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Abstract. The goal of this paper is to establish generic regularity of free boundaries for the obstacle
problem in Rn. By classical results of Caffarelli, the free boundary is C∞ outside a set of singular points.
Explicit examples show that the singular set could be in general (n − 1)-dimensional —that is, as large
as the regular set. Our main result establishes that, generically, the singular set has zero Hn−4 measure
(in particular, it has codimension 3 inside the free boundary). In particular, for n ≤ 4, the free boundary
is generically a C∞ manifold. This solves a conjecture of Schaeffer (dating back to 1974) on the generic
regularity of free boundaries in dimensions n ≤ 4.
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1. Introduction

Several fundamental problems in science (physics, biology, finance, geometry, etc.) can be described
by PDEs that exhibit a-priori unknown interfaces or boundaries. They are called free boundary problems,
and have been a major line of research in the PDE community in the last 60 years; see for instance
[LS67, LS69, Kin73, BK74, KN77, Caf77, CR77, Sak91, Caf98, W99, CKS00, Mon03, SU03, ACS08,
GP09, ALS13, FS19].

The obstacle problem

∆u = χ{u>0} in Ω ⊂ Rn

u ≥ 0,
(1.1)

is the most classical and among the most important elliptic free boundary problems, and it arises in a
variety of situations; see e.g. [DL76, Fri82, Rod87, PSU12, Ser15].

From the mathematical point of view, the most challenging question in this context is to understand
the regularity of free boundaries. The modern development of the regularity theory for free boundaries
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started in the late 1970’s with the seminal paper of Caffarelli [Caf77], and since then it has been a very
active area of research.

The main result in [Caf77] establishes that, for any solution of (1.1), the free boundary ∂{u > 0} is C∞

outside a closed set of singular points. Singular points arise for example when the free boundary creates
cusps, and they may appear in any dimension n ≥ 2. By [CR76, Caf98, Mon03], these points are locally
contained in a C1 manifold of dimension n − 1. More recently, finer estimates at singular points were
established in [CSV18, FS19].

1.1. Generic regularity for the obstacle problem.
A major question in the understanding of singularities in PDE theory is the development of methods
to prove generic regularity results. In the context of the obstacle problem (1.1), the key question is to
understand the generic regularity of free boundaries. Explicit examples [Sch76] show that singular points
in the obstacle problem can form a set of dimension n − 1 (thus, as large as the whole free boundary).
Still, singular points are expected to be rare [Sch74]:

Conjecture (Schaeffer, 1974): Generically, free boundaries in the obstacle problem have no singular points.

The conjecture is only known to hold in the plane R2 [Mon03], and up to now nothing was known in the
physical space R3 or in higher dimensions.

Notice that, in the obstacle problem, the question of generic regularity is particularly relevant, since
in such context the singular set can be as large as the regular set —while in other problems the sin-
gular set has lower Hausdorff dimension [Giu84]. Also, from the point of view of applications (see
[Bai74, DL76, Rod87, Ser15]), it is particularly important to understand the problem in the physical
space R3.

A main goal of this paper is to prove Schaeffer’s conjecture in R3 and R4. To this aim, we consider any
monotone family of solutions {ut}t∈(−1,1) of (1.1) in B1 satisfying the following “uniform monotonicity”
condition:

For every t ∈ (−1, 1) and any compact set Kt ⊂ ∂B1 ∩ {ut > 0} there exists cKt > 0 such that

inf
x∈Kt

(
ut
′
(x)− ut(x)

)
≥ cKt(t′ − t), for all − 1 < t < t′ < 1.

(1.2)

This condition rules out the existence of regions that remain stationary as we increase the parameter t.
In case that ut is continuously differentiable with respect to t, then such condition is equivalent to saying
that ∂tu

t > 0 inside {ut > 0}.
We shall also assume that (−1, 1) 3 t 7→ ut|∂B1 ∈ L∞(∂B1) is continuous with respect to t. Note

that, by the maximum principle, this implies that (−1, 1) 3 t 7→ ut ∈ L∞(B1) is continuous. Under this
assumption, we prove the following:

Theorem 1.1. Let {ut}t∈(−1,1) be a monotone and continuous family of solutions to (1.1) in B1 ⊂ Rn
satisfying (1.2), and let Σt ⊂ ∂{ut > 0} ∩B1 be the set of singular points for ut. Then

Hn−4(Σt) = 0 for a.e. t ∈ (−1, 1).

In particular, Schaeffer’s conjecture holds for n ≤ 4.

We remark that very few results are known in this direction for elliptic PDE, and most of them deal
only with simpler situations (for instance the obstacle problem in R2 [Mon03]), or when the singular set
is known to be very small (as in the case of area-minimizing hypersurfaces in R8 [Sma93]).

As a particular family of solutions to which our Theorem 1.1 applies, one can consider the solution ut

to the obstacle with boundary data ut|∂B1 = g + t (similarly to what was done in [Mon03]), but many
other choices are possible.

In particular, due to the general character of our assumption (1.2), we can apply Theorem 1.1 (more
precisely, some of the results behind its proof) to study the Hele-Shaw flow. This is a well-known 2D
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model which describes a flow between two parallel flat plates following Darcy law [HS1898, CJK07]. After

a transformation of the type u(x, t) =
∫ t

0 p(x, τ)dτ —where p(x, t) is the pressure— the problem becomes

∆u = χ{u>0} in Kc × (0, T ) ⊂ R2 × R
u = t in K × (0, T ) ⊂ R2 × R
u ≥ 0,

(1.3)

where K ⊂ R2 is a given compact set, and Kc := R2 \K. Since the singular set is closed inside the free
boundary (see for instance Lemma 6.2(a)), as a consequence of our fine analysis of singular points, we can
also show the following:

Theorem 1.2. Let K ⊂ R2 be any compact set, and u(x, t) be any solution to the Hele-Shaw flow (1.3).
Let Σt ⊂ Kc be the set of singular points of ∂{u( · , t) > 0}, and let S := {t ∈ (0, T ) : Σt 6= ∅} be the set
of singular times. Then S is relatively closed inside (0, T ) and

dimH(S) ≤ 1

4
.

In particular, the free boundary is C∞ for a.e. time t ∈ (0, T ).

Prior to our result, it was an open question to decide whether singularities in such model could persist
in time or not. Theorem 1.2 answers this question, and provides for the first time an estimate on the set
of singular times.

1.2. Higher-order expansions at most singular points.
A key tool in the proof of Theorem 1.1 is a very fine understanding of singular points, as explained next.

For the obstacle problem (1.1), a classical result of Caffarelli [Caf98] states that at every singular point
x◦ we have an expansion of the form

u(x) = p2,x◦(x− x◦) + o(|x− x◦|2), (1.4)

where p2,x◦ is a nonnegative, homogeneous, quadratic polynomial satisfying ∆p2,x◦ ≡ 1.
In dimension n = 2 this estimate was improved in [W99] by replacing o(|x− x◦|2) with O(|x− x◦|2+α)

for some α > 0, and in arbitrary dimensions it was shown in [CSV18] that o(|x− x◦|2) can be replaced by
O(|x − x◦|2| log |x − x◦||−ε), for some ε > 0. More recently, it was proved by the first and third authors
[FS19] that, in every dimension n, one actually has

u(x) = p2,x◦(x− x◦) +O(|x− x◦|3),

possibly outside a set of “anomalous” singular points whose Hausdorff dimension is at most n− 3.
Here, in order to prove our main result, we need to improve substantially the understanding of singular

points, establishing a new higher order expansion at most singular points for monotone families of solutions
to the obstacle problem. Here and in the sequel, dimH will denote the Hausdorff dimension (see Section 7
for a definition).

Theorem 1.3. Let {ut}t∈(−1,1) be a family of solutions to (1.1) in B1 ⊂ Rn which is continuous and

nondecreasing in t (in particular, they could be independent of t). Let Σt ⊂ ∂{ut > 0} ∩ B1 be the set of

singular points of ut, and Σ̂ := ∪t∈(−1,1)Σ
t ⊂ B1.

Then there exists a set E ⊂ Σ̂, with dimH(E) ≤ n − 2, such that for every t◦ ∈ (−1, 1) and every
x◦ ∈ Σt◦ \ E we have

ut◦(x) = P4,x◦,t◦(x− x◦) +O
(
|x− x◦|5−ζ

)
(1.5)

for all ζ > 0, where P4,x◦,t◦ is a fourth order polynomial satisfying ∆P4,x◦,t◦ ≡ 1.

An important point here is that the dimension n − 2 of the “bad” set E is sharp. Indeed, by well
known examples in R2 (see e.g. [Sak93]), one can construct solutions u whose singular set contains a
(n− 2)-dimensional subset E for which (1.5) does not hold at any point in E.
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As the reader will see from the proof, when p2,x◦,t◦(x) = 1
2(x · e)2 for some unit vector e ∈ Rn then the

expansion (1.5) can be written alternatively as

u(x◦ + x) =
1

2

(
e · x+ p(x)

)2
+O

(
|x|5−ζ

)
,

for a certain polynomial p of degree 3 with no linear or constant terms. Geometrically, this expansion
—together with a Lipschitz estimate that we will establish later— yields that, around most singular points,
the contact set is contained inside a set of the form

{
|e · x+ p(x)| ≤ C|x|4−ζ

}
. Thus, if the free boundary

has a cusp, then at most points this cusp must be very thin. It is worth noticing that the expression of
p (or equivalently, of P4,x◦,t◦) is related to the curvature of the free boundary near a singular point. In
particular, whenever the solution is even with respect to the hyperplane {e · x = 0}, then p ≡ 0 (and thus
P4,x◦,t◦(x) ≡ 1

2(e · x)2), since there are no curvature terms.

To establish Theorem 1.1 we need to introduce a variety of new ideas, combining Geometric Measure
Theory tools, PDE estimates, several dimension reduction arguments, and new monotonicity formulas.
This is explained in more detail next.

1.3. On the proofs of the main results.
Let us give an overview of the main ideas introduced in this paper.

1.3.1. From expansion to cleaning: a Sard-type approach. The starting idea to prove Theorem 1.1 is the
following: denote by Σt ⊂ ∂{ut > 0} ∩B1 the set of singular points of ut. Assume that, for some fixed t◦,
we have x◦ ∈ Σt◦ and ut◦ has an expansion of the form

ut◦(x◦ + x) = P (x) +O(|x|λ) (1.6)

for some λ ≥ 2 and some polynomial P such that ∆P ≡ 1. Note that, since ut◦ ≥ 0, the expansion
above implies that P (x) ≥ −O(|x|λ). Hence, for any r > 0, P +Crλ is a solution to the obstacle problem
in Br with an empty contact set, and ut◦(x◦ + ·) is O(rλ)-close to it. This suggests that, thanks to the
monotonicity assumption (1.2), by slightly increasing the value of the parameter t the contact set of ut

inside Br(x◦) will disappear.
To make this argument quantitative we need to introduce a series of delicate barrier constructions which

actually depend on the fine structure of the singular point x◦, see Section 9. In this way we are able to
prove that, for a increment of t of size δt ∼ rλ−1, the contact set of ut+δt is Br disappears: more precisely
we can show that, for some C > 0,

Σt◦+Crλ−1 ∩Br(x◦) = ∅ for r > 0 sufficiently small. (1.7)

As we will explain better below, we can prove an expansion as in (1.6) for λ belonging a discrete set Λ
(see (1.9) for a definition of this set).

Hence, for t◦ ∈ (−1, 1) and x◦ ∈ Σt◦ ⊂ ∂{ut◦ > 0}, we define λx◦,t◦ to be the maximal λ ∈ Λ for which

we can prove an expansion as in (1.6). Then, for each λ ∈ Λ and t ∈ (−1, 1), we define Σt,λ as the set
of x◦ ∈ Σt for which λx◦,t = λ. In other words, Σt,λ is defined as the set of points at which we have a
polynomial expansion up to order λ ∈ Λ but not better. Then, a covering argument “à la Sard” yields

dimH
(
{t ∈ (−1, 1) : Σt,λ 6= ∅}

)
≤

dimH
(
∪t∈(−1,1) Σt,λ

)
λ− 1

(1.8)

(see Proposition 7.7(a) for a more refined statement). In particular, if the right hand side is strictly less
than 1, then Σt,λ = ∅ for a.e. t. On the other hand, if the right hand side is larger or equal to 1, then a
coarea-type argument allows us to show that Σt,λ is very small for a.e. t (see Proposition 7.7(b)).

In view of the given description of our approach, our goals are the following:

(1) given a singular point, prove an expansion up to order O(|x|λ) with λ ∈ Λ as large as possible;
(2) given λ ∈ Λ, estimate the dimension of ∪t∈(−1,1)Σ

t,λ, i.e., the set of points where the expansion
stops at λ.
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1.3.2. A higher-order expansion at singular points: the case of a single solution. To understand these
questions in a simplified situation, one can first look at the problem without the parameter t. So, given a
solution u to the obstacle problem and a singular point x◦, we want to obtain a Taylor expansion around
x◦ at the highest possible order. This will require several steps, described below.

(a) Second blow-up: a cubic expansion at most points. This first part is essentially contained in [FS19].
Recall first that, as proven in [Caf98], for any singular point x◦ we have (1.4), that is, p2,x◦ is tangent up
to second order to u(x◦ + · ) at 0. Equivalently

u(x◦ + r · )
r2

→ p2,x◦ as r → 0,

and p2,x◦ is called the “first blow-up” of u at x◦.
One can then catalog singular points according to the dimension of the kernel of p2,x◦ : given m ∈

{0, . . . , n− 1}, we say

x◦ ∈ Σm ⇐⇒ dim({p2,x◦ = 0}) = m.

We then consider the “second blow-ups”, namely, the possible limits of the functions

w̃2,r(x) :=
w2(rx)

‖w2(r · )‖L2(∂B1)
, where w2 := u(x◦ + · )− p2,x◦

as r → 0. As shown in [FS19], r 7→ ‖∇w̃2,r‖L2(B1) is monotonically increasing (equivalently, the so-called
Almgren frequency formula is monotone on w2). Thanks to this fact, setting λ2 := limr→0 ‖∇w̃2,r‖L2(B1),
one can characterize all the blow-ups (namely, the accumulation points of {w̃2,r} as r → 0): they are
λ2-homogeneous functions q
- either satisfying

∆q = 0 in Rn , if x◦ ∈ Σm with m ≤ n− 2,

- or solving the Signorini problem

∆q ≤ 0, q∆q ≡ 0, ∆q|Rn\L = 0, q|L ≥ 0 , if L := {p2,x◦ = 0} is a hyperplane (i.e., x◦ ∈ Σn−1).

In the first case (i.e., m ≤ n− 2), since q is harmonic in Rn it must be λ2 ∈ {2, 3, 4, . . .}. Also, following
[FS19], one can show that λ2 ≥ 3 up to an “anomalous set” of dimension m− 1 inside Σm. This implies
that, for x◦ outside this anomalous set, we have u = p2,x◦(x− x◦) +O(|x− x◦|3). Note that applying this
result to u = ut◦ gives an expansion as in (1.6) for λ = 3. As we will explain in Subsection 1.3.4(a) below,
when m ≤ n−2 we are able to improve (1.7) so that this expansion suffices for proving our main theorem.

The real challenge is to understand the set Σn−1. In this case, since q solves the Signorini problem,
thanks to a classification result for 2D solutions and a dimension reduction argument, we can show that

λ2 ∈ Λ := {2, 3, 4, . . .} ∪
{7

2
,
11

2
,
15

2
, . . .

}
(1.9)

outside a set of singular points of dimension n− 3. Also it is easy to prove that, in this case, λ2 6= 2; thus,
except for a small set, the lowest possible value for λ2 is 3. The main challenge is now to improve this
cubic expansion to higher order.

(b) Third blow-up: a delicate dichotomy. From now on, we focus on points of Σn−1 where λ2 = 3, i.e., q is
a 3rd-order homogeneous solution of Signorini (as one can see from the coming argument, the other cases
can be considered as a particular case of this taking λ2 = 3 and p3,x◦ ≡ 0 in the definition of w3 below).
Two possibilities arise, depending whether some accumulation point q of {w̃2,r} as r → 0 is harmonic or
not. These two cases have to be analyzed separately.

- The third blow-up is not harmonic: a new uniqueness result. By another dimension reduction argu-
ment, we can prove that the set where q is not harmonic has dimension n−2. However this is not enough,
and here comes one of the key arguments introduced in this paper: as explained in Subsection 1.3.4(b), in
order to obtain Schaeffer’s conjecture in R4 we need to prove that the limit q of w̃2,r is unique, and that
this set is (n − 2)-rectifiable. To accomplish, in Section 5 we introduce new differential formulae, com-
pactness and barrier arguments, and a delicate ODE-type lemma, that allow us to obtain the uniqueness
of blow-ups (taking quotients of suitable qualities) even if we lack a monotonicity formula.



6 ALESSIO FIGALLI, XAVIER ROS-OTON, AND JOAQUIM SERRA

- The third blow-up is harmonic: a monotonicity argument at nondegenerate points. Assume that there
exists a harmonic accumulation point q. Then (thanks to a Monneau-type monotonicity formula) we
can show that the limit limr↓0 w̃2,r exists (i.e., all accumulation points coincide) and that u(x◦ + ·) =
p2,x◦ + p3,x◦ + o(|x|3) for some 3-homogeneous harmonic polynomial p3,x◦ (p3,x◦ being a multiple of q).
This suggests to iterate the previous blow-up procedure by defining

w̃3,r(x) :=
w3(rx)

‖w3(r · )‖L2(∂B1)
, where w3 := u− p2,x◦ − p3,x◦ ,

and try to mimicking the argument described above. Unfortunately, in this case it is not true anymore
that r 7→ ‖∇w̃3,r‖L2(B1) is monotonically increasing. Still, by a delicate bootstrapping argument (cf.
Lemma 4.3) we can prove that

r 7→ ‖∇w̃3,r‖L2(B1) is almost increasing, provided ‖w3(r · )‖L2(∂B1) & r
4−ε for some ε > 0.

Therefore, under this nondegeneracy assumption, we can consider accumulation points of w̃3,r and prove
that they are λ3-homogeneous solution of Signorini for some λ3 ∈ [3, 4). Then, by a dimension reduction
argument (based again on the classification of 2D solutions), we can prove that λ3 ∈ {3, 7/2} = Λ ∩ [3, 4)
in a set of dimension n− 2, and the remaining points are of codimension 3. So, to summarize:

(i) for most points in Σn−1 where the limit of w̃2,r is harmonic, the assumption ‖w3(r · )‖L2(∂B1) & r
4−ε

fails for every ε > 0, except perhaps in a set of dimension n− 2;
(ii) if ‖w3(r · )‖L2(∂B1) & r

4−ε holds, then the blow-up is λ3-homogeneous for λ3 ∈ {3, 7/2}, except for
a set of dimension at most n− 3.

In order to prove Schaeffer’s conjecture in R4, it is important for us to rule out the possibility that λ3 = 3
in case (ii). This is highly nontrivial, and follows from the analysis performed in Section 5 to understand
points where w̃2,r converges to a non-harmonic function.

(c) Fourth blow-up: monotonicity via a new ansatz and proof of (1.5). To go further in our analysis and
prove our main theorem, we now need to investigate the set of points where case (i) happens, namely
‖w3(r · )‖L2(∂B1) & r4−ε fails for every ε > 0. In this case Almgren’s monotonicity formula fails on w3,r,
and therefore a new approach needs to be found.

The key idea here is to replace w3 = u(x◦ + ·) − p2,x◦ − p3,x◦ with a much more refined Ansatz W3 :=
u(x◦+ ·)−Px◦ which takes into account both the curvature of the free boundary and the non-negativity of

the solution —this is done in Definition 4.5. Doing so, and defining W̃3,r in analogy to what done before,
we can show (again after a bootstrap argument) that

r 7→ ‖∇W̃3,r‖L2(B1) is almost increasing, provided ‖W3(r · )‖L2(∂B1) & r
5−ε for some ε > 0

(see Lemma 4.9). Let us note that obtaining this almost monotonicity is much more involved than in the
previous case (when we had 4− ε instead of 5− ε). The reason is technical and rather delicate: we need
to show that the size of W3,r controls the one of its gradient (see Lemma 4.7), and this follows from a
semiconvexity estimate along some rotational derivatives.

Once this almost monotonicity is proved, we can consider accumulation points of W̃3,r at all points
where ‖W3(r · )‖L2(∂B1) & r

5−ε, and we prove that (up to a codimension 2 set) the only possible limit is a
harmonic polynomial p4,x◦ of degree 4. This leads to an expansion of the form

w4 := u(x◦ + ·)−Px◦ − p4,x◦ , w4(x) = o(x4).

Hence, to finally obtain (1.5) with P4,x◦ = Px◦+p4,x◦ , we only need to prove that w4(x) = O(|x|5−ζ) for all
ζ > 0, up to a set of dimension n−2. This is again nontrivial: indeed, we can show that r 7→ ‖∇w̃4,r‖L2(B1)

is almost increasing provided that p4,x◦ vanishes on {p2,x◦ = 0} and ‖w4(r · )‖L2(∂B1) & r
5−ε for some ε > 0.

Hence we need to ensure that these assumptions are satisfied in a large enough set, and for this we exploit
some recent results on the size of the zero set of harmonic functions (see [NV17]) and another dimension
reduction argument. In this way, we conclude the validity of (1.5).

It is important to remark here that the expansion (1.5) up to order 5 − ζ is exactly what we need in
order to prove Theorem 1.1. Even if one could improve such an expansion to a higher order, the estimate
on the singular set in Theorem 1.1 would not change. Indeed, the bounds on the sizes of the sets where
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the expansions stop before 5 − ζ would not improve, and the conclusion in Theorem 1.1 would remain
exactly the same (see also Remark 9.6).

1.3.3. From one solution to a monotone 1-parameter family of solutions. Note that the analysis performed
above holds only for one solution. If now we have an increasing family of solutions {ut}t∈(−1,1), we need
to understand for each t the size of points where the expansion stops at some fixed order λ ∈ Λ.

If one simply applies the previous analysis to each solution ut one would not be able to conclude. Indeed,
if for each solution the set Σt,λ has dimension bounded by some s ≥ 0, then a simple argument (using the
structure of our problem) would show that their union over t ∈ (−1, 1) has dimension bounded by s+ 1.
Unfortunately, this estimate would be absolutely too weak for our scope. Indeed, in order to prove our
result, we need to show the following: if the analysis performed on a single solution implies that a set Σt,λ

has dimension bounded by s, then also ∪t∈(−1,1)Σ
t,λ has dimension bounded by s. In other words, the

bound on the union should be exactly the same as the one obtained for each single set!
To achieve this, we have to exploit the fact that we have an increasing family ut of solutions to obtain

very refined estimates on the possible blow-ups of a fixed solution at a free boundary point. More precisely,
the idea is the following: if a sequence of singular points xk ∈ Σtk converges to 0 ∈ Σ0, and if both solutions
utk and u0 have a Taylor expansion up to the same order λ at these points, then this implies some extra
information on the possible Taylor expansion of u0 at 0 (more precisely, this implies some symmetry
properties on its higher order term). This analysis is performed in Section 6 and it introduces a complete
series of new ideas and techniques with respect to [FS19], where only one fixed solution was considered. We
want to emphasize that, with respect to the case of only one solution (where one can still deduce symmetry
properties of blow-ups as a consequence of being an accumulation point of other singular points), in this
case this analysis is made particularly delicate by the fact that we do not have any equation in t relating
the solutions: we only know that they are ordered and strictly increasing with respect to t. Still, we are
able to deduce some strong symmetry properties of blow-up at all points where the Almgren’s frequency is
continuous (see the results in Section 6), and from these properties we obtain a very precise description of
the structure of singular points. This is then combined with a series of covering and dimension reduction
arguments (see Sections 7 and 8) to estimate the size of the singular points where blow-ups have few
symmetries, which allow us to show the desired dimensional bounds on ∪t∈(−1,1)Σ

t,λ. To our knowledge,
this is the first dimension reduction argument for a 1-parameter family of solutions to elliptic PDEs, and
we expect these ideas and techniques to be useful in many other problems.

1.3.4. Extra comments. The previous description syntheses well the main ideas behind our strategy, and
what explained until now suffices for proving the Schaeffer conjecture in R3. However, for the R4 case,
other extra ideas (that we only briefly mentioned before) are required. In particular, we need a more
refined analysis that depends on the type of singular point, having to distinguish two cases:

(a) The case of the “lower dimensional strata”. For singular points in ∪t∈(−1,1)Σ
t
m with m ≤ n − 2, we

know that the expansion (1.6) stops at λ = 2 at “anomalous points”, and these points have dimension

bounded by m − 1. Hence, denoting this set of anomalous points by ∪t∈(−1,1)Σ
t,2
m , and the remaining

m-dimensional set (where the expansion stops at λ = 3) by ∪t∈(−1,1)Σ
t,3
m , applying (1.8) for n = 4 and

m = 2 we get the trivial bound

dimH
(
{t ∈ (−1, 1) : Σt,λ

m 6= ∅}
)
≤

dimH(∪t∈(−1,1)Σ
t,λ
m )

λ− 1
= 1, for λ = 2, 3.

To improve this estimate, we refine our barrier arguments and show that (1.7) can be improved to

Σt◦+rλ−ε,i
m ∩ Br(x0) = ∅ for any ε > 0, for λ = 2, 3. This increased speed at which the contact set

clears near singular points for “lower strata” is not difficult to prove, but is fundamental to establish
Schaeffer’s conjecture in R4.

(b) The case of the “top stratum”. A big difficulty arises from points in ∪t∈(−1,1)Σ
t
n−1 where the expansion

stops at λ = 3. More precisely, as mentioned in Subsection 1.3.2(b) when discussing the case where the

third blow-up is not harmonic, there may exist a set ∪t∈(−1,1)Σ
t,3
n−1 of dimension n − 2 at which the
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expansion ut◦(x) = p2,x◦,t◦(x− x◦) + O(|x− x◦|3) is sharp —i.e., the third derivatives of ut◦ do not exist
at those points. Then, if we use (1.8) for λ = 3 and n = 4, we obtain the (trivial) estimate

dimH
(
{t ∈ (−1, 1) : Σt,3

n−1 6= ∅}
)
≤ n− 2

λ− 1
= 1,

while to establish Schaeffer’s conjecture in R4 we need to prove H1
(
{t ∈ (−1, 1) : Σt,3 6= ∅}

)
= 0. Since

it is possible to construct examples where the set ∪t∈(−1,1)Σ
t,3
n−1 is (n− 2)-dimensional, there is no hope to

improve its dimensional bound. In addition, unlike in the “lower strata”, one can see that (1.7) for λ = 3
is sharp at these points. Consequently, we need a completely different argument to conclude.

Here the idea consists in taking negative increments of t —which make the contact set become thicker
instead of thinner— and use barrier arguments to show that all free boundary points in a neighborhood
become regular at a slightly enhanced speed (see Lemma 9.4). However, we can only take advantage of

this improvement if we can prove that the set ∪t∈(−1,1)Σ
t,3
n−1 is (n− 2)-rectifiable (the information that its

Hausdorff dimension is bounded by n−2 is not sufficient). This rectifiability result is crucial, and its proof
relies on the existence of limr↓0 w̃2,r in the non-harmonic case. As mentioned before, this fact requires
completely new ideas with respect to the classical tools known in this kind of problems, and it is the focus
of Section 5. It is worth observing that such arguments lead to new interesting results even when applied
to the Signorini problem, see Appendix B.

1.4. Organization of the paper.
The paper is organized as follows. In Section 2 we introduce a series useful functionals that will be used
in the proof of some of our monotonicity formulae. In Section 3 we present some preliminary results
that will be needed throughout the paper. Then, in Section 4 we develop our higher order analysis of
singular points. In Section 5 we study in detail singular points at which the blow up of u(x◦ + · )− p2,x◦

is 3-homogeneous (cf. Subsection 1.3.2). In Section 6 we consider a 1-parameter family of solutions to
the obstacle problem and study symmetry properties of their blow-ups. In Section 7 we prove a series
of lemmas of geometric measure theory-type, and in Section 8 we establish several dimension reduction
results. Finally, in Section 9 we prove our main result, Theorem 1.1, as well as Theorem 1.2. In addition,
at the end of the paper we provide two appendices on the Signorini problem: one with some basic results
that are needed throughout the paper, and a second one with new results (uniqueness and nondegeneracy
of blow-ups at odd frequencies) that are a consequence of our analysis in Section 5 and that we believe to
be of independent interest.

2. Useful functionals and formulae

In all this section r ∈ (0, 1), and w : B → R denotes an arbitrary C1,1 function defined in a ball B ⊂ Rn
(specified in each statement). Throughout the paper we shall use the following adimensional quantities:

D(r, w) := r2−n
∫
Br

|∇w|2 = r2

∫
B1

|∇w|2(r · ),

H(r, w) := r1−n
∫
∂Br

w2 =

∫
∂B1

w2(r · ).

We also introduce here a useful notation for rescaling and normalization. Given w : B → R and r > 0 we
define wr and w̃r as

wr(x) := w(rx) and w̃r(x) :=
wr

H(1, wr)
1
2

=
w(r · )
H(r, w)

1
2

. (2.1)

We start by computing the derivatives of H and D.

Lemma 2.1. Let w ∈ C1,1(B2). Then

d

dr

∣∣∣∣
r=1

H(r, w) = 2

∫
∂B1

wwν = 2

∫
B1

w∆w + 2

∫
B1

|∇w|2. (2.2)

Proof. This is a standard computation, that can be found for instance in [FS19]. �
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Lemma 2.2. Let w ∈ C1,1(B2). Then

d

dr

∣∣∣∣
r=1

D(r, w) = 2

∫
∂B1

w2
ν − 2

∫
B1

∆w (x · ∇w). (2.3)

Proof. For convenience, we set D(r) := D(r, w). It holds

D′(1) =
∑
i,j

∫
B1

2wixjwij + 2D(1) =
∑
i,j

∫
∂B1

2wixjwjνi −
∑
i,j

∫
B1

2(wixj)iwj + 2D(1)

= 2

∫
∂B1

w2
ν − 2

∫
B1

∆w (x · ∇w)− 2

∫
B1

|∇w|2 + 2D(1) = 2

∫
∂B1

w2
ν − 2

∫
B1

∆w (x · ∇w).

�

Let us introduce the functions

φ(r, w) :=
D(r, w)

H(r, w)
, φγ(r, w) :=

D(r, w) + γr2γ

H(r, w) + r2γ
. (2.4)

The quantity φ is often known as the Almgren frequency function. Instead, φγ is a new truncated frequency
function, that to our knowledge has never been introduced before. It will be used throughout the paper
and will be extremely useful in our arguments, as it will allow us to deal with the cases when H may
be too small.1 The choice of the constant γ in front of r2γ in the numerator is important to make the
following lemma work.

Lemma 2.3. Let w ∈ C1,1(B1). Then for r ∈ (0, 1) we have

d

dr
φ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2
+ E(r, w)(

H(r, w)
)2

and

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2
+ Eγ(r, w)(

H(r, w) + r2γ
)2 ,

where

E(r, w) :=

(
r2−n

∫
Br

w∆w

)
D(r, w)−

(
r2−n

∫
Br

(x · ∇w)∆w

)
H(r, w) (2.5)

and

Eγ(r, w) :=

(
r2−n

∫
Br

w∆w

)(
D(r, w) + γr2γ

)
−
(
r2−n

∫
Br

(x · ∇w)∆w

)(
H(r, w) + r2γ

)
. (2.6)

Proof. We first observe that, for r ∈ (0, 1), the formula for φ can be deduced from the one for φγ letting
γ ↑ +∞.

By scaling it is enough to compute, for a > 0,

d

dr

∣∣∣∣
r=1

log φγ,a(r, w), for φγ,a(r, w) :=
D(r, w) + γ(ar)2γ

H(r, w) + (ar)2γ
.

Using Lemmas 2.1 and 2.2 we obtain

d
dr |r=1

(
D(r, w) + γ(ar)2γ

)
D(1, w) + γa2γ

= 2

∫
∂B1

w2
ν −

∫
B1

(x · ∇w)∆w + γ2a2γ∫
∂B1

wwν −
∫
B1
w∆w + γa2γ

and
d
dr |r=1

(
H(r, w) + ar2γ

)
H(1, w) + a2γ

= 2

∫
∂B1

wwν + γa2γ∫
∂B1

w2 + a2γ
.

1In the past, other kind of truncations have been introduced (see in particular [CSS08]), but they do not work in our case
due to the fact that D is not equal to (a multiple of) the derivative of H, as it is instead the case for the Signorini problem.
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Therefore,

d

dr
log φγ,a(1, w) =

d
dr |r=1

(
D(r, w) + γ(ar)2γ

)
D(1, w) + γa2γ

−
d
dr |r=1

(
H(r, w) + ar2γ

)
H(1, w) + a2γ

= 2
X2 + rest(

D(1, w) + γa2γ
)(
H(1, w) + a2γ

) ,
where

X2 :=

(∫
∂B1

w2
ν + γ2a2γ

)(∫
∂B1

w2 + a2γ

)
−
(∫

∂B1

wwν + γa2γ

)2

≥ 0

(the non-negativity of X2 follows by Hölder inequality), and

rest :=

(∫
B1

w∆w

)(∫
∂B1

wwν + γa2γ

)
−
(∫

B1

(x · ∇w)∆w

)(∫
∂B1

w2 + a2γ

)
.

