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1. Introduction

In recent years, there has been a renewed attention in time inconsistency for optimality
problems, as well as financial models. Generally, time inconsistency arises in several
optimality problems when the optimal strategy selected at some time s is no longer optimal
at time t > s. In other words, a strategy is time-inconsistent when the decision-maker at
future time t > s is tempted to deviate from the strategy determined at time s. It is well
known that an optimization problem gives raise to time-inconsistent strategies when the
dynamic programming principle cannot be applied, and Bellman’s principle does not hold.

In practice, an important illustration of time-inconsistent problem is the mean-variance
selection problem, where the time inconsistency is due to the fact that there is a nonlinear
function of the expectation of the final wealth in the objective criterion. Another important
problem which produces a time-inconsistent behavior is the investment-consumption prob-
lem with non-exponential discounting. This was the case studied by Strotz (1955–1956),
where the time inconsistency arises by the fact that the initial point in time enters in a
crucial manner the objective criterion.

The common assumption in classical investment-consumption problems under dis-
counted utility is that the discount rate is assumed to be constant over time which leads to
the discount function be exponential. This assumption provides the possibility to compare
outcomes occurring at different times by discounting future utility by some constant factor.
But, on the other hand, results from experimental studies contradict this assumption, indi-
cating that discount rates for the near future are much lower than discount rates for the time
further away in future. Ainslie (1995) established experimental studies on human and ani-
mal behavior and found that discount functions are almost hyperbolic; that is, they decrease
like a negative power of time rather than an exponential. Loewenstein and Prelec (1992)
showed that economic decision-makers are impatient about choices in the short term but
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are more patient when choosing between long-term alternatives; therefore, a hyperbolic
type discount function would be more realistic.

Unfortunately, as soon as a discount function is non-exponential, discounted utility
models become time-inconsistent in the sense that they do not admit the Bellman’s opti-
mality principle. Consequently, the classical dynamic programming approach may not be
applicable to solve these problems. According to Strotz (1955–1956), there are two basic
ways of handling time inconsistency in non-exponential discounted utility models. In the
first one, under the notion of naive agents, every decision is taken without taking into
account that their preferences will change in the near future. The agent at time t ∈ [0, T] will
solve the problem as a standard optimal control problem with initial condition X(t) = xt.
If we suppose that the naive agent at time 0 solves the problem, his or her solution corre-
sponds to the so-called pre-commitment solution, in the sense that it is optimal as long as
the agent can pre-commit his or her future behavior at time t = 0.

Kydland and Prescott (1997) indeed argue that a pre-committed strategy may be
economically meaningful in certain circumstances. The second approach consists in the
formulation of a time-inconsistent decision problem as a non-cooperative game between
incarnations of the decision-maker at different instants of time. Nash equilibrium of these
strategies are then considered to define the new concept of solution to the original problem.
Strotz (1955–1956) was the first who proposed a game theoretic formulation to handle
the dynamic time inconsistent optimal decision problem on the deterministic Ramsey
problem; see Ramsey (1928). Then, by capturing the idea of non-commitment, and letting
the commitment period being infinitesimally small, he provided a primitive notion of Nash
equilibrium strategy.

1.1. Related Works

Further work along this line in continuous and discrete time has been done by
Pollak (1968); Phelps and Pollak (1968); Goldman (1980); Barro (1990); and Krusell and
Smith (2003). Keeping the same game theoretic approach, Ekeland and Lazrak (2008)
and Marín-Solano and Navas (2010) treated the optimal consumption problem where the
utility involves a non-exponential discount function in the deterministic framework. They
characterized the equilibrium strategies by a value function that has to satisfy a certain
“extended Hamilton–Jacobi–Bellman (HJB) equation”, which is a non-linear differential
equation displaying a non-local term that depends on the global behavior of the solution.
In this situation, every decision at time t is taken by a t−agent which represents the in-
carnation of the controller at time t and is referred in Marín-Solano and Navas (2010) as a
“sophisticated t−agent”.

Björk and Murgoci (2010) extended the idea to the stochastic setting where the con-
trolled dynamic is driven by a quite general class of Markov process and a fairly general
objective function. Yong in Yong (2011), by a discretization of time, studied a class of
time inconsistent deterministic linear quadratic models and derive equilibrium controls
via some class of Riccati-Voltera equations. Yong (2012), also by a discretization of time,
investigated a general discounting time inconsistent stochastic optimal control problem
and characterizes a feedback time-consistent Nash equilibrium control via the so-called
“equilibrium HJB equation”.

The Nash equilibrium solution to the mean-variance problem was established first
by Basak and Chabakauri (2010) and then extended to a further general class of time-
inconsistent problems by Björk and Murgoci (2010). Other papers on the consistent plan-
ning approach for the mean-variance problem are Hu et al. (2012); Czichowsky (2013); and
Björk et al. (2014).

Concerning equilibrium strategies for an optimal consumption-investment problem
with a general discount function, Ekeland and Pirvu (2008) were the first to investigate
Nash equilibrium strategies where the price process of the risky asset is driven by geometric
Brownian motion. They characterized the equilibrium strategies through the solutions
of a flow of BSDEs, and they show, for an special form of the discount function, that



J. Risk Financial Manag. 2021, 14, 86 3 of 27

the BSDEs reduce to a system of two ODEs, which has a solution. Ekeland et al. (1995)
added life insurance to the investor’s portfolio and they characterize the equilibrium
strategy by an integral equation. In Yong (2012), the case of time-inconsistent consumption-
investment problem under a power utility function is discussed. Following Yong’s ap-
proach, Zhao et al. (2014) studied the consumption-investment problem with a general
discount function and a logarithmic utility function. Recently, Zou et al. (2014) investi-
gated equilibrium consumption-investment decisions for Merton’s portfolio problem with
stochastic hyperbolic discounting.

As for the comparison between different methods to time inconsistency, Wang and
Forsyth (2012) evaluate time-consistent against pre-commitment strategies and compare
their related efficient frontiers for a mean-variance optimization problem. The evaluation
among the naive and the sophisticated approaches is given by Chen et al. (2014), who
study the optimal dividend model of an insurance company in the existence of time
inconsistency created by non-exponential discount factor. Cong and Oosterlee (2016) found
a relation linking the time-consistent and the pre-commitment investment strategies in
a defined contribution pension scheme. Cui et al. (2017) emphasize the shortcomings of
pre-commitment and game theoretical strategies, and examine a self-coordination strategy
that aims at corresponding global concern and local interests of the decision-maker.
Van Staden et al. (2018) consider the pre-commitment and the time-consistent policies in
the attendance of realistic investment constraints. Bensoussan et al. (2019) evaluate the
produce of constraints on the value function of both pre-commitment and game theoretical
approaches, and discover the unexpected result that for the game theoretical approach
the occurrence of constraints can improve the payoff, whereas, for the pre-commitment
approach, this paradox does not arise. Menoncin and Vigna (2020) evaluate the contribution
pension scheme and prove that the dynamically optimal policy reacts better to extreme
scenarios of market returns.

Time-inconsistent consumption-investment problem with a non-exponential discount
function and a general utility function. We use the game theoretic approach to handle the
time inconsistency in the same perspective as Björk and Murgoci (2010). Noting that, the
game perspective that we will consider is as follows: We first consider a game with one
player at each point t in time. This player represents the incarnation of the decision maker
at time t and can be referred to as “player t”. This t− th player can control the system
only at time t by taking his/her strategies. A control process is then viewed as a complete
description of the chosen strategies of all players in the game. The reward to player t is
given by utility function of an investment-consumption optimization problem. From this
description, we introduce the concept of a “perfect Nash equilibrium strategy” of the game.
This is an admissible control process satisfying some admissibility conditions.

We focus on a variational technique approach leading to a version of a necessary
and sufficient condition for equilibrium, which involves a flow of forward-backward
stochastic differential equations (FBSDEs) along with a certain equilibrium condition. We
also present a verification theorem that covers some possible examples of utility functions.
Then, by decoupling the flow of the FBSDEs, we derive a closed-loop representation of the
equilibrium strategies via a parabolic non-linear partial differential equation (PDE). We
show that within a special form of the utility function (logarithmic, power, and exponential)
the PDE reduces to a system of ODEs which has an explicit solution.

1.2. Novelty and Contribution

Different from Marín-Solano and Navas (2010) and Ekeland and Pirvu (2008), where
the authors derived explicit solutions for special forms of the discount factor, in our
model, the non-exponential discount function is in a fairly general form. Moreover, we
consider equilibrium strategies in the open-loop sense, as defined in Hu et al. (2012) and
Hu et al. (2015), which is different from most of the existing literature on this topic. Note
also that the time-inconsistency, in our paper, arises from a non-exponential discounting in
the objective function, while the works Hu et al. (2012) and Hu et al. (2015) are concerned
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with a quite different kind of time-inconsistency which is caused by the presence of non-
linear terms of expectations in the terminal cost. On other hand, the objective functional, in
our paper, is not reduced to the quadratic form as in Hu et al. (2012) and Hu et al. (2015).

We accentuate that, different from most of the existing literature on this topic, where
some feedback equilibrium strategies are derived via several very complicated highly
non-linear integro-differential equations, an explicit representation of the equilibrium
strategies are obtained in our work via simple ODEs. In addition, this method can provide
the necessary and sufficient conditions to characterize the equilibrium strategies, while the
extended HJB techniques can create, in general, only the sufficient condition in the form of
a verification theorem that characterizes the equilibrium strategies.

