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CONSTRUCTIONS OF LINDELÖF SCATTERED P-SPACES

JUAN CARLOS MARTÍNEZ AND LAJOS SOUKUP

Abstract. We construct locally Lindelöf scattered P-spaces (LLSP
spaces, in short) with prescribed widths and heights under different
set-theoretic assumptions.

We prove that there is an LLSP space of width ω1 and height ω2 and
that it is relatively consistent with ZFC that there is an LLSP space of
width ω1 and height ω3. Also, we prove a stepping up theorem that, for
every cardinal λ ≥ ω2, permits us to construct from an LLSP space of
width ω1 and height λ satisfying certain additional properties an LLSP
space of width ω1 and height α for every ordinal α < λ

+. Then, we
obtain as consequences of the above results the following theorems:

(1) For every ordinal α < ω3 there is an LLSP space of width ω1 and
height α.

(2) It is relatively consistent with ZFC that there is an LLSP space
of width ω1 and height α for every ordinal α < ω4.

1. Introduction

The cardinal sequence of a scattered space is the sequence of the car-
dinalities of its Cantor-Bendixson levels. The investigation of the cardinal
sequences of different classes of topological spaces is a classical problem of
set theoretic topology. Many important results were proved in connection
with the cardinal sequences of locally compact scattered (LCS, in short)
spaces, see e.g. [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16]. In [5] a com-
plete characterization of the cardinal sequences of the 0-dimensional, of the
regular, and of the Hausdorff spaces was given.

Recall that a topological space X is a P-space, if the intersection of every
countable family of open sets in X is open in X. The aim of this paper is to
start the systematic investigation of cardinal sequences of locally Lindelöf
scattered P-spaces. We will see that several methods applied to LCS spaces
can be applied here, but typically we should face more serious technical
problems.

If X is a topological space and α is an ordinal, we denote by Xα the α-th
Cantor-Bendixson derivative of X. Then, X is scattered if Xα = ∅ for some
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Keywords and phrases. Lindelöf scattered P-space, Cantor-Bendixson height, Cantor-

Bendixson width .
The preparation of this paper was supported by Hungarian National Foundation for

Scientific Research grant no. 129211 and Spanish MICINN Grant PID2020-116773GB-100.

1

http://arxiv.org/abs/2111.05038v1


2 J. C. MARTINEZ AND L. SOUKUP

ordinal α. Assume that X is a scattered space. We define the height of X
by

ht(X) = the least ordinal α such that Xα = ∅.

For α < ht(X), we write Iα(X) = Xα \Xα+1. If x ∈ Iα(X), we say that α is
the level of x and we write ρ(x,X) = α, or simply ρ(x) = α if no confusion
can occur. Note that ρ(x) = α means that x is an accumulation point of
Iβ(X) for β < α but x is not an accumulation point of Xα =

⋃

{Iβ(X) :
β ≥ α}. We define the width of X as

wd(X) = sup{|Iα(X)| : α < ht(X)}.

If X is a scattered space, x ∈ X and U is a neighbourhood of x, we say
that U is a cone on x, if x is the only point in U of level ≥ ρ(x,X).

By an LLSP space, we mean a locally Lindelöf, scattered, Hausdorff P-
space.

Proposition 1.1. An LLSP space is 0-dimensional.

Proof. By [13, Proposition 4.2(b)], a Lindelöf Hausdorff P-space X is nor-
mal, so a locally Lindelöf Hausdorff P-space is regular. Thus, by [13, Corol-
lary 3.3], X is 0-dimensional. �

So, by Proposition 1.1 above, if X is an LLSP space, x ∈ X and Bx is a
neighbourhood basis of x, we may assume that every U ∈ Bx is a Lindelöf
clopen cone on x.

It was proved by Juhász and Weiss in [6] that for every ordinal α < ω2

there is an LCS space of height α and width ω. Then, we will transfer
this theorem to the setting of LLSP spaces, showing that for every ordinal
α < ω3 there is an LLSP space of height α and width ω1.

To obtain an LCS space of height ω1 and width ω, in [6] Juhász and
Weiss, using transfinite recursion, constructed a sequence 〈Xα : α ≤ ω1〉 of
LCS spaces such that Xα had height α and width ω, and for α < β, the
space Xα was just the first α Cantor-Bendixson levels of Xβ.

Since Xα is dense in Xα+1, Juhász and Weiss had to guarantee that Xα

is not compact. But it was automatic, because if α = γ + 1, then Xα had a
top infinite Cantor-Bendixson level, so Xα was not compact. If α is a limit
ordinal, then the open cover {Xξ : ξ < α} witnessed that Xα is not compact.

What happens if we try to adopt that approach for LLSP spaces? To
obtain an LLSP space of height ω2 and width ω1, we can try, using transfinite
recursion, to construct a sequence 〈Xα : α ≤ ω2〉 of LLSP spaces such that
Xα has height α and width ω1, and for α < β, the space Xα is just the first
α levels of Xβ.

Since Xα is dense in Xα+1, we have to guarantee that Xα is not closed
in Xα+1, in particular, Xα is not Lindelöf. (Since in a P-space, Lindelöf
subspaces are closed.) However, in our case it is not automatic in limit steps,
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because the increasing countable union of open non-Lindelöf subspaces can
be Lindelöf.

