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Abstract: We give a short introduction to network geometry and its relation to the SIS epidemic
model. Approximations and simulations are provided for four synthetic networks and two real-world
networks. We compare the quality of the different mean-field approximations to the simulations.
Finally, we study the effect of the nodes’s angular distribution in the hidden metric space on the
prevalence of the epidemic.

I. INTRODUCTION

Historically, complex networks have been studied as
graphs, even though they are not as random or regular.
Some of the most interesting properties are small-world
effect, connecting every pair of nodes in a few steps; scale-
free of the distribution of node degrees, typically a power
law of the form P (k) ∼ k−γ with γ ∈ [2, 3], heterogeneity
and the presence of a lot of triangles, that is, they are
clustered.

One may think that, because every node is connected
to all nodes by a small number of intermediate edges,
there is no metric structure on the system. Nevertheless,
some networks are embedded in metric spaces, like air-
port networks, neural networks, trading routes... More-
over, clustering, in other words, the number of triangles,
can be thought as a consequence of the triangular in-
equality. With this in mind, in [1] a model was devel-
oped which assumed that networks reside in a hidden
metric space, meaning that the probability of connec-
tion between two nodes depends on their distance in this
space, which, in turn, depends on the popularity and sim-
ilarity of the nodes.

Networks are a key ingredient of epidemic modelling.
Epidemic models assume that the population can be split
in different categories depending on the disease’s phase.
One of the simplest models is the SIS or susceptible-
infectious-susceptible model [2]. In this work, we will
focus on how this model works and how is related to the
network’s hidden metric space geometry.

This thesis is organized as follows. Firstly, in section
II we discuss the geometric model of networks. Secondly,
in section III, we present the SIS epidemic model and
some stationary state mean-field approximations. Then,
in section IV we run some simulations on some synthetic
and real-world networks and compare the results with
the approximations presented before, and in section V
we try to determine and explain if the angular distribu-
tion of the nodes affects the disease prevalence. Finally,
in section VI we present some conclusions and we discuss
possible future work.
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II. GEOMETRIC MODEL

As said before, complex networks are heterogeneous,
nodes can be split in groups of smaller groups and so on.
It can be approximated as a treelike structure. Thus, the
hidden metric space is a hyperbolic space [3].

There are two ways to present this hyperbolic space:
as the hyperbolic plane H2, typically the Poincaré disk
representation, or as its quasi-isomorphic version, the S1
model.

A. The S1 model

In the S1 model, the hidden metric space is a circle
of radius R = N/2π where N is the number of nodes.
Every node i is defined by two variables: a hidden de-
gree, related to the popularity, κi and an angular posi-
tion θi. The probability of connection between nodes has
to decrease with the angular distance and increase with
the product of hidden degrees. That is, similar nodes
are angularly closer and, in consequence, probably con-
nected. Two not-so-similar nodes have a low probability
of being connected unless they are popular. In [4] it is
proved that the only choice for the connection probability
between nodes i and j that creates maximally random,
clustered, small-world and heterogeneous networks is the
Fermi-Dirac form

pij =
1

1 +
(

dij

µκiκj

)β
(1)

where β controls the level of clustering of the network,
dij is the angular distance between nodes i and j and
µ controls the average degree. For β < 1, networks are
unclustered and for β > 1, we obtain networks with finite
clustering. Thus, there is a structural phase transition for
β = 1.

It is not complicated to generate graphs from this
model, with angular positions homogeneously distributed
and hidden degrees uncorrelated. We fix the number of
nodes N , the target average degree ⟨k⟩ and β > 1. The
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constant µ is defined by

µ =
β

2π⟨k⟩
sin

(
π

β

)
(2)

Then, we assign to each node i an angular position θi
from a [0, 1]−uniform distribution and a hidden degree
κi from a distribution ρ(κ) so that ⟨κ⟩ = ⟨k⟩. Finally,
we connect every pair of nodes with probability like Eq.
(1). The values of hidden degrees κi can be sampled from
any distribution, however, in many real-world networks,
the observed distribution is a Pareto distribution ρ(κ) =

(γ−1)κγ−1
0 κ−γ , γ > 2 which results in a power-law degree

distribution P (k) ∼ k−γ for N >> 1.
To simulate networks with γ < 2 and to compensate

finite-size effects in networks with γ >∼ 2 we need to in-
troduce a cutoff in ρ(κ). All in all, the distribution is

ρ(κ) =
(γ − 1)κγ−1

0

1−
(

κc

κ0

)1−γ κ
−γ with κ0 < κ < κc (3)

where κ0 =
1−N−1

1−N
2−γ
γ−1

γ − 2

γ − 1
⟨k⟩ and κc = κ0N

1
γ−1 .