1.3. Structure of the Paper

The rest of the paper is organized as follows. In Section 2, we formulate the problem
and give the necessary notations and preliminaries. In Section 3, we present the main results
of the paper, Theorem 1 and Theorem 2, that characterize the equilibrium decisions by some
necessary and sufficient conditions. In Section 4, we derive an explicit representation of the
equilibrium consumption-investment strategy. Section 5 is devoted to some comparisons
with existing results in the literature. The paper ends with an Appendix containing some
proofs.

2. Problem Formulation

In what follows, we assume that W(·) = (W1(·), . . . , Wd(·)) is a d-dimensional stan-
dard Brownian motion defined on a filtered probability space (Ω,F ,F,P), such that
F := (Ft)t∈[0,T] is a natural filtration that satisfies the usual conditions, in particular,
F0 contains all P-null sets and FT = F for an arbitrarily fixed finite time horizon T > 0.
Recall that Ft stands for the information available up to time t, and any decision made at
time t is based on this information.

2.1. Notations

Throughout this paper, we use the following notations: M>: the transpose of the
vector (or matrix) M, 〈χ, ζ〉 : the inner product of χ and ζ, that is, 〈χ, ζ〉 := tr(χTζ). For
a function f , we denote by fx (resp. fxx) the first (resp. the second) derivative of f with
respect to the variable x.

For any Euclidean space E with Frobenius norm |·|, we let, for any t ∈ [0, T],

• Lp(Ω,Ft,P; E) : for any p ≥ 1, the set of E−valued Ft−measurable random variables
X, such that E

[
|X|p

]
< ∞.

• L2
F (t, T; E) : the space of E−valued, (Fs)s∈[t,T]−adapted continuous processes Y(·),

with

‖Y(·)‖L2
F (t,T;E) =

√√√√E
[

sup
s∈[t,T]

|Y(s)|2
]
< ∞.

• Mp
F (t, T; E) : for any p ≥ 1, the space of E−valued, (Fs)s∈[t,T]−adapted processes

Z(·), with

‖Z(·)‖Mp
F (t,T;E) = E

[∫ T

0
|Z(s)|pds

] 1
p
< ∞.

2.2. Financial Market

Consider an individual facing the inter-temporal consumption and portfolio problem
where the market environment consists of one riskless and d risky securities. The risky
securities are stocks and their prices are modeled as Itô processes. Namely, for i = 1, 2, .., d,
the price Si(s), for s ∈ [0, T], of the i-th risky asset, satisfies
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dSi(s) = Si(s)

(
µi(s)ds +

d

∑
j=1

σij(s)dWj(s)

)
, (1)

with Si(0) > 0, for i = 1, 2, ..., d, and the coefficients µi(·) and σi(·) = (σi1(·), . . . , σid(·)), for
i = 1, .., d, are F−progressively measurable processes with values in R and Rd, respectively.
For brevity, we use µ(·) = (µ1(·), µ2(·), . . . , µd(·)) to denote the drift rate vector and
σ(·) =

(
σij(·)

)
1≤i,j≤d to denote the random volatility matrix.

The riskless asset, or the savings account, has the price process S0(s), for s ∈ [0, T],
governed by

dS0(s) = r0(s)S0(s)ds, S0(0) = 1, (2)

where r0(·) is a process with values in [0, ∞) that represents the interest rate. We assume
that E[µi(t)] > r0(t) ≥ 0, dt− a.e., for i = 1, 2, .., d. This is a very natural assumption since,
otherwise, nobody is willing to invest in the risky stocks.

2.3. Investment-Consumption Policies and Wealth Process

Starting from an initial capital x0 > 0 at time 0, during the time horizon [0, T], the
decision-maker is allowed to dynamically invest in the stocks, as well as in the bond and
consuming. A consumption-investment strategy is described by a (d + 1)-dimensional
stochastic process u(·) = (c(·), u1(·), . . . , ud(·))>, where c(s) represents the consumption
rate at time s ∈ [0, T] and ui(s), for i = 1, 2, .., d, represents the amount invested in the i-th
risky stock at time s ∈ [0, T]. The process uI(·) = (u1(·), . . . , ud(·))> is called an investment
strategy. The amount invested in the bond at time s is

Xx0,u(s)−
d

∑
i=1

ui(s),

where Xx0,u(·) is the wealth process associated with the strategy u(·) and the initial capital
x0. The evolution of Xx0,u(·) can be described as

 dXx0,u(s) =
(

Xx0,u(s)−
d
∑

i=1
ui(s)

)
dS0(s)
S0(s)

+
d
∑

i=1
ui(s)

dSi(s)
Si(s)

− c(s)ds, for s ∈ [0, T],

Xx0,u(0) = x0.

Accordingly, the wealth process solves the SDE:
dXx0,u(s) =

{
r0(s)Xx0,u(s) + uI(s)

>r(s)− c(s)
}

ds

+ uI(s)
>σ(s)dW(s), for s ∈ [0, T],

Xx0,u(0) = x0.

(3)

where r(·) = (µ1(·)− r0(·), . . . , µd(·)− r0(·))>.
As time evolves, it is natural to consider the controlled stochastic differential equation

parametrized by (t, ξ) ∈ [0, T]×L2(Ω,Ft,P;R) and satisfied by X(·) = Xt,ξ(·; u(·)),{
dX(s) =

{
r0(s)X(s) + uI(s)

>r(s)− c(s)
}

ds + uI(s)
>σ(s)dW(s), for s ∈ [t, T],

X(t) = ξ.
(4)

Definition 1 (Admissible Strategy). A strategy u(·) =
(

c(·), uI(·)>
)>

is said to be admissible

over [t, T] if u(·) ∈ M1
F (t, T;R)×M2

F

(
t, T;Rd

)
and for any (t, ξ) ∈ [0, T]×L2(Ω,Ft,P;R),

the equation (4) has a unique solution X(·) = Xt,ξ(·; u(·)).
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We impose the following assumption about the coefficients.

(H1) Processes r0(·), r(·) and σ(·) are uniformly bounded and moreover we assume the
following uniform ellipticity condition:

σ(s)σ(s)> ≥ εId, ds− a.e, dP−a.s.

for some ε > 0, where Id denotes the identity matrix on Rd×d.

Under (H1), for any (t, ξ, u(·)) ∈ [0, T]×L2(Ω,Ft,P;R)×M1
F (t, T;R)×M2

F

(
t, T;Rd

)
,

the state equation (4) has a unique solution X(·) ∈ L2
F (t, T;R). Moreover, we have the

estimate

E
[

sup
t≤s≤T

|X(s)|2
]
≤ K

(
1 +E

[
|ξ|2
])

, (5)

for some positive constant K. In particular, for t = 0, x0 > 0 and u(·) =
(

c(·), uI(·)>
)>
∈

M1
F (0, T;R) ×M2

F

(
0, T;Rd

)
, the state equation (3) has a unique solution Xx0,u(·) ∈

L2
F (0, T;R), and the following estimate holds:

E
[

sup
0≤s≤T

|Xx0,u(s)|2
]
≤ K

(
1 + |x0|2

)
. (6)

2.4. General Discounted Utility Function

Most of financial-economics works have considered that the rate of time preference is
constant (exponential discounting). However, there is growing evidence to suggest that
this may not be the case. In this section, we discuss the general discounting preferences.
We also introduce the basic modeling framework of Merton’s consumption and portfolio
problem. We refer the reader to Ainslie et al. (1991), Karatzas et al. (1987), Merton (1969),
Merton (1971), and Pliska (1986) for more detail about the classical Merton model.

2.4.1. Discount Function

As soon as discounting is non-exponential, most papers work with special form of the
non-exponential discount factor. Differently from these works, we consider a general form
of the discount factor.

Definition 2. A discount function λ(·) : [0, T]→ R is a continuous and deterministic function
satisfying λ(0) = 1, λ(s) > 0 ds− a.e. and

∫ T
0 λ(s)ds < ∞.

Remark 1. Some examples of discount functions are given in many papers, such as exponential
discount functions (see Merton (1969) and Merton (1971)), mixture of exponential functions (see
Ekeland and Pirvu (2008)), and hyperbolic discount functions (see Zhao et al. (2014)).

2.4.2. Utility Functions and Objective

In order to evaluate the performance of a consumption-investment strategy, the
decision-maker derives utility from inter-temporal consumption and final wealth. Let ϕ(·)
be the utility of inter-temporal consumption and h(·) the utility of the terminal wealth at
some non-random horizon T (which is a primitive of the model). Then, for any (t, ξ) ∈
[0, T]×L2(Ω,Ft,P;R), the investment-consumption optimization problem is reduced to
maximize the utility function J(t, ξ, .) given by

J(t, ξ, u(·)) = Et
[∫ T

t
λ(s− t)ϕ(c(s))ds + λ(T − t)h(X(T))

]
, (7)
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over u(·) ∈ M1
F (t, T;R)×M2

F

(
t, T;Rd

)
, subject to (4), where Et[·] = E[·|Ft ]. We restrict

ourselves to utility functions which satisfy the following conditions.

(H2) The maps ϕ(·), h(·) : R → R are strictly increasing, strictly concave and satisfy the
integrability condition

E
[∫ T

0
|ϕ(c(s))|ds + |h(X(T))|

]
< ∞.