So some extra effort is needed to guarantee the non-Lindelöfness in limit
steps.

Assume that κ is an uncountable cardinal and α is a non-zero ordinal. If
X is an LLSP space such that ht(X) = α and wd(X) = κ, we say that X is
a (κ, α)-LLSP space.

Then, we will also transfer the results proved in [3] and [11] on thin-tall
spaces to the context of locally Lindelöf P-spaces, showing that Con(ZFC)
implies Con(ZFC + “there is an (ω1, α)-LLSP space for every ordinal α <
ω4”).

2. Construction of an LLSP space of width ω1 and height ω2

By a decomposition of a set A of size ω1, we mean a partition of A into
subsets of size ω1. In this section we will prove the following result.

Theorem 2.1. There is an (ω1, ω2)-LLSP space.

Proof. We construct an (ω1, ω2)-LLSP space whose underlying set is ω2. For
every α < ω2, we put Iα = (ω1 · (α + 1)) \ (ω1 · α), and for every ordinal
ξ < ω1, we define the “column” Nξ = {ω1 ·µ+ ξ : µ < ω2}. Write ξ ∈ Nn(ξ).
Our aim is to construct, by transfinite induction on α < ω2 an LLSP space
Xα satisfying the following:

(1) Xα is an (ω1, α + 1)-LLSP space such that Iβ(Xα) = Iβ for every
β ≤ α.

(2) For every ξ < ω1, Nξ ∩Xα is a closed discrete subset of Xα.

(3) If β < α and x ∈ Xβ , then a neighbourhood basis of x in Xβ is also a
neighbourhood basis of x in Xα.

For every α < ω2 and x ∈ Iα, in order to define the required neighbour-
hood basis Bx of x in Xα, we will also fix a Lindelöf cone Vx of x in Xα such
that the following holds:

(4) Vx ∩ Iα = {x}.

(5) Vx =
⋃

Bx.

(6) There is a club subset Cx of ω1 such that ω1 \Cx is unbounded in ω1

and Vx ∩
⋃

{Nν : ν ∈ Cx} = ∅.

We define X0 as the set I0 = ω1 with the discrete topology, and for x ∈ I0
we put Vx = {x} and Cx = {y ∈ ω1 : y is a limit ordinal > x}. So, assume
that α > 0. If α = β + 1 is a successor ordinal, we put Z = Xβ. And if α
is a limit ordinal, we define Z as the direct union of {Xβ : β < α}. So, the
underlying set of the required space Xα is Z ∪ Iα. If x ∈ Z, then a basic
neighbourhood of x in Xα is a neighbourhood of x in Z. Our purpose is to
define a neighbourhood basis of each element of Iα. Let {xν : ν < ω1} be
an enumeration without repetitions of Z. By the induction hypothesis, for
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every ξ < ω1 there is a club subset Cξ of ω1 such that ω1 \Cξ is unbounded
in ω1 and Vxξ

∩
⋃

{Nν : ν ∈ Cξ} = ∅. Let C = ∆{Cξ : ξ < ω1}, the diagonal
intersection of the family {Cξ : ξ < ω1}. As Vxξ

∩
⋃

{Nν : ν ∈ Cξ} = ∅, by
the definition of C, for every ξ < ω1, Vxξ

∩
⋃

{Nν : ν ∈ C} ⊂
⋃

{Nν : ν ≤ ξ},
and clearly ω1\C is unbounded in ω1. Then, we will define for every element
y ∈ Iα a neighbourhood basis of y from a set Vy in such a way that for some
final segment C ′ of C we will have that Vy ∩

⋃

{Nν : ν ∈ C ′} = ∅. We
distinguish the following three cases:

Case 1. α = β + 1 is a successor ordinal.

For each ξ < ω1 we take a Lindelöf clopen cone Uξ on some uξ in Z
as follows. We take U0 ⊂ Vx0

as a Lindelöf clopen cone on x0 such that
(U0 \ {x0}) ∩N0 = ∅. Suppose that ξ > 0. Let uξ be the first element xη in
the enumeration {xν : ν < ω1} of Z such that uξ 6∈

⋃

{Uµ : µ < ξ}. Since
Iβ ∩

⋃

{Uµ : µ < ξ} ⊂ {uµ : µ < ξ}, the element uξ is defined. Then, we
choose Uξ ⊂ Vxη as a Lindelöf clopen cone on uξ such that Uξ ∩

⋃

{Uµ : µ <
ξ} = ∅ and (Uξ \ {uξ}) ∩

⋃

{Nν : ν ≤ η} = ∅. So, as Vxη ∩
⋃

{Nν : ν ∈ C} ⊂
⋃

{Nν : ν ≤ η}, we deduce that (Uξ \ {uξ}) ∩
⋃

{Nν : ν ∈ C} = ∅. And
clearly, {Uξ : ξ < ω1} is a partition of Z. Let

A = {ξ ∈ ω1 : uξ ∈ Iβ ∩Nρ for some ρ ∈ ω1 \ C}.

