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Abstract

We consider reversible non-conservative perturbations of the conservative cubic Hénon maps
H±

3 : x̄ = y, ȳ = −x + M1 + M2y ± y3 and study their influence on the 1:3 resonance, i.e.
bifurcations of fixed points with eigenvalues e±i2π/3. It follows from [DM00], this resonance
is degenerate for M1 = 0,M2 = −1 when the corresponding fixed point is elliptic. We show
that bifurcations of this point under reversible perturbations give rise to four 3-periodic orbits,
two of them are symmetric and conservative (saddles in the case of map H+

3 and elliptic orbits
in the case of map H−

3 ), the other two orbits are nonsymmetric and they compose symmetric
couples of dissipative orbits (attracting and repelling orbits in the case of map H+

3 and saddles
with the Jacobians less than 1 and greater than 1 in the case of map H−

3 ). We show that
these local symmetry-breaking bifurcations can lead to mixed dynamics due to accompanying
global reversible bifurcations of symmetric non-transversal homo- and heteroclinic cycles. We
also generalize the results of [DM00] to the case of the p : q resonances with odd q and show
that all of them are also degenerate for the maps H±

3 with M1 = 0.

1 Introduction

In the present paper we study how reversible non-conservative perturbations affect the 1:3 resonance,
i.e. bifurcations of fixed points with eigenvalues e±i2π/3 = −1/2 ± i

√
3/2, in the conservative cubic

Hénon maps
H±

3 : (x, y) → (x̄, ȳ) : x̄ = y, ȳ = −x+M1 +M2y ± y3, (1)

where x and y are coordinates, M1 and M2 are real coefficients. This problem is of great interest
since it is closely related to the so-called phenomenon of mixed dynamics [Gon16, GT17, GGK20],
the third recently discovered type of chaos (in addition to the well-known conservative and dissipative
chaos) which is characterized by the principal inseparability of conservative and dissipative elements
of dynamics. Indeed, the cubic Hénon maps (1) appear as truncated first return maps near cubic
homoclinic tangencies in area-preserving diffeomorphisms [GGO17]. Note that the different signs ±1
before the cubic term y3 correspond to two different types of cubic homoclinic tangencies, see [Gon85,
GSV13, GGO17] for more details. In the case of reversible maps, the appearance of such symmetric

1

http://arxiv.org/abs/2105.01360v1


homoclinic tangencies is a codimension 1 bifurcation phenomenon [GGS20]. On the other hand, the
existence of homoclinic tangencies implies the existence of Newhouse domains where such tangencies,
including symmetric cubic homoclinic tangencies in the reversible case, are dense [GGS20]. In turn,
the emergence of symmetric pairs of nonsymmetric orbits provides a criterion of the appearance of
mixed dynamics. Namely, in these Newhouse domains, maps with infinitely many periodic sinks (also
called stable or attracting orbits), sources (completely unstable or repelling orbits), area-expanding
saddles (with the Jacobian greater than 1) and area-contracting saddles (with the Jacobian less than
1) as well as symmetric elliptic periodic orbits are dense.

It is widely known that the strong 1:1, 1:2, 1:3 and 1:4 resonances, i.e. bifurcations of fixed
points (periodic orbits) with eigenvalues e±2πi/q, q = 1, 2, 3, 4, respectively, are very important for
dynamics. In the conservative setting, the nondegenerate 1:1 resonance is related to a parabolic
(elliptic-hyperbolic) bifurcation of fixed (periodic) points that implies the appearance of a pair of
saddle and elliptic orbits. In turn, the nondegenerate 1:2 resonance is connected with a conservative
period-doubling bifurcation. The 1:3 and 1:4 resonances are most difficult, their theory was outlined
in [Arn88], where, in particular, a case of the degenerate 1:4 resonance (the so-called “Arnold de-
generacy”) was considered, see also [AKN06]. A new, second, type of degenerate conservative 1:4
resonance has been found recently in [GGO17, GGOV18]. As well-known, the complex local normal
form of an area-preserving map near a fixed point with eigenvalues ±i (1:4 resonance) is written
as z̄ = i(z +A|z|2z +B(z∗)3) +O(|z|5), where A and B are real coefficients. The Arnold degeneracy
corresponds to the case |A| = |B|, the other degeneracy from [GGO17] is related to the case B = 0.
The latter degeneracy is very interesting since it is accompanied by symmetry-breaking (pitchfork)
bifurcations of 4-periodic orbits. Note that a class of degenerate p : q resonances accompanied by
symmetry-breaking bifurcations of q-periodic points was described in [GLRT14]. The 1:4 resonance
fits well into this class [GGO17], while the 1:3 resonance has certain peculiarities. In particular,
when the map possesses the central symmetry, four 3-periodic orbits appear near the 1:3 resonant
fixed point: two of them are elliptic while the other two are saddle. In the present paper we also
show that all p : q resonances with odd q ≥ 3 are degenerate for the cubic Hénon maps with the
central symmetry (when M1 = 0).