Using again Lemma 2.1 we have

rest =

(∫
B1

w∆w

)2

+

(∫
B1

w∆w

)(
D(1, w) + γa2γ

)
−
(∫

B1

(x · ∇w)∆w

)(
H(1, w) + a2γ

)
.

By scaling (applying the previous formulas with w replaced by wr = w(r · ) and a replaced by r) we obtain

d

dr
log φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2
+ Eγ(r, w)(

D(r, w) + γr2γ
)(
H(r, w) + r2γ

) ,
where Eγ is defined in (2.6). Since d

dr log φγ(r, w) = φγ(r, w)−1 d
drφ

γ(r, w), the lemma follows immediately
by recalling the definition of φγ in (2.4). �

3. Preliminaries: First and second blow-up analysis

In this section we collect some known results and basic tools that will be used throughout the paper.
Let u : B1 → R be a solution to the obstacle problem

∆u = χ{u>0} and u ≥ 0 in B1. (3.1)

By the classical theory of Caffarelli on the obstacle problem [Caf77, Caf98], any solution u of (3.1) with
0 ∈ ∂{u > 0} satisfies

‖u‖C1,1(B1/2) ≤ C and sup
Br(0)

u ≥ cr2 ∀ r ∈ (0, 1
2), (3.2)

where C, c > 0 are positive dimensional constants. Moreover, points of the free boundary ∂{u > 0} can be
split into two classes:

• Regular points: x◦ ∈ ∂{u > 0} is a regular point if

lim
r→0

r−2u(x◦ + rx) =
1

2

(
max{0, e · x}

)2
for some e ∈ Sn−1.

• Singular points: x◦ ∈ ∂{u > 0} is a singular point if

p2,x◦(x) := lim
r→0

r−2u(x◦ + rx)

exists and p2,x◦ is a quadratic polynomial belonging to the set

P :=
{

convex 2-homogeneous polynomials p with ∆p ≡ 1
}
.

It is well known that the free boundary is analytic in a neighborhood of regular points. So, the main
goal is to understand the structure of singular points.

When x◦ = 0 is a singular point, we will simplify the notation p2,x◦ to p2. A well known result due to
Caffarelli is the following estimate at singular points.
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Lemma 3.1. There exists a modulus of continuity ω : R+ → R+, depending only on the dimension n,
such that if u is a solution of the obstacle problem (3.1) and 0 is a singular free boundary point, then

‖u− p2‖L∞(Br) ≤ r
2ω(r), ∀ r ∈ (0, 1).

Proof. This result, with an abstract (dimensional) modulus of continuity ω, is contained in [Caf98, Theorem
8]. A stronger quantitative version of the estimate (with independent proofs) giving an explicit C| log r|−ε
modulus of continuity is given in [CSV18, FS19]. �

Remark 3.2. Let p ∈ P. Since ∆u = ∆p = 1 in {u > 0}, we have

(u− p)∆(u− p) = pχ{u=0} ≥ 0. (3.3)

Similarly,

x · ∇(u− p) ∆(u− p) = x · ∇pχ{u=0} = 2pχ{u=0} ≥ 0. (3.4)

We recall Weiss’ monotonicity formula (proved in [W99] for λ = 2, and in [FS19] in the general case)
and a useful consequence of it.

Lemma 3.3 (Weiss’ formula). Let u : B1 → [0,∞) be a solution of (3.1), and let 0 be a singular point.
Given p ∈ P, set w := u− p. Also, for λ > 0 set

Wλ(r, w) := r−2λ
(
D(r, w)− λH(r, w)

)
.

Then:
(a) For all λ ≥ 2

d

dr
Wλ(r, w) ≥ 2r−2λ−1

∫
∂Br

(x · ∇w − λw)2 ≥ 0.

(b) W2(0+, w) = 0 and

D(r, w)− 2H(r, w) ≥ 0, ∀ r ∈ (0, 1). (3.5)

Proof. (a) By scaling it is enough to compute d
drWλ(r, w) at r = 1. Using Lemmas 2.1-2.2, we obtain

W ′λ(1, w) =
(
D′(1, w)− λH ′(1, w)

)
− 2λD(1, w) + 2λ2H(1, w)

= 2

∫
∂B1

w2
ν − 2

∫
B1

∆w (x · ∇w)− 2λ

∫
∂B1

wwν − 2λD(1, w) + 2λ2H(1, w)

= 2

∫
∂B1

w2
ν + 2

∫
B1

(λw − x · ∇w)∆w − 4λ

∫
∂B1

wwν + 2λ2

∫
∂B1

w2

= 2

∫
∂B1

(wν − λw)2 + 2

∫
B1

(λw − x · ∇w)∆w

= 2

∫
∂B1

(wν − λw)2 + 2

∫
{u(r · )=0}∩B1

(λp− x · ∇p).

One concludes noticing that, for λ ≥ 2, it holds (λp− x · ∇p) = (λ− 2)p ≥ 0.
(b) Since 0 is a singular point then wr(x) = (u− p)(rx) = (p2 − p)(rx) + o(r2), thus

W2(0+, w) = lim
r↓0

W (1, r−2wr) = W2(1, p2 − p) = 0.

As a consequence, (3.5) follows integrating (a) for λ = 2 between 0 and r. �

We recall from [FS19] that the frequency function φ applied to the function w = u− p, with p ∈ P, is
monotone increasing in r. More precisely we have the following:

Proposition 3.4 (Frequency formula). Let u : B1 → [0,∞) be a solution of (3.1), and let 0 be a singular
point. Given p ∈ P, set w := u− p. Then

d

dr
φ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2
H(r, w)2

≥ 0, ∀ r ∈ (0, 1).
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Proof. By Lemma 2.3 we just need to show that

E(r, w) :=

(
r2−n

∫
Br

w∆w

)
D(r, w)−

(
r2−n

∫
Br

(x · ∇w)∆w

)
H(r, w) ≥ 0.

Using Remark 3.2 for w = u− p we have(
r2−n

∫
Br

(x · ∇w)∆w

)
= 2

(
r2−n

∫
Br

w∆w

)
,

thus

E(r, w) =

(
r2−n

∫
Br

w∆w

)(
D(r, w)− 2H(r, w)

)
,

which by (3.5) and Remark 3.2 is nonnegative. �

The following observation, also contained in [FS19], follows immediately from (3.5).

Lemma 3.5. Let u : B1 → [0,∞) be a solution of (3.1), and let 0 be a singular point. Given p ∈ P, set
w := u− p. Then φ(0+, w) ≥ 2.

A new important estimate that we will use throughout the paper is the following:

Lemma 3.6. Let u : B1 → [0,∞) be a solution of (3.1), and let 0 be a singular point. Given p ∈ P, set
w := u − p. Suppose that for 0 < r < R < 1 we have λ ≤ φ(r, w) ≤ φ(R,w) ≤ λ. Then, for any given
δ > 0 we have (

R

r

)2λ

≤ H(R,w)

H(r, w)
≤ Cδ

(
R

r

)2λ+δ

,

where Cδ depends only on n, λ, δ.

Proof. Define

F (r) :=
r2−n ∫

Br
w∆w

H(r, w)
.

By Proposition 3.4 we have
d

dr
φ(r, w) ≥ 2

r

(
F (r)

)2
. (3.6)

On the other hand, thanks to Lemma 2.1,

d
drH(r, w)

H(r, w)
=

2

r

r2−n ∫
Br
w∆w + r2−n ∫

Br
|∇w|2

H(r, w)
=

2

r
φ(r, w) +

2

r
F (r). (3.7)

Integrating (3.6) and using Cauchy-Schwartz inequality, since λ ≤ φ(ρ, w) ≤ λ for all ρ ∈ (r,R) we get(
λ− λ

)1/2(
log(R/r)

)1/2 ≥ (∫ R

r
φ′(ρ, w)dρ

)1/2(∫ R

r

dρ

ρ

)1/2

=

(∫ R

r

1

ρ

(
F (ρ)

)2
dρ

)1/2(∫ R

r

dρ

ρ

)1/2

≥
∫ R

r

1

ρ
F (ρ)dρ ≥ 0.

Hence, integrating (3.7), we obtain

log
H(R,w)

H(r, w)
≤
∫ R

r

2

ρ

(
λ+ F (ρ)

)
dρ ≤ log

(
(R/r)2λ

)
+ C

(
log(R/r)

)1/2 ≤ log
(
(R/r)2(λ+δ)

)
+ C,

where C depends only on n, λ, and δ.
For the lower bound we recall that, since w∆w ≥ 0, we have F (ρ) ≥ 0. Therefore, integrating (3.7)

over [r,R],

log
H(R,w)

H(r, w)
≥ 2λ

∫ R

r

dρ

ρ
= log(R/r)2λ.

�
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We will also need the following result, which allows us to control the L∞ norm of the difference of two
solutions with the L2 norm.

Lemma 3.7. Let u : B1 → [0,∞) and v : B1 → [0,∞) be solutions of the obstacle problem (3.1). Then

‖u− v‖L∞(B1/2) ≤ C(n)‖u− v‖L2(B1).

Proof. On the one hand, from

∆(u− v) = 1−∆v ≥ 0 in {u > 0} and u− v = −v ≤ 0 in {u = 0}

we obtain that (u− v)+ = max(u− v, 0) is subharmonic in B1. Exchanging the role of u and v, the same
argument shows that (v − u)+ = (u − v)− is subharmonic. Thus also |u − v| = (u − v)+ + (u − v)− is
subhamonic in B1, and using the mean value property we obtain, for x ∈ B1/2,

|u− v|(x) ≤
∫
B1/2(x)

|u− v| ≤ C(n)‖u− v‖L1(B1) ≤ C(n)‖u− v‖L2(B1).

�

We now start investigating the structure of possible second blow-ups. The next few results are a small
modification of those in [FS19].

The following Lipschitz estimate for the rescaled difference u − p, with p ∈ P, will be useful in the
sequel. We recall that wr and w̃r have been defined in (2.1).

Lemma 3.8. Let u : B1 → [0,∞) be a solution of (3.1) with u 6≡ p2, and let 0 be a singular point. Given
p ∈ P, set w := u− p. Let R ≥ 1, and r ∈

(
0, 1

10R

)
. Then

∂eew̃r ≥ −C in BR, ∀ e ∈ Sn−1 ∩ {p = 0} (3.8)

where C depends only on n, R, and φ(1/2, u− p). In addition, if dim({p = 0}) = n− 1, then

|∇w̃r| ≤ C in BR/2, (3.9)

where C depends only on n, R, and φ(1
2 , u− p).

Proof. This proof is essentially contained in Step 3 from the Proof of Proposition 2.10 in [FS19]. However,
since some small changes are needed in our setting, we reproduce the main steps for the convenience of
the reader.

Given a function f : Rn → R, a vector e ∈ Sn−1, and h > 0, let

δ2
e,hf :=

f( · + he) + f( · − he)− 2f

h2

denote a second order incremental quotient. For e ∈ {p = 0} ∩ Sn−1 we have δ2
e,hp ≡ 0. Thus, since

∆u = 1 outside of {u = 0} and ∆u ≤ 1 in B1, we have

∆
(
δ2
e,hw

)
=

∆u
(
· +he

)
+ ∆u

(
· −he

)
− 2∆u

h2
≤ 0 in BR \ {u = 0}.

On the other hand, since u ≥ 0 we have

δ2
e,hw = δ2

e,hu( · ) ≥ 0 in {u = 0}.

As a consequence, the negative part of the second order incremental quotient (δ2
e,hw̃r)− is subharmonic,

and so is its limit (∂2
eew̃r)− (recall that u is semiconvex, and thus (δ2

e,hw̃r)− → (∂2
eew̃r)− a.e. as h → 0).

Therefore, by weak Harnack inequality (see for instance [CC95, Theorem 4.8(2)]) there exists ε = ε(n) ∈
(0, 1) such that

‖(∂2
eew̃r)−‖L∞(BR) ≤ C(n)

( ∫
BR

(∂eew̃r)
ε
−

)1/ε

≤ C(n)

( ∫
B2R

|∂eew̃r|ε
)1/ε

.
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Also, by standard interpolation inequalities, the Lε norm (here we use ε < 1) can be controlled by the
weak L1 norm, namely(∫

B2R

|∂eew̃r|ε
)1/ε

≤ C(n,R) sup
θ>0

θ
∣∣{|∂eew̃r| > θ

}
∩B2R

∣∣.
Furthermore, by Calderón-Zygmund theory, the right hand side above is controlled by

‖∆w̃r‖L1(B3R) + ‖w̃r‖L1(B3R).

Thus, since ∆wr ≤ 0 in B3R, ‖∆w̃r‖L1(BR) is controlled by the L1 norm of w̃r inside B4R: indeed, if χ is
a smooth nonnegative cut-off function that is equal to 1 in B3R and vanishes outside B4R, then

‖∆w̃r‖L1(B3R) ≤ −
∫
B4R

χ∆w̃r = −
∫
B4R

∆χ w̃r ≤ C(n,R)

∫
B4R\B3R

|w̃r|. (3.10)

Also, for 8rR < 1, as a consequence of Lemma 3.6 we have

H(4R, w̃r) ≤ CR2φ(1,u−p)+1H(1, w̃r) = CR2φ( 1
2
,u−p)+1

and thus

‖w̃r‖L1(B4R) ≤ C
(
n,R, φ(1

2 , u− p)
)
.

In conclusion, we obtain

‖(∂eew̃r)−‖L∞(BR) ≤ C(n,R)‖w̃r‖L1(B4R) ≤ C
(
n,R, φ(1

2 , u− p)
)
.

Finally note that, when {p = 0} is (n− 1)-dimensional, as a consequence of (3.8) the tangential Laplacian
of w̃r (in the directions of {p = 0}) is uniformly bounded from below. Thus, since ∆w̃r ≤ 0, we have

∂e′e′w̃r ≤ C in BR, for e′ ∈ {p = 0}⊥ with |e′| = 1,

where, as before, C = C
(
n,R, φ(1

2 , u − p)
)
. Thanks to these semiconvexity and semiconcavity estimates,

we deduce the Lipschitz bound (3.9). �

The next result corresponds to [FS19, Proposition 2.10]. However the statement there has a small
mistake (that anyhow does not affect any of the arguments in [FS19]) and for convenience we correct it
here.

Proposition 3.9. Let u : B1 → [0,∞) be a solution of (3.1) with u 6≡ p2, let 0 be a singular point, and
set w := u− p2. Denote m := dim({p2 = 0}) ∈ {0, 1, 2, . . . n− 1}, and λ2nd := φ(0+, w).

Then, for every sequence rk ↓ 0 there is a subsequence rk` such that w̃rk` ⇀ q as ` → ∞ in W 1,2
loc (Rn),

where q 6≡ 0 is a λ2nd-homogeneous function satisfying the following:

(a) If 0 ≤ m ≤ n − 2 then q is a harmonic polynomial, and in particular λ2nd ∈ {2, 3, 4, . . . }. In
addition, if λ2nd = 2, then in some appropriate coordinates we have

p2(x) =
1

2

n∑
i=m+1

µix
2
i and q(x) = ν

n∑
i=m+1

x2
i −

m∑
j=1

νjx
2
j , (3.11)

where µi, ν > 0, and they satisfy
∑n

i=m+1 µi = 1,(n − m)ν =
∑m

j=1 νj, and |νj | ≤ ν for any
j = 1, . . . ,m.

(b) If m = n − 1 then we have w̃rk` → q in C0
loc(Rn) and we have λ2nd ≥ 2 + α◦, where α◦ > 0 is a

dimensional constant. In addition, q is a global solution of the Signorini problem:
∆q ≤ 0 and q∆q = 0 in Rn

∆q = 0 in Rn \ {p2 = 0}
q ≥ 0 on {p2 = 0}.

(3.12)
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Proof. The statement here is almost identical to that of [FS19, Proposition 2.10]. The only differences are
the following:
(1) In [FS19] it is uncorrectly stated that νj > 0. Instead, [FS19, Lemma 2.12] proves that ν is the largest
eigenvalue of D2q, hence the correct conclusion is that |νj | ≤ ν for each j = 1, . . . ,m.

(2) In the above statement we said that w̃k ⇀ q weakly in W 1,2
loc (Rn), while [FS19, Proposition 2.10] states

the convergence only in W 1,2(B1). The reason why we may replace B1 by any larger ball is Lemma 3.6,
as it allows us to control H(R, w̃r) by C(n, φ(1, w), R)H(1, w̃r) for any r < 1/R. Hence, using a diagonal
argument, the proof of [FS19, Proposition 2.10] yields the desired result. �

We now recall another important estimate from [FS19]:

Proposition 3.10. Let u : B1 → [0,∞) be a solution of (3.1) with u 6≡ p2, let 0 be a singular point, and
set w := u− p2, λ2nd := φ(0+, w). Let λ ∈ (0, λ2nd]. Then

|{u = 0} ∩Br|
|Br|

≤ Crλ−2 ∀ r ∈ (0, 1/2).

Moreover, if dim({p2 = 0}) = n− 1 then

{u = 0} ∩Br ⊂
{
x : dist(x, {p2 = 0}) ≤ Crλ−1

}
.

The constant C depends only on n and λ.

Proof. The first part is exactly [FS19, Proposition 2.13]. The second part on Σn−1 follows by the argument
in [FS19, Remark 2.14], as a consequence of the Lipschitz estimate in Lemma 3.8. �

Following the notation introduced in [FS19], we denote

Σm :=
{
x◦ singular points with dim

(
{p2,x◦ = 0}

)
= m

}
, 0 ≤ m ≤ n− 1 (3.13)

and, for m ≤ n− 2,

Σa
m :=

{
x◦ ∈ Σm such that φ

(
0+, u(x◦ + · )− p2,x◦

)
= 2
}
, 0 ≤ m ≤ n− 2. (3.14)

Moreover, for m = n− 1 we introduce some further notation: we define

Σ<3
n−1 :=

{
x◦ ∈ Σn−1 such that φ

(
0+, u(x◦ + · )− p2,x◦

)
< 3
}
, (3.15)

and

Σ≥3
n−1 := Σn−1 \ Σ<3

n−1. (3.16)

Finally, we will need the following:

Definition 3.11. Let u : B1 → [0,∞) solve (3.1). For 1 ≤ m ≤ n− 1 we denote by Σ3rd
m the set of points

x◦ ∈ Σm such that, for w := u(x◦ + · )− p2,x◦ , the following two conditions hold:

(i) φ(0+, w) ≥ 3;

(ii) there exists some sequence rk ↓ 0 along which r−3
k w(rk · ) converges, weakly in W 1,2

loc (Rn), to some
3-homogeneous harmonic polynomial vanishing on {p2 = 0} —possibly the polynomial zero.

Notice that, by Proposition 3.9(a), for m ≤ n− 2 we have Σm \Σa
m = Σ3rd

m = Σ≥3
m . On the other hand,

this is not true for m = n− 1, and later on in the paper we will need to understand the set Σ≥3
n−1 \ Σ3rd

n−1.

We conclude this section by recalling that if 0 ∈ Σ3rd
m then the limit

lim
r↓0

r−3(u− p2)(r · ) (3.17)

exists. Indeed, as shown in [FS19], this is a consequence of the following Monneau-type monotonicity
formula.

Lemma 3.12. Let u : B1 → [0,∞) satisfy (3.1), and let 0 ∈ Σ≥3
m for some 0 ≤ m ≤ n − 1. Let

w := u− p2 − P , where P is any 3-homogeneous harmonic polynomial vanishing on {p2 = 0}. Then

D(r, w) ≥ 3H(r, w) ∀ r ∈ (0, 1) (3.18)
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and
d

dr

(
r−6H(r, w)

)
≥ −C sup

∂B1

P 2

p2
, (3.19)

where C is some dimensional constant.

Proof. The proof is contained in [FS19, Lemma 4.1]. �

The next result provides the existence of a unique limit in (3.17) for all points in Σ3rd
m , which follows

immediately from Lemma 3.12 (see [FS19, Proposition 4.5]):

Lemma 3.13. Let u : B1 → [0,∞) solve (3.1). Then, for all x◦ in Σ3rd
m with 0 ≤ m ≤ n− 1, the limit

p3,x◦ := lim
r↓0

1

r3

(
u(x◦ + r · )− p2,x◦(r · )

)
exists, and p3,x◦ is a 3-homogeneous harmonic polynomial vanishing on {p2,x◦ = 0}.

When x◦ = 0 we simplify the notation p3,0 to p3.

4. Higher order blow-ups on the maximal stratum

As explained in Section 1.2, in order to prove the main result of this paper (Theorem 1.1) we need
to obtain —among other things— an expansion up to order O(|x|5−ζ) at “most points” of Σ3rd

n−1. This
requires a very detailed analysis of such set, which is the goal of this section. From now on, we will only
study the points of Σn−1 (hence, m = n− 1).

In order to study the higher regularity properties of the set Σ3rd
n−1, we need a new frequency function for

u− p2 − p3. The following lemma is a more flexible version of Lemma 3.6. It will be useful later in order
to prove the almost monotonicity of φγ(r, w) for a suitable γ, where w will be the difference between u
and its polynomial expansions at singular points.

Lemma 4.1. Let R ∈ (0, 1), and let w : BR → [0,∞) be a C1,1 function. Assume that for some κ ∈ (0, 1)
we have

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2

(
H(r, w) + r2γ

)2 − rκ−1 ∀ r ∈ (0, R).

Then the following holds:
(a) Suppose that 0 < λ ≤ φγ(r, w) ≤ λ for all r ∈ (0, R). Then, for any given δ > 0 we have

1

Cδ

(
R

r

)2λ−δ
≤ H(R,w) +R2γ

H(r, w) + r2γ
≤ Cδ

(
R

r

)2λ+δ

for all r ∈ (0, R),

where Cδ depends only on n, γ, κ, λ, δ.
(b) Assume in addition that

r2−n ∫
Br
w∆w

H(r, w) + r2γ
≥ −rκ ∀ r ∈ (0, R).

Then, for λ∗ := φγ(0+, w), we have

e−
4
κ2

(
R

r

)2λ∗

≤ H(R,w) +R2γ

H(r, w) + r2γ
.

Proof. (a) Define

F (r) :=
r2−n ∫

Br
w∆w

H(r, w) + r2γ

so that, by assumption, we have
d

dr
φγ(r, w) + rκ−1 ≥ 2

r

(
F (r)

)2
. (4.1)
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It follows by Lemma 2.1 that

d
dr (H(r, w) + r2γ)

(H(r, w) + r2γ)
=

2

r

r2−n ∫
Br
w∆w + r2−n ∫

Br
|∇w|2 + γr2γ

H(r, w) + r2γ
=

2

r
φγ(r, w) +

2

r
F (r). (4.2)

Integrating (4.1) and using Cauchy-Schwarz inequality, since 0 ≤ φγ(r, w) ≤ λ for all r ∈ (0, R), we get

C
(

log(R/r)
)1/2 ≥ (λ+

1

κ
(Rκ − rκ)

)1/2 (
log(R/r)

)1/2
≥
(∫ R

r

(
d
drφ

γ(ρ, w) + ρκ−1
)
dρ

)1/2(∫ R

r

dρ

ρ

)1/2

=

(∫ R

r

1

ρ

(
F (ρ)

)2
dρ

)1/2(∫ R

r

dρ

ρ

)1/2

≥
∣∣∣∣∫ R

r

1

ρ
F (ρ)dρ

∣∣∣∣ .
Hence, integrating (4.2) between r and R (recall 0 < r < R < 1) we obtain

log
H(R,w) +R2γ

H(r, w) + r2γ
≤
∫ R

r

2

ρ

(
λ+ F (ρ)

)
dρ ≤ 2λ log(R/r) + C

(
log(R/r)

)1/2 ≤ (2λ+ δ) log(R/r) + Cδ.

Similarly,

log
H(R,w) +R2γ

H(r, w) + r2γ
≥ (2λ+ δ) log(R/r)− Cδ.

(b) In this case we have F (r) ≥ −rκ for all r ∈ (0, R). Hence, integrating (4.2) between 0 and ρ ∈ (0, R)
we obtain

φγ(ρ, w)− λ∗ ≥ −
1

κ
ρκ.

Thus,

log
H(R,w) +R2γ

H(r, w) + r2γ
≥
∫ R

r

2

ρ

(
φ(ρ) + F (ρ)

)
dρ ≥ 2λ∗

∫ R

r

dρ

ρ
−
(

2

κ
+ 1

)∫ R

r
ρκ−1 dρ ≥ 2λ∗ log(R/r)− 4

κ2
.

�

Remark 4.2. An interesting consequence of Lemma 4.1(a) is that, if φγ(r, w) has a limit ` > 0 as r → 0,
then ` ≤ γ. Indeed, otherwise we would have φγ(r, w) ≥ λ := γ + δ > γ for all r > 0 small, and
Lemma 4.1(a) would imply that H(r, w) + r2γ ≤ Cr2λ−δ = Cr2γ+δ for r � 1, impossible.

The following lemma gives the (approximate) monotonicity of φγ when applied to w := u − p2 − P ,
where P is any 3-homogeneous harmonic polynomial vanishing on {p2 = 0}.

Lemma 4.3. Let u : B1 → [0,∞) be a solution of (3.1), with 0 ∈ Σ≥3
n−1. Let w := u− p2 − P , where P is

a 3-homogeneous harmonic polynomial vanishing on {p2 = 0}. Then, given γ ∈ (3, 4), for all r ∈ (0, 1/2)
we have

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2(
H(r, w) + r2γ

)2 − Cr3−γ and
r2−n ∫

Br
w∆w

H(r, w) + r2γ
≥ −Cr4−γ ,

where C depends only on n, γ, ‖P‖L2(B1).

In particular, assuming 0 ∈ Σ3rd
n−1, the previous inequalities hold for w := u− p2 − p3.

Proof. The proof will rely on a iteration argument where one enlarge the value of γ, starting from 3 and
increasing it up to the desired γ ∈ (3, 4). We split the proof in two steps.

• Step 1. We first show that

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2(
H(r, w) + r2γ

)2 − Cr3−γφγ(r, w)gγ(r) (4.3)
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and
r2−n ∫

Br
w∆w

H(r, w) + r2γ
≥ −Cr4−γgγ(r), (4.4)

where

gγ(r) :=
‖wr‖L2(B2\B1)

(H(r, w) + r2γ)1/2

and C depends only on n and ‖P‖L2(B1).
Indeed, by Lemma 2.3 we have

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2(
H(r, w) + r2γ

)2 + E
γ
(r, w),

where

E
γ
(r, w) :=

2

r

r2−n ∫
Br

(λrw − x · ∇w)∆w

H(r, w) + r2γ
and λr = φγ(r, w) =

D(r, w) + γr2γ

H(r, w) + r2γ
.

Note that ∆w = ∆(u − p2 − p3) = χ{u>0} − 1 − 0 = −χ{u=0}. Also, since λr ≥ 3 by (3.18), using the

inequality p2 + P ≥ − P 2

2p2
, since P 2

p2
is homogeneous of degree 4 we have

(λr − x · ∇)(p2 + P ) ≥ (λr − 2)p2 + (λr − 3)P ≥ (λr − 3)(p2 + P ) ≥ −(λr − 3)

2

(
sup
∂B1

P 2

p2

)
|x|4.

Therefore we obtain

E
γ
(r, w) =

2

r

r2−n ∫
Br∩{u=0}(λr − x · ∇)(p2 + P )

H(r, w) + r2γ
≥ −(λr − 3)r3−γ

(
sup
∂B1

P 2

p2

)
r2−n|Br ∩ {u = 0}|
(H(r, w) + r2γ)1/2

. (4.5)

Also, since ∆w = −χ{u=0} ≤ 0, choosing χ ∈ C∞c (B2) a nonnegative cut-off satisfying χ = 1 in B1,
integrating by parts we obtain

r2−n∣∣{u = 0} ∩Br
∣∣ =

∫
B1

−∆wr ≤
∫
B2

−∆wr χ = −
∫
B2

wr ∆χ ≤ C
∫
B2\B1

|wr| ≤ C‖wr‖L2(B2\B1).

Thus, since λr = φγ(r, w) and recalling (4.5), we have shown that

E
γ
(r, w) ≥ −Cr3−γφγ(r, w)gγ(r),

and (4.3) follows. Note that, since by assumption P 2 is divisible by p2, we have that sup∂B1

P 2

p2
is bounded

by a constant depending only on n and ‖P‖L2(B1), and thus the constant C above depends only on n and
‖P‖L2(B1).

Similarly, using again p2 + P ≥ − P 2

2p2
, we obtain

r2−n ∫
Br
w∆w

H(r, w) + r2γ
=
r2−n ∫

{u=0}∩Br(p2 + P )

H(r, w) + r2γ
≥ −Cr4−γ r

2−n∣∣{u = 0} ∩Br
∣∣

(H(r, w) + r2γ)1/2
,

which gives (4.4).

• Step 2. Next we show that (4.3) implies that, for all γ < 4,

φγ(r, w) ≤ Cγ and gγ(r) ≤ Cγ , (4.6)

with Cγ depending only on n, γ, and ‖P‖L2(B1).
We prove (4.6) for all γ ∈ [3, 4) by iteratively increasing the value of γ at each iteration, starting from

γ = 3, in order to always have (along the iteration) a uniform bound on φγ(r, w) and gγ(r).

First, we observe that since 0 ∈ Σ≥3
n−1 we have φ(0+, u − p2) ≥ 3, hence |u − p2| ≤ C|x|3. Therefore

|u − p2 − P | ≤ C|x|3, which immediately implies that g3(r) ≤ C3, and then it follows by (4.3) that
log
(
φ3(·, w)

)
is almost monotonically increasing, so in particular it is uniformly bounded.

We show next that if (4.6) holds for some γ ≥ 3 then (4.6) holds also with γ replaced by γ + β for any
β > 0 such that 3β < 4− γ.
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Indeed, we can bound

φγ+β(r, w) =
D(r, w) + (γ + β)r2γ+2β

H(r, w) + r2γ+2β
≤ 2

r2β

D(r, w) + γr2γ

H(r, w) + r2β
≤ φγ(r, w)

r2β
≤ 2

Cγ
r2β

,

and similarly

gγ+β(r) =
‖wr‖L2(B2\B1)

(H(r, w) + r2γ+2β)1/2
≤ 1

rβ
‖wr‖L2(B2\B1)

(H(r, w) + r2γ)1/2
=
gγ(r)

rβ
≤ Cγ
rβ
.

Then (4.3) —with γ replaced by γ + β— yields

d

dr
φγ+β(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2(
H(r, w) + r2γ

)2 − CC2
γr

4−γ−1−3β. (4.7)

Noticing that r4−γ−1−3β is integrable over r ∈ (0, 1) provided 3β < 4 − γ, (4.7) implies that φγ+β(r, w)
is almost monotonically increasing. In particular φγ+β(r, w) ≤ C ′ for r ∈ (0, 1/2), where C ′ is a constant
depending only on n and γ + β.

In addition, (4.7) and Lemma 4.1(a) imply that

H(R,w) +R2γ+2β

H(r, w) + r2γ+2β
≤ C ′ ∀ r ∈ (r, 2r),

thus (
gγ+β(r)

)2
=
‖wr‖2L2(B2\B1)

H(r, w) + r2γ+2β
≤ C

∫ 2r

r

H(R,w) dR

H(r, w) + r2γ+2β
≤ CC ′,

and therefore (4.6) holds for γ replaced by γ + β.
Having proven that if (4.6) holds for some γ ≥ 3 then (4.6) holds also with γ replaced by γ + β for any

β > 0 such that 3β < 4 − γ, iterating finitely many times we conclude that (4.6) holds for any γ < 4, as
claimed.

Combining this information with (4.3) we obtain

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2

(H(r, w) + r2γ)2 − CC
2
γr

3−γ ∀ r ∈ (0, 1/2).

Also, it follows by (4.4) and (4.6) that
r2−n

∫
Br

w∆w

H(r,w)+r2γ
≥ −CCγr4−γ . Finally, when 0 ∈ Σ3rd

n−1 we can take

P = p3 (since, by definition of Σ3rd
n−1, p3 vanishes on {p2 = 0}). �

We have proved that in Σ3rd
n−1 we have almost monotonicity of the new truncated frequency function

φγ(r, u − p2 − p3) for any γ ∈ (3, 4). This means that φγ(0+, u − p2 − p3) exists, and satisfies 3 ≤
φγ(0+, u− p2 − p3) ≤ γ (see Remark 4.2).

Hence, we can now introduce the following:

Definition 4.4. Let u : B1 → [0,∞) solve (3.1). We denote by Σ>3
n−1 the set of points x◦ ∈ Σ3rd

n−1 such

that, for w := u(x◦ + · )− p2,x◦ − p3,x◦ , we have φγ(0+, w) > 3 for any γ ∈ (3, 4).