Since Iβ ⊂ {uξ : ξ < ω1}, we have |A| = ω1. Let {Aξ : ξ < ω1} be a
decomposition of A. Fix ξ < ω1. Let yξ = ω1 · α+ ξ. Then, we define

Vyξ = {yξ} ∪
⋃

{Uν : ν ∈ Aξ}.

Note that since
⋃

{Uν : ν ∈ Aξ} ∩
⋃

{Nν : ν ∈ C} = ∅, we infer that
Vyξ ∩

⋃

{Nν : ν ∈ C and ν > ξ} = ∅. Now, we define a basic neighbourhood
of yξ in Xα as a set of the form

{yξ} ∪
⋃

{Uν : ν ∈ Aξ, ν ≥ ζ}

where ζ < ω1. Then, it is easy to check that conditions (1)− (6) hold.

Case 2. α is a limit ordinal of cofinality ω1.

Let 〈αν : ν < ω1〉 be a strictly increasing sequence of ordinals cofinal in
α. For every ξ < ω1, we choose a Lindelöf clopen cone Uξ on some point
uξ in Z as follows. If ξ is not a limit ordinal, let uξ be the first element
xη in the enumeration {xν : ν < ω1} of Z such that uξ 6∈

⋃

{Uµ : µ < ξ}
and let Uξ ⊂ Vxη be a Lindelöf clopen cone on uξ such that Uξ ∩

⋃

{Uµ :
µ < ξ} = ∅. Now, assume that ξ is a limit ordinal. Let ν < ω1 be such
that αν > sup{ρ(uµ, Z) : µ < ξ}. Then, we pick uξ as the first element
xη in the enumeration {xν : ν < ω1} of Z such that uξ ∈ Iαν (Z) ∩ Nδ for
some δ ∈ ω1 \ C with δ > ξ. Note that by the election of αν , we have that
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uξ 6∈
⋃

{Uµ : µ < ξ}. Then, we choose Uξ ⊂ Vxη as a Lindelöf clopen cone
on uξ such that

Uξ ∩
⋃

{Uµ : µ < ξ} = ∅ and

(Uξ \ {uξ}) ∩
⋃

{Nν : ν ≤ η} = ∅.

Then since Vxη ∩
⋃

{Nν : ν ∈ C} ⊂
⋃

{Nν : ν ≤ η} and δ 6∈ C, we infer that
Uξ ∩

⋃

{Nν : ν ∈ C} = ∅.

Now, let {Aξ : ξ < ω1} be a decomposition of the set of limit ordinals of
ω1. Fix ξ < ω1. Let yξ = ω1 · α+ ξ. Then, we define

Vyξ = {yξ} ∪
⋃

{Uµ : µ ∈ Aξ}.

Clearly, Vyξ ∩
⋃

{Nν : ν ∈ C, ν > ξ} = ∅. Now, we define a basic neighbour-
hood of yξ in Xα as a set of the form

Vyξ \
⋃

{Uν : ν ∈ Aξ, ν < ζ}

where ζ < ω1.

Note that the condition that δ > ξ in the election of uξ for ξ a limit
ordinal is needed to assure that Nξ ∩Xα is a closed discrete subset of Xα

for ξ < ω1. So, conditions (1)− (6) hold.

Case 3. α is a limit ordinal of cofinality ω.

Let 〈αn : n < ω〉 be a strictly increasing sequence of ordinals converging
to α. Proceeding by transfinite induction on ξ < ω1, we construct a sequence

〈uξn : n < ω〉 of points in Z and a sequence 〈U ξ
n : n < ω〉 such that each

U ξ
n ⊂ V

u
ξ
n
is a Lindelöf clopen cone on uξn as follows. Fix ξ < ω1, and

assume that for µ < ξ the sequences 〈uµn : n < ω〉 and 〈Uµ
n : n < ω〉 have

been constructed. Let C∗ =
⋂

{Cu
µ
n
: µ < ξ, n < ω}. Note that C∗ is a club

subset of ω1, because it is a countable intersection of club subsets of ω1. Now
since for every µ < ξ and n < ω, we have that Vu

µ
n
∩
⋃

{Nν : ν ∈ Cu
µ
n
} = ∅,

we infer that

⋃

{Vu
µ
n
: µ < ξ, n < ω} ∩

⋃

{Nν : ν ∈ C∗} = ∅.

Hence, for every ordinal β < α,

|Iβ \
⋃

{Vu
µ
n
: µ < ξ, n < ω}| = ω1.

Now, we construct the sequences 〈uξn : n < ω〉 and 〈U ξ
n : n < ω〉 by

induction on n. If n is even, let uξn be the first element xη in the enumeration

{xν : ν < ω1} of Z such that uξn 6∈
⋃

{Uµ
k : µ < ξ, k < ω} ∪

⋃

{U ξ
k : k < n},

and let U ξ
n ⊂ Vxη be a Lindelöf clopen cone on uξn such that
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U ξ
n ∩ (

⋃

{Uµ
k : µ < ξ, k < ω} ∪

⋃

{U ξ
k : k < n}) = ∅.

