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Abstract: In this work, we show that it is possible to infer precise information about some of the
main physical properties of lenticular galaxies from the shape of their entire optical spectrum. We
study this methodology as an alternative to the more conventional way of individually analyzing the
most important emission and/or absorption lines in this frequency band. By using neural networks
trained with high signal-to-noise spectra ranging from 400 nm to 800 nm, we have determined the
accuracy of the predictions for the following interesting properties: the equivalent width (EW) of
the emission lines Hα, Hβ, [O III] and [N II]; the D4000 break, the specific star formation rate,
sSFR, and the stellar mass to light ratio in the SDSS r-band, M∗/Lr. We provide a comparison of
the performance of this method using as input, on the one hand, all the dimensionality available in
the spectra and, on the other hand, only their first principal components (PC). We conclude that
the latter procedure produces better results when predicting the selected variables. We have also
inferred that 5 is the ideal number of PCs to compute the values of these variables and identified
the most dominant ones to determine which and how many eigenspectra are required for a minimal
optimal prediction. Finally, we have tested the performance of our methodology as a WHAN activity
classifier, also obtaining encouraging results.

I. INTRODUCTION

Galaxies as distinct baryonic and dark matter units
have many measurable properties that inform on both
their current physical state and their evolutionary his-
tory. The properties that can be directly inferred in-
clude: spectral energy distributions, spectral line fluxes
and equivalent widths, metallicities, light profiles, colors,
sizes, etc. From these observable quantities, one can de-
rive additional physical information, such as the stellar,
gaseous and total masses, mass-to-light ratios, the kine-
matics, and the current and past star formation rates.
Each of these features reveals potentially important clues
for how galaxies were created and have evolved across
cosmic time.

Efforts to infer these key physical properties focus on
both photometric and spectroscopic observations in one
or more broad wavelength bands. In the latter case, how-
ever, the use of the data is usually reduced to the deter-
mination of the fluxes contained in a series of relevant
emission and/or absorption lines with which a large part
of the information that these elements carry is wasted.
Another of the handicaps that the use of spectral lines
entails is the need to define a baseline to be able to ade-
quately extract the contribution of the continuum. The
fact that there are different strategies to estimate the
continuum emission such as the fitting of high-degree
polynomials to several wavelengths near each line that
are assumed to be free of emission/absorption features
or the use of spectral population synthesis codes that at-
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tempt to reproduce the observed spectra either from a
spectral library that spans a relevant range in stellar age
and metallicity or making assumptions on the star for-
mation and chemical enrichment history of the galaxy,
makes the results user dependent.
The aim of this work is to analyze the feasibility of a

simple method to predict physically interesting proper-
ties of galaxies from their spectra that takes into account
the wealth of information contained in all their single us-
able data elements (i.e., each one of the N flux pixels)
and that does not require any subjective input from the
user. Our methodology is a Machine Learning (ML) tech-
nique that consists on training a neural network (NN)
with high-quality optical spectra and the corresponding
values of the property that we want to infer, and then
determine if it can be used as a pipeline to accurately
predict the values of such variable for any galaxy. We
are going to compare the performance of two different
approaches for the input of the spectral information. On
the one hand, we will feed the NNs with the totality of
the optical spectra. On the other hand, we will replace
the spectra by a small number of their principal compo-
nents (PC). It is well known that the application of the
principal component analysis (PCA) technique to a set
of spectra linearly transforms the data into a new coor-
dinate system where most of the variance is contained in
the first M << N principal directions (eigenvectors)[1].
This allows the replacement of each individual spectrum
by the eigenvalues that result from its projection on a few
principal directions, thus drastically reducing the dimen-
sionality of the original dataset while preserving most of
the information.
These two methodologies will be tested using the spec-

tra of a subset of the database of nearby (z < 0.1) lentic-
ular (or S0) galaxies defined in Tous et al. (2020)[2],



ML Estimation of Physical Properties of S0 Galaxies from their Optical Spectra Roger Almasqué Vila

for which their eigenspectra are already known. Further-
more, the S0s have has properties intermediate between
the large taxonomic families that constitute the two ex-
tremes of the Hubble sequence: they posses the general
disk/bulge morphology of spiral galaxies, as well as bary-
onic contents usually dominated by old stars and with
little warm and cold nebular components, representative
of elliptical galaxies. Thus, we expect that the outcome
of the present work can be transferable to these other
morphologies.