Moreover, we will need the following:

Definition 4.5. Let u : B1 → [0,∞) solve (3.1), and assume that 0 ∈ Σ3rd
n−1. Choose a coordinate system

such that

p2(x) =
1

2
x2
n and p3(x) =

n−1∑
α=1

aα
2
x2
αxn +

an
6
x3
n. (4.8)

(Here we used that p3 is harmonic and vanishes on {xn = 0}.) We define the fourth order polynomial
Ansatz at 0, and we denote it by P, as

P(x) :=
1

2
x2
n + p3 +

1

2

(
p3

xn

)2

+ xnQ =
1

2

(
xn +

p3

xn
+Q

)2

+O(|x|5). (4.9)
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Here Q is a 3-homogeneous polynomial which depends only on p2 and p3, and is defined as follows

Q(x) :=

n−1∑
α=1

(
a2
α −

aαan
3

)(x3
n

12
− x2

αxn
2

)
. (4.10)

When u is a solution of (3.1) and x◦ ∈ Σ3rd
n−1, we define Px◦ to be the fourth oder polynomial Ansatz at

0 of u(x◦ + · ) (note that Px◦ depends only on p2,x◦ and p3,x◦). In addition, for α ∈ {1, 2, . . . , n− 1} we
define the osculating rotation vector fields at 0 as

Xα := (1 + aαxn)eα − aαxαen, where ei = (0, . . . , 0,

i
^
1 , 0, . . . , 0), (4.11)

where aα are as in (4.8).

We will use the following notation throughout the section. Given f ∈ C1(Rn), we denote by Xαf the
derivative of f in the direction of Xα, namely Xαf = (1 + aαxn)∂αf − aαxα∂nf .

Lemma 4.6. Given p2 and p3 as in (4.8), define Q as (4.10). Then, P given by (4.9) satisfies

∆P = 1 and XαXαP = O(|x|3) ∀α ∈ {1, 2, . . . , n− 1}.

Proof. Let p2, p3, P, and Xα, be as in (4.8), (4.9), (4.10), (4.11). We compute

XαXα

(
x2
n

2

)
= −aαxn + a2

α(x2
α − x2

n),

XαXαp3 = aαxn + 2a2
α(x2

n − x2
α)−

n−1∑
β=1

aαaβ
2

x2
β −

aαan
2

x2
n +O(|x|3),

XαXα

(
1

2

(
p3

xn

)2)
=

n−1∑
α=1

aαaβ
2

x2
β +

aαan
6

x2
n + a2

αx
2
α +O(|x|3),

XαXα(xnQ) = −
(
a2
α −

aαan
3

)
x2
n +O(|x|3),

and thus adding them we obtain

XαXαP = O(|x|3).

Similarly, using that
∑n−1

α=1 aα = −an (as a consequence of the fact that p3 is harmonic), a direct (but
tedious) computation shows that

∆

(
1

2

(
p3

xn

)2

+ xnQ

)
= 0,

therefore ∆P ≡ 1. �

We will need the following semiconvexity estimate in the spirit of Lemma 3.8.

Lemma 4.7. Assume that u : B1 → [0,∞) is a solution of (3.1) and that 0 ∈ Σ3rd
n−1. Let w := u−P−P ,

where P is a 4-homogeneous harmonic polynomial vanishing on {p2 = 0}. Then

inf
Br
r2XαXαw ≥ −C(P )

(
‖wr‖L2(B5\B1) + r5

)
and

sup
Br/2

r|∇w| ≤ C(P )
(
‖wr‖L2(B5\B1) + r5

)
for all r ∈ (0, 1/5).



GENERIC REGULARITY OF FREE BOUNDARIES FOR THE OBSTACLE PROBLEM 21

Proof. Let p2, p3, P, and Xα, be as in (4.8), (4.9), (4.10), (4.11), and fix α ∈ {1, 2, . . . , n− 1}.
• Step 1. For r > 0 small, we consider the rescaled vector field Xr

α = Xα(r · ), and denote wr = w(r · )
and v := Xr

αX
r
αwr. We consider

v̄(x) := min
{
v(x) , −C(P )r5

}
for some constant C(P ) > 0 depending on P , to be chosen. We claim that

∆v̄ ≤ 0 in B5.

Since wr is C1,1 (for fixed r > 0) but not C2, to prove that v̄ is subharmonic we need to proceed similarly
to the proof of Lemma 3.8, now taking second order “rotational” incremental quotients. More precisely,
let φhXr

α
denote the integral flow of the vector field Xr

α at time h, and define

vh :=
wr ◦ φhXr

α
+ wr ◦ φ−hXr

α
− 2wr

h2
.

On the one hand, since φhXr
α

is a rotation (and thus it commutes with ∆), noticing that ∆w = χ{u>0}−1 ≤ 0

in B1 and ∆w = 0 in {u > 0} we obtain

∆vh ≤ 0 in {u(r · ) > 0} ∩B1/r. (4.12)

On the other hand, we claim that

vh ≥ −C(P ) r5 in {u(r · ) = 0} ∩B5. (4.13)

Indeed, recalling that XαXαP = O(|x|3) (by Lemma 4.6) and since XαXαP = ∂ααP + O(|x|3), we
obtain

XαXα(−P − P ) ≥ −∂ααP +O(|x|3).

In addition, since P is 4-homogeneous and vanishes on {xn = 0}, we wave ∂ααP = xn`(x
′) where ` is some

linear function, thus

|∂ααP | ≤ C(P )|x||xn|.
Therefore, combining all these estimates, we get

|XαXα(P + P )| ≥ C(P )
(
r3 + r|xn|

)
in B5r. (4.14)

In addition, thanks to Proposition 3.10 (recall that λ2nd ≥ 3, since by assumption 0 ∈ Σ3rd
n−1) we have

{u = 0} ∩B1/2 ⊂ {|xn| ≤ C|x′|2}, (4.15)

thus

(x′, xn) ∈ {u = 0} ∩B5r ⇒ |x′| ≤ 5r, |xn| ≤ Cr2 ⇒
∣∣φrhXα

(x) · en
∣∣ ≤ Cr2 ∀h ∈ (0, 2).

As a consequence, combining this bound with (4.14) we obtain∣∣(P + P ) ◦ φrhXα
+ (P + P ) ◦ φ−rhXα

− 2(P + P )
∣∣

(rh)2
≤ C(P )r3 in {u = 0} ∩B5r ∀h ∈ (0, 1).

Rescaling this estimate one gets (4.13), that combined with (4.12) implies that

v̄h := min
{
vh(x) , −C(P )r5

}
is superharmonic,

Therefore, since v̄ = limh↓0 v̄
h a.e. then the function v̄ is superharmonic too, as claimed.

• Step 2. Note that if we consider V := ∂ααwr instead of rotational derivatives (as we did in the proof of
Lemma 3.8), then the same argument as the one above gives

|∂αα(P + P )| ≤ C(P )r2 in B5r

(cp. (4.14)), from which one deduces that the function V̄ := min
{
V , −C(P )r4

}
is superharmonic (notice

the difference in the power of r in the definitions of v̄ and V̄ ).
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• Step 3. Now, as in the proof of Lemma 3.8, by weak Harnack inequality, interpolation, and the Calderón-
Zygmund theory, we have

‖v̄‖L∞(B1) ≤ C(n)

( ∫
B3/2

|v̄|ε
)1/ε

≤ C(‖wr‖W 2,1
weak(B2)

+ r5) ≤ C
(
‖wr‖L1(B3\B2) + ‖∆wr‖L1(B3) + r5

)
.

On the other hand, since ∆wr ≤ 0 (because ∆w = ∆u −∆(P − P ) = ∆u − 1 ≤ 0), reasoning as in the
proof of Lemma 3.8 (cf. (3.10)) we obtain

‖∆wr‖L1(B3) ≤ C(n)‖wr‖L1(B4\B3).

Hence ‖v̄‖L∞(B1) ≤ C‖wr‖L1(B4\B3), which yields

inf
B1

XαXαwr ≥ −C(‖wr‖L1(B4\B3) + r5), (4.16)

and the first part of the lemma (semiconvexity) follows easily by scaling.
In order to prove the Lipschitz bound, we note that if we repeat the same reasoning with V̄ instead of

v̄, we find instead the semiconvexity estimates

inf
B1

∂ααwr ≥ −C(‖wr‖L1(B4\B3) + r4), for 1 ≤ α ≤ n− 1.

Although this estimate is less precise (it has an error of size r4 instead of r5) it is still useful. Indeed,
using that ∆wr ≤ 0, it implies the semiconcavity estimate

sup
B1

∂nnwr ≤ C(‖wr‖L1(B4\B3) + r4).

Combined together, these semiconvexity and semiconcavity estimates imply a bound on the Lipschitz
constant of wr in terms of its L∞ norm in B4 \B3 and its semiconvexity/semiconcavity constants, that is

‖wr‖Lip(B3/4) ≤ C(‖wr‖L∞(B4\B3) + r4). (4.17)

Although this is not the desired bound, this will be useful in the next step to obtain the sharp bound.

• Step 4. To conclude the proof, we need to improve (4.17) and get Lipschitz bound for wr in B1/2 with

an error O(r5). For this, we note that for each α = 1, . . . , n − 1 the unit vector field Eα = Xr
α/|Xr

α|
satisfies |Eα − eα| ≤ Cr in B1, and thus we can complete {Eα}n−1

α=1 to obtain a orthonomal moving frame
by adding a vectorfield En satisfying |En − en| ≤ Cr in B1.

Note that, since ∇Xr
α
Xr

α = O(r) and ∇EαEα = O(r), we can choose En satisfying ∇EnEn = O(r).
Hence, using these bounds and ∆wr ≤ 0, we obtain

EnEnwr − Cr‖wr‖Lip(B3/4) ≤ D2wr(En, En) ≤ −
n−1∑
α=1

D2wr(Eα, Eα)

≤ −
n−1∑
α=1

Xr
αX

r
αwr + Cr‖wr‖Lip(B3/4) in B3/4.

Thus, recalling (4.16) and (4.17), we get

sup
B3/4

EnEnwr ≤ C(‖wr‖L1(B4\B3) + r‖wr‖L∞(B4\B3) + r5) (4.18)

It follows by (4.16) (resp. (4.18)) that the restiction of wr to the integral curves of Xα (resp. En) is
semiconvex (resp. semiconcave), and hence Lipschitz along these curves. Since the directions of these
curves span Rn, this yields

sup
B1/2

|∇wr| ≤ C sup
B1/2

( n−1∑
α=1

|∇wr ·Xα|+ |∇wr · En|
)
≤ C(‖wr‖L∞(B4\B3) + r5).

Finally, to conclude the proof, it suffices to show that the L∞(B4 \ B3)-norm above can be replaced
by ‖wr‖L2(B5\B2) + C(P )r5. Indeed, recalling that ∆w = −χ{u=0}, the function w is superharmonic
everywhere, and harmonic outside {u = 0}. In particular, this gives the desired control on the L∞ norm
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of w−. In addition, since P ≥ 0 and P is a 4-th order polynomial vanishing on {xn = 0}, it follows from
(4.15) that

w = u−P − P ≤ P ≤ C(P )r5 inside {u = 0} ∩Br,
hence the function max{w+, C(P )r5} is subharmonic. Thus, the mean value inequalities allow us to control
the L∞ norm of (wr)± with the L1 (or L2) norm of |wr|+Cr5 in a slightly larger domain, concluding the
proof. �

Remark 4.8. We note that Lemma 2.3 can be rewritten as

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2(
H(r, w) + r2γ

)2 +
2

r

∫
B1

(λrŵ
(γ)
r − x · ∇ŵ(γ)

r )∆ŵ(γ)
r ,

where

λr := φγ(r, w) and ŵ(γ)
r :=

w(r · )(
H(r, w) + r2γ

)1/2 .
Also, we observe that Lemma 4.7 yields ‖∇ŵ(γ)

r ‖L∞ ≤ C for all γ ≤ 5 when w := u −P − P . This will
be crucial in the proof of Lemma 4.9 below.

Lemma 4.9. Let u : B1 → [0,∞) be a solution of (3.1), and assume that 0 ∈ Σ3rd
n−1. Set w := u−P −P ,

where P is defined in (4.9), and P is a 4-homogeneous harmonic polynomial vanishing on {p2 = 0}.
Then, given γ ∈ (4, 5), for all r ∈ (0, 1/2) we have

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2

(H(r, w) + r2γ)2 − Cr
4−γ and

r2−n ∫
Br
w∆w

H(r, w) + r2γ
≥ −Cr5−γ ,

where C is a constant depending only on n, γ, and ‖P‖L2(B1).

Proof. With no loss of generality, we assume that {p2 = 0} = {xn = 0}. By Remark 4.8 we have

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2(
H(r, w) + r2γ

)2 +
2

r

∫
B1

(λrŵ
(γ)
r − x · ∇ŵ(γ)

r )∆ŵ(γ)
r . (4.19)

• Step 1. We show that for some C = C(n, P ) we have

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2(
H(r, w) + r2γ

)2 − Cr4−γφγ(r, w)gγ(r), (4.20)

where

gγ(r) :=
‖wr‖2L2(B5\B1)

H(r, w) + r2γ
.

Indeed, recall that by Lemma 4.7 we have

r|∇w| ≤ C(‖wr‖L2(B5\B1) + r5) in Br.

Thus, since w := u−P−P , recalling that |xn| ≤ C|x|2 in {u = 0} (cf. (4.15)), that Q and P are divisible
by xn, and noticing that

P + P =
1

2
(xn + p3/xn +Q+ P/xn)2 +O(|x|5),

we obtain

r
∣∣xn + p3/xn + P/xn

∣∣ = r
∣∣∂n(P + P )

∣∣+O(r5) = r|∂nw|+O(r5) ≤ C(‖wr‖L2(B5\B1) + r5) (4.21)

inside Br ∩ {u = 0}. Therefore

|w| = | − (P + P )| =
∣∣xn + p3/xn + P/xn

∣∣2 +O(r5) ≤ r2|xn + p3/xn|+O(r5)

≤ C(r‖wr‖L2(B5\B1) + r5) in Br ∩ {u = 0}
(4.22)
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and, for α = 1, 2, . . . , n− 1,

r|∂αw| = r| − ∂α(P + P )| = r|∂α(p3/xn)|
∣∣xn + p3/xn + P/xn

∣∣+O(r5)

≤ r2
∣∣xn + p3/xn + P/xn

∣∣+O(r5) ≤ C(r‖wr‖L2(B5\B1) + r5) in Br ∩ {u = 0},
(4.23)

from which it follows that

|λrŵ(γ)
r − x · ∇ŵ(γ)

r | ≤
C(1 + λr)(r‖wr‖L2(B5\B1) + r5)

(H(r, w) + r2γ)1/2

≤ C(1 + λr)(rg
γ(r)1/2 + r5−γ)

≤ C(1 + λr)r
5−γgγ(r)1/2 in B1 ∩ {ur = 0}.

(4.24)

Also, since ∆P ≡ 1 and ∆P ≡ 0 we have ∆w = −χ{u=0} ≤ 0. Hence, arguing as in (3.10),

0 ≥
∫
B1

∆ŵ(γ)
r ≥ −C‖ŵ(γ)

r ‖L1(B5\B1) ≥ −C
‖wr‖L2(B5\B1)

(H(r, w) + r2γ)1/2
≥ −Cgγ(r)1/2. (4.25)

Combining this information with (4.24) we obtain∣∣∣∣∫
B1

(λrŵ
(γ)
r − x · ∇ŵ(γ)

r )∆ŵ(γ)
r

∣∣∣∣ ≤ C(1 + λr)r
5−γgγ(r),

that together with (4.19) yields (4.20).

• Step 2. Next we show that (4.20) implies that, for all γ < 5, we have

φγ(r, w) ≤ Cγ and gγ(r) ≤ Cγ , (4.26)

where Cγ depends only on n, γ, and ‖P‖L2(B1).
We prove (4.26) for all γ ∈ [3, 5) by iteratively increasing the value of γ at each iteration, starting from

γ = 3, in order to always have (along the iteration) a uniform bound on φγ(r, w) and gγ(r).
First, we observe that since 0 ∈ Σ3rd

n−1 we have φ(0+, u− p2) ≥ 3, hence |u−P − P | ≤ Cr3 in Br, with

a bound depending only on n and P . This immediately implies that g3(r) ≤ C3, and then it follows by
(4.20) that φ3(·, w) is almost monotonically increasing, so in particular it is uniformly bounded.

Then, by the very same argument as the one used in Step 2 in the proof of Lemma 4.3 (using (4.20) in
place of (4.3)) we deduce that if (4.26) holds for some γ ≥ 3, then (4.26) holds also with γ replaced by
γ + β for any β > 0 such that 4β < 5− γ. Thanks to this fact, with finitely many iterations we conclude
that (4.26) holds for any γ < 5, as claimed.

Combining (4.26) with (4.20), we obtain

d

dr
φγ(r, w) ≥ 2

r

(
r2−n ∫

Br
w∆w

)2

(H(r, w) + r2γ)2 − CC
2
γr

4−γ ∀ r ∈ (0, 1).

Moreover, recalling (4.22) and (4.25), we conclude that

r2−n ∫
Br
w∆w

H(r, w) + r2γ
=

∫
B1∩{ur=0}

ŵr∆ŵr ≥ −Cr5−γgγ(r) ≥ −CCγr5−γ .

�

Thanks to Lemma 4.9 we know that the truncated frequency function φγ is almost monotone for γ < 5,
and we can use this to study finer properties for points in Σ3rd

n−1. In particular, we introduce the following:

Definition 4.10. Let u : B1 → [0,∞) solve (3.1). We denote by Σ4th
n−1 the set of points x◦ ∈ Σ3rd

n−1 such
that the following holds:
Set w = u(x◦+ · )−Px◦ , where Px◦ is defined as in (4.9) starting from p2,x◦ and p3,x◦ . Then there exists

some sequence rk ↓ 0 along which r−4
k w(rk · ) converges, weakly in W 1,2

loc (Rn), to some 4-homogeneous
harmonic polynomial vanishing on {p2,x◦ = 0} —possibly the polynomial zero.

We can now prove the existence of a unique 4-th order limit at points of Σ4th
n−1.
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Lemma 4.11. Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ Σ≥4
n−1. Set w := u−P−P , where P is defined

in (4.9), and P is a 4-homogeneous harmonic polynomial vanishing on {p2 = 0}. Then, for any γ ∈ (4, 5)
we have

d

dr
log
(
r−8(H(r, w) + r2γ)

)
≥ −Cr4−γ , (4.27)

where C is a constant depending only on n, γ, and ‖P‖L2(B1).

As a consequence, for all x◦ ∈ Σ4th
n−1 the limit

p4,x◦ := lim
r↓0

1

r4

(
u(x◦ + r · )−Px◦(r · )

)
exists, and it is a 4-homogeneous harmonic polynomial vanishing on {p2,x◦ = 0}.

Proof. For every 4-homogeneous harmonic polynomial P vanishing on {p2 = 0}, we have

d

dr
log
(
r−8(H(r, w) + r2γ)

)
=

2

r

(
φγ(r, w)− 4

)
+
r2−n ∫

Br
w∆w

H(r, w) + r2γ
≥ −Cr4−γ ,

where we used Lemma 4.9. This proves (4.27).
Now, if 0 ∈ Σ4th

n−1 then we have that, for some some rk ↓ 0 and some P which is 4-homogeneous harmonic
and vanishes on {p2 = 0},

log
(
r−8
k (H(rk, w) + r2γ

k )
)
→ −∞.

Thus, thanks to (4.27) we have

lim
r↓0

log
(
r−8(H(r, w) + r2γ)

)
= −∞,

which implies that r−4(u−P)(rx)→ P =: p4. �

When x◦ = 0 we will simplify the notation p4,0 to p4.

We can now prove an enhanced version of Proposition 3.9 for higher-order blow-ups in Σ3rd
n−1 and Σ4th

n−1.

Proposition 4.12. Let u : B1 → [0,∞) solve (3.1), and let P be as in Definition 4.5.
(a) Let 0 ∈ Σ3rd

n−1 \ Σ4th
n−1 and set w := u−P. Then the limit λ3rd := limr↓0 φ(r, w) exists and satisfies

λ3rd ∈ [3, 4]. Moreover, for every sequence rk ↓ 0 there is a subsequence rk` such that w̃rk` → q as `→∞
in C0

loc(Rn) and weakly in W 1,2
loc (Rn), where q 6≡ 0 is a global λ3rd-homogeneous solution of the Signorini

problem (3.12). In addition, if λ3th < 4 then q is even with respect to {p2 = 0}.
(b) Let 0 ∈ Σ4th

n−1 and set w := u−P − p4. Then:

(b1) either H(r, w)1/2 ≤ Cζr5−ζ for all ζ ∈ (0, 1), for some Cζ depending on ζ;

(b2) or the limit λ4th := limr↓0 φ(r, w) exists and satisfies λ4th ∈ [4, 5). Moreover, for every sequence

rk ↓ 0 there is a subsequence rk` such that w̃rk` ⇀ q as `→∞ in C0
loc(Rn) and weakly in W 1,2

loc (Rn),

where q 6≡ 0 is a λ4th-homogeneous solution of (3.12), even with respect to {p2 = 0}.

Proof. (a) Let 0 ∈ Σ3rd
n−1 \ Σ4th

n−1, and w := u−P. Let γ := 5− ε ∈ (4, 5).
We note that φγ(0+, w) ≤ 4. Indeed, if by contradiction φγ(0+, w) > 4 then by Lemma 4.1 (which can

be applied thanks to Lemma 4.9) we would have

H(r, w) + r2γ ≤ Crφγ(0+,w)(H(1, w) + 1)� r8 as r ↓ 0,

and hence we would have r−4wr → 0 and in particular 0 ∈ Σ4th
n−1 (with p4 ≡ 0), contradicting our

assumption.
Note now that since γ > 4 we have

φγ(0+, w) = lim
r↓0

D(r, w) + γr2γ

H(r, w) + r2γ
< γ. (4.28)

Also,

(4.28) ⇒ lim sup
r↓0

γr2γ

H(r, w) + r2γ
< γ ⇒ r2γ

H(r, w)
↓ 0 ⇒ λ3rd := φγ(0+, w) = φ(0+, w).
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Thus, the limit φ(0+, w) exists and equals again λ3rd ≤ 4. In addition, by Lemmas 4.1 and 4.9 we have

‖w̃r‖W 1,2(BR) ≤ C(R) ∀ r > 0

for each R ≥ 1, which gives weak compactness in W 1,2
loc (Rn) of w̃r as r ↓ 0.

We now show that any “accumulation point”

q := lim
k
w̃rk

satisfies
cr−λ

3rd
H(r, q)1/2 ≤ H(1, q)1/2 = 1 ∀ r ∈ (0, 1) (4.29)

and, for all δ > 0,

cδR
−λ3rd−δH(R, q)1/2 ≤ H(1, q)1/2 = 1 ∀R ∈ (1,∞), (4.30)

where c, cδ are positive constants.
Indeed, since φγ(0+, w) = λ3rd, Lemma 4.1 gives (for 0 < r < R� 1)

c(R/r)2λ3rd ≤ H(R,w) +R2γ

H(r, w) + r2γ
=
H(R/rk, w̃rk) + R2γ

H(rkw)

H(r/rk, w̃rk) + r2γ

H(rk,w)

.

In particular, replacing R by rk and r by rkr (with r < 1) we obtain

cr−2λ3rd ≤
H(1, w̃rk) +

r2γk
H(rkw)

H(r, w̃rk) + (rkr)2γ

H(rk,w)

≤
H(1, w̃rk) +

r2γk
H(rk,w)

H(r, w̃rk)
→ H(1, q)

H(r, q)
,

proving (4.29).
Similarly, by the other inequality in Lemma 4.1 we have (for 0 < r < R� 1)

cδ(R/r)
2λ3rd+δ ≥ H(R,w) +R2γ

H(r, w) + r2γ
=
H(R/rk, w̃rk) + R2γ

H(rkw)

H(r/rk, w̃rk) + r2γ

H(rk,w)

.

In particular, replacing R by rkR and r by rk (with R > 1) we obtain

cδR
2γ ≥

H(R, w̃rk) +R2γ r2γk
H(Rrkw)

H(1, w̃rk) + (rk)2γ

H(rk,w)

≥ H(R, w̃rk)

H(1, w̃rk) + (rk)2γ

H(rk,w)

→ H(R, q)

H(1, q)
,

which proves (4.30).
We now note that ∆w = −χ{u=0} implies that ∆w̃k and ∆q are nonpositive measures. Also, the

Lipschitz estimate in Lemma 4.7 (with P ≡ 0) implies that

‖w̃rk‖Lip(BR) ≤ C(R), and thus ‖q‖Lip(BR) ≤ C(R),

for all R ≥ 1. As a consequence, the convergence of w̃rk to q is uniform on compact sets. Furthermore, by
(4.9) we have w = u−P ≥ −P ≥ −O(|x|5) on {xn = p3/xn}, so by uniform convergence we obtain

q ≥ 0 on {xn = 0}.
In addition, by Lemma 4.9 we have ∫

BR

w̃rk∆w̃rk ↓ 0,

and since w̃rk → q in C0 and 0 ≥ ∆wk ⇀
∗ ∆q (up to extracting a further subsequence) we obtain∫
BR

q∆q = 0 ∀ r ≥ 1.

But since ∆w̃r is supported in {ur = 0} ⊂ {|xn| ≤ o(1)} as r ↓ 0, the support the nonpositive measure ∆q
is contained on {xn = 0} where q ≥ 0. We have thus shown that q : Rn → R is a solution of the Signorini
problem (3.12).

Finally, recalling (4.29) and (4.30) we have that φ(0+, q) ≥ λ3rd while φ(+∞, q) ≤ λ3rd+ δ for all δ > 0.
This implies that φ(r, q) = λ3rd for all r > 0, and thus q must be λ3rd-homogeneous (see Lemma A.3).
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Note also that, by Lemma 4.1, we have H(w, r) � rλ
3rd+δ for every δ > 0. Thus, since by definition

of Σ3rd
n−1 we have φ(0+, u − p2) ≥ 3, this implies |u − p2| ≤ C|x|3 and thus |u −P| ≤ C|x|3. Therefore it

must be λ3rd ≥ 3.
To conclude part (a), we need to show that if λ3rd < 4 then q is even. For this, notice that if one writes

q as the sum of its even and odd part, then the odd part is harmonic. Thus, if λ3rd ∈ (3, 4) then any
λ3rd-homogeneous solution of the Signorini problem is even (since the homogeneity of a harmonic function
is always an integer), so we only need to understand the case λ3rd = 3.

Assume λ3rd = 3, and let us show that q is even. We have (see Lemma 4.1) that H(w, r)� r3+δ for all
δ > 0 as r ↓ 0 therefore

q := lim
k
w̃rk = lim

k

(u− p2 − p3)(rk·)
H(rk, u− p2 − p3)1/2

.

Moreover, using (3.19) from Lemma 3.12 we obtain (note that w in this proof and in Lemma 3.12 are
different)∫

∂B1

(
(u− p2 − p3)r

r3
+ P

)2

+ C(P )r ≥ lim
r↓0

∫
∂B1

(
(u− p2 − p3)r

r3
+ P

)2

≥
∫
∂B1

P 2 (4.31)

for all P harmonic 3-homogeneous vanishing on {p2 = 0}, therefore

−C(P )r ≤
∫
∂B1

[(
(u− p2 − p3)r

r3
+ P

)2

− P 2

]
.

As a consequence, expanding the square and dividing by

εr :=

(∫
∂B1

(
(u− p2 − p3)r

r3

)2
)1/2

= o(1),

since rδ � εr as r ↓ 0 we obtain

−C(P )
rk
εrk
≤
∫
∂B1

[
εr

(
(u− p2 − p3)r

H(rk, u− p2 − p3)1/2

)2

+ 2
(u− p2 − p3)r

H(rk, u− p2 − p3)1/2
P

]
,

and in the limit as r ↓ 0 we get

0 ≤ 2

∫
∂B1

qP

for every odd harmonic 3-homogeneous polynomial P . Since if P is an odd harmonic 3-homogeneous
polynomial then so is −P , we deduce that q must be orthogonal to all odd harmonic polynomials, hence
q is even.

(b) We assume that (b1) fails and we prove (b2). If (b1) fails then there exist ζ ∈ (0, 1) and a sequence

rk → 0 such that H(rk, w)1/2 ≥ Cζr5−ζ
k . In particular, there exists some γ ∈ (4, 5) such that

φγ(0+, w) = lim
r↓0

D(r, w) + γr2γ

H(r, w) + r2γ
< γ. (4.32)

Thus, as in the proof of (a),

(4.32) ⇒ r2γ

H(r, w)
↓ 0 ⇒ λ4th := φ(0+, w) = φγ(0+, w), ∀ γ ∈ (λ4th, 5).

In addition, combining Lemmas 4.1 and 4.9 we obtain that

‖w̃r‖W 1,2(BR) ≤ C(R) ∀ r > 0

for each R ≥ 1, which gives compactness of sequences w̃rk as rk ↓ 0 —they converge weakly in W 1,2(BR) for
every R up to extracting a subsequence. Also, as in (a), it follows by Lemma 4.1 that any “accumulation
point”

q := lim
k
w̃rk
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satisfies (4.29) and (4.30) with λ3rd replaced by λ4th. Also, exactly as in (a) we have that ∆w̃k and ∆q
are nonpositive measures, and

‖w̃rk‖Lip(BR) ≤ C(R) and thus ‖q‖Lip(BR) ≤ C(R)

for all R ≥ 1. As a consequence, the convergence is uniform on compact sets. Furthermore (4.9) yields
w = u −P − p4 ≥ −P − p4 ≥ −O(|x|5) on {xn = p3/xn}, so by uniform convergence of w̃rk to q we
obtain

q ≥ 0 on {xn = 0}.
Also, by Lemma 4.9 we obtain

∫
BR

w̃rk∆w̃rk ↓ 0 from which we deduce that
∫
BR

q∆q = 0 for all R > 1.

As a consequence, q is a solution of the Signorini problem (3.12). Finally, recalling (4.29) and (4.30) we
have that φ(0+, q) ≥ λ4th while φ(+∞, q) ≤ λ4th + δ for all δ > 0. This implies that φ(r, q) = λ4th for all
r > 0, and thus q must be λ4th-homogeneous.

Note also that by Lemma 4.1 we have H(w, r) � rλ
4th+δ for every δ > 0. Thus, since by definition of

Σ4th
n−1 we have |u−P| ≤ C|x|4, it must be λ4th ≥ 4.

Finally, we prove that q must be even. As in (a), we only need to understand the case λ4th = 4. When
λ4th = 4 then we have (see Lemma 4.9) H(w, r) � r4+δ for all δ > 0 as r ↓ 0. On the other hand, by

definition of p4 it follows that H(rk, u−P−p4)1/2 = r4
kεk, where rδk � εk = o(1). Then, using Lemma 4.11

we obtain

r−8H
(
r, u−P − P

)
≥ −C(P ) rδ + lim

r↓0
r−8H

(
r, u−P − P

)
= −C(P ) rδ +H(1, p4 − P ),

for all P quartic vanishing on {xn = 0}. Therefore, similarly to (a), we deduce that q is orthogonal to
every odd harmonic 4-homogeneous polynomial. Since q is a solution of Signorini this implies that its odd
part (which is harmonic) must vanish, concluding the proof. �

We can now introduce the following:

Definition 4.13. Let u : B1 → [0,∞) solve (3.1), and recall the definition of Px◦ in (4.9).

We denote by Σ≥4
n−1 the set of points x◦ ∈ Σ3rd

n−1 such that, for w := u(x◦ + · ) − Px◦ , we have

φγ(0+, w) ≥ 4 for every γ ∈ (4, 5).
We denote by Σ>4

n−1 the set of points x◦ ∈ Σ4th
n−1 such that, for w := u(x◦ + · ) −Px◦ − p4,x◦ , we have

φγ(0+, w) > 4 for every γ ∈ (4, 5).

Furthermore, for fixed ζ ∈ (0, 1) we denote by Σ≥5−ζ
n−1 the set of points x◦ ∈ Σ4th

n−1 such that, for

w := u(x◦ + · )−Px◦ − p4,x◦ , we have φγ(0+, w) ≥ 5− ζ for any γ ∈ (5− ζ, 5).

Our last goal of this section is to show that Σ>4
n−1 = Σ4th

n−1. For this, we need a new monotonicity
formula.

Lemma 4.14. Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ Σ4th
n−1. Let w := u−P−p4, where P is defined

in (4.9), and let P be any 4-homogeneous harmonic polynomial such that P ≥ 0 on {p2 = 0}. Then

d

dr

(
r−4

∫
∂B1

wrP

)
≤ C,

where C is a constant depending only on n and ‖P‖L2(B1).