In the thermodynamic limit, the expected degree of a
node with hidden degree κ is k̄(κ) = κ for a network
generated with this algorithm, which explains the name.

B. The H2 model

In the H2 model, the hidden metric space is the hy-
perbolic plane, represented by a disk of radius RH2 =
2 ln N

πµκ2
0
and metric tensor

ds2 = dr2 + sinh2 rdθ2. (4)

Nodes in H2 are characterized by two variables, a ra-
dius r and an angle θ. Analogously to IIA, nodes that are
closer are more likely to be connected, but this time the
distance xij between nodes i and j can be approximated
by

x̃ij ≈ ri + rj + 2 ln
∆θij
2

(5)

when sin2
∆

2
>>

cosh (ri − rj)

cosh (ri − rj) + cosh (ri + rj)
and

ri, rj >> 1. It can be proved [5] that almost for all nodes
of the networks we are working with, this approximation
holds.

The only choice of connection probability between
node i and j that creates heterogeneous, clustered and
small-world networks with maximum entropy is the
Fermi-Dirac form, so we can interpret the network as
a set of fermions (edges) that can be in different states
(pairs of nodes) with the hyperbolic distance as the en-
ergies and β the inverse of temperature.

pij =
1

1 + e
β
2 (xij−RH2 )

. (6)

The model generates networks with a power-law de-
gree distribution if the angular distribution of nodes is
uniform and the radii of nodes are distributed with the
probability density

ρ(r) = α
sinhαr

coshαRH2 − 1
, r ∈ [0, RH2 ] and α ≥ 1/2. (7)

In this case, the degree distribution’s exponential is γ =
2α+ 1.
The map that connects the two models is

(κi, θi) 7→ (ri, θi) = (RH2 − 2 ln
κi

κ0
, θi). (8)

Thereby, popular nodes are closer to the center of the
hyperbolic disk, whereas not-so-popular nodes are near
the boundary. It is easy to check that, for large RH2 ,
that is, N >> 1, if hidden degrees follow Eq. (3), then
via the mapping, radial coordinates are distributed as in
Eq. (7).
Analogously, we obtain the connection probability

pij =
1

1 + e
β
2 (x̃ij−RH2 )

. (9)

As it was pointed out, almost for all pair of nodes
x̃ij ≈ xij , so we can conclude that, in the thermodynamic
limit, both models are equivalent.

III. EPIDEMIC MODELLING: THE SIS MODEL

We assume that the total population is fixed in N in-
dividuals and we divide them in two compartments: sus-
ceptible (S), who can contract the infection and infectious
(I), who are contagious. We assume that the disease does
not confer immunity, so, under some conditions, the cycle
S → I → S can be sustained forever. Infected individuals
recover (I → S) at rate δ, and a susceptible individual,
in contact with an infected one, contracts the disease at
rate λ.
Consider a network with N nodes. Let {aij} be the

coefficients of the adjacency matrix A. We define ni(t)
for all i ∈ {1, 2, . . . , N} as follows:

ni(t) =

{
1 if node i is infected at time t

0 otherwise
(10)

So our system’s state is n⃗(t) = (n1(t), . . . , nN (t)). In
the SIS epidemic model the evolution of the system is a
Markovian process. Thus,

ni(t+ dt) = ni(t)ηi(dt) + (1− ni(t))ξi(dt) (11)
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where ηi and χi are random variables with Bernoulli
distributions. ηi will be 0 with probability δdt and 1
with probability 1 − δdt, ξ will be zero with probability
p = λ

∑
j aijnj(t)dt and 1 with probability 1− p.

We define the prevalence of the disease as ρ(t) =
1

N

∑
i

⟨ni(t)⟩, so ⟨ni(t)⟩ = ρi(t) is the probability that

node i has the disease at time t.
Then,

⟨ni(t+ dt)|n⃗(t)⟩ = ⟨ni(t)ηi(dt) + (1− ni(t))ξi(dt)|n⃗(t)⟩ =
ni(t)⟨ηi(dt)⟩+ (1− ni(t))⟨ξi(dt)⟩ =

ni(t)(1− δdt) + (1− ni(t))(λdt
∑
j

aijnj(t)).

In consequence, ⟨ni(t + dt)⟩ = (1 − δdt)⟨ni(t)⟩ +

λdt
∑
j

aij⟨nj(t)(1− ni(t)⟩. And, finally,

dρi
dt

= −δρi(t) + λ
∑
j

aij(ρj(t)− ⟨ni(t)nj(t)⟩). (12)

Resolving Eq. (12) is quite complex, the state of a
node i depends on the state of its neighbours. Further-
more, we are often interested in stationary solutions of
the equations. For these reasons, we will apply some
mean-field approximations.