The remaining sections of the paper are devoted to
determine and compare the performance of the two real-
izations of our methodology. First, by applying them to
the prediction of the values of a small set of seven dif-
ferent galaxy properties and then, to the more complex
situation that represents a classifying prediction, equiva-
lent to simultaneously predict two properties such as the
EW(Hα) and the [N II]/Hα flux ratio that are required
by the WHAN diagram (Cid Fernandes et al. 2010)[3] to
classify galaxies according to their level of activity.

II. INDIVIDUAL PROPERTIES

Among the properties selected to investigate the qual-
ity of our ML-based predictions we have chosen the
equivalent width (EW) of the Hα, Hβ, [O III]λ5007Å
and [N II]λ6584Å lines. The EW of a spectral emis-
sion/absorption line is a measure that synthesizes in a
single number the strength of the line in relation to the
underlying continuum level. In this sense, it provides
a better measure of the relevance of the line than the
total flux. The EW(Hβ) and especially EW(Hα), are
crucial for characterizing the star formation in galaxies.
They are produced by the UV radiation field of massive
newborn O-stars that ionises the gas surrounding them.
The subsequent hydrogen recombination leads to emis-
sion lines in different wavelength ranges, mainly creating
the Balmer series (Hα, Hβ, ...). For their part, the for-
bidden [O III] and [N II] lines are are among the most
prominent emission lines present in the spectra of both
photoionized star-formimg nebulae and photoionized gas
of the Narrow Line Region (NLR) surrounding Active
Galactic Nuclei (AGN). Both lines are sensitive to the
electron temperature.

More ”complex” physical variables such as D4000,
M∗/Lr, and log(sSFR) have been selected as well. The
D4000 break, is a dimensionless parameter defined as
the ratio of the flux densities in the range of 4050Å and
4250Å and the range of 3750Å and 3950Å, and is widely
used to determine the stellar population age of galaxies.
The ratioM∗/Lr is the relation between the galaxy’s stel-
lar mass and its total luminosity in the r (red) band of the
Sloan Digital Sky Survey (SDSS) filter system. Finally,
log(sSFR) characterizes how the instantaneous star for-
mation is determined by the galaxy past formation his-
tory. It is well known that the SFR tightly correlates
with stellar mass for star-forming galaxies, a relationship

that is referred to as the Galaxy Main Sequence.

III. DATA AND ANALYSIS PIPELINE

The sample of single-fiber spectra we have used is a
subset of the 68,000 spectral observations of S0 galaxies
extracted by Tous et al (2020) from the twelve Data Re-
lease of the SDSS (SDSS-DR12; Alam et al. 2015 [4]) and
that were used to determine the principal axes of the op-
tical spectra of this population. We have also retrieved
from this database the r-band absolute Petrosian mag-
nitudes, while the observed values of the remaining vari-
ables have been gathered from two sources: the fluxes and
equivalent widths of the lines are from the Portsmouth
catalog [5], while for the stellar mass and sSFR we have
used the values listed in the GALEX-SDSS-WISE Legacy
Catalog 2 [6].
All spectra have gone through a process of imputa-

tion using the KNNimputer() with 5 nearest neighbours
weighted by distance in order to fill any possible gap in
them, followed by a cleaning procedure that have dis-
carded any spectrum containing more than 10 per cent
of pixels affected by sky lines or very large errors.
In this part of the work, the NN has been trained

and tested with the spectra with high signal-to-noise ra-
tio (S/N) and significant Hα emission lines. We have
done this by adopting a lower threshold for the ampli-
tude over noise (AoN) of 1.5, following the indications of
the Portsmouth survey, and a minimum EW (Hα) of 1.0.
After applying these constraints our final sample consists
of 27,134 galaxies.
The NN used in this work is based on Scikit-Learn