Proof. After a rotation, we may assume p2 = 1
2x

2
n. We have

d

dr

∫
∂B1

wrP =

∫
∂B1

x

r
· ∇wrP =

1

r

∫
∂B1

∂νwrP =
1

r

∫
B1

div(∇wrP ) =
1

r

(∫
B1

∇wr∇P +

∫
B1

∆wrP

)
=

1

r

(∫
∂B1

wr∂νP −
∫
∂B1

wr∆P +

∫
B1

∆wrP

)
=

1

r

(
4

∫
∂B1

wrP +

∫
B1

∆wrP

)
,

where we used that ∂νP = 4P on ∂B1, and that ∆P = 0. Now, since ∆wr = −r2χ{ur=0}, we deduce that

d

dr

(
r−4

∫
∂B1

wrP

)
= − 1

r3

∫
B1∩{ur=0}

P.
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Finally notice that {ur = 0} ∩B1 ⊂ {|xn + rp3/xn| ≤ Cr2}. Moreover, since P ≥ 0 on {xn = 0}, we have
P ≥ −C|xn| in B1. Hence

−
∫
B1∩{ur=0}

P ≤ Cr
∣∣{ur = 0} ∩B1

∣∣ ≤ Cr3,

and the lemma follows. �

We can now show the following:

Proposition 4.15. Let u : B1 → [0,∞) solve (3.1). Then Σ4th
n−1 = Σ>4

n−1.

Proof. Assume by contradiction that 0 ∈ Σ4th
n−1 \ Σ>4

n−1. Then, by Proposition 4.12(b), there is a sequence
rk → 0 along which w̃rk → q locally uniformly in Rn, where q is a 4-homogeneous even solution of the
Signorini problem (3.12). Then, by [GP09, Lemma 1.3.4], q is a harmonic polynomial.

Let w := u−P − p4. Since r−4wr → 0 (by definition of p4), it follows by Lemma 4.14 that∫
∂B1

r−4wrP ≤ Cr

for any 4-homogeneous harmonic polynomial P vanishing on {p2 = 0}.
Set now w̃r = wr/H(1, wr) and εr := r−4H(1, wr), and notice that, since 0 /∈ Σ>4

n−1, for any δ > 0 we

have εr � rδ for r > 0 small enough. Hence,

Cr ≥
∫
∂B1

r−4wrP =

∫
∂B1

εrw̃rP.

Dividing by εr, and letting r = rk → 0, we deduce that

0 ≥
∫
∂B1

qP.

Taking P = q, this provides the desired contradiction. �

5. Uniqueness and nondegeneracy of non-harmonic cubic blow-ups

The goal of this section is to study the set Σ≥3
n−1\Σ>3

n−1, namely the set of singular points where blow-ups

are 3-homogeneous and non-harmonic2. As explained in the introduction, this study is crucial for our proof
of Theorem 1.1.

We will prove that Σ≥3
n−1 \ Σ3rd

n−1 is contained in a countable union of (n − 2)-dimensional Lipschitz

manifolds, and that Σ3rd
n−1\Σ>3

n−1 = ∅. For this, we will need to establish the uniqueness and nondegeneracy
of blow-ups at these points.

We start by classifying all λ-homogeneous solutions of the Signorini problem in Rn, with λ odd.

Lemma 5.1. Let q : Rn → R be a λ-homogenous solution of the Signorini problem
∆q ≤ 0 and q∆q = 0 in Rn

∆q = 0 in Rn \ {xn = 0}
q ≥ 0 on {xn = 0}.

(5.1)

with homogeneity λ = 2m+ 1, m ∈ N. Then q ≡ 0 on {xn = 0}.

Proof. Using complex variables (so i denotes the imaginary unit), for α ∈ {1, 2, . . . , n− 1} define

ψ(x) :=

{
i1−λRe

[
(xn + ixα)λ

]
xn ≥ 0

−i1−λRe
[
(xn + ixα)λ

]
xn ≤ 0.

Note that
ψ(x′, xn) = ψ(x′,−xn) and ψ(x) = 0 on {xn = 0}.

2More precisely, Σ≥3
n−1 \ Σ3rd

n−1 is the set in which any second blow-up (for u − p2) is 3-homogeneous and non-harmonic,

while Σ3rd
n−1 \ Σ>3

n−1 is the set in which the third blow-up (for u− p2 − p3) is 3-homogeneous and non-harmonic.
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In addition, on {xn = 0} we have ∂nψ(x′, 0+) = λ|xα|λ−1 (recall that λ− 1 is even), therefore

∆ψ = 2λ|xα|λ−1Hn−1|{xn=0}.

On the other hand, since both ψ and q are λ-homogeneous we have (x · ∇q)ψ = q(x · ∇ψ) = λqψ. Thus∫
∂B1

(qνψ − qψν) = 0, and an integration by parts gives∫
B1

∆qψ =

∫
B1

q∆ψ.

Since ∆q is concentrated on {xn = 0} where ψ vanishes, combining all together we get

0 =

∫
B1

q∆ψ = 2λ

∫
B1∩{xn=0}

q|xα|λ−1.

Since q ≥ 0 on {xn = 0} and the previous equality holds for all α ∈ {1, 2, . . . , n− 1}, we conclude that q
must vanish on {xn = 0}. �

Lemma 5.2. Assume that q : Rn → R is a 3-homogenous even solution of the Signorini problem (5.1).
Then, after a suitable rotation that leaves the hyperplane {xn = 0} invariant, we have

q(x) = b|xn|3 − 3|xn|

(
n−1∑
α=1

bαx
2
α

)
,

where b, bα ≥ 0 and b =
∑n−1

α=1 bα.

Proof. By Lemma 5.1 q must vanish everywhere on {xn = 0}. Thus, q is a 3-homogenous harmonic function
in {xn > 0} vanishing on {xn = 0}, so its odd extension is a 3-homogeneous harmonic polynomial. This
implies, after a rotation, that

q(x) = bx3
n − 3xn

(
n−1∑
α=1

bαx
2
α

)
for xn > 0,

where b, bα ∈ R and b =
∑n−1

α=1 bα. Finally, since q is an even solution of Signorini, it follows that ∂nq ≤ 0
on {xn = 0}. This implies that bα ≥ 0 (and thus b ≥ 0), concluding the proof. �

In order to continue our analysis, we introduce a new monotonicity formula:

Lemma 5.3. Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ Σ≥3
n−1 \Σ>3

n−1. Set w := u− p2 and wr := w(r · ).
Then, for fixed % ∈ (0, 1) and for any 3-homogeneous solution q of the Signorini problem (3.12), we have

d

dr

∫
∂B%

wrq =
3

r

∫
∂B%

wrq −
%

r

∫
B%

wr∆q +O(r3).

In particular
d

dr

(
1

r3

∫
∂B1

wrq

)
≥ −C.

Proof. We have

d

dr

∫
∂B%

wrq =

∫
∂B%

x

r
· ∇wrq =

%

r

∫
∂B%

∂νwrq =
%

r

∫
B%

div(∇wrq) =
%

r

(∫
B%

∇wr∇q +

∫
B%

∆wrq

)
=
%

r

(∫
∂B%

wr∂νq −
∫
∂B%

wr∆q +

∫
B%

∆wrq

)
.

Now, since q is 3-homogeneous, we find that %
∫
∂B%

wr∂νq = 3
∫
∂B%

wrq. To complete the proof of the

Lemma we only need to show that
∫
B%

∆wrq = O(r4).

With no loss of generality, assume that p2 = 1
2x

2
n. Then it follows by Proposition 3.10 that {u(r · ) =

0}∩B1 ⊂ {|xn| ≤ Cr}, and therefore |q| ≤ C|xn| in B1 (by Lemma 5.2). Thus, since ∆wr = −r2χ{u(r · )=0},

we get
∫
B%

∆wrq = O(r4).
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Finally, taking % = 1 and using that −wr∆q ≥ 0 in Rn (since wr = u(r · ) ≥ 0 on {xn = 0}), we obtain

d

dr

(
1

r3

∫
∂B1

wrq

)
=

1

r4

(
−
∫
∂B1

wr∆q +

∫
B1

∆wrq

)
≥ 1

r4

∫
B1

∆wrq ≥ −C,

as desired. �

As a consequence of the previous lemma, we deduce the uniqueness of blow-ups in Σ≥3
n−1 \Σ3rd

n−1. Notice
that this is quite surprising, since even in the (simpler) case of the Signorini problem it was not known if
cubic blow-ups are unique at every point (see Appendix B).

Proposition 5.4. Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ Σ≥3
n−1 \ Σ3rd

n−1. Then the limit

q̃ := lim
r↓0

(u− p2)(r · )
r3

exists, and it is a 3-homogeneous (non-harmonic) solution of Signorini.

Proof. Let w := u− p2, and wr = w(r · ). Assume that

q(i) = lim
r
(i)
k ↓0

1

(r
(i)
k )3

w
r
(i)
k

, i = 1, 2,

are two accumulation points along different sequences r
(i)
k . Then, give a 3-homogeneous solution of Sig-

norini q, we can apply Lemma 5.3 to deduce that r 7→ 1
r3

∫
∂B1

wrq has a unique limit as r → 0. In particular
this implies that ∫

∂B1

q(1)q =

∫
∂B1

q(2)q. (5.2)

Choosing q = q(1) − q(2) we obtain ∫
∂B1

(
q(1) − q(2)

)2
= 0,

hence q(1) ≡ q(2), as desired. �

The next step consists in showing that if 0 ∈ Σ3rd
n−1 then φ(0+, u − p2 − p3) > 3. This is a kind of

nondegeneracy property, which implies that Σ3rd
n−1 \Σ>3

n−1 is empty. This highly non-trivial fact is essential

in order to establish Schaeffer conjecture in R4, and it is the core of this section. Its proof require a barrier
and ODE-type arguments obtained below.

Lemma 5.5. Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ Σ3rd
n−1. Set w := u − p2 − p3, and let wr

and w̃r be defined as in (2.1). Assume that {p2 = 0} = {xn = 0}, and given x = (x1, . . . , xn) ∈ Rn let
x′ := (x1, . . . , xn−1) ∈ Rn−1.

For any η > 0 there exists δ = δ(n, η) such that if

‖w̃r − q‖L∞(B2) ≤ δ for q = |xn|
(
a

3
x2
n − x′ ·Ax′

)
, A ∈ R(n−1)×(n−1), A ≥ 0,

then

u(r · ) = O(r4) on {xn = 0} ∩ (B1 \B1/2) ∩
{
x′ ·Ax′ ≥ η

}
.

Proof. Let z = (z′, 0) ∈ (B1 \B1/2) satisfy z′ ·Az′ ≥ η, and given c > 0, denote

φz,c(x) := (p2 + p3)(rz + rx)− r3(n− 1)|xn|2 + r3|x′|2 + c.

Note that, since q is uniformly close to w̃r, the constant a and the matrix A appearing in the definition of
q are universally bounded. Hence, there exists % > 0 small, depending only on n and η, such that

−n|xn|2 ≥ |xn|
(
a

3
x2
n − (z′ + x′) ·A(z′ + x′)

)
for |x| < %.
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Thus, denoting hr := H(r, w)1/2 = o(r3), we have

φz,c ≥ (p2 + p3)(rz + rx)− r3(n− 1)|xn|2 + r3|x′|2 + c

> (p2 + p3)(rz + rx) + hrq(rz + rx) + r3(|xn|2 + |x′|2)

≥ (u(rz + rx)− δhr) + r3|x|3 for |x| < %.

(5.3)

We now compare the two functions ûz(x) := u(rz + rx) and φz,c in B%(0). Two cases arise:
(1) either φz,c ≥ uz for each c > 0, which implies that 0 ≤ u(rz) = uz(0) ≤ φz,0(0) = 0 (since p2 and p3

vanish on {xn = 0});
(2) or there exists c∗ > 0 such that φz,c∗ touches from above ûz at some point y = (y′, yn) ∈ Bρ. Note that

∆φz,c∗ = r2 in Bρ, and ∆ûz = r2χ{ûz>0} in Bρ. Also, since hr := H(r, w)1/2 = o(r3), for r small enough
we have φz,c ≥ ûz(x) on ∂B% (by (5.3)). Thus, it follows by the maximum principle that the point y must
belong to {ûz = 0} ∩Bρ ⊂ {|xn| ≤ Cr} ∩Bρ, therefore

0 = ûz(y) = φz,c∗(y) = (p2 + p3)(rz′ + ry′, ryn)− r3(n− 1)|yn|2 + r3|y′|2 + c∗ ≥ −Cr4 + c∗.

Thus c∗ ≤ Cr4, and as a consequence

0 ≤ u(rz) = ûz(0) ≤ φz,c∗(0) = c∗ ≤ Cr4.

This proves that in both cases 0 ≤ u(rz) ≤ Cr4, and since z ∈ {xn = 0} ∩ (B1 \ B1/2) ∩
{
x′ · Ax′ ≥ η

}
is

arbitrary, the result follows. �

Another key tool is the following ODE-type formula.

Lemma 5.6. Let u : B1 → [0,∞) satisfy (3.1), and 0 ∈ Σ3rd
n−1. Set w := u − p2 − p3, let wr and w̃r be

defined as in (2.1), and set h(r) := H(r, w)1/2. Assume that {p2 = 0} = {xn = 0}, and given a symmetric
(n− 1)× (n− 1) matrix A ≥ 0, we define its “associated solution of the Signorini problem”

qA(x) := |xn|
(

trace(A)

3
x2
n − x′ ·Ax′

)
, x = (x′, xn) ∈ Rn−1 × R, (5.4)

and we introduce the quantity

ψ(r;A) :=

∫
∂B1

w̃rqA − 2

∫
∂B1/2

w̃rqA. (5.5)

Then
d

dr
ψ(r;A) = −θ(r)ψ(r;A)− 1

r

∫
B1\B1/2

w̃r∆qA +O
(
r3/h(r)

)
,

where

θ(r) :=

(
h′(r)

h(r)
+

3

r

)
=
(

log(h(r)/r3)
)′
.

Proof. As in the proof of Lemma 5.3, we obtain

d

dr

∫
∂B%

wrqA =
3

r

∫
∂B%

wrqA −
%

r

∫
B%

wr∆qA +O(r3).

Now, since w̃r = wr/h(r) we deduce that

d

dr

∫
∂B%

w̃rqA =

(
− h′(r)

h(r)
+

3

r

)∫
∂B%

w̃rq −
%

r

∫
B%

w̃r∆qA +O
(
r3/h(r)

)
and the lemma follows by combining the identities for % = 1 and % = 1/2. �

We shall also need the following formula:
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Lemma 5.7. Let A, Ā ≥ 0 be two symmetric (n− 1)× (n− 1) matrices, and let

q(x) =
trace(A)

3
|xn|3 − |xn|x′ ·Ax′, q̄(x) =

trace(Ā)

3
|xn|3 − |xn|x′ · Āx′, x = (x′, xn) ∈ Rn−1 × R,

be two 3-homogeneous even solutions of the Signorini problem. Then∫
∂B%

qq̄ =
4%n+5|∂B1|

n(n+ 2)(n+ 4)

{
trace

(
A · Ā

)
+

1

3
trace(A) trace(Ā)

}
.

Proof. Let A = (aαβ)n−1
α,β=1, Ā = (āαβ)n−1

α,β=1, a = trace(A) =
∑

α aαα, ā = trace(Ā) =
∑

α āαα. Then∫
∂B%

qq̄ =

n−1∑
α,β,γ,δ=1

∫
∂B%

x2
n

(
a
x2
n

3
− aαβxαxβ

)(
ā
x2
n

3
− āγδxγxδ

)
.

Up to a rotation in the {xn = 0} plane, we may assume that aαβ is diagonal. Noting that
∫
∂B%

x4
nxγxδ =∫

∂B%
x2
nx

2
αxγxδ = 0 for γ 6= δ, we have∫

∂B%

qq̄ =

∫
∂B%

(
aā

9
x6
n +

∑
α

{
−
(
ā

3
aαα +

a

3
āαα

)
x4
nx

2
α + aααāααx

2
nx

4
α

}
+
∑
α 6=γ

aααāγγx
2
nx

2
αx

2
γ

)
We observe that∫

∂B1

x4
i =

1

4

∫
∂B1

∂ν(x4
i ) =

1

4

∫
B1

∆(x4
i ) = 3

∫
B1

x2
i =

3

n+ 2

∫
∂B1

x2
i =

3

n(n+ 2)
|∂B1|.

Similarly, ∫
∂B1

x6
i =

1

6

∫
B1

∆(x6
i ) = 5

∫
B1

x4
i =

5

n+ 4

∫
∂B1

x4
i =

15

n(n+ 2)(n+ 4)
|∂B1|,∫

∂B1

x2
ix

2
j =

1

4

∫
B1

∆(x2
ix

2
j ) =

2

4(n+ 2)

∫
∂B1

2x2
i =

1

n(n+ 2)
|∂B1|,∫

∂B1

x4
ix

2
j =

1

6

∫
B1

∆(x4
ix

2
j ) =

1

6(n+ 4)

∫
∂B1

(12x2
ix

2
j + 2x4

i ) =
3

n(n+ 2)(n+ 4)
|∂B1|,

and ∫
∂B1

x2
ix

2
jx

2
k =

1

6

∫
B1

∆(x2
ix

2
jx

2
k) =

3

6(n+ 4)

∫
∂B1

2x2
ix

2
j =

1

n(n+ 2)(n+ 4)
|∂B1|.

Thus, calling cn := |∂B1|
n(n+2)(n+4) and using that

∑
α aαα = a and

∑
α āαα = ā, we obtain∫

∂B%

qq̄ = %n+5

(
aā

9
15cn −

aā

3
6cn +

∑
α

aααāαα3cn +
∑
α 6=γ

aααāγγcn

)
.

Finally, since
∑

α

∑
γ aααāγγ =

(∑
α aαα

)(∑
γ āγγ

)
= aā and recalling that aαβ is diagonal, we get∫

∂B%

qq̄ = 2%n+5cn
∑
α

aααāαα = 2cn%
n+5

(
2 trace

(
(aαβ) · (āγδ)

)
+

2

3
aā

)
,

as claimed. �

We can now finally prove the following fundamental result, which implies that Σ3rd
n−1 \ Σ>3

n−1 = ∅:

Proposition 5.8. Let 0 ∈ Σ3rd
n−1, and set w := u− p2 − p3. Then φ(0+, w) > 3.

Proof. Without loss of generality, we can assume that {p2 = 0} = {xn = 0}.
Suppose by contradiction that φ(0+, w) = 3. Then we know that the accumulation points of w̃r as

r ↓ 0 must be 3-homogeneous even solutions of the Signorini problem, that is, of the form qA for some
symmetric matrix A ≥ 0 (see (5.4)). Note that, by construction, ‖qA‖L2(∂B1) = 1 and thus the matrix A
must have at least one positive eigenvalue.

Let us define the quantity

Ψ(r) := max
{
ψ(r;A) : ‖qA‖L2(∂B1) = 1

}
, (5.6)



34 ALESSIO FIGALLI, XAVIER ROS-OTON, AND JOAQUIM SERRA

where ψ is given by (5.5). Let A∗r be the matrix for which the previous maximum is attained. Then, as a
consequence of Lemma 5.6, we have

d

dr
Ψ(r) = θ(r)Ψ(r)− 1

r

∫
B1\B1/2

w̃r∆qA∗r +O
(
r3/h(r)

)
, for a.e. r > 0.

On the other hand, if we define Φ(r) := ψ(r, Id), then

d

dr
Φ(r) = θ(r)Φ(r)− 1

r

∫
B1\B1/2

w̃r∆qId +O
(
r3/h(r)

)
. (5.7)

We now claim that

Ψ(r) � Φ(r) � Ψ(r)

Φ(r)
� 1 as r ↓ 0,

where X � Y is a short notation for X ≤ C(n)Y and Y ≤ C(n)X. Indeed, the accumulation points of w̃r
(as r ↓ 0 and in the C0

loc(Rn) topology) are of the form qA (and have unit norm) and thus for every r > 0
we have wr − qAr = o(1) for some Ar. Hence, by definition of Ψ,

Ψ(r) ≥ ψ(r;Ar) =

∫
∂B1

w̃rqAr − 2

∫
∂B1/2

w̃rqAr =

∫
∂B1

q2
Ar − 2

∫
∂B1/2

q2
Ar + o(1)

= (1− 2−n−5)

∫
∂B1

q2
Ar + o(1) ≥ c(n) > 0.

Note that the above computation shows also that ψ(r;A) = (1− 2−n−1−2λ)
∫
∂B1

qArqA + o(1), so it follows

by Lemma 5.7 that A∗r = Ar + o(1) as r ↓ 0.
Similarly, using Lemma 5.7 again,

Φ(r) =

∫
∂B1

w̃rqId − 2

∫
∂B1/2

w̃rqId =

∫
∂B1

qArqId − 2

∫
∂B1/2

qArqId

=
(1− 2−n−5)4|∂B1|
n(n+ 2)(n+ 4)

{
trace(Ar) +

1

3
trace(Ar)(n− 1)

}
+ o(1) ≥ c(n) > 0.

Since Ψ(r) and Φ(r) are bounded by above, the claim follows.
Now notice that, using the expressions for d

drΨ and d
drΦ, we find

d

dr

(
Ψ(r)

Φ(r)

)
= −1

r

Ψ(r)
∫
B1\B1/2

w̃r∆qA∗r − Φ(r)
∫
B1\B1/2

w̃r∆qId

Φ(r)2
+O

(
r3/h(r)

)
,

We claim that, given ε > 0, for r sufficiently small it holds∣∣∣∣∣
∫
B1\B1/2

w̃r∆qA∗r

∣∣∣∣∣ ≤ ε
∣∣∣∣∣
∫
B1\B1/2

w̃r∆qId

∣∣∣∣∣+ Cr4/h(r). (5.8)

Indeed, it follows by Lemma 5.5 that, for any η > 0, if r > 0 is sufficiently small so that ‖w̃r−qA∗r‖L∞(B2) ≤
δ(n, η) then (here we use the notation B′r := Br ∩ {xn = 0})

−
∫
B1\B1/2

wr∆qA∗r = 2

∫
B′1\B′1/2

u(rx′, 0) (x′ ·A∗rx′) dx′

≤ 2η

∫
(B′1\B′1/2)∩{x′·Ax′≤η}

u(rx′, 0) dx′ +

∫
(B′1\B′1/2)∩{x′·Ax′≥η}

Cr4 dx′

≤ 2η

∫
B′1\B′1/2

u(rx′, 0) + Cr4

(here we used that wr ≡ u(r · ) on {xn = 0}), while

−
∫
B1\B1/2

wr∆qId = cn

∫
B′1\B′1/2

u(rx′, 0) |x′|2 dx′ ≥ cn
∫
B′1\B′1/2

u(rx′, 0) dx′,
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where cn > 0. Dividing by h(r), we obtain

0 ≤ −
∫
B1\B1/2

w̃r∆qA∗r ≤ −4η

∫
B1\B1/2

w̃r∆qId + Cr4/h(r),

and thus (5.8) follows.
Hence, thanks to (5.8), we have that

d

dr

(
Ψ(r)

Φ(r)

)
= −1

r

Ψ(r)
∫
B1\B1/2

w̃r∆qA∗r − Φ(r)
∫
B1\B1/2

w̃r∆qId

Φ(r)2
+O

(
r3/h(r)

)
=
a(r)

r

∫
B1\B1/2

w̃r∆qId +O
(
r3/h(r)

)
, a(r) � 1.

Choosing r0 so that C−1 ≤ a(r) ≤ C over [0, r0], we can integrating the above ODE over [r̂, r0] for any

r̂ > 0. Then, since the integrals of d
dr

(Ψ(r)
Φ(r)

)
and r3/h(r) are both uniformly bounded independently of r̂,

so must be the integral of the negative term a(r)
r

∫
B1\B1/2

w̃r∆qId. Hence, this proves that∫ r0

0

∣∣∣∣1r
∫
B1\B1/2

w̃r∆qId

∣∣∣∣ dr <∞.
Since Φ(r) � 1 and θ(r) = d

dr log(h(r)/r3), it follows from (5.7) that

d

dr
log Φ(r) =

d

dr
log(h(r)/r3) + g(r), with g ∈ L1([0, r0]).

Integrating over [r̂, r0] and using again that Φ(r) � 1, we deduce that log(h(r̂)/r̂3) is uniformly bounded
as r̂ → 0, therefore h(r) � r3. However, since 0 ∈ Σ3rd

n−1 we know that h(r) = o(r3), contradiction. �

6. Symmetry properties of blow-ups for 1-parameter family of solutions

As explained in the introduction, to establish generic regularity results, we shall consider 1-parameter
monotone family of solutions. For this, we shall use the parameter t (over which solutions are indexed) as
a second variable for our solution u (one may think of t as a “time” variable, although there is no equation
in t).

So, let u : B1 × [−1, 1] → R, u ≥ 0, be a monotone 1-parameter family of solutions of the obstacle
problem, namely

∆u(·, t) = χ{u(·,t)>0} and 0 ≤ u( · , t) ≤ u( · , t′) in B1, for − 1 ≤ t ≤ t′ ≤ 1. (6.1)

We will assume in addition that u ∈ C0
(
B1×[−1, 1]

)
(this continuity property in t follows by the maximum

principle whenever u ∈ C0
(
∂B1 × [−1, 1]

)
).

Note that by, the regularity results for the obstacle problem, u( · , t) is of class C1,1 inside B1 for each
t ∈ (−1, 1). Moreover, for each fixed t ∈ (−1, 1), we can apply the results of the previous sections, and
define the different blow-ups at singular points.

So, following the previous sections, we say that (x◦, t◦) is a singular point of u if x◦ is a singular point
of u( · , t◦). Given a singular free boundary point (x◦, t◦), we denote

p2,x◦,t◦(x) := lim
r→0

r−2u(x◦ + rx, t◦).

Note that p2,x◦,t◦ is a convex 2-homogeneous polynomials with ∆p2,x◦,t◦ = 1. When (x◦, t◦) = (0, 0), we
simplify the notation to p2.
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From now on, using the notation introduced in the previous sections, we set:

Σ := {(x◦, t◦) singular points in B1 × [−1, 1]},
Σm :=

{
(x◦, t◦) : x◦ ∈ Σm for u( · , t◦)

}
, 0 ≤ m ≤ n− 1,

Σa
m :=

{
(x◦, t◦) : x◦ ∈ Σa

m for u( · , t◦)
}
, 0 ≤ m ≤ n− 2,

Σ<3
n−1 :=

{
(x◦, t◦) : x◦ ∈ Σ<3

n−1 for u( · , t◦)
}
,

Σ≥3
n−1 :=

{
(x◦, t◦) : x◦ ∈ Σ≥3

n−1 for u( · , t◦)
}
,

Σ3rd
n−1 :=

{
(x◦, t◦) : x◦ ∈ Σ3rd

n−1 for u( · , t◦)
}
,

Σ>3
n−1 :=

{
(x◦, t◦) : x◦ ∈ Σ>3

n−1 for u( · , t◦)
}
,

Σ4th
n−1 :=

{
(x◦, t◦) : x◦ ∈ Σ4th

n−1 for u( · , t◦)
}
,

Σ>4
n−1 :=

{
(x◦, t◦) : x◦ ∈ Σ>4

n−1 for u( · , t◦)
}
,

Σ≥5−ζ
n−1 :=

{
(x◦, t◦) : x◦ ∈ Σ≥5−ζ

n−1 for u( · , t◦)
}
, ζ ∈ (0, 1).

(6.2)

Recall that Σm, Σa
m, Σ<3

n−1, and Σ≥3
m were defined in (3.13)-(3.16), while Σ3rd

m , Σ>3
n−1, Σ≥4

m , Σ4th
n−1, Σ>4

n−1,

and Σ≥5−ζ
n−1 were defined in Definitions 3.11, 4.4, 4.10, 4.13, respectively.

Remark 6.1. Note that, as a consequence of Proposition 5.8, Σ3rd
n−1 = Σ>3

n−1.

For (x◦, t◦) ∈ Σ3rd
m we define

p3,x◦,t◦(x) := lim
r→0

r−3
(
u(x◦ + rx, t◦)− p2,x◦,t◦(rx)

)
, (6.3)

and for (x◦, t◦) ∈ Σ4th
m we define Px◦,t◦ as the fourth order Ansatz of u(x◦ + · , t◦) at 0 (cf. (4.9)), and

p4,x◦,t◦(x) := lim
r→0

r−4
(
u(x◦ + rx, t◦)−Px◦,t◦(rx)

)
. (6.4)

We begin with a simple lemma.

Lemma 6.2. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1). Then:

(a) The singular set is closed —more precisely Σ ∩B% × [−1, 1] is closed for any % < 1. Moreover,

Σ ∩B% × [−1, 1] 3 (xk, tk)→ (x∞, t∞) ⇒ p2,xk,tk → p2,x∞,t∞ .

(b) The frequency function

Σ 3 (x◦, t◦) 7→ φ(0+, u(x◦ + · , t◦)− p2,x◦,t◦)

is upper semi-continuous.
(c) If (x◦, t1) and (x◦, t2) belong both to Σ and t1 < t2, then there exists r > 0 such that u(x, t) is

independent of t for all (x, t) ∈ Br(x◦)× [t1, t2].

Proof. (a) We first show that if (xk, tk) are singular points and (xk, tk)→ (x∞, t∞) then the limit point is
also singular. Indeed, by Lemma 3.1 we have

‖u(xk + · , tk)− p2,xktk‖L∞(Br) ≤ r
2ω(r) ∀ r > 0.

Hence, since u(xk + · , tk)→ u(x∞+ · , t∞) in C0 as k →∞ and (after taking a subsequence) p2,xktk → P
for some convex 2-homogeneous polynomials with ∆P = 1, we obtain

‖u(x∞ + · , t∞)− P‖L∞(Br) ≤ r
2ω(r) ∀ r > 0. (6.5)

Thus (x∞, t∞) ∈ Σ and p2,x∞t∞ = P . A posteriori, we deduce that for any other subsequence it must be
p2,xktk → p2,x∞t∞ since there is only one P for which (6.5) holds, namely, p2,x∞t∞ .

(b) The upper semicontinuity follows from the fact that the map r 7→ φ(r, u(x◦ + · , t◦) − p2,x∞t∞) is
increasing, and that for r > 0 fixed the map (x◦, t◦) 7→ φ(r, u(x◦ + · , t◦) − p2,x∞t∞) is continuous on Σ
—using (a) and the fact that u(x◦ + · , t◦) satisfies uniform C1,1 estimates.

(c) As in (a), we have, for i = 1, 2,

‖u(x◦ + · , ti)− p2,x◦,ti‖L∞(Br) ≤ r
2ω(r) ∀ r > 0.
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Since u(x◦ + · , t1) ≥ u(x◦ + · , t2) then it must be p2,x◦,t1 ≡ p2,x◦,t2 =: P . Also, after a change of
coordinates, we can assume that {P = 0} ⊂ {xn = 0}.

Take r > 0 small enough, and set v := u(x◦ + r · , t2)− u(x◦ + r · , t1) ≥ 0. Then

∆v = 0 in {u(x◦ + r · , t1) > 0}.

Also, as a consequence of Lemma 3.1, given ε > 0, for r > 0 small enough we have

Cε :=
{
y : dist

( y
|y| , {xn = 0}

)
> ε
}
⊂ {u(x◦ + r · , t1) > 0}.

Consider now the first eigenfunction of

∆Sn−1Ψ = kεΨ in Sn−1 ∩ C2ε, Ψ = 0 in ∂(Sn−1 ∩ C2ε).

Then, setting ψ(x) := |x|λεΨ(x/|x|) with kε = (n−1+λε)λε, we have that ψ is a positive λε-homogeneous
harmonic function in C2ε which vanishes on the boundary. Note that as ε ↓ 0 we have ∂(Sn−1 ∩ C2ε) ↓
{xn = 0} and λ0 = 1 (this corresponds to the solution |xn|). Thus, by continuity, for ε > 0 small enough,

the function ψ̂(x) := |x|3/2Ψ(x/|x|) is subharmonic and vanishes on ∂C2ε. Hence using ψ̂ as lower barrier

and the standard Harnack inequality on v, we obtain that if v > 0 somewhere then v ≥ cψ̂(x) in B1 for
some c > 0. This implies

u(x◦ + r · , t2) ≥ cψ̂(x),

which is impossible since u(x◦ + · , t2) = P + o(|x|2) = O(|x|2), while ψ̂ is positive in some cone and
3/2-homogeneous. This proves that u(·, t1) ≡ u(·, t2) inside Br(x◦), which implies the result. �

We now prove some relations between p2 and singular points close to (0, 0).

Lemma 6.3. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1), let (xk, tk) ∈ Σ, (0, 0) ∈ Σ, and assume that xk → 0.

Set p2,k := p2,xk,tk . Then p2,k → p2 and we have∥∥∥p2,k − p2

(
xk
|xk| + ·

)∥∥∥
L∞(B1)

≤ Cω(2|xk|) and ‖p2,k − p2‖L∞(B1) ≤ Cω(2|xk|).

In addition,

dist
(
xk
|xk| , {p2 = 0}

)
→ 0 as k →∞.

Proof. We observe first that p2,xk,tk → p2. Indeed, if tk → t∞ then (up to a subsequence) by Lemma 6.2
we have p2,xk,tk → p2,0,t∞ and p2,0,t∞ ≡ p2, as desired.

Now, set rk := |xk|. By Lemma 3.1 we have

‖r−2
k u(xk + rkx, tk)− p2,k(x)‖L∞(B2) ≤ 4ω(2rk) and ‖r−2

k u(rkx, 0)− p2(x)‖L∞(B2) ≤ 4ω(2rk).

