3. Data

The dataset of road crashes involving victims was provided by the Spanish Traffic
Authority (DGT). It contains information monitoring the evolution of victims in a thirty-day
period following the accident, as recorded by traffic agents. The complete database contains
information for 100,494 police-reported motor vehicle crashes with victims for the period
from January 2016 to December 2016. A total of 179,295 vehicles were involved, there being
no victims in 73,611 of the vehicles and at least one victim in 105,684 of the vehicles. Only
those vehicles presenting complete records in line with our research requirements were
selected. Thus, we analyzed 96,472 vehicles involved in 59,040 crashes (Table 1). Of these,
46.67% involved one vehicle, 45.88% involved two, and the remaining 7.45% involved more
than two vehicles. In 42.27% of the vehicles, none of the occupants were injured as a result
of the crash, whereas in 57.73%, at least one occupant was injured.

Table 1. Description of dataset of road crashes with complete records.

Description Number

Total police-reported motor crashes with injured victims 59,040
Total police-reported motor crashes with injured victims
involving one vehicle 27,554

Total police-reported motor crashes with injured victims
involving two vehicles 27,088

Total police-reported motor crashes with injured victims
involving three or more vehicles 4398

Total number of vehicles involved in police-reported motor
crashes with injured victims 96,472

Total number of vehicles with injured occupants 55,693
Total number of vehicles without injured occupants (i.e., victims
in other vehicles involved) 40,779

Table 2 presents the variables used in our analysis. The dataset contains information on
the number of victims in each vehicle by level of BI severity level, differentiating between
i) non-injury, ii) non-serious or slight injury, iii) serious injury, and iv) fatalities. Driver
information includes age and gender. Vehicle information includes type, age, and number
of occupants (including the driver). Other variables related to the accident, that is, crash
type, road type, road conditions, and visibility, are also included.

Table 2. Description of variables.

Name Categories Description Mean * SD Min Max

Victims
(dependent
variable)

Non-injury Number of non-injured victims in
the vehicle 0.65 0.92 0 58

Slight Number of slightly injured victims in
the vehicle 0.69 0.70 0 45

Serious Number of seriously injured victims in
the vehicle 0.06 0.07 0 21

Fatalities Number of fatalities in the vehicle 0.01 0.01 0 13
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Table 2. Cont.

Name Categories Description Mean * SD Min Max

Vehicle
Vehicle age Age of the vehicle involved in the crash 10.35 5.96 0 30

Vehicle Car Cars (category of reference) 0.698 0.459 0 1
Van Vans and minibuses 0.070 0.256 0 1

Motorcycle Motorcycles 0.120 0.325 0 1
Moped Bicycles, Mopeds, and ATVs 0.051 0.219 0 1

Heavy vehicle Trucks, tractors, and other heavy vehicles 0.061 0.239 0 1

Occupants Number of occupants in the vehicle
(including the driver) 1.41 1.06 1 61

Driver

Driver age Age of the driver involved in the crash
(divided by 10) 4.14 1.51 1.6 9.50

Gender Female Driver is female (category of reference) 0.285 0.451 0 1
Male Driver is male 0.715 0.451 0 1

Crash

Illumination Visibility Driving with visibility (category
of reference) 0.885 0.319 0 1

No visibility Driving without appropriate visibility 0.115 0.319 0 1

Road Local City streets and township roads (category
of reference) 0.477 0.499 0 1

Principal Highways, freeways, and other principal
arterials 0.172 0.377 0 1

Minor Minor arterials and collectors 0.280 0.449 0 1

Other Subsidiary roads, unpaved roads, cycling
lanes, and others 0.072 0.258 0 1

Condition road Optimal Optimal driving conditions of the road
surface (category of reference) 0.841 0.366 0 1

Non-optimal Non-optimal driving conditions of the road
surface (wet, frozen, muddy) 0.159 0.366 0 1

Type of crash Collision Collision involving another vehicle
(category of reference) 0.619 0.486 0 1

Pile-up Multiple vehicle collision 0.078 0.268 0 1

Run-over Collision involving a pedestrian or
an animal 0.087 0.282 0 1

Rollover Rollover, drop, or collision with an object 0.149 0.356 0 1
Other Other types of crash 0.067 0.250 0 1

* Relative frequency in % for categorical variables.