Now, suppose that n is odd. Let k ∈ ω be such that αk > sup{ρ(uξm, Z) :

m < n}. First, we pick ũξn as the first element xη in the enumeration

{xν : ν < ω1} of Z such that ũξn ∈ Iαk+1(Z) ∩ Nζ∗ for some ζ∗ ∈ C∗. So,

ũξn 6∈
⋃

{Uµ
m : µ < ξ,m < ω} ∪

⋃

{U ξ
m : m < n}. Now, we choose Ũ ξ

n ⊂ Vxη

as a Lindelöf clopen cone on ũξn such that

Ũ ξ
n ∩ (

⋃

{Uµ
m : µ < ξ,m < ω} ∪

⋃

{U ξ
m : m < n}) = ∅.

and

(Ũ ξ
n \ {ũξn}) ∩

⋃

{Nν : ν ≤ η} = ∅.

Then as ũξn = xη and Vxη ∩
⋃

{Nν : ν ∈ C} ⊂
⋃

{Nν : ν ≤ η}, we infer

that (Ũ ξ
n \ {ũξn}) ∩

⋃

{Nν : ν ∈ C} = ∅. However, note that if ζ is the

ordinal such that ũξn ∈ Nζ , it may happen that ζ ∈ C. Then, we pick

uξn as the first element xρ in the enumeration {xν : ν < ω1} of Z such

that uξn ∈ Ũ ξ
n ∩ Iαk

(Z) ∩ Nδ for some δ > ξ. Note that δ 6∈ C, because

(Ũ ξ
n \ {ũξn}) ∩

⋃

{Nν : ν ∈ C} = ∅. Now, we choose U ξ
n ⊂ Ũ ξ

n ∩ Vxρ as a

Lindelöf clopen cone on uξn such that

(U ξ
n \ {uξn}) ∩

⋃

{Nν : ν ≤ ρ} = ∅.

Hence as Vxρ ∩
⋃

{Nν : ν ∈ C} ⊂
⋃

{Nν : ν ≤ ρ} and δ 6∈ C, we infer that

U ξ
n ∩

⋃

{Nν : ν ∈ C} = ∅.

Now, let {Aξ : ξ < ω1} be a decomposition of ω1. Fix ξ < ω1. Let
yξ = ω1 · α+ ξ. Then, we define

Vyξ = {yξ} ∪
⋃

{Uµ
n : µ ∈ Aξ, n odd}.

As
⋃

{Uµ
n : µ ∈ Aξ, n odd} ∩

⋃

{Nν : ν ∈ C} = ∅, we deduce that Vyξ ∩
⋃

{Nν : ν ∈ C and ν > ξ} = ∅. Then, we define a basic neighbourhood of
yξ in Xα as a set of the form

{yξ} ∪
⋃

{Uµ
n : µ ∈ Aξ, µ ≥ ζ, n odd}

where ζ < ω1. Now, it is easy to see that conditions (1) − (6) hold.

Then, we define the desired space X as the direct union of the spaces Xα

for α < ω2. �

Remark 2.2. Note that by the construction carried out in the proof of
Theorem 2.1, we have that

if U ⊂ X is Lindelöf then {ξ : Nξ ∩ U 6= ∅} ∈ NS(ω1).
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3. A stepping up theorem

In this section, for every cardinal λ ≥ ω2 we will construct from an (ω1, λ)-
LLSP space satisfying certain additional properties an (ω1, α)-LLSP space
for every ordinal α < λ+. As a consequence of this construction, we will be
able to extend Theorem 2.1 from ω2 to any ordinal α < ω3. We need some
preparation.

Definitions 3.1. (a) Assume that X is an LLSP space, β + 1 < ht(X),
x ∈ Iβ+1(X) and Bx is a neighbourhood basis for x. We say that Bx is
admissible, if there is a pairwise disjoint family {Uν : ν < ω1} such that for
every ν < ω1, Uν is a Lindelöf clopen cone on some point xν ∈ Iβ(X) in
such a way that Bx is the collection of sets of the form

{x} ∪
⋃

{Uν : ν ≥ ξ},

where ξ < ω1. Then, we will say that Bx is the admissible basis for x given

by {Uν : ν < ω1}.

(b) Now, we say that X is an admissible space if for every x ∈ X there is a
neighbourhood basis Bx such that for every successor ordinal β+1 < ht(X)
the following holds:

(1) Bx is an admissible basis for every point x ∈ Iβ+1(X),
(2) if x, y ∈ Iβ+1(X) with x 6= y and ρ(x) = ρ(y), Bx is given by {Uν : ν <

ω1} and By is given by {U ′
ν : ν < ω1}, then for every ν, µ < ω1 we have

Uν ∩ U ′
µ = ∅.

Note that the space X constructed in the proof of Theorem 2.1 is admis-
sible.

Definition 3.2. We say that an LLSP space X is good, if for every ordinal
α < ht(X) and every set {Un : n ∈ ω} of Lindelöf clopen cones on points of
X, the set Iα(X) \

⋃

{Un : n ∈ ω} is uncountable.

Note that the space X constructed in the proof of Theorem 2.1 is good.