Thus, defining yk := xk/|xk|, for all x ∈ B2 we have the following: if tk ≤ 0 then

−4ω(2rk) + p2,k(x) ≤ r−2
k u(xk + rkx, tk) ≤ r−2

k u(xk + rkx, 0) ≤ 4ω(2rk) + p2(yk + x),

while if tk ≥ 0 then

4ω(2rk) + p2,k(x) ≥ r−2
k u(xk + rkx, tk) ≥ r−2

k u(xk + rkx, 0) ≥ −4ω(2rk) + p2(yk + x).

In both cases, since p2,k and p2 are nonnegative 2-homogeneous polynomials vanishing at 0 and with
Laplacian 1, then p2,k − p2(yk + · ) is a harmonic quadratic polynomial which vanishes at some point of
the segment joining 0 and yk, where yk := xk/|xk|. Moreover, |p2,k−p2(yk + · )| is bounded from above by
8ω(2rk) in B2. Using the mean value formula and the fact that all norms are comparable on polynomials,
we obtain

‖p2,k − p2(yk + · )‖L∞(B1) ≤ C‖p2,k − p2(yk + · )‖L2(∂B1) ≤ Cω(2rk).

By orthogonality of spherical harmonics with different homogeneities (or by a direct computation) we then
obtain

‖p2,k − p2‖2L2(∂B1) + ‖p2 − p2(yk + · )‖2L2(∂B1) = ‖p2,k − p2(yk + · )‖2L2(∂B1) ≤ Cω(2rk)
2.

In particular ‖p2 − p2(yk + · )‖L2(∂B1) → 0, and therefore dist(yk, {p2 = 0})→ 0. �
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We prove next two key lemmas that will allow us to perform some dimension reduction arguments
needed to control the spatial projection (i.e., π1 : (x, t) 7→ x) of some “bad” subsets of Σ ⊂ B1 × [−1, 1].
Note that the spatial version of these first two lemmas (i.e., when considering u(·, t◦) with t◦ fixed) was
proven in [FS19]. Here we need stronger results valid for a one-parameter monotone family of solutions to
the obstacle problem. To our best knowledge, this is the first dimension reduction argument applicable to a
one-parameter family of solutions to an elliptic equation, and it will involve several new and non-standard
techniques.

We recall that, given w : Rn → R, the rescaled functions wr and w̃r have been defined in (2.1).
The first lemma concerns the intermediate strata of the singular set Σm with 0 ≤ m ≤ n− 2.

Lemma 6.4. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1), let (0, 0) ∈ Σm with 0 ≤ m ≤ n− 2, and assume that

u( · , 0) 6≡ p2. Let (xk, tk) ∈ Σm satisfy |xk| ≤ rk with rk ↓ 0, and suppose that

w̃rk ⇀ q in W 1,2
loc (Rn) for w := u− p2 and yk :=

xk
rk
→ y∞. (6.6)

Then y∞ ∈ {p2 = 0} and q(y∞) = 0.

Proof. Let us define

wk := u(xk + rk · , tk)− p2(rk · ) = w
(1)
k + w

(2)
k + w

(3)
k ,

where

w
(1)
k := u(xk + rk · , tk)− u(xk + rk · , 0),

w
(2)
k := u(xk + rk · , 0)− p2(xk + rk · ),

w
(3)
k := p2(xk + rk · )− p2

(
rk · ).

We divide the proof into three steps.

• Step 1. We prove that

w̃k :=
wk

‖wk‖L2(∂B1)
⇀ Q in W 1,2

loc (Rn)

for some harmonic function Q with polynomial growth.
Indeed, since u ∈ C0(B1 × [−1, 1]), by the monotonicity of φ there exist r◦ > 0 and k◦ ∈ N such that,

for M := φ
(
0+, u( · , 0)− p2

)
+ 1, we have

φ (r , u(xk + · , tk)− p2) ≤M ∀ r ∈ (0, r◦), ∀ k ≥ k◦, (6.7)

or equivalently
φ(r, wk) ≤M ∀ r ∈ (0, r◦/rk), ∀ k ≥ k◦. (6.8)

Then, applying Lemma 3.6 to wk, we obtain the following polynomial growth control for w̃k:

H
(
R, w̃k

)
≤ CR2M+1H

(
1, w̃k

)
= CR2M+1 ∀R ∈ [1, r◦/rk), ∀ k ≥ k◦. (6.9)

Note that (6.8) is equivalent to φ(rk, w̃k) ≤M , which combined with (6.9) implies that

‖w̃k‖W 1,2(BR) ≤ C(R). (6.10)

This gives compactness of the sequence w̃k and hence (up to a subsequence)

w̃k ⇀ Q in W 1,2
loc (Rn)

for some Q : Rn → R. Let us prove next that Q is harmonic.
Indeed, on the one hand we have

∆wk = −r2
kχ{u(xk+rk · , tk)=0} ≤ 0 in B 1

2rk

. (6.11)

On the other hand, Lemmas 3.1 and 6.3 imply that, for R ≥ 1,

x ∈ BR ∩ {u(xk + rkx, tk) = 0} ⇒ p2,xk,tk(x) ≤ R2ω(Rrk) ⇒ p2(x) ≤ CR2ω(Rrk);

thus, since p2 grows quadratically away from its zero set,

BR ∩ {u(xk + rk · , tk) = 0} ⊂
{
y : dist

(
y, {p2 = 0}

)
≤ CR

√
ω(Rrk)

}
. (6.12)
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Note that, for any fixed R ≥ 1, we have CR
√
ω(Rrk) ↓ 0 as k →∞. We have thus shown

sup
{

dist(x, {p2 = 0}) : x ∈ BR ∩ {u(xk + rk · , tk) = 0}
}
↓ 0 as k →∞.

Therefore, the weak limit of the sequence of nonpositive measures ∆w̃k will be supported on {p2 = 0}.
But then, recalling (6.10), we have shown that Q is a locally W 1,2 function whose Laplacian is supported
in linear space of dimension m = dim({p2 = 0}) ≤ n − 2 and thus of zero harmonic capacity. It follows3

that Q must be harmonic.
Moreover, since xk is a singular point, Lemma 3.6 yields

H(ρ, wk) ≤ ρ4H(1, wk) for all ρ ∈ (0, 1),

and thus in the limit we find
H(ρ,Q)1/2 ≤ ρ2 for all ρ ∈ (0, 1). (6.13)

• Step 2. We now want to prove that

w
(2)
k

‖w(2)
k ‖L2(∂B1)

⇀
q(y∞ + · )

‖q(y∞ + · )‖L2(∂B1)
in W 1,2

loc (Rn) (6.14)

(with q defined in (6.6)), and

w
(3)
k

‖w(3)
k ‖L2(∂B1)

→ ∇p2 · e in W 1,2
loc (Rn) (6.15)

for some (nonzero) e ∈ {p2 = 0}⊥.
Note that, since y∞ ∈ {p2 = 0} (by Lemma 6.3),

w
(2)
k

‖w(2)
k ‖L2(∂B1)

=
wrk(yk + · )

‖wrk(yk + · )‖L2(∂B1)
= w̃rk(yk + · )

‖w̃rk‖L2(∂B1)

‖w̃rk(yk + · )‖L2(∂B1)
.

Thus, noticing that ‖w̃rk‖L2(∂B1) → ‖q‖L2(∂B1) and ‖w̃rk(yk + · )‖L2(∂B1) → ‖q(y∞ + · )‖L2(∂B1), since q is
a nonzero quadratic harmonic polynomial (see Proposition 3.9) both limits are nonzero and universally
bounded. Thus (6.14) follows.

To prove (6.15), we set εk := ‖p2(yk+ · )−p2‖L2(∂B1) → 0. Then, if y∗k denotes the projection of yk onto
{p2 = 0}, we have p2(y∗k + · ) ≡ p2 and y∗k− yk → y∗∞− y∞ = 0. Thus, up to taking a further subsequence,
we obtain

lim
k

w
(3)
k

‖w(3)
k ‖L2(∂B1)

= lim
k

p2(yk + · )− p2

εk
= lim

k

p2(yk − y∗k + · )− p2

εk
= c∇p2 · lim

k

yk − y∗k
|yk − y∗k|

= ∇p2 · e

for some nonzero e ∈ {p2 = 0}⊥. Note that the limit in k exists (up to subsequence) and is nonzero, since
w

(3)
k

‖w3
k‖L2(∂B1)

is a sequence of linear functions with unit L2 norm.

• Step 3. We finally prove that q(y∞) = 0.
Let us consider

ε̂k :=
∑

i=1,2,3

‖w(i)
k ‖L2(∂B1) and ŵk :=

wk
ε̂k

.

By Step 1 we have
ŵk → Q̂ = aQ for some a ∈ [0, 1]. (6.16)

Moreover, by Step 2,

Q̂(2) := lim
k
w

(2)
k /ε̂k = bq(y∞ + · ), Q̂(3) := lim

k
w

(3)
k /ε̂k = c∇p2 · e,

for some constant b, c ≥ 0. (Above, the convergences are weak in W 1,2
loc (Rn).)

3The proof of this implication is standard. We want to prove that
∫
∇Q · ∇ξ = 0 for all ξ ∈ C1

c (Rn). But since {p2 = 0}
has zero harmonic capacity, any given ξ can be approximated in W 1,2 norm by functions ξk which vanish on {p2 = 0}, and
thus for which

∫
∇Q · ∇ξk = −

∫
∆Qξk = 0. The desired conclusion follows by taking the limit as k →∞.
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Then, it is well defined

Q̂(1) := lim
k
w

(1)
k /ε̂k = lim

k
wk/ε̂k − lim

k
w

(2)
k /ε̂k − lim

k
w

(3)
k /ε̂k,

and we observe that Q(1) is either nonpositive or nonnegative (since w
(1)
k = u(xk + rk · , tk)−u(xk + rk · , 0)

is so, depending on the sign of tk). Moreover, since Q̂, Q̂(2), and Q̂(3) are harmonic, so is Q̂(1) and thus it
must be constant by Liouville Theorem. Hence, we have

Q̂ = C + bq(y∞ + · ) + c∇p2 · e.

Note now that, by definition of ε̂k, we have
∑

i=1,2,3 ‖Q̂(i)‖L2(∂B1) = 1. Moreover, since the homogeneity

of q at the origin is at least two, the three functions Q̂(i) are linearly independent and hence their sum
Q̂ cannot be zero (equivalently, in (6.16) it must be a > 0). Note also that it must be b > 0 since (6.13)

implies that Q̂ is at least quadratic and hence it can not be equal to the constant Q̂(1) plus the linear
function, Q̂(3). Finally, (6.13) implies ∇Q(0) = 0.

But then, since y∞ ∈ {p2 = 0}, and q is a homogeneous polynomial of degree φ(q, 1),

0 = y∞ · ∇Q̂(0) = y∞ · ∇Q̂(1)(0) + by∞ · ∇q(y∞) + cy∞ · ∇(∇p2 · e)(0) = 0 + bφ(q, 1) q(y∞) + 0,

which proves that q(y∞) = 0. �

The next lemma concerns the maximal stratum Σn−1. This case is more involved, since blow-ups are
not necessarily harmonic functions as in the previous lemma. In particular, in this situation we will need
to assume that the frequency is continuous along the sequence that we consider.

Lemma 6.5. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1), let (0, 0) ∈ Σn−1, and assume that u( · , 0) 6≡ p2. Let

(xk, tk) ∈ Σn−1 satisfy |xk| ≤ rk with rk ↓ 0, assume that (6.6) holds, and that λ2nd
k → λ2nd, where

λ2nd
k := φ

(
0+, u(xk + · , tk)− p2,xk,tk

)
and λ2nd := φ(0+, u− p2).

Then y∞ ∈ {p2 = 0} and qeven is translation invariant in the direction y∞. (Here qeven denotes the even
symmetrisation of q with respect to the hyperplane {p2 = 0}.)

Proof. Let us define

wk := u(xk + rk · , tk)− p2,xk,tk(rk · ) = w
(1)
k + w

(2)
k + w

(3)
k ,

where

w
(1)
k := u(xk + rk · , tk)− u(xk + rk · , 0),

w
(2)
k := u(xk + rk · , 0)− p2(xk + rk · ),

w
(3)
k := p2(xk + rk · )− p2,xk,tk

(
rk · ).

We divide the proof into three steps.

• Step 1. Exactly as in Lemma 6.4,

w̃k :=
wk

‖wk‖L2(∂B1)
⇀ Q in W 1,2

loc (Rn)

for some Q ∈ W 1.2
loc (Rn) with polynomial growth. We claim that Q is a λ2nd-homogeneous solution of the

Signorini problem (3.12).
Indeed, by the upper-semicontinuity property in Lemma 6.2(b) and the assumption λ2nd

k → λ2nd, given
δ > 0 there exist rδ > 0 and kδ such that

φ (r, u(xk + · , tk)− p2,xk,tk) ∈ (λ2nd − δ, λ2nd + δ) ∀ r ∈ (0, rδ), ∀ k ≥ kδ, (6.17)

or equivalently
φ(r, wk) ∈ (λ2nd − δ, λ2nd + δ) ∀ r ∈ (0, rδ/rk), ∀ k ≥ kδ. (6.18)

Then, applying Lemma 3.6 to wk we obtain the following polynomial growth control for w̃k:

H
(
R, w̃k

)
≤ CδR2λ2nd+3δ ∀R ∈ [1, rδ/rk), ∀ k ≥ k◦, (6.19)
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and the decay estimate

H
(
%, w̃k

)
≤ C%2(λ2nd−δ) ∀ % ∈ (0, 1], ∀ k ≥ k◦. (6.20)

In addition, the Lipschitz estimate in Lemma 3.8 gives

‖w̃k‖Lip(BR) ≤ C(R).

Hence w̃k → Q in C0
loc(Rn) (up to a further subsequence).

Note that, using (6.11) and (6.12) in our context, one deduces that ∆Q is a nonpositive measure
supported on {p2 = 0}. Moreover, since wk(yk+ · ) = u(xk+rk · )−p2,xktk(rk · ), it follows that w̃k(yk+ · ) ≥
0 on {p2,xktk = 0} and thus, by uniform convergence, Q ≥ 0 on {p2 = 0}.

On the other hand (6.11) and the fact that w̃k(yk + · ) ≤ 0 on {u(xk + rk · , tk) = 0} imply that
w̃k∆w̃k ≥ 0, and since ∆w̃k ⇀ ∆Q weakly as measures and w̃k → Q in C0, we obtain Q∆Q ≥ 0 in Rn.
But since ∆Q ≤ is nonpositive and supported on {p2 = 0} where Q ≥ 0, it must be Q∆Q ≤ 0. This
implies that Q is a solution of the Signorini problem (3.12).

Finally, taking the limit in (6.19) and (6.20) we obtain that, for any given δ > 0,

H
(
R,Q

)
≤ CδR2λ2nd+3δ ∀R ∈ [1,∞) (6.21)

and
H
(
%,Q

)
≤ C%2(λ2nd−δ) ∀ % ∈ (0, 1]. (6.22)

Since δ > 0 is arbitrary and Q is a global solution of Signorini, it follows by Lemma A.3 that

λ2nd ≤ φ(0+, Q) ≤ φ(+∞, Q) ≤ λ2nd.

Hence φ(r,Q) = λ2nd for all r > 0, from which (using Lemma A.3 again) it follows that Q is a λ2nd-
homogeneous.

• Step 2. We now want to prove that

w
(2)
k

‖w(2)
k ‖L2(∂B1)

⇀
q(y∞ + · )

‖q(y∞ + · )‖L2(∂B1)
in W 1,2

loc (Rn) (6.23)

and

lim
k

w
(3)
k

‖w3
k‖L2(∂B1)

→ (e · x) + (e′ · x)(e · x) 6≡ 0 in W 1,2
loc (Rn). (6.24)

for some e ∈ {p2 = 0}⊥ and e′ ∈ {p2 = 0}.
Indeed, the proof of (6.23) is identical to the one of (6.14) in the proof of Lemma 6.4.
To show (6.24), denote εk := ‖p2(yk + · ) − p2,xk,tk‖ → 0. Recall that (by Lemma 6.3) we have

y∞ ∈ {p2 = 0} and hence, if y∗k denotes the projection of yk onto {p2 = 0}, then p2(y∗k + · ) ≡ p2 and
y∗k − yk → y∗∞ − y∞ = 0. Thus, up to taking a further subsequence, if {p2 = 0} = {ê · x = 0} and
{p2,xk,tk = 0} = {êk · x = 0} with ê, êk ∈ Sn−1, then

lim
k

w
(3)
k

‖w(3)
k ‖L2(∂B1)

= lim
k

p2(yk + · )− p2,xk,tk

εk
= lim

k

p2(yk − y∗k + · )− p2

εk
+ lim

k

p2 − p2,xk,tk

εk

= c1∇p2 · lim
k

yk − y∗k
|yk − y∗k|

+ c2 lim
k

(ê · x)2 − (êk · x)2

2|ê− êk|
= (e · x) + (e′ · x)(e · x),

where e ∈ {p2 = 0}⊥ and e′ ∈ {p2 = 0}. Note that the previous limit in k must exist (up to subsequence)

and will be nonzero, since w
(3)
k /‖w(3)

k ‖L2(∂B1) is a sequence of quadratic polynomials with unit L2 norm.

• Step 3. We finally prove that q is translation invariant in the direction y∞. Consider

ε̂k :=
∑

i=1,2,3

‖w(i)
k ‖L2(∂B1) and ŵk :=

wk
ε̂k

.

By Step 1 we have
ŵk → Q̂ = aQ for some a ∈ [0, 1].
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Moreover, by Step 2

Q̂(2) := lim
k
w

(2)
k /ε̂k = bq(y∞ + · )

and, after choosing some appropriate coordinate frame (so that, in particular, {p2 = 0} = {xn = 0}),

Q̂(3) := lim
k
w

(3)
k /ε̂k = c1xn + c2xnxn−1

for some b, c ≥ 0. (Above, the convergences are weak in W 1,2
loc (Rn).)

Then, it is well defined

Q̂(1) := lim
k
w

(1)
k /ε̂k = lim

k
wk/ε̂k − lim

k
w

(2)
k /ε̂k − lim

k
w

(3)
k /ε̂k,

and we observe that Q(1) is either nonpositive or nonnegative (since the functions w
(1)
k are so). Hence, we

have
Q̂ = Q̂(1) + bq(y∞ + · ) + c1xn + c2xnxn−1.

Note now that, by definition of ε̂k, we have
∑

i=1,2,3 ‖Q̂(i)‖L2(∂B1) = 1. Moreover, since the homogeneity

of q at the origin is at least 2 +α◦ (see Proposition 3.9), the three functions Q̂(i) are linearly independent4

and thus their sum Q̂ cannot be zero.
Let us show next that b > 0 and that Q̂ ≡ bq. Indeed, since both q and Q̂ are λ2nd-homogeneous with

λ2nd ≥ 2 + α◦, if Q(1) ≥ 0 (resp. ≤) then

Q̂ = lim
R→∞

Q̂(R · )
Rλ2nd

= lim
R→∞

Q(1)(R · ) + bq(y∞ +R · ) +Q(3)(R · )
Rλ2nd

≥ bq (resp. ≤),

where we used that Q(3) is 2-homogeneous. Hence, Q̂ and bq are two ordered solutions of Signorini with
homogeneities greater than 1 at the origin and thus they must be equal by Lemma A.4.

Therefore, we have shown that

Q̂ = Q̂(1) + bq(y∞ + · ) + xn(c1xn−1 + c2) = bq. (6.25)

In particular, since Q̂ has unit L2(∂B1) norm this implies that b > 0.

Now, taking the even parts, if Q(1) ≥ 0 (resp. if Q(1) ≤ 0) we obtain

bqeven(y∞ + · ) ≤ bqeven (resp. ≥). (6.26)

Hence it follows by homogeneity that, for all s > 0,

bs−λ
2nd
qeven(sy∞ + x) ≤ bs−λ2ndqeven(x) (resp. ≥).

Therefore, since b > 0,
q(sy∞ + x) ≤ q(x) (resp. ≥),

and thus
y∞ · ∇qeven ≤ 0 (resp. ≥).

In summary we obtain that ψ := y∞ · ∇qeven has constant sign. But then ψ restricted to the sphere Sn−1

must be a multiple of the first even eigenfunction (since all other eigenfunctions change sign) of{
−∆Sn−1ψ = kψ in Sn−1 \ Z
ψ = 0 on Sn−1 ∩ Z,

where Z := {xn = 0} ∩ {q = 0} and k := (n − 1 + λ2nd)λ2nd. Note Z ⊂ {xn = 0}, and the two extremal
cases Z = ∅ and Z = {xn = 0} correspond respectively to the eigenfunctions 1 and |xn| (restricted
to the sphere), which have homogeneity 0 and 1 respectively. As a consequence of the monotonicity
property of the eigenvalues with respect to the domain, for every Z we will have (n − 1 + 0)0 ≤ k =
(n− 1 + λ2nd)λ2nd ≤ (n− 1 + 1)1. This leads to λ2nd ≤ 2; a contradiction. Therefore, the only possibility
is that ψ = y∞ · ∇qeven ≡ 0. In other words qeven is translation invariant in the direction y∞. �

4Note again that Q̂(1) has a sign, Q̂(2) is (the translation of) a λ2nd-homogeneous solution of Signorini with λ2nd > 2, and

Q̂(3) is a odd quadratic harmonic polynomial, and thus they are linearly independent.
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The next result will imply that the projection π1

(
Σ≥3
n−1 \Σ3rd

n−1

)
(recall that π1(x, t) = x) is contained

in a countable union of (n− 2)-dimensional Lipschitz manifolds, i.e., it is (n− 2)-rectifiable. This will be
crucial in our proof of Theorem 1.1.

Lemma 6.6. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1), and let (0, 0) ∈ Σ≥3

n−1 \ Σ3rd
n−1. Then there exists a

(n− 2)-dimensional linear subspace L such that the following holds: for any ε > 0 there exists %ε > 0 such
that

π1

(
Σ≥3
n−1

)
∩Br ⊂ L+Bεr for all r ∈ (0, %ε),

where L+Bεr := {z = (x+ y) : x ∈ L, y ∈ Bεr} denotes the sum of sets.

Proof. Let w := u( · , 0) − p2, and recall that wr(x) = w(rx) and w̃r = wr/‖wr‖L2(∂B1). Recall also that,
by Proposition 5.4, the following limit exists

q̃ := lim
r↓0

r−3w(r · ),

and (after choosing suitable coordinate system) the even part of q̃ is of the form

q̃even(x) = b|xn|3 − 3|xn|

(
n−1∑
α=1

bαx
2
α

)
, (6.27)

where b > 0, bα ≥ 0, and b =
∑n−1

α=1 bα; see Lemma 5.2. Relabelling if necessary the indices, we may
assume that b1 ≤ b2 ≤ · · · ≤ bn−1. In particular we must have bn−1 > 0.

Define L to be the (n − 2)-dimensional subspace {xn = xn−1 = 0} in this system of coordinates. We

claim that, for any sequence (xk, tk) ∈ Σ≥3
n−1 such that xk → 0, we have

dist

(
xk
|xk|

, L

)
→ 0.

Note that the lemma follows immediately from this claim. To prove the claim we observe that

λ2nd
k := φ

(
0+, u(xk + · , tk)− p2,xk,tk

)
≥ 3 and λ2nd := φ(0+, u− p2) = 3.

Thus, since the frequency is upper-semicontinuous, λ2nd
k → λ2nd = 3. This allows us to apply Lemma 6.5

with rk := |xk| and deduce that, if y∞ is an accumulation point of
{
xk/|xk|

}
, then the even part of

q = q̃
‖q̃‖L2(∂B1)

is translation invariant in the direction y∞. Thus q̃even has the same invariance. But then,

recalling (6.27) and bn−1 > 0, we find that y∞ ∈ {xn = xn−1 = 0} = L. �

We next need the following Lipschitz estimate.

Lemma 6.7. Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ Σ3rd
n−1 \ Σ≥4

n−1. Set w := u− p2 − P , where P is
a 3-homogeneous harmonic polynomial vanishing on {p2 = 0}, and let wr and w̃r be as in (2.1). Assume
that, for some r◦ > 0, γ ∈ (3, 4), δ◦ > 0, and h◦ > 0, we have

φγ(r, u− p2 − P ) ≤ γ − δ◦ ∀ r ∈ (0, r◦) and H(r◦, u− p2 − P ) ≥ h◦. (6.28)

Then there exist positive constants %◦, η◦, and C, depending only on n, γ, δ◦, r◦, h◦, and ‖P‖L2(B1), such

that for any given R ≥ 1 and for all r ∈
(
0, %◦

10R

)
we have

‖w̃r‖Lip(BR) ≤ CR3 and w̃r∆w̃r ≥ −Crη◦R4∆w̃r in BR. (6.29)

Proof. With no loss of generality we can assume that {p2 = 0} = {xn = 0}.
Since P is some 3-homogeneous harmonic polynomial vanishing on {p2 = 0}, for any unit vector e

tangential to {p2 = 0} we have |∂eeP | ≤ C|xn| ≤ Cr2 in Br ∩ {u = 0} (cf. (4.15)). Thus, arguing as in
the proof of Lemma 4.7 (see Step 3), we get

inf
Br
r2∂eew ≥ −C(P )(‖w(r · )‖L2(B5) + r4). (6.30)

Also, since 0 ∈ Σ3rd
n−1 \Σ≥4

n−1, we can apply Lemmas 4.1 and 4.9 to deduce that φ(0+, u−P) exists and is
less that 4 (cf. proof of Proposition 4.12(a)).
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We now note that, as a consequence of (6.28), Lemmas 4.3 and 4.1 yield that, for any δ > 0, r > 0, and
% ∈ (r, r◦],

H(%, w) + ρ2γ

H(r, w) + r2γ
≤ Cδ (%/r)2(γ−δ)+δ .

In particular, for δ = 4− γ and % = r◦ we obtain

H(1, wr) = H(r, w) =
H(r◦, w) + r2γ

◦
Cδ

(r/r◦)
2(γ−δ)+δ − r2γ ≥ c1r

2γ−δ, (6.31)

provided that r ∈ (0, r1), where c1 > 0 and r1 ∈ (0, r◦) is sufficiently small. Also, for r ∈ (0, r1) and
% = Rr ≤ r◦ we get

H(Rr,w) ≤ CδR2γ−δ(H(r, w) + r2γ) ≤ CR8H(r, w),

where C = Cδ(1 + 1/c1) depends only on n, γ, δ, and h◦ Thus, scaling (6.30), for r ∈
(
0, r1

10R

)
we obtain

(2R)−2 inf
B2R

∂eewr ≥ −C(P )
(
‖w(3Rr · )‖L2(B5) + (2Rr)4) ≥ −CR4(H(r, w)1/2 + r4

)
≥ −CH(1, wr)

1/2,

where C depends only on n, R, γ, δ and h◦.
Hence, given R ≥ 1, for all r ∈

(
0, r◦

10R

)
we have ∂eew̃r ≥ −CR2 in B2R. Therefore, as in the proof of

Lemma 3.8, we obtain |∇w̃r| ≤ CR3 in BR, where C depends only on n, γ, δ, and h◦. This proves the
first part of (6.29).

For the second part, notice that |u− p2−P | = |12(xn)2 +P | ≤ C|x|4 inside {u = 0}—here we used that

|xn| ≤ C|x|2 in {u = 0} and that P is a cubic polynomial divisible by xn. Combining this bound with
(6.31) and the fact that ∆w̃r = 0 inside {ur > 0}, we find (choosing for instance η◦ := 4− γ)

w̃r∆w̃r ≥ −
C|rx|4

H(1, wr)1/2
∆w̃r ≥ −

C(rR)4

cr4−η◦ ∆w̃r = −Crη◦R4 ∆w̃r inBr,

which proves (6.29). �

The following result will be needed in order to bound the Hausdorff dimension of the projection π1(Σ>3
n−1\

Σ≥4
n−1). Although the argument is very similar to the one used in the proof of Lemma 6.5, we repeat the

proof in detail since there are differences that require a detailed analysis. Recall that p3 = p3,0,0 is defined
in (6.3).

Lemma 6.8. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1), let (0, 0) and (xk, tk) belong to Σ>3

n−1 \ Σ≥4
n−1, and

suppose that |xk| ≤ rk ↓ 0. Assume in addition that

w̃rk ⇀ q in W 1,2
loc (Rn) for w := u− p2 − p3 and yk :=

xk
rk
→ y∞, (6.32)

and that λ3rd
k → λ3rd, where

λ3rd
k := φ

(
0+, u(xk + · , tk)− p2,xk,tk − p3,xk,tk

)
and λ3rd := φ(0+, u− p2 − p3).

Then y∞ ∈ {p2 = 0}, and q is translation invariant in the direction y∞.

Proof. The fact that y∞ ∈ {p2 = 0} follows from Lemma 6.3.

Since (0, 0) ∈ Σ>3
n−1 \Σ≥4

n−1, as in the proof of Lemma 6.7 the limit limr↓0 φ(r, u( · , 0) − p2 − p3) exists
and belongs to (3, 4), that is

λ3rd := φ(0+, u( · , 0)− p2 − p3) ∈ (3, 4).

Similarly, the limits defining λ3rd
k exist, and by assumption, we have

λ3rd
k := φ

(
0+, u(xk + · , tk)− p2,xk,tk − p3,xk,tk

)
→ λ3rd. (6.33)

We define

p := p2 + p3 and pk := p2,xk,tk + p3,xk,tk
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and consider

wk := u(xk + rk · , tk)− pk
(
rk ·

)
= w

(1)
k + w

(2)
k + w

(3)
k ,

w
(1)
k := u(xk + rk · , tk)− u(xk + rk · , 0),

w
(2)
k := u(xk + rk · , 0)− p(xk + rk · ),

w
(3)
k := p(xk + rk · )− pk

(
rk · ).

(6.34)

Recall that yk := xk/rk and define

w̃k :=
wk(yk + · )

‖wk(yk + · )‖L2(∂B1)
. (6.35)

• Step 1. Throughout the proof we fix γ ∈ (λ3rd, 4). Thanks to Lemma 4.3, for any given δ > 0 we have∣∣φγ(r, u(xk + · , tk)− p2,xk,tk − p3,xk,tk

)
− λ3rd

∣∣ ≤ δ ∀ r ∈ (0, rδ), ∀ k ≥ kδ. (6.36)

Hence, we may fix positive constants δ◦ and r◦ such that, for k ≥ k◦ large enough, we have

φγ
(
r, u(xk + · , tk)− pk

)
≤ γ − 3δ◦ ∀ r ∈ (0, r◦), (6.37)

and Lemma 6.7 —applied to the function u(xk + · , tk) and with r = rk— yields

‖w̃k‖Lip(BR) ≤ C(R) in BR (6.38)

and w̃k∆w̃k ≥ −C(R)rη◦k ∆w̃k, where η◦ > 0 and C(R) are independent of k. Then, similarly to the proof
of Lemma 6.5, the (locally uniformly bounded) nonpositive measures ∆w̃k converge weakly to ∆Q ≤ 0,
and since rη◦k ∆w̃k ⇀ 0 and w̃k → Q locally uniformly, we have w̃k∆w̃k → Q∆Q ≥ 0. Furthermore,
since wk = u(xk + rk · , tk) ≥ 0 on {p2,xk,tk = 0} and p2,xk,tk → p2, we obtain that Q ≥ 0 on {p2 = 0}.
Therefore, we proved that Q is a solution of the Signorini problem (3.12). Finally, arguing as in the proof
of Lemma 6.5, it follows by (6.36) that the function Q is λ3rd-homogeneous.

Note that, by the same reasoning, also q is a λ3rd-homogeneous of the Signorini problem (3.12).

• Step 2. Recall that y∞ ∈ {p2 = 0}. In addition by Proposition 4.12(a) we have

w
(2)
k

‖w(2)
k ‖L2(∂B1)

⇀
q(y∞ + · )

‖q(y∞ + · )‖L2(∂B1)
in W 1,2

loc (Rn),

and, by construction, w
(3)
k is a cubic hamonic polynomial.

We claim that, for each k, there exists a point ȳk in the segment 0 yk such that

|w(3)
k (ȳk)| ≤ Cr4

k. (6.39)

Indeed, note that p2 + p3 ≥ −
p23
2p2

and thus we have p(rk · ) ≥ −Cr4
k and pk(rk · ) ≥ −Cr4

k in B1. Hence,

since p(0) = pk(0) = 0,

w
(3)
k (0) = p(0)− pk

(
− rkyk) ≥ −Cr4

k and w
(3)
k (yk) = p(rkyk)− pk

(
0) ≤ Cr4

k,

so (6.39) follows.

• Step 3. Let us consider

ε̂k :=
∑

i=1,2,3

‖w(i)
k ‖L2(∂B1) and ŵk :=

wk
ε̂k

.

Recalling that φγ(0+, u( · , 0)− p) = λ3rd < γ < 4, it follows by Lemma 4.1 that, for any given δ > 0,

ε̂k ≥ ‖w
(2)
k ‖L2(∂B1) =

∥∥(u− p2 − p3)
(
rk(yk + · )

)∥∥
L2(∂B1)

� rλ
3rd+δ
k as k →∞.