MLPRegressor, that uses a stochastic gradient optimizer
for the squared error and ReLU as activation function.
When using the PCs as predictors, we build a network of
2 hidden layers with 20 neurons each for the line widths,
and of 2 hidden layers with 80 neurons for D4000, M∗/Lr

and log(sSFR). Extra layers or more neurons not only
do not provide any improvement (see Table I) but rather
increase the training time and the computing resources
used, but also negatively affect the quality of the predic-
tions. To compare the accuracy of the predictions, we
use the score (R2), defined as:

R2 = 1−
∑

i(yi − fi)
2∑

i(yi − ȳ)2
, (1)

where yi are the observed value of the variables and fi
are the predictions made by the pipeline. Note that a
score of 1 is a perfect prediction, while systematically
predicting for a variable just the average of the observed
values, ȳ, would give a score of 0. For worse predictions,
the score can be arbitrarily negative. We show in Table
I the CPU times and scores achieved by predicting the
EW (Hα) from 5 PCs and different configurations of the
NN.
All the computations in this work have been performed

remotely on a Xeon 6138 machine with 155 GB of RAM.
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Hidden layers Neurons Time (s) Score

2 20 1.39± 0.02 0.985± 0.001

2 10 2.10± 0.04 0.983± 0.001

2 30 1.44± 0.08 0.983± 0.001

3 30 1.39± 0.02 0.984± 0.001

4 40 3.48± 0.09 0.984± 0.001

TABLE I: CPU times and scores for the prediction of
EW (Hα) with 5 PCs and different NN configurations.

CPU times may change significantly with other hard-
ware, but the score will remain unchanged. In the same
way, it has been found that 3 hidden layers with 50 neu-
rons each give the best performance when the whole spec-
trum is used as input. Similarly, a more complex struc-
ture of 4 hidden layers with 120 neurons provides the
best performance for the properties D4000, M∗/Lr and
log(sSFR).

The type of NN we are using does not assign an un-
certainty to the predicted values. So, in order to get a
rough estimate of the error of the predictions, we have
assumed that the studied variables follow normal distri-
butions centered in their observed values and with a scale
equal to their associated errors and computed the stan-
dard deviation of the predictions that result from ran-
domly selecting 200 values from them.

IV. RESULTS FOR SINGLE PROPERTIES

A. PCs vs global spectrum predictions

The main goal of this paper is to determine and com-
pare the accuracies of the predictions for physical vari-
ables of galaxies obtained by means of ML pipelines that
use either the PCs of the optical spectra or the full spec-
tra as input. There are evident benefits using PCs: less
memory usage, computational cost and invested time.
None of them will be relevant if it is not accompanied
by sufficiently precise results. For the benchmarking, we
have generated ML pipelines for both types of input, lim-
iting the PC-based ones to the first 5 PCs, because there
is no significant gain in the accuracy when increasing
their number (see Secs. IV.b and IV.c).

As Table II shows, the PC-based pipelines perform bet-
ter that their full spectrum counterparts for all the vari-
ables studied. In fact, for D4000, M∗/Lr and log(sSFR)
we obtain a minimally acceptable score only when using
PCs. The error quoted for the scores has been inferred
assuming a normal distribution with no correlation, us-
ing ten random training sets as sample. Fig. 1 allows
to display the improvement for D4000 that results from
using PC-based pipelines. A similar behavior is observed
for the rest of the variables.

Principal components Full spectrum

EW (Hα) 0.985± 0.001 0.958± 0.002

EW (Hβ) 0.948± 0.001 0.918± 0.002

EW ([O III]) 0.982± 0.001 0.956± 0.002

EW ([N II]) 0.948± 0.003 0.924± 0.005

D4000 0.934± 0.002 0.53± 0.07

M∗/Lr 0.674± 0.002 0.49± 0.04

log(sSFR) 0.750± 0.005 −4.2± 0.6

TABLE II: Scores of the PC- and full-spectrum-based
NNs for each of the selected variables.