Noting that, most literature on the necessary and/or sufficient optimality conditions
in stochastic control problem that considers more strong conditions about the coefficients,
in which the derivatives ϕxx(·) and hxx(·) are bounded or have linear or quadratic growth;
see, e.g., Yong and Zhou (1999). It is also worth mentioning that , several papers impose an
Lp bounds on the control process for p > 2. Those restrictions make it impossible to apply
the stochastic maximum principle approach directly to study the consumption–investment
problem. Certainly, in that important problem, the optimal control is not necessarily Lp-
integrable, and the derivatives of the running cost and the terminal cost do not necessarily
follow the global polynomial growth conditions.

In this paper, we overcome the technical difficulties mentioned above and treat some
limiting procedures. To do so, let us introduce further technical integrability conditions of
the utilities, which will be used in the proof of the main result.

(H3) The maps ϕ(·), h(·) are twice continuously differentiable functions, so all the deriva-
tives ϕx(·), hx(·), ϕxx(·) and hxx(·) are continuous.

(H4) For all admissible strategy pairs, there exists a constant p > 1 such that

E
[∫ T

0
|ϕx(c(s))|pds + |hx(X(T))|p

]
< ∞,

E
[∫ T

0
sup

η∈R,|η|≤M
|ϕxx(c(s) + η)|pds

]
< ∞, for M ≥ 0.

If we write W?(s) =
(

0, W(s)>
)>

, and we denote B(s) =
(
−1, r(s)>

)>
, Γ =(

1, 0>Rd

)>
and

D(s) =
(

0 0>Rd

0Rd σ(s)

)
,

then the optimal control problem associated with (4) and (7) is equivalent to maximize

J(t, ξ, u(·)) = Et
[∫ T

t
λ(s− t)ϕ

(
Γ>u(·)

)
ds + λ(T − t)h(X(T))

]
, (8)

subject to

{
dX(s) =

{
r0(s)X(s) + u(s)>B(s)

}
ds + u(s)>D(s)dW?(s), for s ∈ [t, T],

X(t) = ξ.
(9)

over u(·) ∈ M1
F (t, T;R)×M2

F

(
t, T;Rd

)
.

2.4.3. Time Inconsistency

Let us first note that the optimal policies, although they exist, will not be time-
consistent in general. First of all, as an illustration, let us consider the model in (8)–(9)
with logarithmic utility functions. We suppose that the financial market consists of one
riskless asset and d risky assets. Arguing as in Ekeland and Pirvu (2008), we can prove
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that, if the agent is naive and starts with a given positive wealth x, at some instant t, then,
by the standard dynamic programming approach, the value function associated with this
stochastic control problem solves the following Hamilton–Jacobi–Bellman equation.



Vt
s (s, x) + sup

(c,uI)∈Rd+1

{(
r0(s)X(s) + uI

>r(s)− c
)
Vt

x(s, x) +
1
2

u>I σ(s)σ(s)>uIVt
xx(s, x)

+
λ′(s− t)
λ(s− t)

Vt(s, x) + ϕ(c)
}

= 0, for s ∈ [t, T],

Vt(T, x) = h(x).

(10)

The HJB equation contains the term
λ′(s− t)
λ(s− t)

, which depends not only on the current

time s but also on initial time t, so the optimal policy will depend on t, as well. Indeed, the
first order necessary conditions yield the t−optimal policy

ut
I(s) = r(s)

(
σ(s)σ(s)>

)−1 Vt
x(s, x)

Vt
xx(s, x)

,

ct(s) = ϕ−1(Vt
x(s, x)

)
.

Let us consider the following example: ϕ(x) = h(x) = log x. The naive agent for the
initial pair (0, x0) solves the problem, assuming that the discount rate of time preference
will be λ(s), for s ∈ [0, T], and the optimal consumption strategy will be

c0,x0(s) =
[

1 +
∫ T

s
exp

{
λ(r− s) + log

(
λ(r)
λ(s)

)}
dr
]−1

, for s ∈ [0, T].

This solution corresponds to the so-called pre-commitment solution, in the sense that
it is optimal as long as the agent can pre-commit (by signing a contract, for example) his
or her future behavior at time t = 0. If there is no commitment, the 0-agent will take
the action c0,x0(s), but, in the near future, the ε-agent will change his decision rule (time-
inconsistency) to the solution of the HJB equation (10) with t = ε. In this case, the optimal
control trajectory for s > ε will be changed to cε,xε(s), given by

cε,xε(s) = cε,X̄(ε)(s) =
[

1 +
∫ T

s
exp

{
λ(r− s) + log

(
λ(r− ε)

λ(s− ε)

)}
dr
]−1

, for s ∈ [ε, T].

If λ(t) = e−δt, where δ > 0 is the constant discount rate, then

c0,x0
|[ε,T](s) = cε,xε(s), for s ∈ [ε, T];

hence, the optimal consumption plan is time consistent. As soon as discount function is
non-exponential

c0,x0
|[ε,T](s) 6= cε,xε(s), for s ∈ [ε, T].

Then, the optimal consumption plan is not time consistent. In general, the solution for
the naive agent will be constructed by solving the family of HJB equations (10) for t ∈ [0, T],
and patching together the “optimal” solutions ct,xt(t). If the agent is sophisticated, things
become more complicated. The standard HJB equation cannot be used to construct the
solution, and a new method is required in what follows.

3. Equilibrium Strategies

It is well known that the problem described above by (8)–(9) turns out to be time
inconsistent in the sense that it does not satisfy the Bellman optimality principle, since
a restriction of an optimal control for a specific initial pair on a later time interval might
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not be optimal for that corresponding initial pair. For a more detailed discussion see
Ekeland and Pirvu (2008) and Yong (2012). Due to the lack of time consistency, we consider
open-loop Nash equilibrium controls instead of optimal controls. As in Hu et al. (2012),
we first consider an equilibrium by local spike variation, given, for t ∈ [0, T], an ad-
missible consumption-investment strategy û(·) ∈ M1

F (t, T;R)×M2
F

(
t, T;Rd

)
. For any

Rd+1−valued, Ft−measurable and bounded random variable v and for any ε > 0, define

uε(s) :=
{

û(s) + v, for s ∈ [t, t + ε),
û(s), for s ∈ [t + ε, T].

(11)

We have the following definition.

Definition 3 (Open-loop Nash equilibrium). An admissible strategy û(·) ∈ M1
F (t, T;R)×

M2
F

(
t, T;Rd

)
is an open-loop Nash equilibrium strategy if

lim
ε↓0

inf
1
ε

{
J
(
t, X̂(t), uε(·)

)
− J
(
t, X̂(t), û(·)

)}
≤ 0, (12)

for any t ∈ [0, T], where X̂ is the equilibrium wealth process that solves the SDE{
dX̂(s) =

{
r0(s)X̂(s) + û(s)>B(s)

}
ds + û(s)>D(s)dW?(s), for s ∈ [t, T],

X̂(t) = ξ.
(13)

3.1. A Necessary and Sufficient Condition for Equilibrium Controls

In this paper, we follow an alternative approach, which is essentially a necessary
and sufficient condition for equilibrium. In the same spirit of proving the stochastic
Pontryagin’s maximum principle for equilibrium in Hu et al. (2012) for the case of linear
quadratic models, we derive this condition by a second-order expansion in the spike
variation.

Now, we introduce the adjoint equations involved in the characterization of open-loop
Nash equilibrium controls.

3.1.1. Adjoint Processes

Let û(·) =
(

ĉ(·), ûI(·)>
)>
∈ M1

F (0, T;R)×M2
F

(
0, T;Rd

)
an admissible strategy

and denote by X̂(·) ∈ L2
F (0, T;R) the corresponding wealth process. For each t ∈ [0, T],

we introduce the first order adjoint equation defined on the time interval [t, T], and satisfied
by the pair of processes (p(·; t), q(·; t)) as follows{

dp(s; t) = −r0(s)p(s; t)ds + q(s; t)>dW(s), for s ∈ [t, T],
p(T; t) = λ(T − t)hx

(
X̂(T)

)
,

(14)

where q(·; t) = (q1(·; t), . . . , qd(·; t))>. Under the assumption (H1), the BSDE (14) is
uniquely solvable in L2

F (t, T;R)×M2
F

(
t, T;Rd

)
. Moreover, there exists a constant K > 0

such that, for any t ∈ [0, T], we have the following estimate

‖p(·; t)‖2
L2
F (t,T;R) + ‖q(·; t)‖2

M2(t,T;Rd) ≤ K
(

1 + ξ2
)

. (15)

The second order adjoint equation is defined on the time interval [t, T] and satisfied
by the pair of processes (P(·; t), Q(·; t)) ∈ L2

F (t, T;R)×M2
F

(
t, T;Rd

)
as follows:{

dP(s; t) = −2r0(s)P(s; t)ds + Q(s; t)>dW(s), for s ∈ [t, T],
P(T; t) = λ(T − t)hxx

(
X̂(T)

)
,

(16)
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where Q(·; t) = (Q1(·; t), . . . , Qd(·; t))>. Under (H1), the above BSDE has a unique so-
lution (P(·; t), Q(·; t)) ∈ L2

F (t, T;R)×M2
F

(
t, T;Rd

)
. Moreover, we have the following

representation for P(·; t):

P(s; t) = Es
[
λ(T − t)e

∫ T
s 2r0(τ)dτhxx

(
X̂(T)

)]
, for s ∈ [t, T]. (17)

Indeed, if we define the function Θ(·, t), for each t ∈ [0, T], as the fundamental solution
of the linear ODE {

dΘ(τ, t) = r0(τ)Θ(τ, t)dτ, for τ ∈ [t, T],
Θ(t, t) = 1,

(18)

and we apply the Itô’s formula to τ → P(τ; t)Θ(τ, t)2 on [t, T], by taking conditional
expectations, we obtain (17). Note that, since hxx

(
X̂(T)

)
≤ 0, then P(s; t) ≤ 0, ds− a.e.