Thus, by Step 1, we have

ŵk → Q̂ = aQ for some a ∈ [0, 1].
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Moreover, by Step 2,

Q̂(2) := lim
k
w

(2)
k /ε̂k = bq(y∞ + · ) and Q̂(3) := lim

k
w

(3)
k /ε̂k =

[
degree 3 hamonic polynomial

]
for some b ≥ 0. (Above, the convergences are weak in W 1,2

loc (Rn).) Thus, it is well defined

Q̂(1) := lim
k
w

(1)
k /ε̂k = lim

k
wk/ε̂k − lim

k
w

(2)
k /ε̂k − lim

k
w

(3)
k /ε̂k,

and we observe that Q(1) is either nonpositive or nonnegative (since so is w
(1)
k ). Hence, we have

Q̂ = Q̂(1) + bq(y∞ + · ) + Q̂(3).

Moreover, it follows by (6.39) that the polynomial Q̂(3) vanishes at some point ȳ in the segment 0 y∞.

Hence, since Q̂(3) is harmonic, we see that it cannot have constant sign (unless it is identically zero).

Note now that, by definition of ε̂k, we have
∑

i ‖Q̂(i)‖L2(∂B1) = 1. Hence, since q is a λ3rd-homogeneous

solution of Signorini with λ3rd > 3, Q̂(1) has constant sign, and Q̂(3) is a cubic harmonic polynomial that
does not have constant sign, we deduce that the three functions Q̂(i) are linearly independent and their
sum Q̂ cannot be zero.

We show next that b > 0 and that Q̂ ≡ bq. Indeed, since both q and Q̂ are λ3rd-homogeneous, if Q̂(1) ≥ 0
(resp. ≤) then

Q̂ = lim
R→∞

Q̂(R · )
Rλ3rd

= lim
R→∞

Q̂(1)(R · ) + bq(y∞ +R · ) + Q̂(3)(R · )
Rλ3rd

≥ bq (resp. ≤).

But then Q̂ and bq are two solution ordered solutions of Signorini with homogeneities > 1 at the origin,
and thus they must be equal by Lemma A.4.

Therefore, we have shown

b
(
q − q(y∞ + · )

)
= Q̂(1) + Q̂(3).

Now, using homogeneity, we obtain that for all s > 0

Q̂(1)(s−1x) + bs−λ
3rd
q(sy∞ + x) + Q̂(3)(s−1x) = bs−λ

3rd
q(x).

If Q(1) ≥ 0 (resp. if Q(1) ≤ 0), we obtain

b
q(sy∞ + x)− q(x)

s
≤ sλ3rd−1Q̂(3)(s−1x) (resp. ≥). (6.40)

Note that, since q is a solution of (3.12) (and so it is Lipschitz continuous, see for instance [ACS08]), the
absolute value of the left hand side of (6.40) is bounded as s ↓ 0. Hence, since λ3rd ∈ (3, 4), the cubic

coefficients of Q̂(3) (recall that Q̂(3) is a cubic harmonic polynomial) must vanish as otherwise the right

hand side would be unbounded. Thus, the cubic coefficients of Q̂(3) vanish and therefore right hand side
converges to zero.

Thus, since b > 0, we have shown that

y∞ · ∇q ≤ 0 (resp. ≥ 0).

Hence, reasoning as in Step 3 of the proof of Lemma 6.5, we obtain that ψ := y∞ · ∇q restricted to
Sn−1 must be a multiple of the first eigenfunction of a certain elliptic problem, and this easily leads to a
contradiction because the homogeneity of q is greater than 2. �

Our next goal is to prove a variant of Lemma 6.8 for points in Σ>4
n−1 \ Σ≥5−ζ

n−1 . For that, we need the
following Lipschitz estimate.

Lemma 6.9. Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ Σ>4
n−1 \ Σ≥5−ζ

n−1 . Set w := u −P − P , where
P is some 4-homogeneous harmonic polynomial vanishing on {p2 = 0}. Assume that, for some r◦ > 0,
γ ∈ (4, 5), δ > 0, and h◦ > 0,

φγ(r, u−P − P ) ≤ γ − δ◦ ∀ r ∈ (0, r◦) and H(r◦, u−P − P ) ≥ h◦. (6.41)
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Then there exist positive constants %◦, η◦, and C, depending only on n, γ, δ◦, r◦, and h◦, such that for
any given R ≥ 1 and for all r ∈

(
0, %◦

10R

)
we have

‖w̃r‖Lip(BR) ≤ CR4 and w̃r∆w̃r ≥ −Crη◦R5∆w̃r in BR. (6.42)

Proof. The proof is analogous to the one of Lemma 6.7, using Lemma 4.7 instead of (6.30) and Lemma 4.9
instead of Lemma 4.3. �

Recalling that p4 = p4,0,0 is defined in (6.4), we now prove the following:

Lemma 6.10. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1), let (0, 0) and (xk, tk) belong to Σ>4

n−1 \ Σ≥5−ζ
n−1 for

some ζ ∈ (0, 1), and suppose that |xk| ≤ rk ↓ 0. Assume in addition that

w̃rk ⇀ q in W 1,2
loc (Rn) for w := u−P − p4 and yk :=

xk
rk
→ y∞,

and that λ4th
k → λ4th, where

λ4th
k := φ

(
0+, u(xk + · , tk)−Pxk,tk − p4,xk,tk

)
and λ4th := φ(0+, u−P − p4).

Then y∞ ∈ {p2 = 0}, and q is translation invariant in the direction y∞.

Proof. The proof is very similar to that of Lemma 6.8, with some appropriate modifications. As before,
the fact that y∞ ∈ {p2 = 0} follows from Lemma 6.3.

Also, since (0, 0) ∈ Σ>4
n−1 \Σ≥5−ζ

n−1 , as in the proof of Lemma 6.7 the limit limr↓0 φ(r, u( · , 0)−P − p4)
exists and belongs to (4, 5− ζ), that is

λ4th := φ(0+, u( · , 0)−P − p4) ∈ (4, 5− ζ).

Similarly, the limits defining λ4th
k exist, and by assumption we have

λ4th
k := φ

(
0+, u(xk + · , tk)−Pxk,tk − p4,xk,tk

)
→ λ4th.

We define

p := P + p4 and pk := Pxk,tk + p4,xk,tk ,

and consider wk := u(xk + rk · , tk) − pk(rk · ) = w
(1)
k + w

(2)
k + w

(3)
k as in (6.34). Recall that yk := xk/rk

and define w̃k as in (6.35).

• Step 1. Here we argue as in Step 1 in the proof of Lemma 6.8. More precisely, using Lemma 4.3 in
place of Lemma 6.7, by the very same argument we deduce that w̃k converges locally uniformly to Q, and
that both q and Q are λ4th-homogeneous solutions of (3.12).

• Step 2. By Proposition 4.12(a), we have

w
(2)
k

‖w(2)
k ‖L2(∂B1)

⇀
q(y∞ + · )

‖q(y∞ + · )‖L2(∂B1)
in W 1,2

loc (Rn)

and, by construction, w
(3)
k is a quartic harmonic polynomial. In addition, arguing as in Step 2 of the proof

of Lemma 6.8 we obtain that, for each k, there exists a point ȳk in the segment 0 yk such that

|w(3)
k (ȳk)| ≤ Cr5

k. (6.43)

• Step 3. Considering

ε̂k :=
∑

i=1,2,3

‖w(i)
k ‖L2(∂B1) and ŵk :=

wk
ε̂k

,

as in Step 3 of the proof of Lemma 6.8 we have

ŵk → Q̂ = aQ, Q̂(2) := lim
k
w

(2)
k /ε̂k = bq(y∞ + · ), Q̂(3) := lim

k
w

(3)
k /ε̂k =

[
degree 4 harmonic pol.

]
,

where a ∈ [0, 1], b ≥ 0, and all the convergences hold weakly in W 1,2
loc (Rn). Hence

Q̂ = Q̂(1) + bq(y∞ + · ) + Q̂(3),
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where Q̂(1) := limk w
(1)
k /ε̂k has constant sign. Since q is a λ4th-homogeneous solution of Signorini with

λ4th > 4, Q̂(1) has constant sign, and Q̂(3) is a forth order harmonic polynomial that does not have constant
sign (as a consequence of (6.43)), we deduce that the three functions Q̂(i) are linearly independent and

their sum Q̂ cannot be zero.
Also, exactly as in Step 3 of the proof of Lemma 6.8, b > 0 and Q̂ ≡ bq, therefore

b
(
q − q(y∞ + · )

)
= Q̂(1) + Q̂(3).

Now, using homogeneity, if Q(1) ≥ 0 (resp. if Q(1) ≤ 0) we obtain

q(sy∞ + x)− q(x, t)
s

≤ sλ4th−1Q̂(3)(s−1x) (resp. ≥),

for all s > 0. As in Step 3 of the proof of Lemma 6.8, this is possible only if the quartic coefficients of
Q̂(3) vanishes, and letting s→ 0 we get

y∞ · ∇q ≤ 0 (resp. ≥ 0).

Reasoning now as in Step 3 of the proof of Lemma 6.5 (see also Step 3 of the proof of Lemma 6.8), we
obtain that ψ := y∞ ·∇q restricted to Sn−1 must be a multiple of the first eigenfunction of a certain elliptic
problem, and this easily leads to a contradiction. �

Before proving the last result of this section, we introduce a definition:

Definition 6.11. We denote by Peven4,≥ the set of 4-homogeneous harmonic polynomials p = p(x1, . . . , xn),

such that, for some e ∈ Sn−1, we have:

• p is even with respect to {e · x = 0}, that is, p(x) = p(x− 2(e · x)e);
• p ≥ 0 on {e · x = 0};
• ‖p‖L2(∂B1) = 1.

Given p ∈ Peven4,≥ , we denote S(p, ε) ⊂ Rn the set

S(p, ε) := {|e · x| ≤ ε} ∩ {p ≤ ε} ∩B2.

We now show the following result, which will be used later to bound the Hausdorff dimension of π1(Σ≥4
n−1\

Σ4th
n−1).

Lemma 6.12. Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ Σ≥4
n−1 \ Σ4th

n−1. Let Peven4,≥ and S(p, ε) be as in

Definition 6.11. Then, given ε > 0, there exists %ε > 0 such that, for all r ∈ (0, %ε),

{u = 0} ∩Br ⊂ rS(pr, ε) for some pr ∈ Peven4,≥ . (6.44)

Proof. Consider the set of “accumulation points” Q defined as

Q :=
{
q : ∃ rk ↓ 0 s.t. r−4

k (u−P)(rk · )→ q
}
.

Note that, for all η > 0, there exists %η > 0 such that for any r ∈ (0, %η) we have∥∥u−P − qr
∥∥
L∞(Br)

≤ ηr4 for some qr ∈ Q. (6.45)

Thanks to Proposition 4.12(a) and [GP09, Lemma 1.3.4], Q is a closed set of 4-homogeneous harmonic
polynomials. Also, using Lemma 4.11 with P ≡ 0 and γ ∈ (4, 5) fixed, we see that ‖q‖L2(∂B1) ≤ C for all

q ∈ Q. This implies that set Q is compact.
Now, since by assumption 0 ∈ Σ≥4

n−1 \ Σ4th
n−1, then qeven 6≡ 0 for all q ∈ Q (recall Definition 4.10). Thus,

by compactness of Q, we deduce that

0 < c◦‖qeven‖L2(∂B1) ≤ ‖q‖L2(∂B1) ≤ C ∀ q ∈ Q.
Now, for r > 0 and qr as in (6.45), we define

pr :=
qevenr

‖qevenr ‖L2(∂B1)
,
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and note that pr ∈ Peven4,≥ . We claim that (6.44) holds true provided that r ∈ (0, ρε), with ρε > 0 small.

Indeed, assume with no loss of generality that {p2 = 0} = {xn = 0}. Then (since qr solves (3.12)) every
pr is a 4-homogeneous harmonic polynomial, even in the variable xn, nonnegative on {xn = 0}, and with
unit L2(∂B1) norm.

We recall that

P(x) ≥ (xn + p3/xn +Q)2 − C|x|5. (6.46)

Now, by definition of S(p, ε), it follows in particular that, fixed θ > 0,

y ∈ B2 \ S(pr, ε) ⇒ either ( pr(y) > ε and |yn| ≤ θε ) or ( |yn| > θε ).

We now observe that, if pr(y) > ε and |yn| ≤ θε, since qoddr vanishes on {xn = 0} we get

qr(y) = pr(y)‖qeven‖L2(∂B1) + qoddr (y) ≥ c◦ε− C|yn| ≥ (c◦ − Cθ)ε ≥
1

2
c◦ε > 0

provided we choose θ := c◦
2C small enough. Thus, recalling (6.45) and (6.46), if r > 0 is sufficiently small

(so that we can take η � ε) we get

u(ry) ≥P(ry) + qr(ry)− ηr4 ≥ −Cr5 +
1

2
c◦εr

4 − ηr4 > 0.

On the other hand, if |yn| > θε, using again (6.46) we obtain, for r > 0 sufficiently small,

u(ry) ≥P(ry) + qr(ry)− ηr4 ≥ (θεr − Cr2)2 − Cr5 − Cr4 − ηr4 > 0.

Therefore, we have proven that

y ∈ B2 \ S(pr, ε) ⇒ u(ry) > 0,

which gives (6.44). �

7. Hausdorff measures and covering arguments

As already explained in the introduction, to prove our main results we will need some auxiliary results
from geometric measure theory. Before stating them, we recall some classical definitions.

Given β > 0 and δ ∈ (0,∞], the Hausdorff premeasures Hβδ (E) of a set E are defined as follows:5

Hβδ (E) := inf

{∑
i

diam(Ei)
β : E ⊂

⋃
i

Ei, diam(Ei) < δ

}
, (7.1)

where the index i goes through a finite or countable set. Then, one defines the β-dimensional Hausdorff

measure of E as Hβ(E) := limδ→0+ H
β
δ (E).

The Hausdorff dimension can be defined in terms of Hβ∞ as follows:

dimH(E) := inf{β > 0 : Hβ∞(E) = 0} (7.2)

(this follows from the fact that Hβ∞(E) = 0 if and only if Hβ(E) = 0, see for instance [Sim83, Section 1.2]).
We now state (and prove, for completeness) a couple of standard results.

Lemma 7.1. Let E ⊂ Rn, and f : E → R. Define

F := {x ∈ E : ∃xk → x, xk ∈ E, s.t. f(xk)→ f(x)}.

Then E \ F is at most countable.

Proof. Let G :=
{

(x, f(x)) : x ∈ E
}
⊂ Rn × R be the graph of f . We note that x ∈ E \ F if a only if

(x, f(x)) is a isolated point of G. In particular E \F is the projection of a discrete (and hence countable)
set. �

5In many textbooks, the definition of Hβδ includes a normalization constant chosen so that the Hausdorff measure of
dimension k coincides with the standard k-dimensional volume on smooth sets. However such normalization constant is
irrelevant for our purposes, so we neglect it.
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From now on, by convention, whenever we say that a set E can be covered by a number M > 0 of balls
that it is not necessarily an integer, we mean that it can be covered by bMc balls, where bMc denotes the
integer part of M .

Lemma 7.2. Let Br(x) ⊂ Rn be an open ball, and Π be a m-dimensional plane. Let β1 > m. Then there
exists ε̂ = ε̂(m,β1) > 0 such that the following holds: Let E ⊂ Rn satisfy

E ⊂ Br(x) ∩ {y : dist(y,Π) ≤ εr}, for some 0 < ε ≤ ε̂, x ∈ Rn, r > 0.

Then E be covered with γ−β1 balls of radius γr centered at points of E, where γ := 5ε.

Proof. Up to a scaling and a translation, it suffices to prove the result when r = 1 and Br(x) is the unit
ball B1 centered at the origin. Consider the m-dimensional set B1 ∩ Π, and given ε > 0 small consider
the covering of E ⊂ B1 ∩ {y : dist(y,Π) ≤ ε} given by the closed balls {Bε(x)}x∈E . By Vitali Covering

Lemma, there exists a disjoint family {Bε(xi)}i∈I such that⋃
i∈I

B5ε(xi) ⊃
⋃
x∈E

Bε(x) ⊃ E.

Note that

Bε(xi) ⊂ N2ε(Π) := {x ∈ B2 : dist(x,Π) ≤ 2ε}.
Since Hn

(
N2ε(Π)

)
≤ C(n)εn−m, denoting by ωn the volume of the n-dimensional unit ball we have

ωn ε
n #I ≤

∑
i∈I
Hn(Bε(xi)) ≤ Hn(N2ε(Π)) = C(n)εn−m,

which proves that #I ≤ C(n)ε−m. Set γ := 5ε. Then, since β1 > m, choosing ε sufficiently small we have
C(n)ε−m = C(n)5mγ−m ≤ γ−β1 , proving that E can be covered by γ−β1 open balls of radius γ centered
at points of E, as desired. �

The following Reifenberg-type result will be used later choosing as function f the frequency function, and
it will allow us to perform our dimension reduction arguments only at continuity points of the frequency.

Proposition 7.3. Let E ⊂ Rn, and f : E → R. Assume that, for any ε > 0 and x ∈ E there exists
% = %(x, ε) > 0 such that, for all r ∈ (0, %), we have

E ∩Br(x) ∩ f−1([f(x)− %, f(x) + %]) ⊂ {y : dist(y,Πx,r) ≤ εr},

for some m-dimensional plane Πx,r passing through x (possibly depending on r). Then dimH(E) ≤ m.

Proof. We need to prove that, given β > m, we have Hβ(E) = 0.
Let ε > 0 be a small constant to be fixed later, and for any k > 1 and j ∈ Z define

Ek,j :=
{
x ∈ E : %(x, ε) > 1/k, f(x) ∈

[ j
2k ,

j+1
2k

)}
.

Since E = ∪k,jEk,j , it suffices to prove that Hβ(Ek,j) = 0 for each k, j. So, we fix k > 1 and j ∈ Z.

Similarly, it suffices to prove that for all R ≥ 1 we have Hβ(ERk,j) = 0, where ERk,j := BR ∩ Ek,j .
By assumption, for every x ∈ ERk,j and r ∈ (0, 1/k], there exists a m-dimensional plane Πx,r such that

ERk,j ∩Br(x) ⊂ {y : dist(y,Πx,r) ≤ εr}.

So, we consider the covering {B1/k(x)}x∈ERk,j , and since ERk,j ⊂ BR we extract a finite subcovering of

closed balls B
(0)
1 , . . . , B

(0)
M . (Indeed, by Vitali’s lemma there is a covering {B1/k(x`)} such that the balls

{B1/(5k)(x`)} are disjoint, and hence there is a finite number of them.) Inside each ball B
(0)
i we have, by

assumption,

ERk,j ∩B
(0)
i ⊂ {y : dist(y,Π

B
(0)
i

) ≤ ε/k}.
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Choose β1 := m+β
2 ∈ (m,β). Applying Lemma 7.2 with ε = ε̂(m,β1) we deduce that, for each fixed

i, j, k, R, the set ERk,j ∩ B
(0)
i can be covered with γ−β1 closed balls B̂

(1)
1 , . . . , B̂

(1)

γ−β1
of radius γ/k centered

at points of ERk,j ∩B
(0)
i , where γ = 5ε. Using our assumption again, in each of these balls we have

ERk,j ∩ B̂
(1)
` ⊂ {y : dist(y,Π

x
(1)
`

) ≤ εγ/k},

where x
(1)
` is the centre of B̂

(1)
` . We then apply again Lemma 7.2 so that, for each ` ∈ {1, . . . , γ−β1}, we can

cover the set ERk,j∩B̂
(1)
` with γ−β1 closed balls of radius γ2/k. This gives a new covering of ERk,j∩B

(0)
i with

γ−2β1 closed balls B̂
(2)
1 , . . . , B̂

(2)

γ−2β1
of radius γ2/k centered at points of ERk,j . Iterating this construction,

we conclude that ERk,j ∩B
(0)
i can be covered by γ−Nβ1 closed balls {B̂(N)

` } of radius γN/k for any N ≥ 1,
which implies that

Hβ∞(ERk,j ∩Bi) ≤ Cn,m
∑
`

diam(B̂
(N)
` )β ≤ Cn,mγ−Nβ1(γN/k)β ≤ CγN(β−β1).

Since β1 ∈ (m,β), letting N →∞ we conclude that

Hβ∞(ERk,j ∩B
(0)
i ) = 0 for all i, j, k,R,

concluding the proof. �

In our study of 4-homogeneous blow-ups, we will need a variant of the previous results involving zero
sets of 4-homogeneous harmonic polynomials instead of hyperplanes (recall Definition 6.11).

Lemma 7.4. Given β1 > n − 2, there exists ε̂ = ε̂(n, β1) > 0 such that the following holds: Let E ⊂ Rn
satisfy

E ⊂ B1 ∩ S(p, ε), for some 0 < ε ≤ ε̂, p ∈ Peven4,≥ .

Then E can be covered with γ−β1 balls of radius γ centered at points of E, for some γ = γ(n, β1) ∈ (0, 1).

Proof. Given t, ε > 0 small, consider the covering of E ⊂ B1 ∩ {y : dist(y,S(p, ε)) ≤ t} given by

{Bt(x)}x∈E . By Vitali’s lemma, there exists a disjoint family {Bt(xi)}i∈I such that⋃
i∈I

B5t(xi) ⊃
⋃
x∈E

Bt(x) ⊃ E.

Note that, since xi ∈ E,

Bt(xi) ⊂ N2t(S(p, ε)) := {x ∈ B2 : dist(x,S(p, ε)) ≤ 2t}.
We claim that there exists a dimensional constant C(n) such that, for any given t ∈ (0, 1), there is εt > 0
such that

Hn
(
N2t(S(p, ε))

)
≤ C(n)t2 ∀ ε ∈ (0, εt). (7.3)

Indeed, if not, then for arbitrarily large M there would exist some tM ∈ (0, 1) and sequences εk ↓ 0 and
pk ∈ Peven4,≥ such that

Hn
(
N2tM (S(pk, εk))

)
≥Mt2M ∀ k ≥ 1. (7.4)

Now, given p ∈ P even4,≥ which is even with respect to the hyperplane {e · x = 0} and nonnegative on it, let
us define

z(p) := {p = 0} ∩ {e · x = 0}.
Notice that, by definition of S(p, ε), for all p ∈ P even4,≥ we have

S(p, ε) ↓ z(p) as ε ↓ 0. (7.5)

In addition, for all x ∈ z(p), we have that e · ∇p(x) = 0 (since p is even with respect {e · x = 0}).
Furthermore, the tangential gradient vanishes at x ∈ z(p) (since p ≥ 0 on {e · x = 0} and p(x) = 0).
Hence, this proves that

z(p) ⊂ {p = |∇p| = 0}. (7.6)
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Let pk be even with respect to ek ∈ Sn−1, and assume without loss of generality that pk → p∞ ∈ Peven4,≥
and that ek → e∞. Then it follows by (7.5) that, for all δ > 0, there exists kδ such that

N2tM (S(pk, εk)) ⊂ {x ∈ B2 : dist(x, z(p∞)) ≤ 2tM + δ}, ∀ k ≥ kδ.
Recalling (7.4), this implies that

Hn
({
x ∈ B2 : dist(x, z(p∞)) ≤ 2tM

})
≥Mt2M .

On the other hand, [NV17, Theorem 1.1] implies the existence of a dimensional constant C(n) such that

Hn
({
x ∈ B2 : dist(x, {u = |∇u| = 0}) ≤ 2t

})
≤ C(n)t2 ∀ t ∈ (0, 1)

for every nonzero harmonic function u in B4. Recalling (7.6), we obtain a contradiction by choosing
M > C(n).

Now, denoting by ωn the volume of the n-dimensional unit ball, given t ∈ (0, 1), thanks to (7.3) we have

ωn t
n #I ≤

∑
i∈I
Hn(Bt(xi)) ≤ Hn(N2t(S(p, ε)) = C(n)t2 ∀ ε ∈ (0, εt),

which proves that #I ≤ C(n)t2−n. Set γ := 5t. Since β1 > n − 2, choosing t sufficiently small we have
C(n)t2−n = C(n)5n−2γ2−n ≤ γ−β1 , proving that E can be covered by γ−β1 open balls of radius γ centered
at points of E whenever ε < ε̂ := εt. �

Proposition 7.5. Let E ⊂ Rn be a measurable set, and τ : E → R a lower-semicontinuous function.
Assume that, for any ε > 0 and x ∈ E, there exists % = %(x, ε) > 0 such that, for all r ∈ (0, %), we have

E ∩Br(x) ∩ τ−1
(
[τ(x),+∞)

)
⊂
{
x+ ry : y ∈ S(px,r, ε)

}
for some px,r ∈ Peven4,≥ . Then dimH(E) ≤ n− 2.

Proof. Given β > n−2, we need to prove that Hβ(E) = 0. Let ε > 0 be a small constant to be fixed later,
and for any k > 1 define

Ek := {x ∈ E : ρ(x) ≥ 1/k}.
Since E = ∪kEk, it suffices to prove that Hβ(Ek) = 0 for each k. So, we fix k > 1. Thanks to [Fed69,
Corollary 2.10.23], it suffices to prove that Hβ(K) = 0 for any compact set K contained inside Ek.

We now claim the following: For each closed ball Br(x) centered at a point x ∈ E and of radius r ≤ 1/k,

there exist x̄ ∈ K ∩Br(x) and px̄,2r ∈ Peven4,≥ such that

K ∩Br(x) ⊂ x̄+ rS(px̄,r, ε).

To prove this claim it suffices to observe that it is trivially true if K∩Br(x) is empty. Otherwise, the lower

semicontinuous function τ attains its minimum at some point x̄ ∈ K ∩ Br(x). Then, by the assumption
of the lemma,

K ∩Br(x) = K ∩Br(x) ∩ τ−1
(
[τ(x̄),∞)

)
⊂ E ∩B2r(x̄) ∩ τ−1

(
[τ(x̄),∞)

)
⊂ x̄+ rS(px̄,r, ε),

which proves the claim.

Now, consider the covering {B1/k(x)}x∈K , and extract a finite subcovering of closed balls B
(0)
1 , . . . , B

(0)
M .

Inside each ball B
(0)
i we can apply the claim to deduce that

K ∩B(0)
i ⊂ x̄i + rS(px̄i,r, ε).

Applying now Lemma 7.4 we deduce that, for each fixed i, the set K ∩ B(0)
i can be covered with γ−β1

closed balls B̂
(1)
1 , . . . , B̂

(1)

γ−β1
of radius γ/k centered at points of E. In each of these balls we now reapply

the claim to deduce that

K ∩ B̂(1)
` ⊂ x̄

(1)
` +

γ

k
S(p

x̄
(1)
` , γ

k

, ε).

Thus we can apply again Lemma 7.4 (rescaled) to cover, for each `, the set K ∩ B̂(1)
` with γ−β1 closed

balls. In this way we obtain a new covering of K ∩ B(0)
i by γ−2β1 closed balls B̂

(2)
1 , . . . , B̂

(2)

γ−2β1
of radius
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γ2/k centered at points of E. Iterating this construction, we conclude that K ∩ B(0)
i can be covered by

γ−Nβ1 closed balls {B̂(N)
` } of radius γN/k for any N ≥ 1, which implies that

Hβ∞(K ∩Bi) ≤ Cn,m
∑
`

diam(B̂
(N)
` )β ≤ Cn,mγ−Nβ1

(
γN

k

)β
≤ CγN(β−β1).

Since β1 ∈ (n− 2, β), letting N →∞ we conclude that

Hβ∞(K ∩B(0)
i ) = 0 for all i = 1, 2, . . . ,M.

This proves that Hβ∞(K) = 0 and therefore Hβ(K) = 0 (see [Sim83, Section 1]), concluding the proof. �

We will also use the following basic result about Hausdorff measures. We refer to [Fed69, 2.10.19(2)]
and [FS19, Lemma 3.5] for a proof of such result; see also [Whi97, Lemma 2.4].

Lemma 7.6. Let E ⊂ Rn be a set satisfying Hβ∞(E) > 0 for some β ∈ (0, n]. Then:

(a) For Hβ-almost every point x◦ ∈ E, there is a sequence rk ↓ 0 such that

lim
k→∞

Hβ∞(E ∩Brk(x◦))

rβk
≥ cn,β > 0, (7.7)

where cn,β is a constant depending only on n and β. We call these points “density points”.
(b) Assume that 0 is a “density point”, let rk ↓ 0 be a sequence along which (7.7) holds, and define the

“accumulation set” for E at 0 along rk as

A = AE :=
{
z ∈ B1 : ∃ (z`)`≥1, (k`)`≥1 s.t. z` ∈ r−1

k`
E ∩B1 and z` → z

}
.

Then Hβ∞(A) > 0.

The last main result of this section is the following covering-type result that will play a crucial role in
the understanding of the generic size of the singular set, and in particular in the proof of Theorem 1.1.
Notice that, when k = 1, β is an integer, and π1(E) is β-rectifiable, then the result follows from the coarea
formula; see also Eilenberg’s inequality [BZ80, 13.3].

Proposition 7.7. Let E ⊂ Rn × [−1, 1], let (x, t) denote a point in Rn × [−1, 1], and let π1 : (x, t) 7→ x
and π2 : (x, t) 7→ t be the standard projections. Assume that for some β ∈ (0, n] and s > 0 we have:

• Hβ
(
π1(E)

)
< +∞;

• For any (x◦, t◦) ∈ E there exists a modulus of continuity ωx◦,t◦ : R+ → R+ such that{
(x, t) ∈ B%(x◦)× [−1, 1] : t− t◦ > ωx◦,t◦(|x− x◦|)|x− x◦|s

}
∩ E = ∅.

Then:

(a) If β ≤ s, we have Hβ/s
(
π2(E)

)
= 0.

(b) If β > s, for H1-a.e. t ∈ R we have Hβ−s
(
E ∩ π−1

2 ({t})
)

= 0.

Proof. Fix ε > 0 be arbitrarily small. We decompose E =
⋃
i≥1Ei as

E1 :=
{

(x◦, t◦) ∈ E : ωx◦,t◦(1) < ε
}
,

Ei :=
{

(x◦, t◦) ∈ E : ωx◦,t◦(2
−i+1) < ε ≤ ωx◦,t◦(2−i+2)

}
, for i ≥ 2.

Fix i ≥ 1 and note that, if (x1, t1) and (x2, t2) belong to Ei, then

{(x, t) ∈ B2−i × (−1, 1) : t− tj > ε|x− xj |s} ∩ E = ∅, j = 1, 2. (7.8)

Hence, by triangle inequality,

x1, x2 ∈ Ei, |x1 − x2| ≤ 2−i ⇒ |t1 − t2| ≤ ε|x1 − x2|s. (7.9)

In particular, since the sets {Ei} give a partition of E, it follows from (7.9) that the projection π1 : E → Rn
is injective, and thus the sets π1(Ei) are disjoint.
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Now, by definition of Hβ
(
π1(Ei)

)
, there is countable collection of balls {B`} such that π1(Ei) ⊂ ∪`B`,

with

diam(B`) < 2−i and
∑
`

diam(B`)
β < Hβ

(
π1(Ei)

)
+ 2−i. (7.10)

Then, thanks to (7.9), we see that Ei can be covered by the family of cylinders

Fi :=
{
C` := B` × (t` − εdiam(B`)

s, t` + εdiam(B`)
s)
}

for some suitable t` ∈ (−1, 1).

Let us show (a). Since {π2(C`)} is a covering of π2(Ei) made of intervals of length 2εdiam(B`)
s, we

have

Hβ/s∞ (π2(Ei)) ≤ (2ε)β/s
∑
`

diam(B`)
β ≤ (2ε)β/s

(
Hβ
(
π1(Ei)

)
+ 2−i

)
.

Summing over i ≥ 1 we obtain

Hβ/s∞ (π2(E)) ≤ (2ε)β/s
(
Hβ
(
π1(E)

)
+ 1
)
,

and (a) follows from the arbitrariness of ε.

To show (b), following the same notation as above, we define the function

Ni(t, j) = #
{
C` ∈ Fi : diam(B`) ∈ (2−j−1, 2−j), t ∈ (t` − εdiam(B`)

s, t` + εdiam(B`)
s)
}
.

Let Ii,j denote the set of indices ` such that C` ∈ Fi and diam(B`) ∈ (2−j−1, 2−j). Then we can rewrite
Ni(t, j) as

Ni(t, j) =
∑
`∈Ii,j

χ(t`−εdiam(B`)s,t`+εdiam(B`)s)(t).

Hence, integrating over [−1, 1] we get∫ 1

−1
Ni(t, j) dt ≤

∑
`∈Ii,j

2εdiam(B`)
s ≤ 2ε(2−j)s #Ii,j ,

therefore, multiplying this estimate by (2−j)β−s and summing over j, we obtain (recall (7.10))∫ 1

−1

∑
j

(2−j)β−sNi(t, j) dt = 2ε
∑
j

(2−j)β #Ii,j ≤ 21+βε
∑
C`∈Fi

diam(B`)
β ≤ 21+βε

(
Hβ
(
π1(Ei)

)
+ 2−i

)
.

