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Abstract: We present a derivation of the decay rate of a Hydrogen-type atom subjected to an
external electrical field, the so-called Oppenheimer’s formula. The perturbative approach to this
problem yields a divergent result, so we introduce the necessary mathematical tools to obtain a
finite answer, and we illustrate them with two toy models. The result obtained agrees with the
answer obtained originally by a WKB analysis.

I. INTRODUCTION

Quantum mechanics is one of the cornerstones of mod-
ern physics: its impact in our understanding of the world
and in technology are hard to overemphasize.

Being able to solve quantum mechanical problems is
thus of paramount importance, but problems with known
exact solution are very rare. For this reason, many ap-
proximation techniques have been developed over the
years: perturbation theory, WKB, variational methods...

Perturbation theory is perhaps the most popular
method. However, for many problems of physical inter-
est, perturbation theory displays a number of limitations:
it can fail to capture qualitative features (for example,
existence or number of ground states), and the resulting
perturbative series can even diverge.

On the other hand, the perturbative series can display
some subtle connections with other methods. The goal of
this bachelor thesis is to illustrate some of these points in
a physically relevant example related to the Stark effect.

Recall that the Stark effect is the shifting and splitting
of spectral lines of atoms in the presence of an external
electric field. In this work, we will focus on the fate of the
ground state of a Hydrogen-type atom in the presence of
a constant and homogeneous external electric field. This
problem was tackled by Schrödinger in his first paper
on perturbative methods in quantum mechanics [1]. He
missed an important qualitative feature: the system is
metastable and there is a non-zero decay rate Γ.

This was noticed first by Oppenheimer [2], who made
some mistakes later corrected by Lanczos [3]. They found
an estimate of the decay rate of the ground state of the
hydrogen atom using WKB techniques for small electric
fields, given by the so-called formula of Oppenheimer,
that reads in atomic units

Γ ∼ 4

E
exp

(
− 2

3E

)
, E ≪ 1, (1)

where E is the modulus of the electric field in atomic
units. Note that this decay rate is not analytic in the
electric field.
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Throughout the work we will use atomic units. Recall
[4] that the atomic unit of electric field is given by Eh

ea0

and that the atomic unit of time is given by ℏ
Eh

, where

Eh = ℏ2

mea2
0
is the Hartree energy, a0 is the Bohr radius,

e is the charge of the electron and me is the mass of the
electron.
This work is structured as follows. In Section II we

start motivating the study of divergent perturbative se-
ries by presenting two toy models related to the harmonic
oscillator, namely, the quartic anharmonic 1D oscillator
and the metastable 1D minimum. In Section III we in-
troduce mathematical tools to make sense of factorially
divergent power series. Such tools are able to give an ap-
proximation of the ground energy of the quartic anhar-
monic 1D oscillator and an approximation of the decay
rate of the metastable 1D minimum. It turns out that the
results for both models can be derived from an alterna-
tive approach using instantons: a brief comment on this
is made in Section IV. Finally, in Section V we general-
ize Oppenheimer’s formula (1) for Hydrogen-type atoms
using the methods learned in the previous sections.

II. INTRODUCTORY MODELS

To set the stage of this work, let us start presenting
two toy models in which perturbation theory fails. In
the first model we will see that perturbation theory fails
quantitatively, and in the second model we will see that
perturbation theory fails qualitatively.
In both examples, the potential studied depends on a

coupling constant g > 0 that measures the anharmonic-
ity of the system. Then, perturbation theory gives the
ground energy of the system as a series of the form

E0 =

∞∑
n=0

ang
n, an ∈ R. (2)

A. The quartic anharmonic 1D oscillator

In 1969 Bender and Wu [5] studied the quartic anhar-
monic oscillator, whose Hamiltonian in one dimension is
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(H and x are dimensionless in what follows)

HQ = −1

2

d2

dx2
+

1

2
x2 +

1

4
gx4, g > 0.

x

V (x)

g > 0
x

V (x)
g < 0

FIG. 1: Potential of the quartic anharmonic 1D oscillator in
the stable (g > 0) and metastable (g < 0) regimes.

Observe that the potential is stable for g > 0 and has
an absolute minimum at the origin, so we expect to have
bound states with well-defined energies.