The mean age of the drivers involved in the crashes was 41.4, and the mean vehicle age
was 10.35. The mean number of occupants per vehicle was 1.41. Most occupants suffered
non-serious injuries (average of 0.69 per vehicle), followed by occupants who did not suffer
any injuries (average of 0.65 per vehicle), serious injuries (average of 0.06 per vehicle), and
fatalities (average of 0.01 per vehicle).

The association between driver age and vehicle age was evaluated. Pearson’s correla-
tion and rank-based measures of association between the two variables were computed
and no significant association was found (Pearson’s correlation: 0.043; Spearman Kendall’s
τ: 0.008, and Spearman’s ρ: 0.012). We next tested for an association between the mean age
of the vehicle and the age of the drivers, respectively (Figure 1). Although no association
was detected, Figure 1 seems to indicate that the mean vehicle age increased in the case
of drivers over the age of 65. Association measures were again computed conditioned
specifically to drivers over 65 but the values increased only slightly (Pearson’s correlation:
0.152; Spearman Kendall’s τ: 0.101, and Spearman’s ρ: 0.143). Thus, we conclude that no
relevant association between the age of the driver and the age of the vehicle was detected.
As is evident from the confidence intervals shown in Figure 1 (dashed lines), dispersion
around the mean age of the vehicle increased with the age of the driver, which could affect
the results obtained.
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Figure 1. Mean (95% CI) vehicle age by driver age in Spanish road traffic crashes.

Figure 1 also shows that younger drivers (probably reflecting the fact that drivers in
the first few years after obtaining their license drive non-new vehicles) and older drivers
tend to drive older vehicles.

4. Modeling the Proportion of Occupants Injured by BI Severity
4.1. Model Selection

Three binomial regression models were compared to model the proportions of non-
seriously, seriously, and fatally injured occupants. GLMs were, first, fitted to the binomial
distribution. Second, to capture the dependence between the vehicles involved in the
same crash, a GLMM with a random effect was fitted to the data. The Akaike information
criteria (AIC) and the Bayesian information criteria (BIC) for the three GLMs and GLMMs
are presented in Table 3. Coefficient estimates of GLMs and GLMMs are reported in
Appendix A. The random effects binomial presents the lowest AIC and BIC for each of the
models considered, which suggests that when the random effect is included, the model is a
better fit and captures the correlation between vehicles in the same car crash.

Table 3. Comparison of binomial regressions without and with random effects.

Without Random Effects With Random Effects

Slight victims AIC 147,940.4 146,992.0
BIC 148,101.6 147,162.6

Serious victims AIC 38,800.7 37,443.0
BIC 38,961.8 37,613.6

Fatalities AIC 11,752.0 11,430.0
BIC 11,913.2 11,600.6

4.2. Relationship between Vehicle Age, Driver Age, and BI Severity

Both the GLMM and GLM frameworks assume that the relationship between the
continuous variables and the transformed dependent variable is linear. However, this will
not always be the case. Here, we investigate the relationships between vehicle age and
driver age, respectively, and the severity of injury sustained by occupants of the vehicle
involved in the crash. To do so, a semiparametric binomial regression is fitted to the data.
These flexible modeling approaches define the linear predictor as a linear relationship
between the categorical variables and smooth functions of the two continuous variables,
that is, Vehicle age and Driver age. Although this estimation process is frequently less stable
and the coefficient interpretation more complex, flexible modeling is a powerful tool for
understanding the effect of the explanatory continuous variables on the dependent variable
in a multivariate context. Figure 2 shows the estimated effect of vehicle age on the linear
predictor of the binomial regression model. Coefficient estimates of the semiparametric
binomial regression model are reported in Appendix B. There is an appreciable shift in this
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trend at a vehicle age of around 20 in the case of victims suffering a non-serious injury;
however, the effect is less apparent for victims suffering serious and fatal injuries, where
we find an increasing behavior that tends to stabilize at maximum values after the age of 20.
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We conducted the same analysis for driver age (see Figure 3) and obtained a quadratic
shape for victims with serious and fatal injuries. A more complex relationship is observed
in the case of victims suffering only a slight injury, where a quadratic shape does not
capture the initial increase up to the age of around thirty.
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Figure 3. Estimated effect of driver age in the semiparametric binomial GLMM, by BI severity.