3.1.2. A Characterization of Equilibrium Strategies

The following theorem is the first main result of this work, and it provides a necessary
and sufficient condition for equilibrium. As we have said before, the proof is inspired by
Hu et al. (2012) and Hu et al. (2015).

First, we define the process q̃(s; t) =
(

0, q(s; t)>
)>

, and we introduce the following
notations:

H(s; t) , p(s; t)B(s) + D(s)q̃(s; t) + λ(s− t)ϕx

(
Γ>û(s)

)
Γ, (19)

and, for a certain θ ∈ [0, 1],

Aε(s; t) ,

(
λ(s− t)ϕxx

(
Γ>
(

û(s) + θv1[t,t+ε)(s)
))

0>Rd

0Rd σ(s)σ(s)>P(s; t)

)
. (20)

Theorem 1. Let (H1)–(H4) hold. Given an admissible strategy û(·) ∈ M1
F (0, T;R)×M2

F

(
0, T;Rd

)
,

let for any t ∈ [0, T], the process

(p(·; t), q(·; t)) ∈ L2
F (t, T;R)×M2

F

(
t, T;Rd

)
be the unique solution to the BSDE (14). Then, û(·) is an equilibrium consumption-investment
strategy, if and only if, the following condition holds

H(t; t) = 0, dP−a.s., dt− a.e. (21)

In order to derive the proof of this theorem, let us, first of all, derive some technical
results. First, denote by X̂ε(·) the solution of the state equation corresponding to uε(·). Since
the coefficients of the controlled state equation are linear, using the standard perturbation
approach (see, e.g., Yong and Zhou (1999)), we have

X̂ε(s)− X̂(s) = yε,v(s) + zε,v(s), for s ∈ [t, T], (22)

where, for any Rd+1−valued, Ft−measurable, and bounded random variable v, and for
any ε ∈ [0, T − t), yε,v(·) and zε,v(·), solve, respectively, the following linear stochastic
differential equations:{

dyε,v(s) = r0(s)yε,v(s)ds + v>D(s)1[t,t+ε)(s)dW?(s), for s ∈ [t, T],
yε,v(t) = 0,

(23)

and
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{
dzε,v(s) =

{
r0(s)zε,v(s) + v>B(s)1[t,t+ε)(s)

}
ds, for s ∈ [t, T],

zε,v(t) = 0.
(24)

Proposition 1. Let (H1)–(H4) hold. For any t ∈ [0, T], the following estimates hold for any
k ≥ 1 :

Et

[
sup

s∈[t,T]
|yε,v(s)|2k

]
= O

(
εk
)

, (25)

Et

[
sup

s∈[t,T]
|zε,v(s)|2k

]
= O

(
ε2k
)

, (26)

Et

[
sup

s∈[t,T]
|yε,v(s) + zε,v(s)|2k

]
= O

(
εk
)

. (27)

In addition, we have the following equality:

J
(
t, X̂(t), uε(·)

)
− J
(
t, X̂(t), û(·)

)
=
∫ t+ε

t
Et
[
〈H(s; t), v〉+ 1

2
〈Aε(s; t)v, v〉

]
ds + o(ε). (28)

Proof. See Appendix A.

Now, we present the following technical lemma needed later. The proof follows an
argument adapted from Hamaguchi (2019).

Lemma 1. Under assumptions (H1)–(H4), there exists a sequence
(
εt

n
)

n∈N ⊂ (0, T− t) satisfying
εt

n → 0 as n→ ∞, such that

(1) lim
n→∞

1
εt

n

∫ t+εt
n

t
Et[H(s; t)]ds = H(t; t), dP− a.s, dt− a.e.

(2) lim
n→∞

1
εt

n

∫ t+εt
n

t
Et
[
Aεt

n(s; t)
]
ds = A0(t; t), dP− a.s, dt− a.e.

Proof. See Appendix A.

Proof of Theorem 1. Given an admissible strategy

û(·) ∈ M1
F (0, T;R)×M2

F

(
0, T;Rd

)
,

for which (21) holds, according to Lemma 1, we have from (28) that, for any t ∈ [0, T],
and for any Rd+1−valued, Ft−measurable, and bounded random variable v, there exists a
sequence

(
εt

n
)

n∈N ⊂ (0, T − t) satisfying εt
n → 0 as n→ ∞, such that

lim
n→0

1
εt

n

{
J
(
t, X̂(t), uε(·)

)
− J
(
t, X̂(t), û(·)

)}
= 〈H(t; t), v〉+ 1

2

〈
A0(t; t)v, v

〉
,

=
1
2

〈
A0(t; t)v, v

〉
,

≤ 0,

where we have used in the last inequality the fact that, under the concavity condition of
ϕ(·) and h(·), it follows

〈
A0(t; t)v, v

〉
≤ 0. Hence, û(·) is an equilibrium strategy.
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Conversely, assume that û(·) is an equilibrium strategy. Then, by (12), together with
(28) and Lemma 1, for any (t, u) ∈ [0, T]×Rd+1, the following inequality holds:

〈H(t; t), u〉+ 1
2

〈
A0(t; t)u, u

〉
≤ 0. (29)

Now, we define ∀(t, u) ∈ [0, T]×Rd+1,

Φ(t, u) = 〈H(t; t), u〉+ 1
2

〈
A0(t; t)u, u

〉
.

Clearly, Φ(·, ·) is well defined. In fact, it is a second order polynomial in terms of the
components of vector u. Easy manipulations show that the inequality (29) is equivalent to

Φ(t, 0) = max
u∈Rd+1

Φ(t, u), dP− a.s, ∀t ∈ [0, T]. (30)

So, it is easy to see that the maximum condition (30) leads to the following condition:
∀t ∈ [0, T],

Φu(t, 0) = H(t; t) = 0, dP− a.s. (31)

According to Lemma 1, the expression (21) follows immediately. This completes the
proof.

3.2. A Characterization of Equilibrium Strategies by Verification Argument

In classical (time-consistent) stochastic control theory, the sufficient condition of op-
timality is of significant importance for computing optimal controls. It says that, if an
admissible control satisfies the maximum condition of the Hamiltonian function, then the
control is indeed optimal for the stochastic control problem. This allows one to solve exam-
ples of optimal control problems, where one can find a smooth solution to the associated
adjoint equation.

The aim of the following theorem is to characterize the open-loop equilibrium pair
only by a sufficient condition of equilibrium. Let us introduce an alternative to (H3)
hypothesis:

(H3’)The maps ϕ(·), h(·) are continuously differentiable, and the first order derivatives
ϕx(·), hx(·) are continuous.

Then, we have the following theorem:

Theorem 2. Let (H1), (H2) and (H3’) hold. Given an admissible strategy û(·) ∈ M1
F (0, T;R)×

M2
F

(
0, T;Rd

)
, let, for any t ∈ [0, T], the process

(p(·; t), q(·; t)) ∈ L2
F (t, T;R)×M2

F

(
t, T;Rd

)
be the unique solution to the BSDE (14). Then, û(·) is an equilibrium consumption-investment
strategy, if the following condition holds:

H(t; t) = 0, dP−a.s., dt− a.e. (32)

Proof. Suppose that û(·) is an admissible control for which the condition (32) holds. In
addition, for any t ∈ [0, T] and ε ∈ [0, T − t), we consider uε(·) by (11). Then, we have the
following difference.

J
(
t, X̂(t), û(·)

)
− J
(
t, X̂(t), uε(·)

)
= Et

[∫ T

t
λ(s− t)

(
ϕ
(

Γ>û(s)
)
− ϕ

(
Γ>uε(s)

))
ds + λ(T − t)

(
h
(
X̂(T)

)
− h
(
X̂ε(T)

))]
.
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Noting that, by the concavity of h(·), we have

Et[λ(T − t)
(
h
(
X̂(T)

)
− h
(
X̂ε(T)

))]
≥ Et

[
λ(T − t)

(
X̂(T)− X̂ε(T)

)Thx
(
X̂(T)

)]
.

Accordingly, by the terminal condition in the BSDE (14), we obtain that

J
(
t, X̂(t), û(·)

)
− J
(
t, X̂(t), uε(·)

)
≥ Et

[∫ T

t
λ(s− t)

(
ϕ
(

Γ>û(s)
)
− ϕ

(
Γ>uε(s)

))
ds +

(
X̂(T)− X̂ε(T)

)T p(T; t)
]

. (33)

By applying Ito’s formula to s 7→
(
X̂(s)− X̂ε(s)

)T p(s; t) on [t, T], we get

Et
[(

X̂(T)− X̂ε(T)
)T p(T; t)

]
= Et

[∫ T

t
(û(s)− uε(s))T(B(s)p(s; t) + D(s)q̃(s; t))ds

]
. (34)

By the concavity of ϕ(·), we find

Et
[∫ T

t
λ(s− t)

(
ϕ
(

Γ>û(s)
)
− ϕ

(
Γ>uε(s)

))
ds
]

≥ Et
[∫ T

t
λ(s− t)

〈
ϕx

(
Γ>û(s)

)
Γ, û(s)− uε(s)

〉
ds
]

. (35)

By taking (34) and (35) in (33), it follows that

J
(
t, X̂(t), uε(·)

)
− J
(
t, X̂(t), û(·)

)
≤ Et

[∫ T

t

〈
B(s)p(s; t) + D(s)q̃(s; t) + λ(s− t)ϕx

(
Γ>û(s)

)
Γ, uε(s)− û(s)

〉
ds
]

= Et
[∫ t+ε

t
〈H(s; t), v〉ds

]
.