(7.11)

We now consider the functions fi,ε(t) :=
∑

j(2
−j)β−sNi(t, j) (note that the covering used to define Ni(t, j)

depends on ε), and fε(t) :=
∑

i fi,ε(t). Then, summing (7.11) over i, we have∫ 1

−1
fε(t) dt ≤ 21+βε

(
Hβ
(
π1(E)

)
+ 1
)
,

and it follows by Chebyshev inequality

H1(Xε) ≤ 21+βε1/2
(
Hβ
(
π1(E)

)
+ 1
)
, where Xε := {t ∈ (−1, 1) : fε(t) > ε1/2}.

Set X := ∩∞M=1XM , where XM := ∪∞k=MX
2−2k

. Then

H1(XM ) ≤
∞∑

k=M

21+β2−k
(
Hβ
(
π1(E)

)
+ 1
)
≤ 21+β21−M(Hβ(π1(E)

)
+ 1
)
,

therefore H1(X) = 0.



GENERIC REGULARITY OF FREE BOUNDARIES FOR THE OBSTACLE PROBLEM 55

Also, for any t ∈ [−1, 1] \ X, there exists Mt such that t ∈⊂ [−1, 1] \ XM ⊂ [−1, 1] \ X2−2M
for any

M ≥Mt. Therefore, considering the covering associated to ε = 2−2M , we get

Hβ−s∞
(
π1(E) ∩ π−1

2 ({t})
)
≤
∑
i

Hβ−s∞
(
π1(Ei) ∩ π−1

2 ({t})
)

≤
∑
i

∑
j

(2−j)β−sNi(t, j) = f2−2M (t) ≤ 2−M ∀M ≥Mt.

This proves that Hβ−s∞
(
π1(E) ∩ π−1

2 ({t})
)

= 0 for all t ∈ [−1, 1] \X, as wanted. �

As an immediate consequence of Proposition 7.7, we get:

Corollary 7.8. Let E ⊂ Rn × [−1, 1], let (x, t) denote a point in Rn × [−1, 1], and let π1 : (x, t) 7→ x and
π2 : (x, t) 7→ t be the standard projections. Assume that, for some β ∈ (0, n] and s > 0, we have:

• dimH
(
π1(E)

)
≤ β;

• For all (x◦, t◦) ∈ E and ε > 0, there exists % = %x◦,t◦,ε > 0 such that{
(x, t) ∈ B%(x◦)× [−1, 1] : t− t◦ > |x− x◦|s−ε

}
∩ E = ∅.

Then:

(a) If β < s, we have dimH
(
π2(E)

)
≤ β/s.

(b) If β ≥ s, for H1-a.e. t ∈ R we have dimH
(
E ∩ π−1

2 ({t})
)
≤ β − s.

8. Dimension reduction results

This section is concerned with bounding the Hausdorff dimension of the differences of the subsets of
Σn−1 defined in (6.2). Note that we have the chain of inclusions

Σ ⊃ Σn−1 ⊃ Σ≥3
n−1 ⊃ Σ3rd

n−1 = Σ>3
n−1 ⊃ Σ≥4

n−1 ⊃ Σ4th
n−1 = Σ>4

n−1 ⊃ Σ≥5−ζ
n−1 , (8.1)

where the two equalities in such chain of inclusions follow from Propositions 4.15 and 5.8.
For 0 ≤ m ≤ n− 2, we simply consider the sets

Σm ⊃ Σ≥3
m = Σ3rd

m , 0 ≤ m ≤ n− 2,

as this suffices for our purposes. Recall that, by Proposition 3.9(a), we have Σm \Σa
m = Σ≥3

m = Σ3rd
m .

Our goal is to show that dimH(π1(Σ\Σ≥5−ζ
n−1 )) ≤ n−2 for any ζ ∈ (0, 1), where π1 denotes the canonical

projection π1 : (x, t) 7→ x. For this, using the tools developed in the previous sections, in the next lemmas
we bound the size all the differences between consecutive sets of the previous chain of inclusions.

Proposition 8.1. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1). Then:

(a) dimH
(
π1(Σa

m)
)
≤ m− 1 for 1 ≤ m ≤ n− 2 (π1(Σa

m) is discrete if m = 1).

(b) dimH
(
π1(Σ<3

n−1)
)
≤ n− 3 (π1(Σ<3

n−1) is countable if n = 3).
(c) For any % ∈ (0, 1):

- if m ≤ n− 2 then π1

(
Σm \Σa

m

)
∩Bρ is covered by a C1,1 m-dimensional manifold;

- π1

(
Σ≥3
n−1

)
∩Bρ is covered by a C1,1 (n− 1)-dimensional manifold.

Proof. (a) We need to prove that, for any β > m − 1, the set π1(Σa
m) has zero Hβ measure. Assume by

contradiction that

Hβ
(
π1(Σa

m)
)
> 0.

Then, by Lemma 7.6, there exists a point (x◦, t◦) ∈ Σa
m —which we assume for simplicity to be (x◦, t◦) =

(0, 0)—, a sequence rk ↓ 0, and a set A ⊂ B1 with Hβ
(
A
)
> 0, such that for every point y ∈ A there is a

sequence (xk, tk) in Σa
m such that xk/rk → y.

Let w = u( · , 0) − p2, wr = w(r · ), w̃r = wr/H(1, wr)
1/2. Then, thanks to Proposition 3.9, up to

extracting a subsequence we have

w̃rk ⇀ q in W 1,2
loc (Rn), (8.2)
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where q is λ2nd-homogeneous harmonic function. By definition of Σa
m we have λ2nd = 2, and thus q is a

quadratic harmonic polynomial satisfying (3.11).
Thanks to Lemma 6.4 we have A ⊂ {q = 0} ∩ {p2 = 0}. Therefore, since Hβ

(
A
)
> 0, the polynomial

q vanishes in a subset of dimension β > m − 1 of the m-dimensional linear space {p2 = 0}. The only
possibility is that q ≡ 0 on {p2 = 0}, and then (3.11) implies q ≡ 0; a contradiction since H(1, q) = 1.

We note that in the case m = 1 the same proof gives that Σa
1 cannot have accumulation points, i.e., it

must be a discrete set.

(b) We apply Proposition 7.3 to the set π1(Σ<3
n−1) with the function f : π1(Σ<3

n−1)→ [0,∞) defined by

f(x◦) := φ
(
0+, u( · , τ(x◦))− p2,x◦,τ(x◦)

)
, with τ(x◦) := min

{
t ∈ [−1, 1] : (x◦, t) ∈ Σ

}
.

Note that, by Lemma 6.2(c), we have φ
(
0+, u( · , t) − p2,x◦,t

)
= f(x◦) for every t such that (x◦, t) ∈ Σ.

Also, by Proposition 3.9 (b) and the definition of Σ<3
n−1, we have f(x◦) ∈ [2 + α◦, 3).

To obtain the result, thanks to Proposition 7.3, it suffices to show the following property: for all
x◦ ∈ π1(Σ<3

n−1) and for all ε > 0 there exists % = %(x◦, ε) > 0 such that

Br(x◦) ∩ π1(Σ<3
n−1) ∩ f−1([f(x◦)− %, f(x◦) + %]) ⊂ {y : dist(y,Πx◦,r) ≤ εr} ∀ r ∈ (0, %),

where Πx◦,r is a (n− 3)-dimensional plane passing through x◦.
With no loss of generality we can assume that (x◦, t◦) = (0, 0), and we prove this statement by con-

tradiction. If such % > 0 did not exist for some ε > 0, then we would have sequences rk ↓ 0 and

x
(j)
k ∈ π1(Σ<3

n−1) ∩Brk , 1 ≤ j ≤ n− 2, such that

y
(j)
k := x

(j)
k /rk → y(j)

∞ ∈ B1, dim
(
span(y(1)

∞ , y(2)
∞ , . . . , y(n−2)

∞ )
)

= n− 2, |f(x
(j)
k )− f(0)| ↓ 0.

Let w = u( · , 0) − p2, wr = w(r · ), w̃r = wr/H(1, wr)
1/2. It follows by Proposition 3.9 that (8.2) holds,

where q is a λ2nd-homogeneous solution of the Signorini problem (3.12). Also, since we are supposing that
(0, 0) ∈ Σ<3

n−1, we have λ2nd ∈ [2 + α◦, 3).

Applying then Lemma 6.5 to the sequences
(
x

(j)
k , τ(x

(j)
k )
)

we deduce that q is translation invariant in
the n− 2 independent directions

y(1)
∞ , y(2)

∞ , . . . , y(n−2)
∞ ∈ {p2 = 0}.

As a consequence q is a two dimensional λ2nd-homogeneous solution of Signorini, with λ2nd ∈ [2 + α◦, 3).
However, it follows from Lemma A.2 that 2D homogeneous solutions of Signorini have homogeneities
{1, 2, 3, 4, . . . } ∪ {1 + 1

2 , 3 + 1
2 , 5 + 1

2 , 7,+
1
2 , . . . }, impossible.

Note finally that, when n = 3, the same argument (but using Lemma 7.1 in place of Proposition 7.3)
implies that Σ<3

n−1 is at most countable.

(c) We prove the statement for the maximal stratum Σ≥3
n−1; the proof for Σm \Σa

m = Σ≥3
m is analogous.

Given x◦ ∈ π1(Σ≥3
n−1), set Px◦ := p2,x◦,τ(x◦)( · −x◦). We claim that, for every pair x◦, x ∈ π1(Σ≥3

n−1)∩B%,
we have

|DkPx◦(x)−DkPx(x)| ≤ C|x− x◦|3−k for k = 0, 1, 2. (8.3)

Indeed, note that for all x̂ ∈ π1(Σ≥3
n−1) ∩ B% we have φ(0+u(x̂ + · , τ(x̂)) − p2,x̂,τ(x̂)) ≥ 3. Thus, by

Lemma 3.6, ∥∥u(x̂+ · , τ(x̂))− p2,x̂,τ(x̂)

∥∥
L∞(Br)

≤ C(n, %)r3 ∀ r ∈ (0, 1−%
2 ),

therefore, applying this bound both to x̂ = x◦ and x̂ = x, we get

|u( · , τ(x◦))− Px◦ | ≤ Cr3 in Br(x◦) and |u( · , τ(x))− Px| ≤ Cr3 in Br(x).

Choosing r = 2|x − x◦|, and assuming without loss of generality that τ(x◦) ≤ τ(x), since u( · , τ(x◦)) ≤
u( · , τ(x)) we obtain

Px◦ − Px ≤ Cr3 + u( · , τ(x◦))− u( · , τ(x)) ≤ Cr3 in Br(x◦) ∩Br(x).

Noticing that Px◦ − Px is a harmonic quadratic polynomial that vanishes at some point x̂ in the segment
joining x◦ to x, as a consequence of the above upper bound we easily deduce that

‖Px◦ − Px‖L∞(B4r(x̂)) ≤ Cr3,
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and since the L∞(B1) and the C3(B1) norm are equivalent on space of quadratic polynomials, (8.3) holds.
Then, applying Whitney’s extension theorem (see [Fef09] or [FS19, Lemma 3.10]) we obtain a C2,1

function F : B1 → R satisfying

F (x) = Px◦(x) +O(|x◦ − x|3)

for all x◦ ∈ π1(Σ≥3
n−1)∩B%. In particular π1(Σ≥3

n−1) ⊂ {∇F = 0} and D2F (x◦) = D2p2,x◦,τ(x◦)(0) has rank
one (recall that (x◦, τ(x◦)) ∈ Σn−1). Hence, by the implicit function theorem, we find that {∇F = 0} is
a C1,1 (n− 1)-dimensional manifold in a neighborhood of x◦. �

As a consequence of the previous result, we get the following:

Corollary 8.2. Let n = 3, let u ∈ C0
(
B1×[−1, 1]

)
solve (6.1), and assume that u(x, t′) > u(x, t) whenever

t′ > t and u(x, t) > 0. Then, for all but a countable set of singular points (x◦, t◦), we have

‖u(x◦ + · , t◦)− p2,x◦,t◦‖L∞(Br) ≤ Cr
3 ∀ r ∈

(
0, 1−|x◦|

2

)
,

where C depends only on n and 1− |x◦|.

Proof. On the one hand, since n = 3, Proposition 8.1 implies that Σm \ Σ≥3
m is a countable set for

m = 0, 1, 2.6 On the other hand, for (x◦, t◦) ∈ Σ≥3
m , setting ρ = 1−|x◦|

2 and applying Lemma 3.6 to the

function w = ρ−2u(x◦ + ρ · , t◦)− p2,x◦,t◦ (note that then φ(0+, w) ≥ 3) we obtain(
ρ

r

)6

≤ H(w, ρ)

H(w, r)
.

Therefore, using Lemma 3.7, we obtain

‖w‖L∞(Br) ≤ C(n)H(w, 2r)1/2 ≤ C(n)
H(w, ρ)1/2

ρ3
r3,

as desired. �

Proposition 8.3. Let u ∈ C0
(
B1× [−1, 1]

)
solve (6.1). Then π1

(
Σ≥3
n−1\Σ3rd

n−1

)
is contained in a countable

union of (n− 2)-dimensional Lipschitz manifolds.

Proof. For any (x◦, t◦) ∈ Σ≥3
n−1\Σ3rd

n−1 we apply Lemma 6.6 to u(x◦+ · , t◦+ · ) to find a (n−2)-dimensional
linear subspace Lx◦,t◦ and %x◦,t◦ > 0 such that

π1

(
Σ≥3
n−1

)
∩Br(x◦) ⊂ x◦ + Lx◦,t◦ +Br for all r ∈ (0, %x◦,t◦).

Write Σ≥3
n−1 \Σ3rd

n−1 =
⋃
j Ej , where

Ej :=
{

(x◦, t◦) ∈ Σ≥3
n−1 \Σ3rd

n−1 : %x◦,t◦ > 1/j
}
.

Note that, for any (x◦, t◦) ∈ Ej , the set π1

(
Σ≥3
n−1

)
∩B1/j(x◦) is contained inside the cone{

x ∈ B1/j(x◦) : dist

(
x− x◦
|x− x◦|

, x◦ + Lx◦,t◦

)
≤ 1

}
,

which implies (by a classical geometric argument) that the set π1

(
Ej
)
∩B1/2 can be covered by a 1-Lipschitz

(n−2)-dimensional manifold. The result follows by taking the union of these manifolds over all j ∈ N. �

Lemma 8.4. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1). Then:

(a) dimH
(
π1(Σ>3

n−1 \Σ≥4
n−1)

)
≤ n− 2 (countable if n = 2).

(b) dimH
(
π1(Σ>4

n−1 \Σ≥5−ζ
n−1 )

)
≤ n− 3 (countable if n = 3).

6Note that, as a consequence of [Caf98], points in Σ0 are always isolated and u is strictly positive in a neighborhood of
them.
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Proof. (a) The proof is similar to the one of Proposition 8.1(b). Indeed, we apply Proposition 7.3 to the

set π1(Σ>3
n−1 \Σ≥4

n−1) with the function f : π1(Σ>3
n−1 \Σ≥4

n−1)→ [0,∞) defined as

f(x◦) := φ
(
0+, u( · , τ(x◦))−Px◦,τ(x◦)

)
, where τ(x◦) := min

{
t ∈ [−1, 1] : (x◦, t) ∈ Σ

}
. (8.4)

By Lemma 6.2 (c) we have φ
(
0+, u( · , t)−Px◦,t

)
= f(x◦) for every t such that (x◦, t) ∈ Σ. Moreover, by

definition of Σ>3
n−1 \Σ≥4

n−1, we have f(x◦) ∈ (3, 4). Then, thanks to Proposition 7.3, it is enough to show

that for all x◦ ∈ π1(Σ>3
n−1 \Σ≥4

n−1) and for all ε > 0 there exist % = %(x◦, ε) > 0, and a (n− 2)-dimensional
plane Πx◦ passing through x◦, such that

Br(x◦) ∩ π1(Σ>3
n−1 \Σ≥4

n−1) ∩ f−1([f(x◦)− %, f(x◦) + %]) ⊂ {y : dist(y,Πx◦) ≤ εr} ∀ r ∈ (0, %).

Assuming (x◦, t◦) = (0, 0) and arguing by contradiction, we find sequences rk ↓ 0 and x
(j)
k ∈ π1(Σ>3

n−1 \
Σ≥4
n−1) ∩Brk , 1 ≤ j ≤ n− 1, such that

y
(j)
k := x

(j)
k /rk → y(j)

∞ ∈ B1, dim
(
span(y(1)

∞ , y(2)
∞ , . . . , y(n−1)

∞ )
)

= n− 1, |f(x
(j)
k )− f(0)| ↓ 0.

Setting w = u( · , 0) −P, wr = w(r · ), w̃r = wr/H(1, wr)
1/2, it follows by Proposition 4.12(a) that (8.2)

holds, where q is a λ3rd-homogeneous solution of the Signorini problem (3.12) with λ3rd ∈ (3, 4) (recall

that (0, 0) ∈ Σ>3
n−1 \Σ≥4

n−1). Also, applying Lemma 6.8 to the sequences
(
x

(j)
k , τ(x

(j)
k )
)
, we deduce that q

is translation invariant in the n− 1 independent directions

y(1)
∞ , y(2)

∞ , . . . , y(n−1)
∞ ∈ {p2 = 0}.

Thus q is a 1D λ3rd-homogeneous solution of Signorini, with λ3rd ∈ (3, 4), and this is impossible by
Lemma A.1.

Finally, when n = 2, the same argument (using Lemma 7.1 instead of Proposition 7.3) implies that

Σ>3
n−1 \Σ≥4

n−1 is at most countable.

(b) The proof is completely analogous to the one of part (a), using Lemmas 6.10 and A.2 instead of
Lemmas 6.8 and A.1. �

Remark 8.5. Notice that the difference between parts (a) and (b) in the previous Lemma comes from
the fact that there exist 2D solutions to the Signorini problem with homogeneity 3 + 1

2 ∈ (3, 4), while
there is no such solution with homogeneity in the interval (4, 5). Hence, using the exact same proof as

above, one can show that dimH
(
π1(Σ>3

n−1 \Σ
≥7/2
n−1 )

)
≤ n − 3, where we define Σ

≥7/2
n−1 as the set at which

φ(0+, u−P) ≥ 7/2.

With the aid of Lemmas 7.4 and 7.5, we can next prove the following:

Lemma 8.6. Let u ∈ C0
(
B1 × [−1, 1]

)
solve (6.1). Then

dimH
(
π1(Σ≥4

n−1 \Σ4th
n−1)

)
≤ n− 2.

Proof. Define τ : π1(Σ)→ [−1, 1] as in (8.4) and note that, by Lemma 6.2, it is lower semicontinuous.

Hence, thanks to Lemma 7.5, it suffices to prove that, for any given ε > 0 and (x◦, τ(x◦)) ∈ Σ≥4
n−1\Σ4th

n−1,
there exists % = %(x◦, ε) > 0 such that

Σ ∩Br(x◦)× [τ(x◦), 1) ⊂
{
x◦ + ry : y ∈ S(px◦,r, ε)

}
∀ r ∈ (0, %), (8.5)

for some px◦,r ∈ Peven4,≥ . This follows from Lemma 6.12 applied to u(x◦ + · , τ(x◦) ), since by monotonicity

Σ ∩ π−1
2

(
[τ(x◦), 1]

)
⊂ {u(x◦ + · , τ(x◦)) = 0}.

�

We can finally prove the following:
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Theorem 8.7. Let u ∈ C0
(
B1×[−1, 1]

)
solve (6.1). There exists a set Σ∗ ⊂ Σn−1 ⊂ Σ, with dimH

(
π1(Σ\

Σ∗)
)
≤ n− 2, such that for any given ε > 0 the following holds:∥∥u(x◦ + · , t◦)−Px◦,t◦ − p4,x◦,t◦

∥∥
L∞(Br)

≤ Cr5−ε ∀ r ∈
(
0, 1

2

)
, ∀ (x◦, t◦) ∈ (Σ∗ ∩B1/2)× (−1, 1),

where C depends only on n and ε.

Proof. Recall the chain of inclusions (8.1). We have:

• Proposition 8.1 (a) and (c) ⇒ dimH( π1(Σ \Σn−1) ) ≤ n− 2,

• Proposition 8.1 (b) ⇒ dimH( π1(Σn−1 \Σ≥3
n−1) ) ≤ n− 3,

• Proposition 8.3 ⇒ dimH( π1(Σ≥3
n−1 \Σ3rd

n−1) ) ≤ n− 2,

• Remark 6.1 ⇒ π1(Σ>3
n−1 \Σ3rd

n−1) = ∅,
• Lemma 8.4(a) ⇒ dimH( π1(Σ>3

n−1 \Σ≥4
n−1) ) ≤ n− 2,

• Lemma 8.6 ⇒ dimH( π1(Σ≥4
n−1 \Σ>4

n−1) ) ≤ n− 2,

• Lemma 8.4(b) ⇒ dimH(π1(Σ>4
n−1 \Σ≥5−ζ

n−1 )) ≤ n− 3.

Thus, if we define

Σ∗ :=
⋂
ε>0

Σ≥5−ε
n−1 ,

then dimH(π1(Σ \ Σ∗)) ≤ n − 2. Fix ε > 0, and let (x◦, t◦) ∈ (Σ∗ ∩ B1/2) × (−1, 1). By Lemmas 4.9
and 4.1 applied to w := u(x◦ + · , t◦)−Px◦,t◦ − p4,x◦,t◦ we obtain

c

(
1

r

)2(5−ε)
≤ H (1/2, w) + (1/2)2(5−ε)

H(r, w) + r2(5−ε) ,

therefore

H(r, w)1/2 ≤ C
(∫

B1/2

(
u(x◦ + · , t◦)−Px◦,t◦ − p4,x◦,t◦

)2
+ (1/2)2(5−ε)

)1/2

r5−ε ≤ C(n, ε) r5−ε.

Combining this bound with the Lipschitz estimate in Lemma 4.7, we easily conclude that∥∥u(x◦ + · , t◦)−Px◦,t◦ − p4,x◦,t◦

∥∥
L∞(Br)

=
∥∥w∥∥

L∞(Br)
≤ Cr5−ε ∀ 0 < r < 1/2.

where C depends only on n and ε. �

9. Cleaning lemmas and proof of the main results

Recall that, in all the previous sections, we only assumed that u(·, t) was nondecreasing in t. Now, in
order to conclude the proof of Theorem 1.1, we will assume the “uniform monotonicity” condition (1.2).
Note that condition (1.2) rules out the existence of connected components of the complement of the contact
set that remain unchanged for some interval of times.

The first bound involves a barrier argument that will play an important role.

Lemma 9.1. Let u : B1 × (−1, 1) → [0,∞) solve (6.1), with (0, 0) ∈ Σ and {p2 = 0} ⊂ {xn = 0}. Let p
be a polynomial satisfying ∆p = 1 and p = 0 on {xn = 0}. Assume that, for some β ≥ 0, we have

|u( · , 0)− p| ≤ Crβ in Br ∀ r ∈ (0, r◦),

and define

ψ(x) := −
n−1∑
i=1

x2
i + (n− 1)x2

n +
1

2
, ψr(x) := ψ(x/r), Dr := ∂Br ∩ {ψr > 0}.

Then, for all t ≥ 0 we have

u( · , t) ≥ p +
minDr [u( · , t)− u( · , 0)]

max∂B1 ψ
ψr − Crβ in Br ∀ r ∈ (0, r◦).
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Proof. It follows by our assumption on u that

u( · , 0)− p ≥ −Crβ ∀ r ∈
(
0, 1

2

)
. (9.1)

Set

v := p +Mψr − Crβ, with M :=
minDr [u( · , t)− u( · , 0)]

max∂B1 ψ
.

We claim that v ≤ u( · , t) on ∂Br. Indeed, since t ≥ 0, it follows by (9.1) that

v ≤ p− Crβ ≤ u( · , 0) ≤ u( · , t) on ∂Br ∩ {ψr ≤ 0}.

On the other hand, since max∂B1 ψ = maxDr ψ
r, we see that Aψr ≤ minDr [u( · , r) − u( · , 0)] on ∂Br.

Hence

v = p +Mψr − Crβ ≤ u( · , 0) +Mψr ≤ u( · , t) on Dr = ∂Br ∩ {ψr > 0},
and the claim follows.

To conclude the proof it suffices to observe that, since ψr is harmonic, we have ∆v = 1 ≥ χ{u( · ,t)>0} =
∆u( · , t). Thus, combining the claim with the maximum principle, we conclude that

v ≤ u( · , t) in Br.

�

The second result gives us a bound on the speed at which u increases in t at singular points. Note that
this speed is much better in the lower strata Σm with m ≤ n− 2 with respect to Σn−1. This is one of the
reasons why, in the previous sections, we needed to perform a very refined analysis at points in Σn−1.

Lemma 9.2. Let u : B1× (−1, 1)→ [0,∞) satisfy (6.1) and (1.2), with (0, 0) ∈ Σ and {p2 = 0} ⊂ {xn =
0}. Let Dr be defined as in Lemma 9.1.

(a) If (0, 0) ∈ Σm with m ≤ n− 2, then for all ε > 0 there exist cε, ρε > 0 such that

min
Dr

[u( · , t)− u( · , 0)] ≥ cεrεt, ∀ r ∈ (0, ρε).

(b) If (0, 0) ∈ Σn−1 \Σ≥3
n−1, there exists c, ρ > 0 such that

min
Dr

[u( · , t)− u( · , 0)] ≥ crt, ∀ r ∈ (0, ρ).

Proof. (a) Note that, by the uniform convergence of r−2u(r · , 0) to p2, given δ > 0 there exists rδ > 0 such
that

{u( · , 0) = 0} ∩Brδ ⊂ Cδ :=
{
x ∈ Rn : dist

(
x
|x| , {p2 = 0}

)
≤ δ
}
.

Denote by C̃δ := Rn \ Cδ the complementary cone, and let ψδ(x) := |x|µδΨδ(x/|x|), where Ψδ ≥ 0 is the

first eigenfunction of the spherical Laplacian in C̃δ ∩ Sn−1 with zero boundary conditions, and φδ is a
µδ-homogeneous harmonic function vanishing on the boundary of C̃δ.

Since dim({p2 = 0}) = m ≤ n− 2, the set {p2 = 0} has zero capacity and so ψδ converges to a positive
constant as δ ↓ 0. Thus µδ ↓ 0, and we can choose δ = δ(ε) > 0 such that µ2δ < ε.

We now observe that, for t ≥ 0, we have

{u( · , t) > 0} ⊃ {u( · , 0) > 0} ⊃ C̃δ ∩Brδ ⊃ C̃2δ ∩Brδ ,

and v := u( · , t)− u( · , 0) is nonnegative and harmonic in {u( · , t) > 0}. Note also that, by the maximum
principle, every connected component of {u( · , t) > 0} must have a part of its boundary on ∂B1, and thus
(1.2) and the Harnack inequality (applied to a chain of balls) imply that

v ≥ cδt in C̃2δ ∩ ∂Brδ , cδ > 0.

Hence we can use the function

v′ :=
cδψ2δ

‖ψ2δ‖L∞(∂Brδ )
t
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as lower barrier, and applying the maximum principle we obtain v − v′ ≥ 0 inside the domain C̃2δ ∩ Brδ .
Since Drδ ⊂ C̃2δ ∩Brδ , this proves that

min
Dr

[u( · , t)− u( · , 0)] = min
Dr

v ≥ min
Dr

v′ = crµ2δ t ≥ crεt ∀ r ∈ (0, rδ).

(b) After a rotation, we may assume that {p2 = 0} = {xn = 0}. By Propositions 3.9 and 3.10, we have
that {u(·, 0) > 0} ⊃ {|xn| ≤ C|x′|1+α◦} in a neighborhood of the origin, where x = (x′, xn) and α◦ > 0.
In particular, there exists a C1,α◦ domain Ω contained inside {u(·, 0) > 0} and satisfying 0 ∈ ∂Ω. By
monotonicity of u in t, the same domain Ω is contained in {u(·, t) > 0} for t > 0.

Hence, the function v := u(·, t)−u(·, 0) is positive and harmonic in Ω, and by assumption (1.2) we have
—as in the proof of (a)— that v ≥ c1t > 0 in a small ball B ⊂⊂ Ω. Using Hopf’s lemma in C1,α domains,
we deduce that ∂xnv(0) ≥ c2t > 0, and the result follows. �

We can now prove the following key result:

Lemma 9.3. Let u : B1× (−1, 1)→ [0,∞) satisfy (6.1) and (1.2), let α◦ > 0 be given by Proposition 3.9,
and let Σ∗ ⊂ Σn−1 be given by Theorem 8.7.

(a) If (0, 0) ∈ Σa
m and m ≤ n− 2, then for all ε > 0 there exists % > 0 such that{

(x, t) ∈ B% × (0, 1) : t > |x|2−ε
}
∩ {u = 0} = ∅.

(b) If (0, 0) ∈ Σm \Σa
m, m ≤ n− 2, then for all ε > 0 there exists % > 0 such that{

(x, t) ∈ B% × (0, 1) : t > |x|3−ε
}
∩ {u = 0} = ∅.

(c) If (0, 0) ∈ Σ<3
n−1, then there exist C, % > 0 such that{

(x, t) ∈ B% × (0, 1) : t > C|x|1+α◦
}
∩ {u = 0} = ∅.

(d) If (0, 0) ∈ Σ>3
n−1, then there exist δ, % > 0 such that{

(x, t) ∈ B% × (0, 1) : t > |x|2+δ
}
∩ {u = 0} = ∅.

(e) If (0, 0) ∈ Σ∗, then for all ε > 0 there exists % > 0 such that{
(x, t) ∈ B% × (0, 1) : t > |x|4−ε

}
∩ {u = 0} = ∅.

Proof. After a rotation, we may assume {p2 = 0} ⊂ {xn = 0}. In all the following cases we will apply
Lemma 9.1 and use that ψr ≥ 1

4 in Br/2.

(a) By Lemma 9.2(a) we have, for any ε > 0,

min
Dr

[u( · , t)− u( · , 0)] ≥ cεrε/2t. (9.2)

Also, since u is C1,1, |u( · , 0)| ≤ C0r
2 in Br for all r ∈ (0, 1/2). Thus, by Lemma 9.1 applied with p ≡ 0

and β = 2,
u( · , t) ≥ c1 min

Dr
[u( · , t)− u( · , 0)]ψr − C0r

2 inBr, ∀ r ∈ (0, 1/2). (9.3)

Since ψr ≥ 1
4 in Br/2, thanks to (9.2) we deduce that

u( · , t) > 0 in Br/2 for t ≥ (r/2)2−ε,

therefore
{u = 0} ∩ {t > |x|2−ε} = ∅.

(b) Using again Lemma 9.2(a), it follows that (9.2) holds. Also, since (0, 0) ∈ Σm \Σa
m, it follows from

Proposition 3.9(a) that λ2nd ≥ 3. Hence Lemmas 3.6 and 3.7 imply that |u( · , 0)− p2| ≤ C0r
3 in Br, and

therefore Lemma 9.1 applied with p ≡ p2 and β = 3 yields

u( · , t) ≥ p2 + c1 min
Dr

[u( · , t)− u( · , 0)]ψr − C0r
3 inBr, ∀ r ∈ (0, 1/2).

Since p2 ≥ 0, one concludes as in the proof of (a).
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(c) By Lemma 9.2(b) we have
min
Dr

[u( · , t)− u( · , 0)] ≥ crt. (9.4)

Since at the maximal stratum the frequency is at least 2 + α◦ (see Proposition 3.9(b)), using Lemmas 3.6
and 3.7 we have |u( · , 0)− p2| ≤ C0r

2+α◦ in Br. Therefore, it follows from Lemma 9.1 applied with p ≡ p2

and β = 2 + α◦, that

u( · , t) ≥ p2 + c1 min
Dr

[u( · , t)− u( · , 0)]ψr − C0r
2+α◦ inBr, ∀ r ∈ (0, 1/2).

Thus, since ψr ≥ 1
4 in Br/2, thanks to (9.4) we obtain

u( · , t) > 0 in Br/2 for t ≥ C3r
1+α◦ .

(d) Again, (9.4) holds as a consequence of Lemma 9.2(b). Moreover, since (0, 0) ∈ Σ>3
n−1, thanks to

Lemma Lemma 4.7 we deduce that |u( · , 0)−P| ≤ C0r
3+2δ in Br for some δ > 0 (note that δ may depend

on the point (0, 0)). Therefore, Lemma 9.1 applied with p ≡P and β = 3 + 2δ yields

u( · , t) ≥P + c1 min
Dr

[u( · , t)− u( · , 0)]ψr − C0r
3+2δ inBr, ∀ r ∈ (0, 1/2).

Noticing that
P ≥ −C̄|x|5 in {u( · , 0) = 0} ⊂ {xn ≤ C|x′|2},

it follows from (9.4) that, for t > (r/2)2+δ and r sufficiently small,

u( · , t) ≥P + c3rt− C0r
3+δ ≥ −C̄r5 + c3rt− C0r

3+2δ > 0 in Br/2 ∩ {u( · , 0) = 0}.
Since u( · , t) ≥ u( · , 0), this proves the result.