Different transformations of the two explanatory variables, including polynomials and
linear approximations, were analyzed to capture the relationships shown in Figures 2 and 3.
Eventually we opted for the transformation associated with the lowest AIC when the model
is fitted. It is not shown here for reasons of simplicity. In the case of vehicle age, the variable
is replaced by two new regressors: Young vehicle, a quantitative variable with a continuous
part for those vehicles under the age of 18, taking the value of the vehicle age when it is
under 18 and 0 otherwise; and, Old vehicle, defined as a dichotomous variable taking the
value 1 if the vehicle is 18 or older and 0 otherwise. In the case of driver age, a quadratic
shape provided the best fit for the three BI severity levels, including the number of non-
serious injury victims. Thus, a new regressor is added to the model to record the squared
age of the driver (Squared age).

4.3. Binomial Generalized Linear Mixed Model

A binomial GLMM was fitted for the proportions of victims presenting slight, serious,
and fatal injuries in the vehicle, including the new regressors of vehicle age and driver
age. Table 4 shows the estimated coefficients for the three binomial GLMMs. A negative
(positive) coefficient indicates a decrease (increase) in the expected proportion of victims
with non-serious, serious, or fatal injuries in the vehicle, respectively.



Int. J. Environ. Res. Public Health 2022, 19, 17097 8 of 16

Table 4. Coefficient estimates of the binomial GLMM according to BI severity of victims.

Slight Serious Fatal

Coeff. SE Coeff. SE Coeff. SE

Intercept 0.1801 *** 0.058 −4.840 *** 0.139 −7.401 *** 0.289
Gender Male −0.496 *** 0.015 0.213 *** 0.043 0.612 *** 0.097

Driver age Driver age −0.147 *** 0.023 −0.179 *** 0.053 −0.211 ** 0.099
Squared age 0.008 ** 0.002 0.029 *** 0.006 0.048 *** 0.010

Vehicle age Young vehicle 0.021 *** 0.003 0.021 *** 0.007 0.032 ** 0.013
Old vehicle 0.370 *** 0.056 0.482 *** 0.144 0.871 *** 0.264

Interaction driver and vehicle age 0.0002 0.001 −0.0001 0.001 −0.002 0.002
Vehicle Van −0.180 *** 0.025 −0.061 0.077 −0.121 0.140

Motorcycle 1.616 *** 0.026 2.144 *** 0.043 1.351 *** 0.085
Moped 1.964 *** 0.042 1.782 *** 0.065 0.874 *** 0.162

Heavy vehicle −0.690 *** 0.028 0.080 0.071 0.111 0.123
Illumination No visibility 0.179 *** 0.021 0.502 *** 0.046 0.601 *** 0.078

Condition road Non-optimal 0.262 *** 0.018 −0.358 *** 0.048 −0.338 *** 0.090
Road Principal 0.246 *** 0.020 0.827 *** 0.055 1.356 *** 0.118

Minor 0.263 *** 0.017 1.191 *** 0.043 1.721 *** 0.100
Other 0.127 *** 0.027 0.503 *** 0.071 0.967 *** 0.151

Crash Pile-up −0.090 *** 0.025 −0.982 *** 0.108 −1.279 *** 0.238
Run-over −2.342 *** 0.039 −1.117 *** 0.126 −0.898 *** 0.260
Rollover 0.700 *** 0.020 0.654 *** 0.040 0.809 *** 0.074

Other 0.455 *** 0.026 0.581 *** 0.056 0.745 *** 0.099

SD (Random effect) 0.526 1.453 1.551

AIC 146,931.3 37,419.4 11,404.6
BIC 147,130.3 37,618.5 11,603.7

Note: *** p-value < 0.001; ** p-value < 0.05; * p-value < 0.10.

Driver age has an impact on the expected proportion of all victims. The expected
proportion of victims decreases with increasing driver age until a minimum is reached, and
then increases. This holds for all victim types. In the case of victims with slight injuries, the
minimum is reached at the age of 91; for those with serious injuries, at the age of 31; and in
the case of fatalities, at the age of 24. Driving old vehicles increases the expected proportion
of injured occupants. This proportion increases each year of additional vehicle age up to 18,
when the effect remains stable at the highest level for vehicles of 18 years and more, mainly
for seriously injured victims and fatalities. However, the covariate reflecting the interaction
between driver age and vehicle age does not present a significant coefficient in any of the
regression models, which prevents us from speaking of a clear joint or simultaneous effect
of the two variables.