Now, dividing both sides by ε and taking the limit when ε vanishes, by Lemma 1, we
conclude that û(·) is an equilibrium control.

Remark 2. The purpose of the sufficient condition of optimality is to find an optimal control by
computing the difference J(û(·))− J(u(·)) in terms of the Hamiltonian function, where u(·) is an
arbitrary admissible control. Here, the spike variation perturbation (11) plays a key role in deriving
the sufficient condition for equilibrium strategies, which reduces to the computation of the difference
J
(
t, X̂(t), û(·)

)
− J
(
t, X̂(t), uε(·)

)
, without the necessity to achieving the second order expansion

in the spike variation.

4. Equilibrium When the Coefficients Are Deterministic

Theorems 1 and 2 show that one can obtain equilibrium consumption-investment
strategies by solving a system of FBSDEs which is not standard since the “flow” of the un-
known process (p(·; t), q(·; t))t∈[0,T] is involved. Moreover, there is an additional constraint
that act on the “diagonal” (i.e., when s = t) of the flow. As far as we know, the explicit
solvability of this type of equations remains an open problem, except for some particular
form of the utility function. However, we are able to solve quite thoroughly this problem
when the parameters r0(·), µ(·) and σ(·) are deterministic functions. In this section, we
define what we mean by an equilibrium rule, and then we derive a parabolic backward
PDE. Our PDE is comparable with the one obtained in Marín-Solano and Navas (2010) and
Ekeland and Pirvu (2008), for some particular discount functions in a finite horizon with
different utility functions.
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In this section, let us look at the Merton’s portfolio problem with general discounting
and deterministic parameters. At first, we consider the following parabolic backward
partial differential equation:

θt(t, x) + θx(t, x)
(

r0(t)x− r(t)>Σ(t)r(t)
θ(t, x)
θx(t, x)

− I(λ(T − t)θ(t, x))
)

+
1
2

θxx(t, x)r(t)>Σ(t)r(t)
(

θ(t, x)
θx(t, x)

)2
+ θ(t, x)r0(t) = 0, (t, x) ∈ [0, T]×R,

θ(T, x) = hx(x),

(36)

where we denote by I(·) the inverse function of the strictly decreasing marginal derivative

utility ϕx(·) and Σ(s) ≡
(

σ(s)σ(s)>
)−1

.
We have the following verification theorem.

Theorem 3. Let (H1)–(H4) hold. If there exists a classical solution

θ(·, ·) ∈ C1,2((0, T)×R,R) ∩ C([0, T]×R,R)

of the PDE (36) such that the stochastic differential equation,
dX̂(s) =

{
r0(s)X̂(s)− r(s)>Σ(s)r(s)

θ
(
s, X̂(s)

)
θx
(
s, X̂(s)

) − I(λ(T − s)θ
(
s, X̂(s)

))}
ds

−
θ
(
s, X̂(s)

)
θx
(
s, X̂(s)

) r(s)>Σ(s)σ(s)dW(s), s ∈ [0, T],

X̂(0) = x0,

(37)

has a unique solution X̂(·), in which the following estimate holds

E
[

sup
0≤t≤T

|X(t)|2
]
≤ K

(
1 + |x0|2

)
,

then, the equilibrium consumption-investment strategy û(·) =
(

ĉ(·), ûI(·)>
)>

is given by

ĉ(t) = I
(
λ(T − t)θ

(
t, X̂(t)

))
, dt− a.e., (38)

ûI(t) = −Σ(t)r(t)
θ
(
t, X̂(t)

)
θx
(
t, X̂(t)

) , dt− a.e. (39)

Proof. Suppose that û(·) =
(

ĉ(·), ûI(·)>
)>

is an equilibrium control and denote by X̂(·)
the corresponding wealth process. Then, in view of Theorem 1, there exists an adapted
process,

(
X̂(·), (p(·; t), q(·; t))t∈[0,T]

)
, solution of the following flow of forward-backward

SDEs, parametrized by t ∈ [0, T] :
dX(s) =

{
r0(s)X̂(s) + ûI(s)

>r(s)− ĉ(s)
}

ds + ûI(s)
>σ(s)dW(s), s ∈ [t, T],

dp(s; t) = −r0(s)p(s; t)ds + q(s, t)>dW(s), 0 ≤ t ≤ s ≤ T,
X̂(0) = x0, p(T; t) = λ(T − t)hx

(
X̂(T)

)
, t ∈ [0, T],

(40)

with conditions

− p(t; t) + ϕx(ĉ(t)) = 0, dt− a.e., (41)

p(t; t)r(t) + σ(t)q(t; t) = 0, dt− a.e. (42)
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From the terminal condition in the first order adjoint process, we consider the follow-
ing Ansatz

p(s; t) = λ(T − t)V
(
s, X̂(s)

)
, ∀ 0 ≤ t ≤ s ≤ T, (43)

for some deterministic function V(·, ·) ∈ C1,2([0, T]×R,R) such that V(T, ·) = hx(·).
Applying Itô’s formula to (43), it yields

dp(s; t) = λ(T − t)
{
Vs
(
s, X̂(s)

)
+ Vx

(
s, X̂(s)

)(
X̂(s)r0(s) + ûI(s)

>r(s)− ĉ(s)
)

+
1
2
Vxx
(
s, X̂(s)

)
ûI(s)

>σ(s)σ(s)>ûI(s)
}

ds

+ λ(T − t)Vx
(
s, X̂(s)

)
ûI(s)

>σ(s)dW(s). (44)

Next, comparing the ds term in (44) by the ones in the second equation in (40), we
deduce that

Vs
(
s, X̂(s)

)
+ Vx

(
s, X̂(s)

)(
X̂(s)r0(s) + ûI(s)

>r(s)− ĉ(s)
)

+
1
2
Vxx
(
s, X̂(s)

)
ûI(s)

>σ(s)σ(s)>ûI(s) = −r0(s)V
(
s, X̂(s)

)
, (45)

and by comparing the dW(s) terms we also get

q(s, t) = λ(T − t)Vx
(
s, X̂(s)

)
σ(s)>ûI(s). (46)

We put the above expressions of p(s; t) and q(s; t) at s = t into (41) and (42), and then

λ(T − t)V
(
t, X̂(t)

)
− ϕx(ĉ(t)) = 0, (47)

and
Vx
(
t, X̂(t)

)
σ(t)σ(t)>ûI(t) = −r(t)V

(
t, X̂(t)

)
, (48)

which leads to the following representation

ĉ(t) = I
(
λ(T − t)V

(
t, X̂(t)

))
, dt− a.e., (49)

ûI(t) = −Σ(t)r(t)
V
(
t, X̂(t)

)
Vx
(
t, X̂(t)

) , dt− a.e. (50)

Then, by taking expressions (49) and (50) into (45), this suggests that V(·, ·) coincides
with the solution of the PDE (36), evaluated along the trajectory X̂(·), solution of the state
equation.

Remark 3. Equation (36) is comparable with the one in Marín-Solano and Navas (2010) and
Ekeland and Pirvu (2008), in which the equilibrium is defined within the class of feedback controls.

Remark 4. Theorem 3 enables us to derive a suitable equilibrium strategy ûI(t), as well as ĉ(t), at
each t ∈ [0, T], and this permits us to derive directly an explicit expression of equilibrium control
in the cases of power, logarithmic, and exponential utility functions. While the duality approach
used in Hamaguchi (2019) permits to characterize a stochastic equilibrium solution in terms of a
complicated FBSDE system of a closed form, it does not provide an explicit representation.

5. Special Utility Functions

Equilibrium investment-consumption strategies for Merton’s portfolio problem with
general discounting and deterministic parameters have been studied in Marín-Solano
and Navas (2010); Ekeland and Pirvu (2008); and Yong (2012), among others, in different
frameworks. In this section, we discuss some special cases in which the function θ(·, ·)
may be separated into functions of time and state variables. Then, one needs only to solve
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a system of ODEs in order to completely determine the equilibrium strategies. We will
compare our results with some existing ones in the literature.

5.1. Power Utility Function

To make the problem (8)–(9) explicitly solvable, we consider power utility functions
for the running and terminal costs. That is, ϕ(c) = cγ

γ and h(x) = a xγ

γ , with a > 0 and
γ ∈ (0, 1). In this case, the PDE (36) reduces to

θt(t, x) + θx(t, x)

(
r0(t)x− r(t)>Σ(t)r(t)

θ(t, x)
θx(t, x)

− λ(T − t)1−γ

θ(t, x)γ−1

)
+

1
2

θxx(t, x)r(t)>Σ(t)r(t)
(

θ(t, x)
θx(t, x)

)2
+ r0(t)θ(t, x) = 0, (t, x) ∈ [0, T]×R,

θ(T, x) = axγ−1.