Using the recurrence relations introduced by Bender
and Wu [5], we find that the large order behaviour of
the coefficients of the perturbative series of the ground
energy is of the form

aQn ∼ (−1)n+1

√
6

π3/2

(
3

4

)n

Γ

(
n+

1

2

)
, n≫ 1. (3)

Note that the coefficients grow factorially fast with n,
so the perturbative series diverges for all (non-zero) val-
ues of the coupling constant g.

B. The metastable 1D cubic minimum

The simplest example of a system having a metastable
minimum is given by a Hamiltonian of the form

HC = −1

2

d2

dx2
+

1

2
x2 − gx3, g > 0,

and we expect a non-zero decay rate ΓC for the ground
state.

x

V (x)

g > 0

FIG. 2: Potential of the metastable 1D cubic minimum.

Following Álvarez [6], we find that the large order be-
haviour of the coefficients of the perturbative series is of
the form

aCn ∼ −
√
60

(2π)3/2

(
15

2

)n

Γ

(
n+

1

2

)
, n≫ 1. (4)

Again, the coefficients grow factorially fast with n, but
the difference now is that the coefficients do not alternate
in sign. Disturbingly, perturbation theory at first sight
seems to miss the fact that, strictly speaking, this poten-
tial has no true bound states.

III. BOREL TRANSFORMS

Motivated by the above examples, we present a way to
make sense of series that are factorially divergent. For
such purpose, consider the following formal power series

φ(z) =

∞∑
n=0

anz
n, (5)

with the coefficients an growing factorially fast with n,

an ∼ A−nn!, n≫ 1.

The Borel transform of φ(z) is defined to be

φ̂(ζ) :=
∞∑

n=0

an
n!
ζn. (6)

Observe that φ̂(z) defines an analytic function in the
ζ−complex disk |ζ| < |A|.

A. Borel resummation and Borel summability

If in some region of the z−complex plane exists (and
is finite) the quantity

s(φ)(z) :=

∫ ∞

0

φ̂(zζ)e−ζdζ, (7)

the formal power series φ(z) is said to be Borel summable
with Borel resummation s(φ)(z).

Substituting, formally, (5) in (7), it is straightforward
to check that

s(φ)(z) =

∞∑
n=0

anz
n. (8)

This equation allows the following interpretation. Sup-
pose that the perturbative series of the ground energy,
φ(g), is factorially divergent but Borel summable, with
well-defined Borel resummation, s(φ)(g), on the positive
real axis, g > 0. Then, the right hand side of (8) can be
identified to be such perturbative series, φ(g), and equa-
tion (8) says that the ground energy is given by the Borel
resummation, E0 = s(φ)(g).

This is precisely what happens in the quartic anhar-
monic one dimensional oscillator, as we shall see now.
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1. Example: the quartic anharmonic 1D oscillator

Estimating the perturbative series of the ground en-
ergy of the quartic anharmonic 1D oscillator, using the
large order behaviour (3), as the series

∞∑
n=0

aQn g
n ≈

∞∑
n=0

(−1)n+1

√
6

π3/2

(
3

4

)n

Γ

(
n+

1

2

)
gn,

we can estimate its Borel transform as the Borel trans-
form of the series of the right hand side, that is

φ̂Q(ζ) ≈ −
√
6

π

(
1 +

3ζ

16

)−1/2

, (9)

which is well-defined on the positive real axis and in-
duces a well-defined Borel resummation on the positive
real axis.

By the previous reasoning, we conclude that the
ground energy of the quartic anharmonic 1D oscillator
is given by the Borel resummation of its perturbative se-
ries, which can be approximated using (9) in (7) as

E0 ≈ 4

√
2

π

1
√
g
exp

(
16

3g

)
erfc

(
4√
3g

)
,

where erfc is the complementary error function.
Note that the Borel transform has a singularity on the

negative real axis, although this does not affect the pre-
vious argument.

2. Example: the metastable 1D cubic minimum

An analogous argument shows that the Borel trans-
form of the perturbative series of the ground energy of
the metastable 1D cubic potential is approximately

φ̂C(ζ) ≈ −
√
60

π
(1− 30ζ)

−1/2
,

which has a singularity on the positive real axis, on which
the quantity (7) is ill-defined. Thus, the previous argu-
ment does not apply and, a priori, we can not say any-
thing about the system from its Borel transform. To fix
this, we shall study the behaviour of Borel transforms
around their singularities.