The strong resonances often appear in area-preserving maps. For example, in the conservative
quadratic Hénon map x̄ = y, ȳ = M−x−y2 the structure of the 1:4 resonance was studied in [Bir87],
where it was shown that this resonance is degenerate (the Arnold case). In [Bir87] it was also shown
that in the quadratic Hénon map, the 1:3 resonance is nondegenerate, and it mainly consists of the
rearrangement of symmetric 3-periodic saddle orbits. Bifurcations in two-parameter families of area-
preserving Hénon-like maps were also studied in [SV09]. In particular, in [SV09] it was demonstrated
that the emergence of fixed point with eigenvalues e±i2π/3 in the conservative quadratic Hénon map
implies both local instability of the fixed point and global instability of the map, i.e the fixed point
becomes saddle with 6 separatrices (local effect) and almost all orbits close to the fixed point go to
infinity (global effect). However, this is not the case when the 1:3 resonance is degenerate. Here,
in general, the fixed point is surrounded by a garland (a chain of stability islands) which consists
of elliptic and saddle 3-periodic orbits and does not allow orbits to pass far away from the fixed
point. This local stability also implies global stability when the 1:3 resonance is near-degenerate.
Note that such a situation takes place in the conservative cubic Hénon maps (1), see Figures 3 and 4.
Here a degenerate 1:3 resonance appears at M1 = 0 and M2 = −1, otherwise it is nondegenerate
ifM1 6= 0. We also note that all p : q resonances with odd q have the same nature: they are degenerate
for M1 = 0 and the corresponding value of M2, see Figure 5 for the 1:5 and 1:7 resonances.

Our main goal is to study the near-degenerate 1:3 resonance in (1) and analyze how it is impacted
by reversible non-conservative perturbations. It follows from [DM00] that for M1 = 0 and M2 = −1,
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the 1 : 3 resonance is degenerate for the conservative cubic Hénon maps and 3-periodic orbits
undergo pitchfork bifurcations. We note that both maps H+

3 and H−

3 are conservative and reversible
with respect to the involution h : (x, y) → (y, x), i.e. by definition the maps H±

3 and the inverse
maps (H±

3 )
−1 are conjugate by means of the involution h (the relation (H±

3 )
−1 = h ◦H±

3 ◦ h holds).
In the general case, reversible maps can also have dissipative orbits that always exist in pairs: stable
and completely unstable periodic orbits, two saddle periodic orbits with the Jacobian greater than 1
and less than 1, etc. Such orbits are symmetric to each other with respect to the involution. We call
them a symmetric couple of orbits. When a map is reversible and conservative, symmetric couples
of orbits are conservative, however, under general reversible perturbations, these pairs can become
dissipative.