From the terminal condition, we consider the following trial solution

θ(s, x) = aΠ(s)xγ−1,

for some deterministic function Π(·) ∈ C1([0, T],R) with the terminal condition Π(T) = 1.
Then, by substituting in (36), we obtain{

Πt(t) +
(

K(t) + Q(t)Π(t)
1

γ−1
)

Π(t) = 0, for t ∈ [0, T],
Π(T) = 1.

(51)

where
K(t) ≡ γr0(t) +

1
2

γ

(1− γ)
r(t)>Σ(t)r(t), (52)

and
Q(t) ≡ (1− γ)(aλ(T − t))

1
γ−1 . (53)

It remains to determine the function Π(·). First, by the change of variable

Π(t) = y(t)(1−γ), for t ∈ [0, T], (54)

we find that y(·) should solve the following ODE yt(t)−
K(t)

(γ− 1)
y(t)− Q(t)

(γ− 1)
= 0, for t ∈ [0, T],

y(T) = 1.

A variation of constant formula yields to

y(t) =

1−
∫ T

t

Q(τ)

(γ− 1)
e

∫ T

τ

K(l)
(γ− 1)

dl
dτ

 exp
(
−
∫ T

t

K(τ)
(γ− 1)

dτ

)
, for t ∈ [0, T],

and, subsequently, we obtain

Π(t) =

1−
∫ T

t

Q(τ)

(γ− 1)
e

∫ T

τ

K(l)
(γ− 1)

dl
dτ


1−γ

exp
(∫ T

t
K(τ)dτ

)
, for t ∈ [0, T].
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In view of Theorem 3, the representation of the Nash equilibrium strategies (38)–(39)
gives

ĉ(t) = (aλ(T − t)Π(t))
1

γ−1 X̂(t), dt− a.e., (55)

ûI(t) = Σ(t)r(t)
X̂(t)

(1− γ)
, dt− a.e. (56)

This consumption–investment strategy determines a wealth process given by

X(t) = x0 +
∫ t

0

{
r0(s) +

1
(1− γ)

r(s)>Σ(s)r(s)− (aλ(T − s)Π(s))
1

γ−1

}
X̂(s)ds

+
∫ t

0

X̂(s)
(1− γ)

r(s)>Σ(s)σ(s)dW(s), t ∈ [0, T].

The above solution is comparable with the one obtained by Marín-Solano and Navas (2010);
Ekeland and Pirvu (2008); and Yong (2012).

5.2. Logarithmic Utility Function

Now, let us analyze the case where ϕ(c) = ln(c) and h(x) = a ln(x), with a > 0. In
this case, the PDE (36) reduces to

θt(t, x) + θx(t, x)
(

r0(t)x− r(t)>Σ(t)r(t)
θ(t, x)
θx(t, x)

− (λ(T − t)θ(t, x))−1
)

+
1
2

θxx(t, x)r(t)>Σ(t)r(t)
(

θ(t, x)
θx(t, x)

)2
+ r0(t)θ(t, x) = 0, (t, x) ∈ [0, T]×R,

θ(T, x) =
a
x

.

(57)

Once again, we know that the solution of (57) will be of the form

θ(t, x) = Π(t)
a
x

, for t ∈ [0, T], (58)

where Π(·) ∈ C1([0, T],R). By substituting in (57), we get Πt(t) +
1

aλ(T − t)
= 0, for t ∈ [0, T],

Π(T) = 1,
(59)

which is explicitly solved by

Π(t) = 1 +
∫ T

t

1
aλ(T − r)

dr, for t ∈ [0, T].

In view of Theorem 3, the representation of the Nash equilibrium strategies (38)–(39)
gives

ĉ(t) =
(

aλ(T − t) +
∫ T

t

λ(T − t)
λ(T − r)

dr
)−1

X̂(t), dt− a.e., (60)

ûI(t) = Σ(t)r(t)X̂(t), dt− a.e. (61)

This consumption–investment strategy determines a wealth process given by

X(t) = x0 +
∫ t

0

{
r0(s) + r(s)>Σ(s)r(s)−

(
aλ(T − s) +

∫ T
s

λ(T − s)
λ(T − r)

dr
)−1

}
X̂(s)ds

+
∫ t

0
r(s)>Σ(s)σ(s)X̂(s)dW(s).
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5.3. Exponential Utility Function

Next, we consider the case where ϕ(c) = − e−γc

γ
and h(x) = −a

e−γx

γ
, with a, γ > 0.

The terminal condition PDE (36) becomes
θt(t, x) + θx(t, x)

(
r0(t)x− r(t)>Σ(t)r(t)

θ(t, x)
θx(t, x)

− 1
γ

ln(λ(T − t)θ(t, x))
)

+
1
2

θxx(t, x)r(t)>Σ(t)r(t)
(

θ(t, x)
θx(t, x)

)2
+ r0(t)θ(t, x) = 0, (t, x) ∈ [0, T]×R,

θ(T, x) = ae−γx.

(62)

We try a solution of the form

θ(t, x) = ae−γ(φ(t)x+ψ(t)), for t ∈ [0, T], (63)

where φ(·), ψ(·) ∈ C1([0, T],R) such that φ(T) = 1 and ψ(T) = 0. By substituting in (62),
we get {

−γφt(t) + γφ(t)2 − γφ(t)r0(t)
}

x− 1
2

r(t)>Σ(t)r(t)

−γψt(t)− φ(t) ln(aλ(T − t)) + γφ(t)ψ(t) + r0(t) = 0.

This suggests that functions φ(·) and ψ(·) should solve the following system of
equations:

φt(t) = −r0(t)φ(t) + φ(t)2, t ∈ [0, T],

ψt(t) = −
1
γ

φ(t) ln(aλ(T − t)) + φ(t)ψ(t)− 1
2γ

r(t)>Σ(t)r(t) +
1
γ

r0(t), t ∈ [0, T],

φ(T) = 1, ψ(T) = 0,

(64)

which is explicitly solvable for t ∈ [0, T], by

φ(t) =
e
∫ T

t r0(τ)dτ

1 +
∫ T

t e
∫ T

l r0(τ)dτdl
, (65)

and

ψ(t) = e−
∫ T

t φ(τ)dτ
∫ T

t e
∫ T

l φ(τ)dτ

(
1
γ

φ(l) ln(λ(T − l)a) +
1

2γ
r(t)>Σ(t)r(t)− r0(l)

γ

)
dt. (66)

The representation of the Nash equilibrium strategies (38)–(39) gives

ĉ(t) = − 1
γ

ln(aλ(T − t)) + φ(t)X̂(t) + ψ(t), dt− a.e. (67)

ûI(t) =
1
γ

Σ(t)r(t)φ(t)−1, dt− a.e. (68)

This consumption–investment strategy determines a wealth process given by

X(t) = x0 +
∫ t

0

{
(r0(s)− φ(s))X̂(s) +

1
γ

(
r(s)>Σ(s)r(s)φ(s)−1 − ln(aλ(T − s))

)
−ψ(s)

}
ds +

∫ t

0

1
γ

φ(s)−1r(s)>Σ(s)σ(s)dW(s), t ∈ [0, T].

The above solution is comparable with the ones obtained in Marín-Solano and Navas
(2010) by solving an extended Hamilton–Jacobi–Bellman (HJB) equations.
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6. Special Discount Function

As well documented in Marín-Solano and Navas (2010), an agent making a decision
at time t is usually called the t-agent, and can act in two different ways: naive and sophisti-
cated. Naive agents make decisions without taking into account that their preferences will
change in the near future, and then any t-agent will solve the problem as a standard opti-
mal control problem with initial condition X(t) = xt, and his decision will be, in general,
time-inconsistent. In order to obtain a time consistent strategy, the t-agent should be sophis-
ticated, in the sense of taking into account the preferences of all the s-agents, for s ∈ [t, T].
Therefore, the approach to handle the time inconsistency in dynamic decision-making
problems is by considering time-inconsistent problems as non-cooperative games with a
continuous number of players, in which decisions at every instant of time are selected. The
solution to the problem of the agent with non-constant discounting should be constructed
by looking for the sub-game perfect equilibrium of the associated game with an infinite
number of t-agents. In Marín-Solano and Navas (2010), the authors looked for a solution
of a sophisticated agent to the modified HJB (which is not a partial differential equation
due to the presence of a non-local term). Then, they need to define the Markov equilibrium
strategies, while, in our work, and different from Marín-Solano and Navas (2010), we use
the open-loop equilibrium strategies. This is a significant difference which leads to obtain
an important change in the results.

6.1. Exponential Discounting with Constant Discount Rate (Classical Model)

At first, we consider the standard exponential discount function λ(t) = e−δ0t, t ∈ [0, T],
where δ0 > 0 is a constant representing the discount rate. In this case, our equilibrium
solution for the three cases become:

(1) Logarithmic utility

ĉ(t) =
1

ae−(T−t)δ0 +
∫ T

t e−(l−t)δ0 dl
X̂(t), dt− a.e.,

ûI(t) = Σ(t)r(t)X̂(t), dt− a.e.

(2) Power utility

ĉ(t)=
(

ae−(T−t)δ0
) 1

γ−1 e

∫ T
t

K(τ)
γ− 1

dτ1 +
∫ T

t
(
ae−(T−τ)δ0

) 1
γ−1 e

∫ T
τ

K(l)
γ− 1

dl
dτ


X̂(t), dt− a.e.,

ûI(t) = Σ(t)r(t)
X̂(t)

(1− γ)
, dt− a.e.