B. Singularities of the Borel transform

If the Borel transform φ̂(ζ) has a singularity on the real
axis, at ζ = A ̸= 0, then s(φ)(z) has a discontinuity when
integrated, on the one hand, following a complex path
avoiding the singularity from above and, on the other
hand, when integrated following a complex path avoiding
the singularity from below, as shown in Figure 3.

Re(ζ)

Im(ζ)

A Re(ζ)

Im(ζ)

A

FIG. 3: Paths of integration avoiding the singularity from
above (left) and from below (right).

It can be shown (see [7, pgs. 85–87]) that such discon-
tinuity is of the form

disc(φ)(z) := sabove(φ)(z)− sbelow(φ)(z)

= ie−|A|/zz−b (c0 +O(z)) , b, c0 ∈ R. (10)

Observe that if the Borel resummation is intended to
give the ground state energy and moreover has a discon-
tinuity of the form (10), we can claim that the ground
energy has an imaginary part given by a half of (10), that
is,

Im(E0) =
1

2
e−|A|/zz−b (c0 +O(z)) . (11)

This imaginary part may be physically interpretable.
For example, for metastable potentials we expect the
ground state to have a non-zero decay rate Γ: in this
situation, this imaginary part can be interpreted to be
such decay rate, since the time evolution of the ground
state is given by

e−iE0t = e−itRe(E0)e−Γt/2, Γ = 2|Im(E0)|. (12)

This is precisely what happens in the metastable 1D
cubic minimum. To prove it, we still need one last ingre-
dient, which we explain next.

1. Large order behaviour from Borel transforms

The coefficients an of the formal power series (5) can be
recovered from its Borel transform (6) through Cauchy’s
formula,

an
n!

=
1

2πi

∫
C

φ̂(ζ)

ζn+1
dζ,

where C is a closed path containing the origin and avoid-
ing the singularity ζ = A ∈ R \ {0} of φ̂(z), as shown in
Figure 4.
Indeed, it can be shown (see [7, pgs. 89–91]) that

an =
1

2π
A−b−nΓ(n+ b)

(
c0 +O(n−1)

)
, n≫ 1. (13)

Observe that the parameters b, A and c0 are the same
as in (10). Hence, from the discontinuity of the Borel
resummation (10), or equivalently from the imaginary
part (11), the asymptotic growth of the coefficients of
the perturbative series can be recovered from (13), and
vice versa.
Now we can complete the argument for the metastable

1D cubic minimum.
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Re(ζ)

Im(ζ)

A

C

FIG. 4: Contour avoiding the singularity at A ∈ R \ {0}.

2. Example (revisited): the metastable 1D cubic minimum

Comparing the large order behaviour (4) with (13), we
identify

bC =
1

2
, AC =

2

15
, cC0 =

−2√
π
.

Then, using (11) and (12), we find that the metastable
1D cubic minimum has a non-zero decay rate given by

ΓC ≈ 2√
πg

exp

(
− 2

15g2

)
.

IV. BRIEF COMMENT ON INSTANTONS

It is worth mentioning that there is an alternative ap-
proach to derive these results, based on the evaluation
of solutions of the classical equations of motion in imag-
inary time, the so-called instantons. See [7, Sections 1.4,
1.5, 3.2, 3.3] for a detailed exposition of the relationship
between instantons and the asymptotic behaviours (10)
and (13). Such approach is cleanest working with the
path integral formalism: see [8, Section 2] for a detailed
presentation.

Using instantons, I have explicitly reproduced the large
order behaviours (3) and (4) of the introductory models.

V. OPPENHEIMER’S FORMULA

Let’s apply the previous tools to reproduce Oppen-
heimer’s formula (1). As before, we work in atomic units.

Recall that for a Hydrogen-type atom, with atomic
number Z, in presence of an external electric field
(0, 0, E), the Hamiltonian is

HS = −1

2
∇2 − Z

r
+ Ez, r :=

√
x2 + y2 + z2.