When the driver involved in the crash is male, the expected proportion of seriously
injured occupants and fatalities increases while the proportion of slightly injured occupants
falls. If we take cars as our reference, the expected number of injured occupants increases
for all three BI severities when a crash involves a two-wheeled vehicle, that is, motorcycles,
mopeds, and bicycles. In the case of vans and heavy vehicles, the number of slightly injured
victims is lower than in cars, but no significant differences are found in relation to the
number of seriously and fatally injured victims. Illumination, road surface conditions, and
road type are significant factors in explaining the number of injured occupants. Driving in
non-optimal conditions of visibility increases the expected number of all types of injured
victims. When road surface conditions are non-optimal, however, although the number of
slightly injured victims increases, the numbers of seriously injured victims and fatalities fall.

Principal and minor roads are associated with a higher expected number of injured
occupants than local roads. The estimated coefficients for minor roads are slightly higher
than those for principal roads, regardless of BI severity. Thus, the expected number of
injured victims is higher on minor than on principal roads. Finally, when the crash involves
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a pile-up or a run-over, the expected number of injured victims in the vehicle falls compared
to collisions involving other vehicles, collisions with an obstacle, rollover crashes, or drops.

5. Discussion

This study analyzed several road crash risk factors that affect the expected proportion
of BI victims by level of severity, taking into account the dependence between the vehicles
involved in the same crash. The observation unit employed in this analysis is the vehicle,
and we consider the dependence between vehicles involved in the same crash, including
its random effects in the regression. The model performance is found to improve when this
dependence is taken into consideration. Thus, the inclusion of random effects captures, at
least partially, the heterogeneity due to the involvement of more than one vehicle in the
same crash.

When two or more vehicles are involved in the same crash, we might expect to derive
a relationship between the damage they suffer respectively and the severity of injury of the
victims. Several studies report the incidence and severity of injuries when different types of
vehicle are involved, including passenger vehicles and trucks [39,40] and motorbikes and
non-motorbike vehicles [41], as well as the position of occupants inside the vehicle [42,43].
Dependence between the BI severity levels of those involved in the same crash can be
especially relevant if we seek to predict the expected number of victims and their injury
severity; for example, as a consequence of a safety policy or, more specifically, in the
insurance context, when we wish to calculate provisions for the coverage of automobile
claims. Methodologically, this objective is in line with previous studies that suggest that
ignoring the possibility of including random parameters when estimating count-data
models may affect the magnitude of the coefficients [35–38].

Our analysis pays special attention to the age of the driver and vehicle age as factors
explaining the proportion of occupants presenting different levels of BI severity in a
crash. We demonstrate that the relationship between these factors and the (transformed)
dependent variable is nonlinear. Subsequently, both factors were redefined to reflect their
association with the expected proportion of injured occupants.

In the case of the age of the driver, we found a quadratic relationship with the severity
of injury of vehicle occupants. Indeed, in line with previous studies [4,44,45], young and
old drivers constituted the riskiest groups. Young drivers were associated with a high risk
of accidents with non-serious injuries, whereas old drivers presented the highest risk in
accidents with serious and fatal injuries. This does not, however, mean that older drivers
are necessarily more dangerous drivers; rather, it seems to reflect the fact that older drivers
(and their old passengers, too) are inherently more likely to be seriously injured in crashes
due to physical frailty [4,46]. Previous studies have suggested that elderly road users need
to be the increasing target of road safety policies [6,47,48], especially because, in many
countries, the number of such drivers is rising as a result of general population aging.
Interestingly, as the number of older drivers becomes more significant, researchers have
access to growing amounts of data about this group of drivers, opening up an important
line of future research.

Vehicle age is also gaining attention in road safety research, with previous studies
suggesting it is positively associated with driver age [12,49,50]. Indeed, vehicles are
becoming increasingly safer as a result of technology and safety advances implemented in
the new generation of automobiles [51]. Here, we found that the expected proportion of
occupants injured by level of severity increases with vehicle age up to 18 years and then
remains constant at the highest level. This finding is especially relevant in countries with
old fleets of automobiles, such as Spain, where the average age of automobiles has risen
from 7.65 in 2002 to 13.49 years in 2021 [52]. In the EU, 2020 data indicate passenger cars
are on average 11.5 years old [53].