(3) Exponential utility

ĉ(t)=− 1
γ

ln
(

ae−(T−t)δ0
)
+ φ(t)X̂(t) + ψ(t), dt− a.e.,

ûI(t) = Σ(t)r(t)
1

γφ(t)
, dt− a.e.

where K(·), φ(·) are given by (52) and (65), respectively, and

ψ(t) =
1
γ

e−
∫ T

t φ(τ)dτ
∫ T

t
e
∫ T

l φ(τ)dτ

(
φ(l) ln

(
e−(T−l)δ0 a

)
+

1
2

r(l)>Σ(l)r(l)− r0(l)
)

dl.
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Notice that our solutions given above coincide with the optimal solutions of classical
Merton portfolio problem (see, e.g., Marín-Solano and Navas (2010) in the case with con-
stant discount rate). This confirms the well-known fact that the time-consistent equilibrium
strategy for an exponential discount function is nothing but the optimal strategy. A relevant
remark is that the portfolio rule is independent of the discount factor, and it is the same for
a non-exponential discount function.

6.2. Exponential Discounting with Non-Constant Discount Rate (Karp’s Model)

Now, following Karp (2007), let us assume that the instantaneous discount rate is
non-constant, but a continuous and positive function of time δ(l), for l ∈ [0, T]. Impatient
agents will be characterized by a non-increasing discount rate δ(·). The discount factor
used to evaluate a payoff at times τ ≥ 0, is given by

λ(τ) = e−
∫ τ

0 δ(l)dl . (69)

In this case, the objective is exactly the same as Marín-Solano and Navas (2010), in
which the equilibrium is, however, defined within the class of feedback controls. In Marín-
Solano and Navas (2010), the (feedback) equilibrium consumption-investment solutions
(also called the sophisticated consumption-investment strategies) are summarized as:

(1) Logarithmic utility

ĉ(t) =
1

ae−
∫ T−t

0 δ(τ)dτ +
∫ T

t e−
∫ l−t

0 δ(τ)dτdl
X̂(t), dt− a.e., (70)

ûI(t) = Σ(t)r(t)X̂(t), dt− a.e. (71)

(2) Power utility

ĉ(t) = (α(t))
1

γ−1 X̂(t), dt− a.e., (72)

ûI(t) = Σ(t)r(t)
X̂(t)

(1− γ)
, dt− a.e., (73)

where α(·) is the solution of the integro-differential equation,
αt(t)− (δ(T − t)− K(t))α(t) + (1− γ)α(t)

γ
1−γ

−
∫ T

t
e−
∫ s−t

0 δ(l)dl(δ(s− t)− δ(T − t))α(s)
γ

1−γ eγ
∫ s

t ∆(τ)dτds = 0,

α(T) = a.

(74)

with K(t) given by (52) and

∆(τ) = r0(τ) +
1

(1− γ)
r(τ)>Σ(τ)r(τ)− α(τ)

1
1−γ .

(3) Exponential utility

ĉ(t) = φ(t)X̂(t) + C(t)− ln(γaφ(t))
γ

, dt− a.e., (75)

ûI(t) = Σ(t)r(t)
1

γφ(t)
, dt− a.e., (76)

where φ(·) is given by (65) and C(·) satisfies the following very complicated integro-
differential equation,
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
Ct(t)− C(t)φ(t) +

1
γ

φ(t) ln(aγφ(t)) +
1

2γ
r(t)>Σ(t)r(t)

+
1
γ
{δ(T − t)− φ(t)−K(C(t), t)} = 0,

C(T) = 0,

(77)

where

K(C(t), t) = −E
[∫ T

t
e−
∫ s−t

0 δ(l)dl{δ(s− t)− δ(T − t)}φ(t)

× e−γ
{

C(s)−C(t)+
∫ s

t φ(τ)Z(τ)dτ+
∫ s

t
1
γ r(τ)>Σ(τ)œ(τ)dW(τ)

}
ds
]

, (78)

with
Z(τ) =

1
γφ(τ)

r(τ)>Σ(τ)r(τ)− C(τ) +
1
γ

ln(γaφ(τ)).

Our (open-loop) equilibrium solutions reduce to

(1) Logarithmic utility

ĉ(t) =
1

ae−
∫ T−t

0 δ(τ)dτ +
∫ T

t e−
∫ T−t

T−l δ(τ)dτdl
X̂(t), dt− a.e., (79)

ûI(t) = Σ(t)r(t)X̂(t), dt− a.e. (80)

(2) Power utility

ĉ(t) =

(
ae−

∫ T−t
0 δ(τ)dτ

) 1
γ−1

e

∫ T
t

K(τ)
γ− 1

dτ

1 +
∫ T

t

(
ae−

∫ T−τ
0 δ(τ)dτ

) 1
γ−1

e

∫ T
τ

K(l)
γ− 1

dl
dτ


X̂(t), dt− a.e., (81)

ûI(t) = Σ(t)r(t)
X̂(t)

(1− γ)
, dt− a.e. (82)

(3) Exponential utility

ĉ(t) = − 1
γ

ln
(

ae−
∫ T−t

0 δ(τ)dτ
)
+ φ(t)X̂(t) + ψ(t), dt− a.e., (83)

ûI(t) = Σ(t)r(t)
1

γX̂(t)φ(t)
, dt− a.e., (84)

where K(·), φ(·) are given by (52) and (65), respectively, and

ψ(t) = e−
∫ T

t φ(τ)dτ
∫ T

t
e
∫ T

l φ(τ)dτ

(
1
γ

φ(l) ln
(

e−
∫ T−t

0 δ(τ)dτa
)
+

1
2γ

r(l)>Σ(l)r(l)− r0(l)
γ

)
dl.

Remark 5. Comparing the results of this special case with our solutions, we find the following
facts: The equilibrium proportion investment strategies coincide in the three cases. The consumption
strategies are different in the three cases. Moreover, our equilibrium consumption strategies are well
defined and explicitly given, while, in Marín-Solano and Navas (2010), equilibrium consumption
strategies in the case of Power utility, as well as in the case of Exponential utility, are obtained via a
very complicated integro-differential equations, in which unique solvability are not established.
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Appendix A

We derive the proof of Proposition 1 by means of the duality analysis and some
limiting procedures. Moreover, since our objective function is not in quadratic form, we
need to adapt some results obtained in Hu et al. (2012) and Hu et al. (2015) according
to our control problem which concerns a general and non-necessary quadratic utility
maximization.

Proof of Proposition 1. The estimates (25)–(27) follow from Theorem 4.4 in Yong and
Zhou (1999). Moreover, the following representation holds for the objective functional:

J
(
t, X̂(t), uε(·)

)
− J
(
t, X̂(t), û(·)

)
= Et

[∫ T

t
λ(s− t)

(
ϕ
(
Γ>uε(s)

)
− ϕ

(
Γ>û(s)

))
ds + λ(T − t)

(
h
(
X̂ε(T)

)
− h
(
X̂(T)

))]
.

(A1)

Now, from (22) and by applying the second order Taylor-Young expansion, we find
that

h
(
X̂ε(T)

)
− h
(
X̂(T)

)
= hx

(
X̂(T)

)
(yε,v(T) + zε,v(T)) +

1
2

hxx
(
X̂(T)

)
(yε,v(T) + zε,v(T))2

+ o
(
(yε,v(T) + zε,v(T))2

)
.

By applying the second order Taylor-Lagrange expansion, we get

ϕ
(

Γ>uε(s)
)
− ϕ

(
Γ>û(s)

)
=
〈

ϕx

(
Γ>û(s)

)
Γ, v
〉
+

1
2

〈
ϕxx

(
Γ>û(s) + θv1[t,t+ε)

)
ΓΓ>v, v

〉
.

From (27), it holds that

J
(
t, X̂(t), uε(·)

)
− J
(
t, X̂(t), û(·)

)
= Et

[∫ T

t
λ(s− t)

{〈
ϕx
(
Γ>û(s)

)
Γ, v
〉
+ 1

2

〈
ϕxx

(
Γ>û(s) + θv1[t,t+ε)

)
ΓΓ>v, v

〉}
1[t,t+ε)ds

+ λ(T − t)
(

hx
(
X̂(T)

)
(yε,v(T) + zε,v(T)) + 1

2 hxx
(
X̂(T)

)
(yε,v(T) + zε,v(T))2

)]
+ o(ε).

(A2)

Notice that

λ(T − t)
(

hx
(
X̂(T)

)
(yε,v(T) + zε,v(T)) +

1
2

hxx
(
X̂(T)

)
(yε,v(T) + zε,v(T))2

)
= p(T; t)(yε,v(T) + zε,v(T)) +

1
2

P(T; t)(yε,v(T) + zε,v(T))2.