FIG. 1: Predicted vs measured values of D4000. Top:
using the first 5 PCs of the optical spectrum as input.
Bottom: using the full spectrum as input. The blue line

represents the ideal result y = x.
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Num. of PCs EW (Hα) EW (Hβ) EW ([O III]) EW ([N II]) D4000 M∗/Lr log(sSFR)

1 0.857 0.830 0.363 0.580 0.816 0.554 0.639

2 0.967 0.943 0.430 0.800 0.894 0.677 0.716

3 0.983 0.948 0.959 0.837 0.910 0.676 0.751

4 0.984 0.948 0.981 0.918 0.927 0.671 0.747

5 0.984 0.949 0.981 0.946 0.932 0.671 0.744

6 0.989 0.957 0.981 0.953 0.916 0.689 0.747

7 0.989 0.958 0.981 0.963 0.921 0.691 0.738

8 0.990 0.962 0.980 0.965 0.872 0.688 0.750

9 0.989 0.961 0.954 0.968 0.867 0.691 0.733

10 0.989 0.960 0.976 0.965 0.866 0.677 0.720

TABLE III: Scores of the NN predictions using different number of PCs as input. The maximum scores for each
property are highlighted in boldface. The estimated errors of the listed values are all in the range 0.001-0.005.

EW (Hα) EW (Hβ) EW ([O III]) EW ([N II]) D4000 M∗/Lr log(sSFR)

1 24.5% 2 27.1% 3 29.0% 5 22.5% 5 23.5% 2 23.7% 3 20.8%

2 23.7% 1 21.7% 2 22.2% 1 22.1% 1 22.6% 5 20.9% 1 20.3%

3 19.2% 3 18.7% 1 20.6% 4 19.6% 3 19.5% 3 20.1% 5 20.1%

5 16.5% 4 18.6% 4 15.6% 3 19.2% 4 18.4% 4 18.3% 4 19.6%

4 16.1% 5 14.0% 5 12.6% 2 16.6% 2 16.0% 1 17.0% 2 19.2%

TABLE IV: Percentual contributions to the predictions (right col.) of the first 5 PCs (left col.) in decreasing order.

B. Finding the ideal number of PCs

By increasing the number of PCs in the NNs, we are
getting closer to the performance of the full spectrum.
Therefore, there must be for each of the adopted vari-
ables an ideal number of PCs for which the accuracy of
the predictions reaches its maximum. To determine the
number of PCs that maximize the accuracy we have built
pipelines that use up to ten eigenvectors as input.

As shown in Table III, only 5 PCs are needed for the
scores of all the variables investigated to reach values
close to their respective maximum precision. Increasing
the number of PCs beyond this value does not signif-
icantly improve the predictions, with even a deteriora-
tion in precision being observed in cases where predic-
tions based on the full spectrum perform poorly, i.e.,
for log(sSFR), M∗/Lr, and, especially, D4000. Note
also that the predictions for these three variables require
only one PC to outperform the full spectrum predictions,
while EW (Hα) and EW (Hβ) require two, EW ([O III])
three, and EW ([N II]) five.

C. Dominant PCs

An alternative way to infer the optimal number of
PCs is to determine which eigenvalues contain most of
the information of the studied variables. To achieve this
goal, we have built a boosting framework by means of
the tool LightGBM that uses gradient booster decision
trees to calculate the weights of the different components
that contribute to a given result. In Table IV, we show
for each variable the relative percentage weights of the

contributions of the first 5 eigenspectra. It can be seen
that the predictions for the EWs of the two Balmer lines
rely on either first two PCs or in both (Ha), while for
EW([OIII]) and log(sSFR) most of the information is
encapsulated into the third eigenvalue, although in the
latter case there is no clearly dominant component. In
contrast, the highest weight of EW([N II]) and D4000 is
carried by the fifth component, although in both cases
there is an important contribution of the first PC. These
results confirm that predictive NNs based on the first
5 principal components of the optical spectrum are the
most suitable regardless of the investigated property (at
least for the set of selected variables).