Assume that X is a good LLSP space. Then, we define the space X∗

as follows. Its underlying set is X ∪ {z} where z 6∈ X. If x ∈ X, a basic
neighbourhood of x in X∗ is a neighbourhood of x in X. And a basic
neighbourhood of z in X∗ is a set of the form

X∗ \
⋃

{Un : n ∈ ω}

where each Un is a Lindelöf clopen cone on some point of X. Clearly, X∗ is
a Lindelöf scattered Hausdorff P-space with ht(X∗) = ht(X) + 1.

Theorem 3.3. Let λ ≥ ω2 be a cardinal. Assume that there is a good

(ω1, λ)-LLSP space that is admissible. Then, for every ordinal α < λ+ there

is a good (ω1, α)-LLSP space.
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So, we obtain the following consequence of Theorems 2.1 and 3.3.

Corollary 3.4. For every ordinal α < ω3 there is a good (ω1, α)-LLSP
space.

Proof of Theorem 3.3. We may assume that λ ≤ α < λ+. We proceed by
transfinite induction on α. If α = λ, the case is obvious. Assume that
α = β + 1 is a successor ordinal. Let Y be a good (ω1, β)-LLSP space. For
every ν < ω1 let Yν be a P-space homeomorphic to Y ∗ in such a way that
Yν ∩ Yµ = ∅ for ν < µ < ω1. Clearly, the topological sum of the spaces Yν

(ν < ω1) is a good (ω1, α)-LLSP space.

Now, assume that α > λ is a limit ordinal. Let θ = cf(α). Note that
since there is a good admissible (ω1, λ)-LLSP space and θ ≤ λ, there is a
good admissible LLSP space T of width ω1 and height θ. Let {αξ : ξ < θ}
be a closed strictly increasing sequence of ordinals cofinal in α with α0 = 0.
For every ordinal ξ < θ, we put Jξ = {αξ} × ω1. We may assume that
the underlying set of T is

⋃

{Jξ : ξ < θ}, Iξ(T ) = Jξ for every ξ < θ and
Iθ(T ) = ∅.

Fix a system of neighbourhood bases, {Bx : x ∈ T}, which witnesses that
T is admissible. Write Vs =

⋃

Bs for s ∈ T .
So, writing

T ′ = {s ∈ T : ρ(s, T ) is a successor ordinal},

for each s ∈ T with ρ(s, T ) = ξ + 1, there is Ds = {dsζ : ζ < ω1} ∈ [Iξ(T )]
ω1

and for each d ∈ Ds there is a Lindelöf cone Ud on d such that

Bs =
{

{s} ∪
⋃

η≤ζ

Uds
ζ
: η < ω1

}

.

In order to carry out the desired construction, we will insert an adequate
LLSP space between Iξ(T ) and Iξ+1(T ) for every ξ < θ. If ξ < θ, we define

δξ = o.t.(αξ+1 \ αξ). We put yξ+1
ν = 〈αξ+1, ν〉 for ξ < θ and ν < ω1, and

we put Dξ
ν = {x ∈ T : ρ(x, T ) = ξ and x ∈ V

y
ξ+1
ν

} = D
y
ξ+1
ν

. Since T is

admissible, Dξ
ν ∩Dξ

µ = ∅ for ν 6= µ.

Now, by the induction hypothesis, for every point y = yξ+1
ν where ξ < θ

and ν < ω1 there is a Lindelöf scattered Hausdorff P-space Zy of height

δξ + 1 such that I0(Zy) = Dξ
ν , |Iν(Zy)| = ω1 for ν < δξ, Iδξ(Zy) = {y} and

Zy ∩ T = Dξ
ν ∪ {y}. Also, we assume that Z

y
ξ+1
ν

∩ Z
y
ξ+1
µ

= ∅ for ν 6= µ and

(Z
y
ξ+1
ν

\ {yξ+1
ν }) ∩ (Z

y
η+1
µ

\ {yη+1
µ }) = ∅ for ξ 6= η and ν, µ < ω1.

Now, our aim is to define the desired (ω1, α)-LLSP space Z. Its underlying
set is

Z = T ∪
⋃

{Zy : y ∈ T ′}.

If V is a Lindelöf clopen cone on a point z ∈ T , we define
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V ∗ = V ∪
⋃

{(Zy \ T ) : y ∈ V ∩ T ′}.

Observe that if y ∈ V ∩ T ′, then Zy \ V
∗ = Dy \ V and Dy \ V is countable

because T is admissible. So Zy ∩ V ∗ is open in Zy because Zy is a P-space.
Now, assume that x ∈ Zs for some s ∈ T ′. Then, if U is a Lindelöf clopen

cone on x in Zs, we define

U∼ = U ∪
⋃

{(Uy)
∗ : y ∈ Ds ∩ U}.

Note that for every s ∈ T ′ we have (Vs)
∗ = (Zs)

∼.

After that preparation we can define the bases of the points of Z. Suppose
that x ∈ Z = T ∪

⋃

{Zy : y ∈ T ′}.
If x ∈ T \ T ′, then let

B
Z
x = {V ∗ : V is a Lindelöf clopen cone on x in T}.

If x ∈ (Z \ T ) ∪ T ′, then pick first the unique s ∈ T ′ such that x ∈
Zs \ I0(Zs), and let

B
Z
x = {U∼ : U is a Lindelöf clopen cone on x in Zs}.