Now, by applying Itô’s formula to s 7→ p(s; t)(yε,v(s) + zε,v(s)) on [t, T], we get

Et[p(T; t)(yε,v(T) + zε,v(T))] = Et
[∫ t+ε

t

{
v>B(s)p(s; t) + v>D(s)q̃(s; t)

}
ds
]

. (A3)
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Again, by applying Itô’s formula to s 7→ P(s; t)(yε,v(s) + zε,v(s))2 on [t, T], we get

Et
[

P(T; t)(yε,v(T) + zε,v(T))2
]

= Et
[∫ t+ε

t

{
2v>(yε,v(s) + zε,v(s))

(
B(s)P(s, t) + D(s)Q̃(s, t)

)
+v>

(
D(s)D(s)>

)
vP(s, t)

}
ds
]
,

(A4)

where Q̃(s; t) =
(

0, Q(s; t)>
)>

. On the other hand, we conclude from (H1), together with
(27), that

Et
[∫ t+ε

t
(yε,v(s) + zε,v(s))

(
B(s)P(s, t) + D(s)Q̃(s, t)

)
ds
]
= o(ε). (A5)

By taking (A.1.4), (A.1.5), and (A.1.6) in (A.1.3), it follows that

J
(
t, X̂(t), uε(·)

)
− J
(
t, X̂(t), û(·)

)
= Et

[∫ t+ε

t

{〈
B(s)p(s; t) + D(s)q̃(s; t) + λ(s− t)ϕx

(
Γ>û(s)

)
1[t,t+ε)Γ, v

〉
+ 1

2

〈(
λ(s− t)ϕxx

(〈
Γ,û(s) + θv1[t,t+ε)

〉)
ΓΓ> + P(s, t)D(s)D(s)>

)
v, v
〉}

ds
]
+ o(ε),

which is equivalent to (28).
Now, we derive the proof of Lemma 1 by using some limiting procedures. First, let us

recall the following lemma which was proved by Wang (2020) (Lemma 3.3).

Lemma A1. If φ(·) = (φ1(·), . . . , φm(·)) ∈ Mp
F (0, T;Rm) with m ∈ N and p > 1, then, for

a.e. t ∈ [0, T), there exists a sequence {εt
n}n∈N ⊂ (0, T − t) depending on t such that lim

n→∞
εt

n = 0

and

lim
n→∞

1
εt

n
Et

[∫ t+εt
n

t
|φi(s)− φi(t)|pds

]
= 0, for i = 1, ..., m, dP− a.s.

Proof of Lemma 1. We define, for t ∈ [0, T] and s ∈ [t, T],

( p̄(s; t), q̄(s; t)) :=
1

λ(T − t)
e−
∫ T

s r0(τ)dτ(p(s; t), q(s; t)).

Then, for any t ∈ [0, T], in the interval [t, T], the pair ( p̄(·; t), q̄(·; t)) satisfies{
dp̄(s; t) = q̄(s; t)>dW(s), s ∈ [t, T],
p̄(T; t) = hx

(
X̂(T)

)
.

(A6)

Moreover, it is clear that, from the uniqueness of solutions to (A.2.1), we have the equality
( p̄(s; t1), q̄(s; t1)) = ( p̄(s; t2), q̄(s; t2)), for any t1, t2, s ∈ [0, T] such that 0 < t1 < t2 < s < T.
Hence, the solution ( p̄(·; t), q̄(·; t)) does not depend on the variable t, and this allows us to
denote the solution of (A.2.1) by ( p̄(·), q̄(·)).

We have then, for any t ∈ [0, T], and s ∈ [t, T],

(p(s; t), q(s; t)) = λ(T − t)e
∫ T

s r0(τ)dτ( p̄(s), q̄(s)). (A7)

Now, using (A.2.2) we have, under (H2), for any t ∈ [0, T] and s ∈ [t, T],

|p(s; t)− p(s; s)| ≤ sup
t≤s≤t+ε

|λ(T − t)− λ(T − s)|e−
∫ T

s r0(τ)dτ | p̄(s)|, (A8)
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and
|q(s; t)− q(s; s)| ≤ sup

t≤s≤t+ε
|λ(T − t)− λ(T − s)|e−

∫ T
s r0(τ)dτ |q̄(s)|. (A9)

From which, we have, for any a > 0, t ∈ [0, T], and ε ∈ (0, T − t),

P
(∣∣∣∣1εEt

[∫ t+ε

t
H(s; t)ds

]
− 1

ε
Et
[∫ t+ε

t
H(s; s)ds

]∣∣∣∣ ≥ a
)

,

≤ 1
a
E
∣∣∣∣1εEt

[∫ t+ε

t
H(s; t)ds

]
− 1

ε
Et
[∫ t+ε

t
H(s; s)ds

]∣∣∣∣,
≤ C sup

t≤s≤t+ε
|λ(T − t)− λ(T − s)|1

ε
E
∫ t+ε

t
(| p̄(s)|+ |q̄(s)|)ds

+ sup
t≤s≤t+ε

|λ(s− t)− 1|1
ε

∫ t+ε

t
E
[

ϕx

(
Γ>û(s)

)]
ds.

Noting that, since λ(·) is continuous, we get

lim
ε↓0

sup
t≤s≤t+ε

|λ(T − t)− λ(T − s)| = 0

for t ∈ [0, T]. Moreover, since ( p̄(·), q̄(·)) ∈ L2
F (0, T;R)×M2

F

(
0, T;Rd

)
, we get

lim
ε↓0

sup
t≤s≤t+ε

|λ(T − t)− λ(T − s)|1
ε
E
∫ t+ε

t
(| p̄(s)|+ |q̄(s)|)ds = 0.

Noting that λ(0) = 1, then lim
ε↓0

sup
t≤s≤t+ε

|λ(s− t)− 1| = 0. According to (H3), by using

the dominated convergence theorem,

lim
ε↓0

1
ε

∫ t+ε

t
E
[

ϕx

(
Γ>û(s)

)]
ds = E

[
ϕx

(
Γ>û(t)

)]
< ∞, dt− a.e.

Therefore,

lim
ε↓0

E
∣∣∣∣1εEt

[∫ t+ε

t
H(s; t)ds

]
− 1

ε
Et
[∫ t+ε

t
H(s; s)ds

]∣∣∣∣ = 0.

Hence, for each t, there exists a sequence
(
εt

n
)

n≥0 ⊂ (0, T − t) such that lim
n→∞

εt
n = 0

and

lim
n→∞

∣∣∣∣∣ 1
εt

n
Et

[∫ t+εt
n

t
H(s; t)ds

]
− 1

εt
n
Et

[∫ t+εt
n

t
H(s; s)ds

]∣∣∣∣∣ = 0, dP− a.s.

Moreover, since ϕx
(
Γ>û(·)

)
∈ Mp

F (0, T;R) and

( p̄(·), q̄(·)) ∈ L2
F (0, T;R)×M2

F

(
0, T;Rd

)
,

we get, from Lemma A1, that there exists a sub-sequence of
(
εt

n
)

n≥0, which is also denoted
by
(
εt

n
)

n≥0 such that

lim
n→∞

1
εt

n
Et

[∫ t+εt
n

t
H(s; s)ds

]
= H(t; t), dt− a.e, dP− a.s.
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To derive the statement 2) in the Lemma 1, it is sufficient to prove the following, for
each t there exists a sequence

(
εt

n
)

n≥0 ⊂ (0, T − t) such that lim
n→∞

εt
n = 0 and

lim
n→∞

1
εt

n
Et

[∫ t+εt
n

t
λ(s− t)ϕxx

(
Γ>
(

û(s) + θv1[t,t+ε)

))
ds

]
= ϕxx

(
Γ>(û(t))

)
,

lim
n→∞

1
εt

n
Et

[∫ t+εt
n

t
λ(s− t)σ(s)σ(s)>P(s; t)ds

]
= σ(t)σ(t)>P(t; t).

Let us prove the first limit. We have∣∣∣∣1εEt
[∫ t+ε

t
λ(s− t)ϕxx

(
Γ>
(

û(s) + θv1[t,t+ε)

))
ds
]
− 1

ε
Et
[∫ t+ε

t
ϕxx

(
Γ>(û(s))

)
ds
]∣∣∣∣

≤ sup
t≤s≤t+ε

|λ(s− t)− 1|1
ε
Et

[∫ t+ε

t
sup
η≤M

∣∣∣ϕxx

(
Γ>(û(s) + η)

)∣∣∣ds

]
.

Applying the same arguments used in the first limit, we obtain, according to Lemma A1,

lim
n→∞

1
εt

n
Et

[∫ t+εt
n

t
ϕxx

(
Γ>(û(s))

)
ds

]
= ϕxx

(
Γ>(û(t))

)
,

at least for a sub-sequence.

Appendix B. Conclusions

It is well known that the inconsistent optimal control problems are complicated to
solve in general. In this paper, we have studied optimal investment and consumption
problem, since the objective functional may depend on the non-exponential discount
function. So, inspired from the previous literature, we made some restrictive conditions on
the coefficients of the utility function, which allows to treat some limiting procedures in
the original problem.

We have used the game theoretic approach to handle the time inconsistency. Specif-
ically, feedback Nash equilibrium controls are explicitly constructed as an alternative of
optimal controls. This has been accomplished through the necessary and sufficient condi-
tion for equilibrium during stochastic system that includes a flow of forward-backward
stochastic differential equations. We derive the closed-from expression of the equilibrium
investment-consumption strategy. Moreover, some particular cases of our model are dis-
cussed and compared with the previous literature from the extended HJB equations with a
verification theorem.

The work can be extended in several ways. For example, this approach can be
extended to a general continuous-time stochastic control problem with delay under a fairly
general time-inconsistent objective functional. Another challenging problem, is the study
of some statistical testing method for validation of the smoothness assumptions about the
coefficients; see, e.g., Pešta and Wendler (2020). The research on these topics is in progress
and will appear in our forthcoming papers.
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