Observe that the unperturbed Hamiltonian is

Hunpert. = −1

2
∇2 − Z

r
,

for which we know that the ground energy is

Eunpert.
0 = −Z

2

2
. (14)

It turns out that the Schrödinger equation
HSψ(x, y, z) = Eψ(x, y, z) is separable in squared
parabolic coordinates,

x = ξη cosϕ

y = ξη sinϕ

z = 1
2 (ξ

2 − η2)

with r =
1

2
(ξ2 + η2),

with solutions of the form

ψ(ξ, η, ϕ) =
g1(ξ)√
ξ

g2(η)√
η
eimϕ,

g1 being an eigenfunction of eigenvalue µ
(m)
n (−2E, E) of

Am = − d2

dξ2
+

(
m2 − 1

4

)
1

ξ2
− 2Eξ2 + Eξ4,

g2 being an eigenfunction of eigenvalue µ
(m)
n (−2E,−E) of

A′
m = − d2

dη2
+

(
m2 − 1

4

)
1

η2
− 2Eη2 − Eη4,

and such that

µ(m)
n (−2E, E) + µ(m)

n (−2E,−E) = 4Z. (15)

In 1970, Simon [9] studied the eigenvalues µ
(m)
n (α, β)

of the class of operators

h(α, β) = − d2

dx2
+

(
m2 − 1

4

)
1

x2
+ αx2 + βx4,

of which Am and A′
m are members, deducing the rescaling

formula [9, Theorem II.2.1], for all λ > 0,

µ(m)
n (λ2α, λ3β) = λµ(m)

n (α, β). (16)

Moreover, in 1973, Banks, Bender and Wu [10] found,
from the study of the quartic anharmonic oscillator in

two dimensions, that the ground energy µ
(0)
0 (1, β) has a

perturbative series of the form

µ
(0)
0 (1, β) =

∞∑
n=0

anβ
n, an ∼

n≫1

8

π

(
3

2

)n+1

(−1)nΓ(n+1).

(17)
Comparing (17) with equation (13), we obtain

bS = 1, AS =
2

3
, cS0 = 16, (18)
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and therefore, using (11), we get

Im
(
µ
(0)
0 (1, β)

)
=

8

β
exp

(
− 2

3β

)
. (19)

Formula (16) allows to rewrite (15) conveniently as

ζω = µ(m)
n (1, ω3) + µ(m)

n (1,−ω3), (20)

with ζ = 4Z/E1/3 and ω = E1/3/
√
−2E.

Taking imaginary parts in (20) and expanding in Tay-
lor series at first order in Im(ω3) it can be shown that

Im

(
4Z

(−2E0)1/2

)
≈ Im

[
µ
(0)
0

(
1,

E
Z3

)]
. (21)

Expanding 4Z/
√
−2E0 in Taylor series at first order in

Im(E0), using, according to (14), that Re(E0) ≈ −Z2/2
and replacing in (21) the behaviour (19), we get

ΓS = 2Im(E0) ≈
4Z5

E
exp

(
−2

3

Z3

E

)
, E ≪ 1, (22)

which is in accordance with (1).
Let’s put in perspective the magnitude of such de-

cay rate. For a Hydrogen atom (Z = 1) in presence
of an external, homogeneous and constant electric field
of modulus of order E ∼ 108 V/m, or in atomic units
E ∼ 10−3 ≪ 1, using (22) we get that, in atomic units,
ΓS ∼ 10−286. This means that the mean lifetime of the
ground state is of the order

(
ΓS

)−1 ∼ 10270 years, about

10260 times the age of the universe. Thus, despite theo-
retically the state is metastable with non-zero decay rate,
for practical purposes we can neglect this metastability,
thus justifying the elementary treatment of the Stark ef-
fect.

VI. CONCLUSIONS

Perturbation theory is not an exhaustive tool to find
the energies of quantum systems because it can fail quan-

titatively or qualitatively, as we have seen. Thus, other
approximation methods are essential to complement per-
turbation theory.

Nevertheless, we have seen that the study of the di-
vergence of a perturbative series may lead to meaningful
results. In particular, in this work we have seen the ac-
cordance of the results derived from the study of diver-
gent perturbative series through Borel transforms with
the results derived fromWKB techniques and instantons.
Moreover, these techniques on the study of divergent per-
turbative series allow to generalize Oppenheimer’s for-
mula to Hydrogen-type atoms.

Looking ahead, there is a number of ways this work
could be generalized. First, Oppenheimer’s formula as-
sumes the electric field to be small; it would be interesting
to relax this assumption (and consider electric fields up
to the Schwinger limit). More broadly, the interplay be-
tween perturbative methods and non-perturbative effects
is a topic of ongoing research in Quantum Field Theory.
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