A. IBMF

The idea of the individual-based mean-field theory
(IBMF) developed in [6] is that the state of node i is
independent of the state of its neighbours. In other
words, we replace the dynamic correlations ⟨ni(t)nj(t)⟩
with ⟨ni(t)⟩⟨nj(t)⟩ = ρi(t)ρj(t), so we obtain

dρi(t)

dt
= −δρi(t) + λ(1− ρi)

∑
j

aijρj (13)

Of course, ρ⃗ = 0⃗ is a stationary solution and a fixed
point of the equation. In order to study the stability of
the solution we consider the limit ρ ≈ 0, a reasonable
situation at the beginning of the epidemic and linearize
Eq. (13) obtaining dρi

dt ≈ −δρi + λ
∑

j aijρj . Thus, the
stability equation is

dρ⃗

dt
= Mρ⃗ (14)

with M = −δId+λA. The zero solution is unstable when
the largest eigenvalue of M is greater than 0, then, ρ⃗ = 0⃗
is a dynamic repeller and another nonzero solution is the
actual stationary state called endemic state. Otherwise
ρ⃗ = 0⃗ is the only solution. In terms of λ and δ, the
threshold condition is(

λ

δ

)IBMF

c

=
1

ΛA
(15)

where ΛA is the largest eigenvalue of the adjacency ma-
trix. If λ

δ < 1
ΛA

, we obtain a healthy state, that is, ρ⃗ = 0⃗.

B. DBMF

Degree-based mean-field approximation (DBMF), de-
veloped in [7] is a course-grained version of IBMF. The
idea is that all nodes of degree k are equivalent, so that for
any node of degree k the probability of being connected
to a node of degree k′ is the same P (k′|k). As already
said, we only consider the two-nodes correlations. For
this reason, DBMF is a mean-field theory.
The SIS prevalence equation for a node of degree k is

dρk(t)

dt
= −δρk(t) + λk(1− ρk(t))

∑
k′

P (k′|k)ρk′(t)

(16)

As in Eq. (12), the first term represents the recovery of
nodes of degree k, the second one, the infection of new
nodes. It is proportional to the probability that a node
of degree k is susceptible (1−ρk(t)) times the probability
that this node is connected to an infected one of degree k′,
P (k′|k)ρk′(t), times all the possible edges through which
the node can be infected, k.
If the network is not correlated, P (k′|k) = k′P (k′)/⟨k⟩.

Then,

dρk(t)

dt
= −δρk(t) + λk(1− ρk(t))Θ, (17)

with Θ =
∑

k′
k′P (k′)

⟨k⟩ ρk′(t).

Introducing the expression of Θ in Eq. (17) and im-

posing stationary solution condition dρk

dt = 0, we obtain

Θ =
1

⟨k⟩
∑
k′

k′P (k′)
λ
δ k

′Θ

1 + λ
δ k

′Θ
(18)

We are looking for nonzero solutions, so Θ > 0. Then,

1 =
λ
δ

⟨k⟩
∑
k′

k′2P (k′)

1 + λ
δ k

′Θ
≤

λ
δ

⟨k⟩
∑
k′

k′2P (k′)

In consequence, the threshold value is bounded by(
λ

δ

)DBMF

c

≥ ⟨k⟩
⟨k2⟩

(19)

It is easy to check that, in fact,
(
λ
δ

)DBMF

c
= ⟨k⟩

⟨k2⟩ . Indeed,

suppose that λ/δ < ⟨k⟩/⟨k2⟩, from Eq. (18) we obtain

1 <
1

⟨k2⟩
∑
k′

k′2P (k′)

1 + λ
δ k

′Θ
≤ 1 (20)

So, the condition for nonzero stationary solutions is

λ

δ
≥

(
λ

δ

)DBMF

c

=
⟨k⟩
⟨k2⟩

(21)
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(a) (b)

(c) (d)

FIG. 1: Prevalence (ρ) of the disease in R1 (a), R2 (b),
R3 (c) and R4 (d) networks as a function of λ/δ.

For scale-free networks, P (k) ∼ k−γ with γ ∈ [2, 3], so
⟨k2⟩ → ∞ in the thermodynamic limit (N >> 1). Thus,(
λ
δ

)DBMF

c
→ 0.