Claim 1. {BZ
x : x ∈ Z} is a system of neighbourhood bases of a topology

τZ.

Proof. Assume that y ∈ W ∈ B
Z
x . We should show that BZ

y ∩ P(W ) 6= ∅.
Assume first that x ∈ T \ T ′, and so W = V ∗ for some Lindelöf clopen

clone V on x in T .
If y ∈ T \ T ′, then y ∈ V and so S ⊂ V for some Lindelöf clopen clone S

on y in T . Thus y ∈ S∗ ⊂ V ∗ and S∗ ∈ B
Z
y .

If y ∈ (Z\T )∪T ′ then pick first the unique s ∈ T ′ such that y ∈ Zs\I0(Zs).
Then s ∈ V because otherwise y ∈ V ∗ is not possible. So as we observed,
V ∗ ∩ Zs is open in Zs. So let S be a Lindelöf clopen cone on y in Zs with
S ⊂ V ∗ ∩ Zs. Then y ∈ S∼ ⊂ V ∗ and S∼ ∈ B

Z
y .

Assume now that x ∈ (Z \ T )∪ T ′, then pick first the unique s ∈ T ′ such
that x ∈ Zs \ I0(Zs). Then W = U∼ for some Lindelöf clopen cone U on x
in Zs.

If y ∈ Zs \ I0(Zs), then S ⊂ U for some Lindelöf clopen clone S on y in
Zs, and so S∼ ∈ B

Z
y and S∼ ⊂ U∼.

If y /∈ Zs \ I0(Zs), then y ∈ (Ud)
∗ for some d ∈ I0(Zs) ∩ U , and so there

is S ∈ B
Z
y with S ⊂ (Ud)

∗ using what we proved so far. Thus S ⊂ U∼ as
well. �

Claim 2. τZ is Hausdorff.

Proof. Assume that {x, y} ∈ [Z]2. Let s and t be elements of T such that
x ∈ Zs \ I0(Zs) if x /∈ T \ T ′ and s = x otherwise, and y ∈ Zt \ I0(Zt) if
y /∈ T \ T ′ and t = y otherwise.
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If s 6= t, consider disjoint Lindelöf clopen cones U and V on s and t in T
respectively. Note that if w ∈ U ∩ T ′, then Zw \ T ⊂ U∗ because w ∈ U ,
but (Zw \ T ) ∩ V ∗ = ∅ because w 6∈ V , and analogously if w ∈ V ∩ T ′ then
Zw \ T ⊂ V ∗ but (Zw \ T ) ∩ U∗ = ∅. So, U∗ and V ∗ are disjoint open sets
containing x and y respectively.

If s = t, then there are disjoint cones in Zs on x and y, U and V , re-
spectively. Then U∗ and V ∗ are disjoint open sets containing x and y,
respectively. �

It is trivial from the definition that Z is a P -space because T is a P-space
and the Zs are P-spaces.

By transfinite induction on δ < α it is easy to check that

Iδ(Z) =







Jξ if δ = αξ,

⋃

{Iη(Zs} : s ∈ Iξ+1(T )} if αξ < δ = αξ + η < αξ+1,

so Z is scattered with height α and width ω1.

Claim 3. Z is locally Lindelöf.

Proof. Note that if x ∈ T \ T ′ and U∗ ∈ B
Z
x , then for every V ∗ ∈ B

Z
x with

V ∗ ⊂ U∗ we have that U∗ \ V ∗ =
⋃

{W ∗
n : n ∈ ν} where ν ≤ ω in such a

way that each Wn is a Lindelöf clopen cone on some point vn ∈ T ∩ U in T
with ρ(vn, T ) < ρ(x, T ).

Also, if x ∈ T ′ ∪ (Z \ T ) and U∼ ∈ B
Z
x then for every V ∼ ∈ B

Z
x with

V ∼ ⊂ U∼, if s is the element of T ′ with x ∈ Zs \ I0(Zs), we have that
U∼ \ V ∼ =

⋃

{U ′
n : n ∈ ν} where ν ≤ ω in such a way that for every

n ∈ ν, either U ′
n = U∼

n where Un is a Lindelöf clopen cone on some point
un ∈ Zs ∩ U in Zs with 0 < ρ(un, Zs) < ρ(x,Zs) or U

′
n = U∗

n where Un is a
Lindelöf clopen cone on some point un ∈ Ds ∩ U in T .

Now, proceeding by transfinite induction on ρ(x,Z), we can verify that if
x ∈ T \ T ′ and U is a Lindelöf clopen cone on x in T , then U∗ is a Lindelöf
clopen cone on x in Z, and that if x ∈ Zs \ I0(Zs) for some s ∈ T ′ and U is
a Lindelöf clopen cone on x in Zs, then U∼ is a Lindelöf clopen cone on x
in Z. Therefore, Z is locally Lindelöf. �

Claim 4. Z is good.

Proof. Let δ < α = ht(Z) and let {Wn : n ∈ ω} be a family of Lindelöf cones
in Z. Since every Wn is covered by countably many Lindelöf cones from the
basis, we can assume that Wn ∈ B

Z
xn

for some xn ∈ Z for each n ∈ ω. For
each n pick yn ∈ T such that yn = xn if xn ∈ T and xn ∈ Zyn otherwise.