(e) Again, (9.4) holds as a consequence of Lemma 9.2(b). Moreover, by Theorem 8.7, for every ε > 0 we

have |u( · , 0)−P − p4| ≤ C0r
5−ε/2 in Br. Then, applying Lemma 9.1 with p ≡P + p4 and β = 5− ε/2,

u( · , t) ≥P + p4 + c1 min
Dr

[u( · , t)− u( · , 0)]ψr − C0r
5−ε/2 inBr ∀ r ∈ (0, 1/2).

Also,
P + p4 ≥ −C̄|x|5 in {u( · , 0) = 0} ⊂ {xn ≤ C|x′|2}.

Thus (9.4) yields, for t > r4−ε and r small,

u( · , t) ≥P + p4 + c3rt− C0r
5−ε/2 ≥ −C̄r5 + c3rt− C0r

5−ε/2 > 0 in Br/2 ∩ {u( · , 0) = 0}.
�

The set Σ≥3
n−1 \ Σ3rd

n−1 is treated separately in the following lemma. Since in this case the 3rd order
blow-up is not harmonic, the proof is more involved. In particular, instead of proving that there are no
singular points in the “future” t > 0, we show that they do not exists in the past.

Lemma 9.4. Let u : B1 × (−1, 1)→ [0,∞) satisfy (6.1) and (1.2), with (0, 0) ∈ Σ≥3
n−1 \Σ3rd

n−1. Then{
(x, t) ∈ B1 × (−1, 0) : t < −ω(|x|)|x|2

}
∩Σ≥3

n−1 = ∅,
for some modulus a continuity ω : [0,∞)→ [0,∞).

Proof. Let w = u( · 0) − p2, wr = w(r · ). Also, with no loss of generality we assume that p2 = 1
2x

2
n. By

Proposition 5.4 we have that

‖r−3wr − q̃‖L∞(B4) ≤ δ(r) ↓ 0 for q̃(x) = |xn|
(
a

3
x2
n − x′ ·Ax′

)
+ xn

(
b

3
x2
n − x′ ·Bx′

)
, (9.5)

where x = (x′, xn), and A ∈ Rn−1×Rn−1 is symmetric, nonnegative definite, and has at least one positive
eigenvalue.

Fix η > 0, and assume by contradiction that there exists r > 0 small and t ≤ −ηr2 such that u( · , t)
has a singular point in Σ≥3

n−1 ∩Br. Under this assumption, we claim that{
xn +

b

3
x2
n = x′ ·Bx′

}
∩B2r ⊂ {u( · , t/2) = 0}, (9.6)
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where b and B are given by (9.5).
Before proving the claim, we show that it leads to a contradiction. Indeed, thanks to Proposition 3.10,

since we are assuming that u( · , t) has a singular point xr ∈ Σ≥3
n−1 with |xr| ≤ r, then for some er ∈ Sn−1

we have

{u( · , t) = 0} ∩Bρ ⊂
{
x ∈ Bρ : |er · (x− xr)| ≤ Cρ2

}
, for all ρ ∈ [r, 1]. (9.7)

Note that the hypersurface
{
xn+bx2

n = x′ ·Bx′
}
∩B2r separates the ball B2r in two connected components

B+
2r and B−2r. Also, by monotonicity, (9.6) and (9.7) hold for u( · , t′) for all t′ ∈ [t, t/2]. Hence, if we define

u+(x, t′) :=

{
u(x, t′) in B+

2r,
0 in B−2r,

u−(x, t′) :=

{
0 in B+

2r,
u(x, t) in B−2r,

then both u+( · , t′) and u−( · , t′) are solutions to the obstacle problem with a thick contact set at 0. Com-
bining this information with (9.7), it follows by [Caf77] that the free boundaries of u+( · , t′) and u−( · , t′)
are uniformly smooth hypersurface inside B3r/2, for all t′ ∈ [t, t/2]. In addition, by strict monotonic-
ity, these hypersurfaces are disjoint for any t′ < t/2. Since the free boundary of u( · , t′) is the union of
these hypersurfaces, this proves in particular that the free boundary of u( · , t) has no singular points, a
contradiction.

Thus, we are left with proving (9.6). First of all we note that, by Lemma 6.3, we have

er → en and (r−1xr) · er → 0 as r ↓ 0, (9.8)

where er is the unit vector appearing in (9.7). Furthermore, by the classical barrier argument used in
proof of Hopf’s Lemma (see for instance [Eva10, Chapter 6.4.2]), it follows from (9.7) that

u( · , 0)− u( · , t) ≥ c1|t|
(
|er · (x− xr)| − C|x− xr|2

)
+
. (9.9)

Now, given z′ ∈ B′2 ⊂ Rn−1 and c ≥ 0, we define the function

φz′,c(x) :=

(
1

2r
− n

)(
xn +

br

3
x2
n − rx′ ·Bx′

)2

+ (x′ − z′)2 + c.

Note that φz′,c ≥ c ≥ 0 and

∆φz′,c =
1

r
− 2n+O(r) + 2(n− 1) ≤ 1

r
, provided 0 < r � 1.

Also, since A ≥ 0 we have q̃(x) ≤ −xn
(
x′ ·Bx′

)
+ C|xn|3, therefore (recall (9.5))

r−3u(rx, 0)− 1

2r
x2
n = r−3wr(x) ≤ q̃(x) + δ(r) ≤ −xn

(
x′ ·Bx′

)
+ C|xn|3 + δ(r).

Thus, combining the bound above with (9.9), we get

r−3u(rx, t)− 1

2r
x2
n ≤ r−3

(
u(rx, t)− u(rx, 0)

)
− xn

(
x′ ·Bx′

)
+ C|xn|3 + δ(r)

≤ −r−3c1|t|
(
|er · (rx− xr)| − C|rx− xr|2

)
+
− xn

(
x′ ·Bx′

)
+ C|xn|3 + δ(r)

≤ −c1η
(
|er · (x− x̂r)| − Cr|x− x̂r|2

)
+
− xn

(
x′ ·Bx′

)
+ C|xn|3 + δ(r),

where we used that |t| ≥ ηr2 and we denoted x̂r =: r−1xr ∈ B1.
Recalling (9.8), this implies that

v(x) := r−3u(rx, t) ≤ 1

2r
x2
n − xn

(
x′ ·Bx′

)
− c1η|xn|+ C|xn|3 + θ(r),

for some modulus of continuity θ(r). On the other hand, for any c ≥ 0 we have

φz′,c(x) ≥ 1

2r
x2
n − nx2

n − C|xn|3 − xn
(
x′ ·Bx′

)
+ (x′ − z′)2 +O(r).
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Let now z := (z′, zn) satisfy zn + r b3z
2
n = rz′ ·Bz′, and consider a point x ∈ ∂Bs(z), where 0 < r � s� 1.

Then, since |zn| = O(r), we have (x′ − z′)2 = s2 − x2
n +O(r), and therefore

φz′,c(x) ≥ 1

2r
x2
n − (n+ 1)x2

n − C|xn|3 − xn
(
x′ ·Bx′

)
+ s2 +O(r) on ∂Bs(z).

Since, for r � s� 1,
c1η|xn|+ s2 ≥ Cx2

n + C|xn|3 + θ(r) for |xn| ≤ s,
we deduce that

v(x) = r−3u(rx, t) < φz′,c(x) on ∂Bs(z)

for all c > 0.
Now, assume there exists c∗ > 0 be such that φz′,c∗ touches v from above at some point x◦ ∈ Bs(z).

Since v < φz′,c∗ on ∂Bs(z), the contact point is inside Bs(z). Also, since ∆v = r−1 in {u(r · , t) > 0} while
∆φz′,c∗ ≤ r−1, it follows by the maximum principle that x◦ ∈ {u(r · , t) > 0}. Thus,

0 = r−3u(rx◦, t) = v(x◦) = φz′,c∗(x◦) ≥ c∗ > 0,

a contradiction. This proves that v ≤ φz′,c for all c > 0, and letting c→ 0 we obtain

0 ≤ r−3u(rz, t) = v(z) ≤ φz′,0(z) = 0.

Since z′ ∈ B′2 is arbitrary, this proves (9.6), and the lemma follows. �

We finally prove:

Theorem 9.5. Let u : B1 × (−1, 1)→ [0,∞) satisfy (6.1) and (1.2). Then:

(a) In dimension n = 2 we have dimH
(
π2(Σ)

)
≤ 1/4.

(b) In dimension n = 3 we have dimH
(
π2(Σ)

)
≤ 1/2.

(c) In dimensions n ≥ 4, for H1-a.e. t ∈ (−1, 1) we have

Hn−4
(
Σ ∩ π−1

2 ({t})
)

= 0.

In particular, for n ≤ 4, the singular set is empty for a.e. t.

Proof. First of all, as in the proof of Theorem 8.7, we have the following:

• dimH
(
π1(Σa

m)
)
≤ n− 3 for 0 ≤ m ≤ n− 2;

• dimH
(
π1(Σm \Σa

m)
)
≤ n− 2 for 0 ≤ m ≤ n− 2;

• dimH
(
π1(Σn−1 \Σ≥3

n−1)
)
≤ n− 3;

• π1(Σ≥3
n−1 \Σ3rd

n−1) is contained in a countable union of (n− 2)-dimensional Lipschitz graphs;

• π1(Σ3rd
n−1 \Σ>3

n−1) = ∅;

• dimH
(
π1(Σ>3

n−1 \Σ∗)
)
≤ n− 2;

• dimH
(
π1(Σ∗)

)
≤ n− 1.

Furthermore, thanks to Lemmas 9.3 and 9.4, we have:

• In Σa
m for 0 ≤ m ≤ n− 2, we can use Corollary 7.8 with β = n− 3 and k = 2;

• In Σm \Σa
m we can use Corollary 7.8 with β = n− 2 and k = 3;

• In Σn−1 \Σ≥3
n−1 we can use Corollary 7.8 with β = n− 3 and k = 1 + α◦;

• In Σ≥3
n−1\Σ3rd

n−1 (up to taking a countable union, and up to reversing time) we can use Proposition 7.7
with β = n− 2 and k = 2;

• In Σ>3
n−1 \Σ∗ we can use Proposition 7.7 with β = n− 2 and k = 2;

• In Σ∗ we can use Corollary 7.8 with β = n− 1 and k = 4.

Hence, combining these information, we deduce that:

• dimH
(
Σa
m ∩ π−1

2 ({t})
)
≤ n− 5 for H1-a.e. t ∈ R;

• dimH
(
(Σm \Σa

m) ∩ π−1
2 ({t})

)
≤ n− 5 for H1-a.e. t ∈ R;
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• dimH
(
Σ<3
n−1 ∩ π

−1
2 ({t})

)
≤ n− 4− α◦ for H1-a.e. t ∈ R;

• Hn−4
(
(Σ≥3

n−1 \Σ3rd
n−1) ∩ π−1

2 ({t})
)

= 0 for H1-a.e. t ∈ R;

• Hn−4
(
(Σ>3

n−1 \Σ∗) ∩ π−1
2 ({t})

)
= 0 for H1-a.e. t ∈ R;

• dimH
(
Σ∗ ∩ π−1

2 ({t})
)
≤ n− 5 for H1-a.e. t ∈ R.

Thus, part (c) is proved. Parts (a) and (b) follow exactly in the same way, but using instead Proposi-
tion 7.7(a) and Corollary 7.8(a). �

Remark 9.6. Thanks to Remark 8.5, one could actually slightly improve the estimate for the set Σ>3
n−1 \Σ∗

and show that dimH
(
(Σ>3

n−1 \Σ∗)∩ π−1
2 ({t})

)
≤ n− 4− 1

2 . However, all the other estimates are sharp (at
least with respect to the techniques introduced in this paper), and in particular we believe that it is very
unlikely that one could prove a stronger result with these techniques.

As a consequence of the previous estimates, we finally obtain our main results:

Proof of Theorems 1.1 and 1.2. The results follow immedialy from Theorem 9.5. �

Appendix A. Some results on the Signorini problem

For the convenience of the reader, in this appendix we gather some classical results on the Signorini
problem (5.1) that we use several times throughout the paper

Lemma A.1. The only 1D solutions to (5.1) that vanish at the origin are given by q(xn) = −c|xn|+ bxn,
for some c ≥ 0 and b ∈ R.

Proof. Since q = q(xn), it follows from (5.1) that q must be affine in Rn \{0}, hence q(xn) = a−c|xn|+bxn
for some a, b, c ∈ R. The condition ∆q ≤ 0 implies that c ≥ 0. Also, since q(0) = 0 we deduce that a = 0,
as desired. �

Lemma A.2. Let λ > 0, and let i denote the imaginary unit. The only 2D λ-homogeneous solutions of
(5.1) (i.e., q = q(xn, xn−1) and q(rx) = rλq(x) for every r > 0) are given by

q(xn, xn−1) = ci1−λRe(|xn|+ ixn−1)λ + bRe(xn + ixn−1)λ, if λ ∈ {1, 3, 5, ...}
q(xn, xn−1) = ciλRe(xn + ixn−1)λ + bIm(xn + ixn−1)λ, if λ ∈ {2, 4, 6, ...},
q(xn, xn−1) = cRe(xn + ixn−1)λ, if λ ∈

{
3
2 ,

7
2 ,

11
2 , ...

}
,

where c ≥ 0 and b ∈ R. In particular the set of possible homogeneities is {1, 2, 3, 4, 5, ...} ∪
{

3
2 ,

7
2 ,

11
2 , ...

}
.

Proof. A proof of this result can be found, for instance, in [FS18, Proposition A.1]; see also [GP09, Remark
1.2.7]. �

The following result is proved in [ACS08, Lemma 1].

Lemma A.3. Let q be a solution of (5.1) and assume that q(0) = 0. Let φ(·, q) be as in (2.4). Then
r 7→ φ(r, q) is monotone nondecreasing. Moreover, if I 3 r 7→ φ(r, q) ≡ λ > 0 for some open interval
I ⊂ R+, then q is λ-homogeneous.

We conclude this section with a uniqueness result.

Lemma A.4. Let qi, i = 1, 2 be two solutions of (5.1) satisfying q1 ≥ q2 in B1 and qi(0) = 0. Assume
that φ(0+, q2) > 1, or that q2 ≡ 0. Then q1 ≡ q2.

Proof. We use coordinates (x′, xn) ∈ Rn−1 × R. Assume by contradiction that q1 6≡ q2. Then, applying
Hopf’s Lemma at the origin, we deduce that ∂xn(q1 − q2)(0, 0+) > 0. Also, our assumption on q2 implies
that ∇q2(0, 0) = 0, thus ∂xnq1(0, 0+) > 0. On the other hand, the distributional Laplacian of q1 on
{xn = 0} is given by 2∂xnq1(x′, 0+). Since ∆q1 ≤ 0, this gives the desired contradiction. �
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Appendix B. Odd frequency points in the Signorini problem

The aim of this section is to show how the arguments developed in this paper (see in particular Section 5)
can be applied in the context of the Signorini problem to prove both uniqueness and nondegeneracy of
blow-ups at all points of odd frequency for solutions of the Signorini problem

∆u ≤ 0 and u∆u = 0 in B1

∆u = 0 in B1 \ {xn = 0}
u ≥ 0 on B1 ∩ {xn = 0},

(B.1)

see Theorem B.7 below. Since this was an open problem in this topic which we expect to be of interest
to a wide audience, we prefer to give a complete and self-contained proof (rather than referring to parts
of this paper) so that this appendix can become of reference for future results on the Signorini problem.

Note that this appendix extends the results of [GP09] (which were dealing only with even frequencies)
to the sets Γ2m+1(u), m ∈ N (see [GP09] for an explanation of this notation).

Since the odd part of a solution of (B.1) is harmonic, to understand the structure of the solution and
the free boundary it suffices to study even solutions, that is, u(x′, xn) = u(x′,−xn). For this reason, also
when studying global homogeneous solutions, we can restrict ourselves to even functions.

We begin by recalling Lemma 5.1: If q is a λ-homogeneous even solution of (B.1) and λ = 2m + 1 is
an odd integer, then q ≡ 0 on {xn = 0} (this result was not known before). As a consequence of this
fact and the Liouville Theorem for harmonic functions vanishing on a hyperplane7, q must be a harmonic
polynomial on each side sides of {xn = 0}.

Then, since q|{xn=0} = 0, q is even, and q is harmonic in Rn \ {xn = 0}, we deduce that

q(x′, xn) = −|xn|
(
q0(x′) + x2

nq1(x′, xn)
)
, (x′, xn) ∈ Rn−1 × R,

where q0 and q1 are polynomials. Furthermore, since ∆q ≤ 0, the polynomial q0(x′) is nonnegative.
In the sequel it will be useful to define the “trace operator” T as

q 7→ T [q] := q0. (B.2)

Since q0 ≡ 0 implies that q ≡ 0 (as a consequence the harmonicity of q outside of {xn = 0}), one easily
deduces that T is injective.

We will need a monotonicity formula that is the analogue of Lemma 5.3.

Lemma B.1. Let u : B1 → R be an even solution of (B.1) with φ(0+, u) = λ, where λ is an odd integer,
and define ur(x) := u(rx). Also, let q be any λ-homogeneous even solution of (B.1). Then, for any
% ∈ (0, 1),

d

dr

∫
∂B%

urq =
λ

r

∫
∂B%

urq −
%

r

∫
B%

ur∆q.

In particular
d

dr

(
1

rλ

∫
∂B1

urq

)
≥ 0.

Proof. We have

d

dr

∫
∂B%

urq =

∫
∂B%

x

r
· ∇urq =

%

r

∫
∂B%

∂νurq =
%

r

∫
B%

div(∇urq) =
%

r

(∫
B%

∇wr∇q +

∫
B%

∆wrq

)
=
%

r

(∫
∂B%

ur∂νq −
∫
∂B%

ur∆q +

∫
B%

∆urq

)
.

Since q is λ-homogeneous, we find that %
∫
∂B%

ur∂νq = λ
∫
∂B%

urq. Also, since q vanishes on {xn = 0} (by

Lemma 5.1) and ∆u is a measure supported on {xn = 0}, we have
∫
B%

∆urq = 0. This proves the first

statement.

7More precisely, if we consider the odd reflection of u|{xn>0}, then we obtain a global λ-homogeneous harmonic functions

in the whole space. By Liouville Theorem, this functions mush be a λ-homogeneous harmonic polynomial.
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Finally, taking % = 1 and using that −ur∆q ≥ 0 in Rn (since ∆q ≤ 0 is supported on {xn = 0}, and
ur ≥ 0 there) we obtain

d

dr

(
1

rλ

∫
∂B1

urq

)
= − 1

rλ+1

∫
∂B1

ur∆q ≥ 0.

�

As a consequence of the previous result, we deduce the following:

Proposition B.2. Let u : B1 → R be an even solution of (B.1) with φ(0+, u) = λ, where λ = 2m+ 1 is
an odd integer. Then the limit

q̃ := lim
r↓0

u(r · )
rλ

exists and it is a λ-homogeneous even solution of (B.1).

Proof. Let

q(i) = lim
r
(i)
k ↓0

1

(r
(i)
k )λ

u
r
(i)
k

, i = 1, 2,

be two accumulation points along different sequences r
(i)
k . Then, given a λ-homogeneous solution of

Signorini q, we can apply Lemma B.1 to deduce that r 7→ 1
rλ

∫
∂B1

urq has a unique limit as r → 0. In
particular this implies that ∫

∂B1

q(1)q =

∫
∂B1

q(2)q,

therefore, choosing q = q(1) − q(2), we deduce that q(1) ≡ q(2). �

The next step consists in showing the following nondegeneracy property: if φ(0+, u) = λ, then the limit
q̃ obtained in Proposition B.2 cannot be identically zero. This is the most delicate part of this appendix,
and the the proof of this fact requires a new compactness lemma and an interesting ODE type formula
obtained below.

Lemma B.3. Let u : B1 → R be an even solution of (B.1) satisfying φ(0+, u) = λ with λ odd, set
ur(x) := u(rx), and let ũr := ur/‖ur‖L2(∂B1). Given η > 0 there exists δ = δ(n, λ, η) such that, if for some
r ∈ (0, 1/2) and for some λ-homogeneous even solution q of (B.1) we have

‖ũr − q‖L∞(B2) ≤ δ,
then

ũr = 0 on {xn = 0} ∩ (B1 \B1/2) ∩
{
T [q] ≥ η

}
,

where T [q] is defined as in (B.2).

Proof. Fix z = (z′, 0) ∈ (B1 \B1/2) such that T [q](z′) ≥ η, and given c > 0 we define

φc(x) := −(n− 1)|xn|2 + |x′|2 + c.

Let % > 0 be sufficiently small (depending only on n and η) and take δ = %3. Then, for |x| = % we have

ur(z + x) ≤ q(z + x) + δ = −|xn|q0(z′) +O(%3) + δ ≤ −η|xn|+O(%3) + δ

≤ −n|xn|2 + |x|2 ≤ φc(x) ∀ c ≥ 0.
(B.3)

Since φc > q(z + · ) inside B% for c large, we can decrease c until a contact point occur inside B%. Since
φ0(0) = 0 ≤ q(z) (since z ∈ {xn = 0}), we see that such a contact point must occur for some value c∗ ≥ 0.

If c∗ = 0 then we have ur(z) ≤ φ0(0) = 0, as wanted. Hence, it suffices to show that c∗ > 0 is impossible.
Assume by contradiction that there exists c∗ > 0 such that φc∗ ≥ q(z+ · ) in B%, and φc∗(x◦) = q(z+x◦)

for some x◦ ∈ B%. By (B.3) we see that φc∗ and ur(z+ · ) must touch at an interior point, that is x◦ 6∈ ∂B%.
Also, since φc∗ is harmonic, it cannot touch ur(z + · ) at some point where it is harmonic too. Thus, x◦
must belong to {xn = 0} ∩ {ur(z + ·) = 0}. This gives 0 = ur(z + x◦) = φc∗(x◦) = |x◦|2 + c∗ > 0, a
contradiction. �
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Another fundamental tool is the following ODE-type formula.

Lemma B.4. Let u : B1 → R be an even solution of (B.1) satisfying φ(0+, u) = λ, with λ odd. Set
ur(x) := u(rx), h(r) := ‖ur‖L2(∂B1), and ũr := ur/h(r). Let q be an even λ-homogeneous solution of
(B.1), and define

ψ(r; q) :=

∫
∂B1

ũrq − 2

∫
∂B1/2

ũrq. (B.4)

Then

d

dr
ψ(r; q) = −θ(r)ψ(r; q)− 1

r

∫
B1\B1/2

ũr∆q, where θ(r) :=

(
h′(r)

h(r)
+
λ

r

)
=
(

log(h(r)/rλ)
)′
.

Proof. As in the proof of Lemma B.1, we obtain

d

dr

∫
∂B%

urq =
λ

r

∫
∂B%

urq −
%

r

∫
B%

ur∆q.

Thus, since ũr = ur/h(r), we deduce that

d

dr

∫
∂B%

ũrq =

(
− h′(r)

h(r)
+
λ

r

)∫
∂B%

ũrq −
%

r

∫
B%

ũr∆q,

and the lemma follows combining the identities for % = 1 and % = 1/2. �

In the sequel, for λ = 2m+ 1, m ∈ N, we denote

Qλ := { even λ-homogeneous solutions of (B.1) }.

Also, given f ∈ L1
loc(Rn), we define the radial symmetrization in the first (n− 1) variables as

f̂(x′, xn) :=

∫
SO(n−1)

f(Mx′, xn) dM, x = (x′, xn) ∈ Rn−1 × R, (B.5)

where the previous average is with respect to the Haar meaure of SO(n− 1).

Lemma B.5. Given λ ≥ 3 odd, there exists a unique Q ∈ Qλ satisfying

Q = Q̂ and ‖Q‖L2(∂B1) = 1. (B.6)

Moreover, for any other q ∈ Qλ we have∫
∂B1

qQ ≥ cn,λ‖q‖L2(∂B1) > 0

where cn,λ is some positive constant depending only on n and λ.

Proof. We begin by noticing that Q = Q̂ belongs to Qλ if and only if

Q(x) =

λ−1
2∑

k=0

ak|x′|λ−1−2k|xn|1+2k, a0 ≤ 0, ∆

( λ−1
2∑

k=0

ak|x′|λ−1−2kx1+2k
n

)
= 0. (B.7)

Setting r′ := |x′| and noticing that ∆Q = ∂r′r′Q+ n−2
r′ ∂r′Q+ ∂xnxnQ, we can rewrite (B.7) as

λ−3
2∑
j=0

(
aj(λ− 1− 2j)(λ− 2− 2j + n− 2) + aj+1(3 + 2j)(2 + 2j)

)
(r′)λ−3−2jx1+2j

n = 0.

Therefore, (B.7) is satisfied if and only if

aj(λ− 1− 2j)(λ− 2− 2j + n− 2) + aj+1(3 + 2j)(2 + 2j) = 0 for all j = 0, 1, . . . λ−3
2 .

This means that all the coefficients are uniquely determined (by induction over j) once a0 ≤ 0 is fixed, and
a0 < 0 is uniquely determined imposing that ‖Q‖L2(∂B1) = 1. This concludes the first part of the proof.
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To prove the second part, note that if q ∈ Qλ then q̂ ∈ Qλ (see (B.5)). We now recall that, to define
the trace operator T , we used the expansion

q(x′, xn) = −|xn|
(
q0(x′) + x2

nq1(x′, xn)
)
, so that T [q] = q0.

Since T [q] ≡ 0 implies q ≡ 0, it follows by compactness that∥∥T [q]
∥∥
L2(∂B1)

≥ c̃n,λ‖q‖L2(∂B1) ∀ q ∈ Qλ, for some cn,λ > 0.

Also
q̂(x′, xn) = −|xn|

(
q̂0(x′) + x2

nq̂1(x′, xn)
)
, that is T [q̂] = T̂ [q].

Thus, given q ∈ Qλ, since q̂ ∈ Qλ depends only on the variables r′ = |x′| and xn, it follows from the first
part of the proposition that q̂ must by a positive multiple of Q, that is, q̂ = tQ, where t ≥ cn,λ‖q‖L2(∂B1) >

0. Hence, since Q̂ = Q and using the invariance of the Haar measure dM on SO(n − 1) under the
transformation M 7→M−1, we get∫

∂B1

qQ =

∫
∂B1

qQ̂ =

∫
∂B1

dx

∫
SO(n−1)

q(x′, xn)Q(Mx′, xn) dM

=

∫
∂B1

dx

∫
SO(n−1)

q(M−1x′, xn)Q(x′, xn) dM

=

∫
∂B1

dx

∫
SO(n−1)

q(Mx′, xn)Q(x′, xn) dM =

∫
∂B1

q̂Q = t

∫
∂B1

Q2 ≥ cn,λ‖q‖L2(∂B1).

�

In the following proposition we will use the notation X � Y for X ≤ C(n, λ)Y and Y ≤ C(n, λ)X.

Proposition B.6. Let u : B1 → R be an even solution of (B.1) with φ(0+, u) = λ, where λ is an odd
integer. Suppose that ‖u‖L2(∂B1) = 1, and set ur(x) := u(rx). Then

0 < crλ ≤ ‖ur‖L2(∂B1) ≤ rλ ∀ r ∈ (0, 1],

where c depends only on n and λ.

Proof. The inequality ‖ur‖L2(∂B1) ≤ rλ follows from the fact that r−2λH(r, u) is monotone nondecreasing
since φ(r, u) ≥ λ (see [ACS08, Lemma 2]). We need to show the bound from below (the nondegeneracy).

Define
Ψ(r) := max

{
ψ(r; q) : q ∈ Qλ and ‖q‖L2(∂B1) = 1

}
, (B.8)

where ψ is given by (B.4), and let q∗r be the function at which the above maximum is attained (note Qλ is
a closed convex subset of a finite dimensional vector space). Also, let Q be as in Lemma B.5, and define
Φ(r) := ψ(r,Q). Then, as a consequence of Lemma B.4, we have

d

dr
Ψ(r) = θ(r)Ψ(r)− 1

r

∫
B1\B1/2

ũr∆q
∗
r for a.e. r > 0,

and
d

dr
Φ(r) = θ(r)Φ(r)− 1

r

∫
B1\B1/2

ũr∆Q ∀ r > 0. (B.9)

We now claim that

Ψ(r) � Φ(r) � Ψ(r)

Φ(r)
� 1 as r ↓ 0,

Indeed, the accumulation points of ũr (as r ↓ 0 and in the C0
loc(Rn) topology) belong to the unit ball of

Qλ (see [ACS08]) and therefore ũr − qr = o(1) for some qr ∈ Q. Hence, by definition of Ψ,

Ψ(r) ≥ ψ(r; qr) =

∫
∂B1

ũrqr − 2

∫
∂B1/2

ũrqr =

∫
∂B1

q2
r − 2

∫
∂B1/2

q2
r + o(1)

= (1− 2−n−1−2λ)

∫
∂B1

q2
r + o(1) ≥ 1

2
> 0.
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Note that the above computation shows also that ψ(r, q) = (1− 2−n−1−2λ)
∫
∂B1

qrq + o(1), from which it

follows that q∗r = qr + o(1) as r ↓ 0 (recall that q∗r is a maximizer in (B.8)).
Similarly, using Lemma B.5,

Φ(r) =

∫
∂B1

ũrQ− 2

∫
∂B1/2

ũrQ =

∫
∂B1

qrQ− 2

∫
∂B1/2

qrQ+ o(1)

≥ cn,λ(1− 2−n−1−2λ) + o(1) ≥
cn,λ

2
> 0,

where cn,λ is the constant from Lemma B.5. Finally, it is clear that Ψ(r) and Φ(r) are bounded by above,
so the claim is proved.

Using the expressions for d
drΨ and d

drΦ, we find

d

dr

(
Ψ(r)

Φ(r)

)
= −1

r

Ψ(r)
∫
B1\B1/2

ũr∆q
∗
r − Φ(r)

∫
B1\B1/2

w̃r∆Q

Φ(r)2

We claim that, given ε > 0, for r sufficiently small,∣∣∣∣∣
∫
B1\B1/2

ũr∆q
∗
r

∣∣∣∣∣ ≤ ε
∣∣∣∣∣
∫
B1\B1/2

ũr∆Q

∣∣∣∣∣ . (B.10)

Indeed, introducing the notation B′r := Br ∩ {xn = 0} and using Lemma B.3, given η > 0 and choosing
r > 0 is sufficiently small so that ‖ũr − q∗r‖L∞(B2) ≤ δ(n, η) (recall that q∗r = qr + o(1) as r ↓ 0), we have

0 ≤ −
∫
B1\B1/2

ur∆q
∗
r =

∫
B′1\B′1/2

u(rx′, 0)T [q∗r ] dx
′ = η

∫
(B′1\B′1/2)∩{T [q∗r ]≤η}

ur dx
′ ≤ η

∫
B′1\B′1/2

ur dx
′

(recall that ur ≥ 0 on {xn = 0}), while

−
∫
B1\B1/2

ur∆Q = 2|a0|
∫
B′1\B′1/2

u(rx′, 0)|x′|λ−1 dx′ ≥ c′n,λ
∫
B′1\B′1/2

ur dx
′,

for some constant c′n,λ > 0. Hence, dividing by h(r), we obtain

0 ≤ −
∫
B1\B1/2

ũr∆qr ≤ Cn,λη
∫
B1\B1/2

ũr∆Q,

and (B.10) follows.
Then, thanks to (B.10), we deduce that

d

dr

(
Ψ(r)

Φ(r)

)
= −1

r

Ψ(r)
∫
B1\B1/2

ũr∆q
∗
r − Φ(r)

∫
B1\B1/2

ũr∆Q

Φ(r)2
� 1

r

∫
B1\B1/2

ũr∆Q

for r ≤ r0 small enough.

Integrating the above ODE over [r̂, r0], since the integral of d
dr

(Ψ(r)
Φ(r)

)
over [r̂, r0] is uniformly bounded as

r̂ → 0, we deduce that the negative term 1
r

∫
B1\B1/2

ũr∆Q is integrable over [0, r0]. Hence, since Φ(r) � 1

and θ(r) = d
dr log(h(r)/rλ), it follows from (B.9) that

d

dr
log Φ(r) =

d

dr
log(h(r)/rλ) + g(r), with g ∈ L1([0, r0]).

Integrating over [r̂, r0] and using again that Φ(r) � 1, we deduce that log(h(r̂)/r̂λ) is uniformly bounded
as r̂ → 0, therefore h(r) � rλ, as desired. �

As a consequence of Propositions B.2 and B.6, we get the the uniqueness and nondegeneracy of blow-ups:

Theorem B.7. Let u : B1 → R be an even solution of (B.1) with φ(0+, u) = λ, where λ = 2m+ 1 is an
odd integer. Then the limit

q̃ := lim
r↓0

u(r · )
rλ
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exists, is non-zero, and it is a λ-homogeneous even solution of (B.1).

Thanks to this result, by classical arguments (see Proposition 8.3 and Lemma 6.6) one easily obtains
the following rectifiability result, that was already proved with completely different methods in [FS18]:

Corollary B.8. Let u : B1 → R be an even solution of (B.1). Then, for any odd integer λ ≥ 3, the set
of free boundary points of frequency λ is (n− 2)-rectifiable.
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