C. Probabilistic IBMF

The last mean-field approximation is a probabilistic
one. Imagine a network whose edges appear and disap-
pear at a higher rate than the disease ones. In this case,
we cannot use the adjacency matrix A to compute the
IBMF equation (13), but we can substitute each aij with
the connection probability from Eq. (1).

Not only in this case it is interesting to use this ap-
proach, we can use it for all networks in order to obtain
a reliable approximation of the epidemic prevalence.

IV. NUMERICAL SIMULATIONS AND
APPROXIMATIONS

From now on, we will work with 6 different networks,
four of them were generated with the algorithm on IIA
(named R1, R2, R3 and R4), the airports and preferred
routes of USA [8] and email communication between
members of Universitat Rovira i Virgili [9]. The details
of each network are in Figure 1 and Figure 2

We compute the threshold values and perform the
three mean-field approximation in the six networks, us-
ing Mercator [10], a tool to embed real complex networks
in their hidden hyperbolic space, to obtain the hidden
degree and angular position in the airports and emails
networks.

We also run a SIS numerical simulation on each net-
work on stationary solutions and compare it with the

(a) (b)

FIG. 2: Prevalence (ρ) of the disease in the airports (a)
and emails (b) networks as a function of λ/δ.

approximations.
The results, in Figure 1 and Figure 2, show that, even

though in the approximations we are considering the net-
works as tree-like structures, they work quite well, spe-
cially in R1, R3, airport and emails networks. Surpris-
ingly, network R1 is very clustered, we are suppressing
a considerable amount of triangles, however, being very
connected (high degree), nodes are potentially in contact
with infected neighbour nodes compensating the effect
of not considering three-node connections. As expected,
approximations are less reliable for networks with lower
average degree since we are eliminating some of the few
connections that can transmit the epidemic.
Although the results of the probabilistic IBMF approx-

imation are similar to the simulations and the other ap-
proximations, it requires more information and is more
resource consuming for not a huge improvement.
We can observe that threshold values computed follow-

ing IBMF are very similar to the ones following DBMF,(
λ
δ

)IBMF

c
≈

(
λ
δ

)DBMF

c
and both of them to the simula-

tions. Another interesting point is that in all cases, the
computed threshold values are very close to 0, as pre-
dicted.

V. ANGULAR EFFECT IN EPIDEMIC
PREVALENCE

We now want to study if the angular situation of nodes
affects the prevalence of the disease at the beginning of
the epidemic, that is, λ/δ similar to the threshold value.
We run a simulation on the airports and emails net-

works on prevalence of stationary solutions of each node
and we present the results embedded in the Poincaré disk,
showing the geodesic connections between nodes too. We
also represent these prevalences and the hyperbolic radii
as functions of the angular position. The value of λ

δ on
each network is different in order to get similar preva-
lences.
As it can be seen in Figure 3, the angular distribu-

tion has no effect whatsoever on the hyperbolic radius of
the nodes, there is no pattern observed in all networks.
Prevalence, unlike radius, in some cases can be affected
by the angular distribution of the nodes. In some net-
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FIG. 3: (a) Node prevalence (left) and hyperbolic
radius and prevalence as a function of the angular

position (right) in the airports network for λ/δ = 0.2.
(b) Node prevalence (left) and hyperbolic radius and
prevalence as a function of the angular position (right)

in the emails network for λ/δ = 0.075.

works, under some circumstances, a more interconnected
region can appear, maintaining the general degree dis-
tribution in it, which makes the disease more present in
this type of regions, as can be seen in Figure 3a. Further
study is needed to specify the exact behaviour of preva-
lence as a function of the angular distribution and the

emergence of the more interconnected communities.

VI. CONCLUSIONS AND FUTURE WORK

In this work we studied a geometric network model
and its relation with epidemic modelling. We first ex-
amined the hidden metric space network model and
its possible embeddings, the circle S1 and the hyper-
bolic plane H2. Then we studied and justified different
mean-field approximations to the susceptible-infected-
susceptible (SIS) epidemic model. We compared these
approximations to simulations in synthetic and real-
world networks and proved that they are quite rigorous.
We also showed that the angular distribution of the nodes
in the network can affect the prevalence of the disease.

There are several ways in which this work could be
expanded. Firstly, an interesting thing would be study-
ing the effect of the angular distribution in the dynam-
ics of the epidemic before arriving to a stationary state,
how the disease is transmitted in the network dynam-
ically. Secondly, how these mean-field approximations
would hold in dynamic networks, graphs that their nodes
and connections change with time, e.g. the Internet. Fi-
nally, we have not explained the emergence of more inter-
connected communities in networks and how their node
angular distribution affects the prevalence.
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