Then Wn ⊂ W ′
n for some W ′

n ∈ B
Z
yn
, so we can assume that {xn : n ∈

ω} ⊂ T . We can also assume that if xn ∈ T ′, then Wn is as large as possible,
i.e. Wn = Z∼

xn
= (Vxn)

∗.
If xn ∈ T \ T ′, then Wn = S∗

n for some Lindelöf cone Sn on xn in T.
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If δ = αξ for some ξ, then Iδ(Z) ∩ Wn = Iδ(Z) ∩ Vxn if xn ∈ T ′ and
Iδ(Z) ∩Wn = Iδ(Z) ∩ Sn if xn ∈ T \ T ′.

So Iδ(Z) \
⋃

n∈ω Wn is uncountable because T is good.
Assume that αξ < δ < αξ+1 and let δ = αξ + η.
Pick s ∈ Iαξ+1

(Z) \
⋃

n∈ω Wn. Then Zs \
⋃

n∈ω Wn ⊃ Iη(Zs), and so
Iδ(Z) \

⋃

n∈ω Wn ⊃ Iη(Zs), and hence Iδ(Z) \
⋃

n∈ω Wn is uncountable.
�

Thus, the space Z is as required. �

4. Cardinal sequences of length < ω4

In this section, we will show the following result.

Theorem 4.1. If V=L, then there is a cardinal-preserving partial order P

such that in V P there is an (ω1, α)-LLSP space for every ordinal α < ω4.

If S =
⋃

{{α}×Aα : α < η} where η is a non-zero ordinal and each Aα is
a non-empty set of ordinals, then for every s = 〈α, ξ〉 ∈ S we write π(s) = α
and ζ(s) = ξ.

The following notion is a refinement of a notion used implicitly in [3].

Definition 4.2. We say that S = 〈S,�, i〉 is an LLSP poset, if the following
conditions hold:

(P1) 〈S,�〉 is a partial order with S =
⋃

{Sα : α < η} for some non-zero
ordinal η such that each Sα = {α} ×Aα where Aα is a non-empty set
of ordinals.

(P2) If s ≺ t then π(s) < π(t).
(P3) If α < β < η and t ∈ Sβ, then {s ∈ Sα : s ≺ t} is uncountable.
(P4) If γ < η with cf(γ) = ω, t ∈ Sγ and 〈tn : n ∈ ω〉 is a sequence of

elements of S such that tn ≺ t for every n ∈ ω, then for every ordinal
β < γ the set {s ∈ Sβ : s ≺ t and s 6� tn for n ∈ ω} is uncountable.

(P5) i : [S]2 → [S]≤ω such that for every {s, t} ∈ [S]2 the following holds:
(a) If v ∈ i{s, t} then v � s, t.
(b) If u � s, t, then there is v ∈ i{s, t} such that u � v.

If there is an uncountable cardinal λ such that |Sα| = λ for α < η, we will
say that 〈S,�, i〉 is a (λ, η)-LLSP poset.

If S = 〈S,�, i〉 is an LLSP poset with S =
⋃

{Sα : α < η}, we define its
associated LLSP spaceX = X(S) as follows. The underlying set ofX(S) is S.
If x ∈ S we write U(x) = {y ∈ S : y � x}. Then, for every x ∈ S we define a
basic neighbourhood of x in X as a set of the form U(x)\

⋃

{U(xn) : n ∈ ω}
where each xn ≺ x. It is easy to check that X is a locally Lindelöf scattered
Hausdorff P-space (see [1] for a parallel proof). And by conditions (P3) and
(P4) in Definition 4.2, we infer that ht(X) = η and Iα(X) = Sα for every
α < η.
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In order to prove Theorem 4.1, first we will construct an (ω1, ω3)-LLSP
space X in a generic extension by means of an ω1-closed ω2-c.c. forcing, by
using an argument similar to the one given by Baumgartner and Shelah in
[3].

Recall that a function F : [ω3]
2 → [ω3]

≤ω1 has property ∆, if F{α, β} ⊂
min{α, β} for every {α, β} ∈ [ω3]

2 and for every set D of countable subsets
of ω3 with |D| = ω2 there are a, b ∈ D with a 6= b such that for every
α ∈ a \ b, β ∈ b \ a and τ ∈ a ∩ b the following holds:

(a) if τ < α, β then τ ∈ F{α, β},
(b) if τ < β then F{α, τ} ⊂ F{α, β},
(c) if τ < α then F{τ, β} ⊂ F{α, β}.

By a result due to Velickovic, it is known that �ω2
implies the existence

of a function F : [ω3]
2 → [ω3]

≤ω1 satisfying property ∆ (see [17, Chapter 7
and Lemma 7.4.9.], for a proof ).