However, and despite the fact that here we have demonstrated the individual statistical
significance of driver age and vehicle age when analyzing the proportion of victims in the
vehicle by level of BI severity, we have not observed the individual significance for the
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joint effect between the two variables (i.e., interaction of driver and vehicle ages). As a
result, the hypothesis that longevity in drivers and age in their vehicles are statistically
correlated variables is rejected, as is the hypothesis that including the two variables as a
covariate has a significant effect on the probability that the injuries resulting from the crash
present a certain severity. However, the monitoring of both variables and their effects in
forthcoming years constitutes an important line of research, considering the increasing
longevity of drivers in countries such as Spain (with a marked expected growth also in the
number of people aged 65 and over) and the continuous aging of its vehicle fleet [52].

The rest of our results confirm conclusions previously presented in the literature.
Male drivers are associated with accidents involving more serious injuries (for a review,
see [4]). Two-wheeled motor vehicles are more likely to be associated with serious or fatal
injuries than four-wheeled or heavier vehicles [21,23], which is expected given they offer
less protection to riders. Previous studies also suggest that heavy vehicles (pickup trucks,
minivans, and sport utility vehicles or SUVs) are safer for their own occupants but cause
more damage to the other vehicles involved in a crash [18,24]. A number of studies have
found that driving in dark conditions increases expected accident severity [28–30]. Sullivan
and Flannagan [28] concluded that the risk of fatal injury in pedestrians involved in crashes
is 3 to 6.75 times higher in the dark than in daylight. Wanvik [29] found that the risk of
injury from accidents in darkness increases on average by 17% on lit rural roadways and
by 145% on unlit rural roadways. Uddin and Huynh [30] also confirm the importance
of examining lighting conditions on rural and urban roadways as risk factors. Here, we
have found that the expected proportions of slight, serious, and fatal injuries following an
accident increase when visibility is less than optimum.

We found that non-optimal road surface conditions increase the expected proportion of
slightly injured occupants, but in these same conditions the expected proportion of serious
and fatal injured victims falls. Although an increase in crash BI severity might be expected
with worsening road conditions (bad weather, poor road surfaces, etc.), unobserved factors,
such as increased attention to driving, higher traffic density, and higher signaling rates,
seem to have an opposite effect. Various studies have shown that the influence of good
road conditions on traffic accidents and severity of injuries is unclear, with mixed results
having been reported (see, for example, in [54]).

The expected proportion of injured victims is higher on principal and minor roads
than on local roads. Although the number of crashes in local areas is usually higher than
on arterials and collectors, such accidents are associated with a lower BI severity [55].
The type of crash analyzed has a direct influence on the expected proportion of injured
occupants. When a vehicle is involved in a multi-vehicle collision, the expected proportion
of injured occupants falls compared to the corresponding proportion for two-vehicle
collisions. Collisions involving multiple vehicles (pile-ups) are more frequently rear impact
crashes, which are associated with less severe BI outcomes [25,55]. Abu-Zidan and Eid [25]
report that injury severity among those involved in front and side impacts was double that
of those involved in rear impacts. Likewise, the expected proportion of injured occupants
falls when the type of crash is a run-over compared to the corresponding proportion for
two-vehicle collisions. Note that in a traffic accident involving a pedestrian, the pedestrian
is expected to sustain the highest BI damage [56,57], whereas the occupants of the vehicle
(the focus of analysis in this study) are much more protected. Finally, when the vehicle is
involved in a rollover, drop, or collision with an object, an increased proportion of injured
occupants is expected for all levels of severity. In the literature, when crashes with victims
are analyzed, single-vehicle crashes are frequently associated with more severe BI damage
than collisions involving two or more vehicles [25,55,58].

The high level of significance of most of our parameter estimates provides a good
understanding of the effect of automobile and crash characteristics on the expected number
of occupants injured by level of severity. However, our study is not without its limita-
tions. The crash data used in the study are from 2016, which means that the analysis
of posterior years would be helpful for understanding the dynamics of elderly drivers
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and aging vehicles in relation to crash severity. Although we are able to control for the
heterogeneity attributable to multiple vehicles being involved in the same crash, other
sources of unobserved heterogeneity are not controlled for here. For example, we estimated
binomial BI severity models separately for the different levels of BI severity experienced
by occupants, but some unobserved factors are likely to impact simultaneously all levels
of severity. Additionally, relevant information for explaining the severity of the crash
was not always available in the dataset. For instance, the age and position occupied by
passengers in the vehicle, the use of safety measures, or the place where the crash occurred
have been extensively studied as factors influencing crash severity [33,59,60]. Here, these
factors, as well as a lack of information about driving behavior, contribute to unobserved
heterogeneity. Indeed, telemetric research points to a close relationship between driving
behavior and crash severity [51,60–64]. The incorporation of driving behavior information
into the model could differentiate aspects that would further understanding of the influence
of traditional risk factors. For example, a better understanding of the driving behavior
of old drivers might help to distinguish the proportion of the higher crash severity risk
attributable to declining skills and the proportion associated with increased physical frailty.