The genericity of perturbations means that they should destroy the conservativity. Following the
paper [GGS21], we construct (analytically) such reversibility preserving perturbations. We present
two direct methods to obtain such perturbations for the conservative cubic Hénon maps (1). The
first method gives reversible non-conservative perturbations in the so-called cross-form (2), and, in
this way, we obtain perturbations of the second iteration of the inverse cubic maps (H±

3 )
−2 in the

form (5). The second method provides a perturbation of the cubic maps themselves, see the map (9).
We illustrate the bifurcation diagrams for the near-degenerate 1:3 resonance in the perturbed maps
and focus on pitchfork bifurcations of 3-periodic orbits which lead to the dissipative dynamics.
Namely, we demonstrate that for perturbations of H+

3 a supercritical pitchfork bifurcation takes
place which leads to the emergence of nonsymmetric attracting and repelling 3-periodic orbits, while
for perturbed map H−

3 under a subcritical pitchfork bifurcation there appears a pair of nonsymmetric
saddles, one is with the Jacobian greater than 1 and the other is with the Jacobian less than 1.

The fact that mixed dynamics can often appear in applications was shown in [GGK13, GGKT17].
Recently, the number of the related results has sharply increased, see e.g. [Kuz17, Kuz18, EN19,
Kaz19, AS20, EN20, BM20a, GGK20, BM20b, EN21]. In all these studies, two sides of the phe-
nomenon of mixed dynamics come to light: first, to find it numerically or experimentally, i.e. to
provide evidence that attractors and repellers intersect, and, second, to prove it mathematically.
As far as we know, only in a couple of papers, see e.g. [GGKT17, Kaz20], both sides were ana-
lyzed. The second side (to prove) is much delicate than the first one, it requires involving various
theoretical aspects of mixed dynamics such as criteria for the existence of absolute Newhouse re-
gions [GST97, LS04, Tur10, GGS20] and the structure of bifurcation scenarios leading to the ap-
pearance of mixed dynamics, see e.g. [GGKT17, Kaz19, Kaz20]. In the present paper we apply both
these approaches when studying local and global bifurcations.

The paper is organized as follows. In Section 2 we present the main elements of the theory of
reversible systems, mixed dynamics and the associated symmetry-breaking bifurcations that we will
use throughout the paper. In Section 3 we discuss the two methods to construct reversible non-
conservative perturbations of the conservative Hénon-like maps and prove that the perturbed maps
are indeed reversible. In this way, we obtain perturbations of the conservative cubic Hénon maps (1).
In Section 4 we review the structure of bifurcations of the conservative 1:3 resonance and mention
the associated degeneracies and pitchfork bifurcations of 3-periodic orbits for the unperturbed cubic
maps H±

3 in the form (5). Also in this section we show that all p : q resonances with odd q are
triple degenerate in maps H±

3 with M1 = 0. In Sections 6 and 7 we analyze reversible and non-
conservative perturbations of H+

3 and H−

3 , respectively, as well as display bifurcation diagrams for
near-degenerate 1:3 resonance and demonstrate the appearance of dissipative 3-periodic orbits under
pitchfork bifurcations in both cases. In Section 8 we provide numerical evidence of mixed dynamics in
a reversible non-conservative perturbation of H−

3 and discuss possible emergence of mixed dynamics
in the map H+

3 .
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2 Reversible systems, mixed dynamics and symmetry-breaking

bifurcations

In [GT17], it was established that multidimensional systems with the compact phase space can have
three different and independent forms of dynamics. Two of them have been well known for a long
time: these are conservative and dissipative dynamics, the third form, the so-called mixed dynamics,
is rather new.

The most famous example of conservative dynamics is provided by systems which preserve phase
volume (e. g. Hamiltonian systems, area- and volume-preserving maps). From the point of view of
topological dynamics, the conservative dynamics is characterized by the fact that the phase space
is chain-transitive [AB85, GT17], i.e. any two points can be connected by ε-orbits for any ε > 0.
The dissipative dynamics has a completely different nature: the phase space is not chain-transitive
and, besides, one can construct a set of nonintersecting absorbing and repelling domains containing,
respectively, all attractors and repellers of the system.

As for the mixed dynamics, first of all, it is characterized by the principal inseparability of
attractors and repellers [GST97], which implies the existence of infinitely many dissipative attractors
and repellers and the impossibility of constructing a set of disjoint absorbing and repelling domains,
see more details in [GT17, GGK20].