Proof of Theorem 4.1. Let F : [ω3]
2 → [ω3]

≤ω1 be a function with property
∆. First, we construct by forcing an (ω1, ω3)-LLSP poset. Let S =

⋃

{Sα :
α < ω3} where Sα = {α}×ω1 for each α < ω3. S will be the underlying set
of the required poset. We define P as the set of all p = 〈xp,�p, ip〉 satisfying
the following conditions:

(1) xp is a countable subset of S.
(2) �p is a partial order on xp such that:

(a) if s ≺p t then π(s) < π(t),
(b) if s ≺p t and π(t) is a successor ordinal β + 1, then there is v ∈ Sβ

such that s �p v ≺p t.
(3) ip : [xp]

2 → [xp]
≤ω satisfying the following conditions:

(a) if s ≺p t then ip{s, t} = {s},
(b) if s 6�p t and π(s) < π(t), then ip{s, t} ⊂

⋃

{Sα : α ∈ F{π(s), π(t)}},
(c) if s, t ∈ xp with s 6= t and π(s) = π(t) then ip{s, t} = ∅,
(d) v �p s, t for all v ∈ ip{s, t},
(e) for every u �p s, t there is v ∈ ip{s, t} such that u �p v.

If p, q ∈ P , we write p ≤ q iff xq ⊂ xp, �p↾ xq =�q and ip ↾ [xq]
2 = iq.

We put P = 〈P,≤〉.

Clearly, P is ω1-closed. And since the function F has property ∆, it is
easy to check that P has the ω2-c.c., and so P preserves cardinals.

Now, let G be a P-generic filter. We write �=
⋃

{�p: p ∈ G} and i =
⋃

{ip : p ∈ G}. It is easy to see that S =
⋃

{xp : p ∈ G} and � is a
partial order on S. Then, we have that 〈S,�, i〉 is an (ω1, ω3)-LLSP poset.
For this, note that conditions (P1), (P2), (P5) in Definition 4.2 are obvious,
and condition (P3) follows from a basic density argument. So, we verify
condition (P4). For every t ∈ S such that γ = π(t) has cofinality ω, for
every sequence 〈tn : n ∈ ω〉 of elements of S, for every ordinal β < γ and for
every ordinal ξ < ω1 let
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Dt,{tn:n∈ω},β,ξ = {q ∈ P : {t} ∪ {tn : n ∈ ω} ⊂ xq and either (tn 6≺q

t for some n ∈ ω) or (tn ≺q t for every n ∈ ω and there is y ∈ Sβ ∩ xq with
ζ(y) > ξ such that y ≺q t and y 6�q tn for every n ∈ ω)}.

Since P is ω1-closed, we have that Dt,{tn:n∈ω},β,ξ ∈ V . Then, consider
p = 〈xp,�p, ip〉 ∈ P . We define a q ∈ Dt,{tn:n∈ω},β,ξ such that q ≤ p.
Without loss of generality, we may assume that t ∈ xp. We distinguish the
following cases.

Case 1. tn 6∈ xp for some n ∈ ω.

We define q = 〈xq,�q, iq〉 as follows:

(a) xq = xp ∪ {tn : n ∈ ω},

(b) ≺q=≺p,

(c) iq{x, y} = ip{x, y} if {x, y} ∈ [xp]
2, iq{x, y} = ∅ otherwise.

Case 2. tn ∈ xp for every n ∈ ω.

If tn 6≺p t for some n ∈ ω, we put q = p. So, assume that tn ≺p t for all
n ∈ ω. Let u ∈ Sβ \ xp be such that ζ(u) > ξ. We define q = 〈xq,�q, iq〉 as
follows:

(a) xq = xp ∪ {u},

(b) ≺q=≺p ∪{〈u, v〉 : t �p v},

(c) iq{x, y} = ip{x, y} if {x, y} ∈ [xp]
2, iq{x, y} = {x} if x ≺q y, iq{x, y} =

{y} if y ≺q x, iq{x, y} = ∅ otherwise.

So, Dt,{tn:n∈ω},β,ξ is dense in P, and hence condition (P4) holds. Let
X = X(〈S,�, i〉). For every x ∈ S, we write U(x) = {y ∈ S : y � x}. By
conditions (2)(b) and (3)(c) in the definition of P, we see that if x ∈ Sβ+1

for some β < ω3, then x has an admissible basis in X given by {U(y) : y ≺
x, π(y) = β}. Thus, X is an admissible space. And clearly, X is good. So,
by Theorem 3.3, we can construct from the space X an (ω1, α)-LLSP space
for every ordinal ω3 ≤ α < ω4. �

Now, assume that κ is an uncountable regular cardinal. Recall that a
topological space X is a Pκ-space, if the intersection of any family of less
than κ open subsets of X is open in X. And we say that X is κ-compact,
if every open cover of X has a subcover of size less < κ. By an SPκ space

we mean a scattered Hausdorff Pκ-space. Then, we want to remark that
by using arguments that are parallel to the ones given in the proofs of the
above theorems, we can show the following more general results:

(1) For every uncountable regular cardinal κ and every ordinal α < κ++,
there is a locally κ-compact SPκ space X such that ht(X) = α and wd(X) =
κ.

(2) If V=L and κ is an uncountable regular cardinal, then there is a
cardinal-preserving partial order P such that in V P we have that for every
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ordinal α < κ+++ there is a locally κ-compact SPκ space X such that
ht(X) = α and wd(X) = κ.
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