6. Conclusions

Modeling the proportions of non-seriously, seriously, and fatally injured victims in a
vehicle involved in a road traffic crash needs to include the dependence between all the
vehicles involved in that crash. We have shown that the inclusion of random effects in
the regression to capture this phenomenon significantly improves the quality of fit. The
driver’s gender, the road type, the type of vehicle involved in the crash, visibility and road
conditions, and the type of crash are all factors with explanatory capacity of the expected
proportion of occupants injured in each vehicle by level of BI severity. Driver age and
vehicle age have a nonlinear influence on severity. We find that the expected proportion of
victims increases for both young and old drivers, and vehicle age increases the expected
proportion of injured occupants, with the greatest impact being found for cars that are
18 years or older. Yet, we observe no statistical significance of the covariate that reflects
interaction between driver age and vehicle age, probably reflecting the great diversity
in the age of vehicles driven by older drivers. Accurate modeling of the proportion of
injured occupants by level of BI severity that takes into account the dependence between
the vehicles involved in the same crash is relevant for traffic authorities in all countries as
well as for motor insurance companies who cover the damages of the victims of road traffic
crashes. Here, premium design could be improved by including the expected proportion of
victims by level of BI severity in the estimation of crash severity.
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Appendix A

Table A1. Comparison of binomial regressions with and without random effects.

Slight Victims Serious Victims Fatal Victims

Generalized Linear
Model

Generalized Linear
Mixed Model

Generalized Linear
Model

Generalized Linear
Mixed Model

Generalized Linear
Model

Generalized Linear
Mixed Model

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Intercept 0.071 ** 0.023 0.051 ** 0.024 −5.085 *** 0.061 −5.38 *** 0.071 −8.24 *** 0.148 −8.352 *** 0.158

Gender Male −0.443 *** 0.013 −0.467 *** 0.014 0.294 *** 0.038 0.235 *** 0.043 0.7 *** 0.092 0.657 *** 0.097

Driver age −0.007 *** 0.001 −0.007 *** 0.000 0.008 *** 0.001 0.008 *** 0.001 0.023 *** 0.002 0.023 *** 0.002

Vehicle age 0.019 *** 0.001 0.018 *** 0.001 0.017 *** 0.002 0.022 *** 0.003 0.026 *** 0.005 0.03 *** 0.005

Vehicle Van −0.160 *** 0.023 −0.178 *** 0.025 −0.092 0.067 −0.085 0.076 −0.157 0.128 −0.17 0.139

Motorcycle 1.406 *** 0.023 1.519 *** 0.024 1.87 *** 0.036 2.103 *** 0.042 1.163 *** 0.076 1.258 *** 0.083

Moped 1.788 *** 0.039 1.913 *** 0.04 1.613 *** 0.055 1.812 *** 0.064 0.809 *** 0.151 0.893 *** 0.16

Heavy
vehicles −0.671 *** 0.025 −0.668 *** 0.027 0.109* 0.059 0.031 0.071 0.167 0.105 0.014 0.121

Illumination No visibility 0.147 *** 0.018 0.169 *** 0.02 0.48 *** 0.037 0.498 *** 0.046 0.611 *** 0.068 0.594 *** 0.078

Condition
road Non-optimal 0.216 *** 0.016 0.248 *** 0.018 −0.389 *** 0.041 −0.362 *** 0.048 −0.377 *** 0.082 −0.342 *** 0.09

Road Principal 0.152 *** 0.017 0.230 *** 0.019 0.783 *** 0.046 0.816 *** 0.055 1.439 *** 0.11 1.337 *** 0.118

Minor 0.207 *** 0.015 0.250 *** 0.016 1.18 *** 0.036 1.194 *** 0.043 1.799 *** 0.096 1.729 *** 0.1