As well-known [Con78], any homeomorphism of a compact phase space has attractors and re-
pellers. An attractor is considered in the Ruelle sense [Rue81] as a closed invariant and chain-
transitive set which is stable under permanently acting perturbations1, and a repeller is an attractor
of the inverse map. In [GT17] it was shown that such attractors and repellers can have a non-empty
intersection, in contrast to attractors and repellers that are attracting and repelling sets, i.e. asymp-
totically stable invariant sets under forward and backward iterations, respectively. Denote the full
sets of such attractors and repellers of the phase space asA andR, respectively. Such closed invariant
sets are called the full attractor and full repeller of a map in [GT17]. Then the above classification
of dynamics can be built according to the following principle [GT17]: if A = R, then the system
demonstrates (topologically) conservative dynamics (in this case, A and R coincide with the whole
phase space); if A∩R = ∅, then the dynamics is dissipative; and A∩R 6= ∅ and A 6= R in the case
of mixed dynamics. These logical relations constitute the complete system, and, therefore, there is
no other type of dynamics demonstrated by homeomorphisms of compact phase spaces.

However, for concrete systems with chaotic dynamics, it is practically never known precisely
what A and R are. Therefore, certain, efficiently verifiable criteria are needed to determine the type
of dynamics. If such criteria are well known for conservative and dissipative dynamics, then, in the
case of mixed dynamics, the situation is more complicated: all known criteria are quite nontrivial
and are related to the existence of the so-called absolute Newhouse regions [GST97, Tur10, Tur15].

In the case of two-dimensional diffeomorphisms, there are such regions where diffeomorphisms
with the following properties are generic2: (i) every such diffeomorphism has infinitely many periodic
sinks, sources, and saddles and (ii) the closures of the sets of orbits of different types have non-
empty intersections. In [GST97], it was proven that the absolute Newhouse regions exist in any
neighborhood of a diffeomorphism with a non-transversal heteroclinic cycle that contains two saddle
fixed points O1 and O2 and two heteroclinic orbits Γ12 and Γ21 such that W s(O1) and W u(O2)
intersect at the points of Γ12 transversally, and W s(O2) and W u(O1) have a quadratic tangency at

1This type of stability is also called total stability or Lyapunov stability for ε-orbits and has been known for a very
long time, see e.g. [Mal44]. In fact, this means the stability under arbitrary small bounded noise.

2The Newhouse regions are open in Cr-topology with r ≥ 2, and a certain property is called generic if it holds for
a residual subset (a set of the second Baire category) of diffeomorphisms of such region.
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Figure 1: Examples of non-transversal heteroclinic cycles of planar diffeomorphisms: (a) the heteroclinic cycle studied

in [GST97]; (b) the non-transversal heteroclinic cycle with a quadratic tangency from [LS04]; (c) the non-transversal

heteroclinic cycle with a cubic tangency from [GGS20].

the points of Γ21, see Figure 1a. The principally important condition is that the Jacobian of the map
is greater than 1 at one of the fixed points and less than 1 at the other. This result shows that the
mixed dynamics is a generic property of two-dimensional diffeomorphisms from absolute Newhouse
regions: indeed, the sets A and R are closed invariant sets that should contain all sinks and sources,
respectively, and, hence, the set A ∩R is non-empty due to the above property (ii).

In the present paper we consider two-dimensional reversible diffeomorphisms. Recall that a
diffeomorphism f is reversible if it is conjugate to its inverse map f−1 by means of an involution h, i.e.
the following relation is true: f−1 = h◦f ◦h, where h2 = Id. The property of reversibility of f implies
the strong symmetry of the set of orbits. An orbit that intersects the set Fix(R) = {x : R(x) = x} or
the set Fix(Rf) is called symmetric. Any symmetric periodic orbit of a two-dimensional reversible
orientable map has eigenvalues λ and λ−1. Moreover, such an orbit with eigenvalues e±iϕ, where
ϕ 6= 0, π, is, essentially, elliptic, since the principal hypotheses of the KAM theory hold [Sev86].
However, there are principal differences in dynamics. In particular, it was shown in [GLRT14, GT17]
that a generic elliptic point of two-dimensional reversible maps is not completely conservative since
it is the limit of periodic sinks and sources.