V. RESULTS FOR THE WHAN CLASSIFIER

As an example of a more complex application of our
methodology, we have built an activity classifier for
galaxies based on the WHAN diagram. This scheme,
that depicts the EW (Hα) versus the logarithm of the
flux ratio [N II]/Hβ, is capable of dealing with galaxies
with weak o absent emission lines, therefore increasing
the census of objects qualifying for classification, while
offering at the same time a similar o even better diagnos-
tic power than classical activity diagrams.
In the WHAN diagram, active galaxies, i.e., those with

strong ionization emission lines, are subdivided into star-
forming galaxies (SF) and galaxies with an active galac-
tic nucleus (AGN), with the latter divided into Seyfert or
strong AGN (sAGN) and LINER or weak AGN (wAGN).
Galaxies with weaker emission lines are subdivided into
two groups: emission-line retired galaxies (RG), that
show nebular emission lines arising from photoionisation
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by post-AGB stars, and line-less retired or truly passive
galaxies (PG) with undetected Hα emission. The demar-
cations of these five classes are [7]:

SF: log( [N II]
Hα ) < −0.4 & EW (Hα) > 0.5Å

sAGN: log( [N II]
Hα ) < −0.4 & EW (Hα) > 6Å

wAGN: log( [N II]
Hα ) < −0.4 & 3Å < EW (Hα) < 6Å

RG: log( [N II]
Hα ) < −0.4 & 0.5Å < EW (Hα) < 3Å

PG: EW (Hα) < 0.5Å & EW ([N II]) < 0.5Å

Note that a good property of activity classification dia-
grams like WHAN is that their are essentially insensitive
to the effects of dust extinction. This is achieved by us-
ing line ratios that involve emission lines with similar
wavelengths ([N II] = 6548Å, Hα = 6563Å) and/or EWs
that compare the flux of a narrow emission line with the
underlying continuum. Nevertheless, the computation of
the line fluxes and equivalent widths requires adopting
a certain theoretical stellar evolution model to subtract
the continuum. This leads to discrepancies in the re-
sults from different authors (larger when flux ratios are
involved) that may affect the classification of some galax-
ies.

For this reason, it is interesting to test the feasibility
of building a user-independent estimator of the WHAN
activity classes from a NN that uses the optical spectra
of the galaxies as input. To carry out this endeavour
we have defined a new sample of nearby S0 galaxies by
applying the AoN > 1.5 condition to the Tous et al.
(2020) dataset, but removing the lower threshold filter
on EW (Hα) to allow for the incorporation of galaxies
with weak or no activity. This has resulted in a larger
sample with a total of 45,049 objects, of which once again
an eighth part has been used as a training set.

We have found that the best performance is achieved
for 2 hidden layers with 20 neurons each, producing an
acceptable score of 0.845 with 5 PCs as input and reach-
ing a maximum score of 0.902 with 7 PCs. Less promising
results are obtained with the complete optical spectra,
reaching a maximum score of 0.727 with 3 hidden layers
and 80 neurons each.

VI. CONCLUSIONS

In this work, we have presented a new and successful
machine learning-based methodology for the prediction of
the most important physical properties of galaxies, only
using both their full rest-frame single-fiber optical spec-
trum and its first principal spectral components (PCs) as
input in a neural network (NN). The performance of this
methodology has been tested on sample of spectra from
nearby lenticular galaxies extracted from the SDSS. For
these galaxies, we have predicted the equivalent width of
the Hα, Hβ, [O III], and [N II] lines, the D4000 break,
the specific star formation rate, and the stellar mass to
red light ratio, as well as their WHAN activity classes. In
all these cases, the use of the PCs has always led to more
accurate results. Dealing with PCs also has the advan-
tage of being much less CPU time-consuming than using
full spectra, especially during the NN training stage.
We have also investigated the quality of the predictions

based on the number of PCs, as well as identified which
PCs most decisively affect the selected parameters, con-
cluding that five would be an ideal number (at least for
the variables studied). We do not expect that the results
of this work depend substantially on the source of the
spectra, as long as their spectral resolution is similar to
that of the Sloan spectrograph, nor on the morphology
of the galaxies that are analyzed.
Possible future developments of this thesis involve the

application of performance tests to other physical prop-
erties, such as the metallicity, [Fe/H], and the abun-
dance of alpha elements, [α/Fe], upgrading the predictor
pipeline by introducing a more realistic determination of
the predictions error through the Markov chain Monte
Carlo method, and extending this methodology to other
Hubble types.
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