Others 0.094 *** 0.024 0.121 *** 0.026 0.473 *** 0.06 0.505 *** 0.071 1.013 *** 0.143 0.974 *** 0.15

Crash Pile-up −0.103 *** 0.021 −0.088 *** 0.025 −0.971 *** 0.091 −0.992 *** 0.108 −1.345 *** 0.22 −1.302 *** 0.237

Run over −2.201 *** 0.037 −2.221 *** 0.039 −1.207 *** 0.118 −1.112 *** 0.127 −1.011 *** 0.255 −0.893 *** 0.26

Rollover 0.669 *** 0.018 0.666 *** 0.019 0.598 *** 0.033 0.66 *** 0.04 0.77 *** 0.067 0.823 *** 0.074

Others 0.419 *** 0.023 0.434 *** 0.025 0.543 *** 0.046 0.591 *** 0.056 0.768 *** 0.087 0.764 *** 0.099
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Table A1. Cont.

Slight Victims Serious Victims Fatal Victims

Generalized Linear
Model

Generalized Linear
Mixed Model

Generalized Linear
Model

Generalized Linear
Mixed Model

Generalized Linear
Model

Generalized Linear
Mixed Model

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Standard deviation
(Random effect) 0.513 1.456 1.546

AIC 147,940.4 146,992.0 38,800.7 37,443.0 11,752.0 11,430.0

BIC 148,101.6 147,162.6 38,961.8 37,613.6 11,913.2 11,600.6

*** p-value<0.001; ** p-value<0.05; * p-value<0.10.
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Appendix B. Semiparametric Binomial Regression Model

Table A2. Coefficient estimates according to BI severity of victims.

Slight Victims Serious Victims Fatal Victims
Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Intercept −0.065 *** 0.014 −2.418 *** 0.020 −3.235 *** 0.042
Gender Male −0.494 *** 0.014 0.114 *** 0.017 0.243 *** 0.034
Vehicle Van −0.182 *** 0.025 −0.029 0.030 −0.043 0.050

Motorcycle 1.620 *** 0.025 0.968 *** 0.019 0.529 *** 0.032
Moped 2.036 *** 0.042 0.776 *** 0.028 0.310 *** 0.061
Heavy vehicles −0.685 *** 0.027 0.075 ** 0.027 0.104 * 0.042

Illumination No visibility 0.178 *** 0.020 0.228 *** 0.018 0.247 *** 0.030
Condition road Non-optimal 0.262 *** 0.018 −0.170 *** 0.019 −0.146 *** 0.032
Road Principal 0.244 *** 0.019 0.377 *** 0.021 0.534 *** 0.040

Minor 0.262 *** 0.016 0.582 *** 0.017 0.686 *** 0.034
Others 0.125 *** 0.026 0.234 *** 0.028 0.362 *** 0.052

Crash Pile-up −0.090 *** 0.024 −0.374 *** 0.035 −0.437 *** 0.071
Run over −2.330 *** 0.040 −0.504 *** 0.048 −0.336 *** 0.086
Rollover 0.699 *** 0.019 0.66 *** 0.04 0.315 *** 0.027
Others 0.451 *** 0.025 0.591 *** 0.056 0.303 *** 0.004

Standard deviation (Random effects) 0.5250 - (a) - (a)

Approximate significance of smooth
spline terms

edf (b) Chi.sq (c) edf (b) Chi.sq (c) edf (b) Chi.sq (c)

Driver age 6.089 351.5 *** 4.797 123.97 *** 3.842 213.22 ***
Vehicle age 4.379 325.6 *** 5.085 56.57 *** 4.030 31.53 ***

AIC 146882.35 38560.37 11697.33

*** p-value<0.001; ** p-value<0.05; * p-value<0.10. (a) The estimated variance matrix was not semidefinite positive
in the semiparametric binomial GLMM model. Reported results are from the semiparametric binomial GLM
model. (b) edf: The effective degrees of freedom (edf) estimated from generalized additive models are a proxy for
the degree of non-linearity in covariate-response relationships. An edf of 1 is equivalent to a linear relationship.
An edf > 1 and ≤ 2 is a weakly non-linear relationship, and an edf > 2 indicates a highly non-linear relationship
(Zuur et al. 2009). (c) Chi.sq: Chi-squared test for the removal of the smooth covariate in the fitting.
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