As for nonsymmetric orbits, they can be, in principle, of arbitrary type. However, for any
nonsymmetric orbit, there exists a symmetric to it orbit with “opposite” dynamical properties.
It means that if a periodic orbit has eigenvalues λ1 and λ2, then the symmetric to it orbit has
eigenvalues λ−1

1 and λ−1
2 . As we said before, nonsymmetric orbits compose a symmetric pair of

orbits.

As in the dissipative case, in the space of reversible systems, Newhouse regions (i.e. such open
regions in which reversible systems with both symmetric and nonsymmetric homoclinic tangencies
are dense) exist near any system with a symmetric homoclinic tangency. However, there is one non-
trivial moment related to the proof of the fact that these regions are absolute Newhouse regions, i.e.
that they contain a residual subset of systems having infinitely many coexisting periodic attractors,
repellers, saddles and elliptic orbits and the closure of the sets of the orbits of different types has a
non-empty intersection.

This problem, proposed in [DGGLS13] as the Reversible Mixed Dynamics conjecture (RMD-
conjecture), remains open for the multidimensional case. For two-dimensional reversible maps, it
was proved in [GLRT14] for Cr-perturbations (with 2 ≤ r ≤ ∞) that keep the reversibility. Also
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the RMD-conjecture was proved in [LS04, DGGLS13, DGGL18, GGS20] for some cases of one-
parameter families unfolding generally symmetric couples of heteroclinic and homoclinic tangencies.
In principle, only two most important cases remain unproven: these are one-parameter families
which unfold generally symmetric quadratic and cubic homoclinic tangencies. For both cases, the
key problem is to find and study symmetry-breaking bifurcations in the first return maps.

One can standardly prove that these first return maps can be presented (in some rescaled coordi-
nates and parameters) [GG09, DGG14, DGG15, GGO17] as reversible maps close to the conservative
quadratic and cubic Hénon maps of the form x̄ = y, ȳ = M − x− y2 and x̄ = y, ȳ = −x+My ± y3,
respectively. These maps are reversible with respect to the involution h : x → y, y → x, and their
dynamics has been studied for a long time. However, until recently, their symmetry-breaking bifur-
cations have been completely unknown. As for the conservative quadratic Hénon map, only in the
very recent paper [GGS21], it has been shown that symmetry-breaking bifurcations occur starting
with only 6-periodic orbits.

It is not the case of the cubic Hénon maps (1), where, as was shown in [DM00], symmetry-breaking
bifurcations can take place for 3-periodic orbits which emerge near the degenerate 1:3 resonance.
Moreover, in [DM00], the corresponding bifurcation diagrams were constructed. In Sections 3 and
4, we complement these diagrams providing phase portraits corresponding to transitions through
bifurcation curves near the degenerate 1:3 resonance. Nevertheless, the main goal of the current
paper is the study of peculiarities of reversible symmetry-breaking bifurcations associated with the
1:3 resonance in the cubic Hénon maps (1) under reversible non-conservative perturbations, see
Sections 6, 7 and 8.

Recall that for reversible systems, typical (codimension 1) local symmetry-breaking bifurcations
are supercritical and subcritical pitchfork bifurcations [LT12]. As a result of a supercritical bifurca-
tion, a symmetric elliptic periodic orbit bifurcates into a saddle and in its neighborhood a symmetric
pair of stable and unstable periodic orbits emerges, see Figure 2a-b. Under a subcritical bifurcation,
the saddle periodic orbit becomes elliptic and there appears a symmetric pair of saddle periodic
orbits, one with the Jacobian J < 1 and the other with the Jacobian J > 1, see Figure 2c-d. It is im-
portant to note that local symmetry-breaking bifurcations can be considered as an indicator of mixed
dynamics in systems where the difference between intersecting attractor and repeller is invisible in
standard numerics, for instance as in the nonholonomic model of rubber disk on the plane [GGK20].

Concerning global symmetry-breaking bifurcations, they are related to the appearance of non-
transversal intersections between invariant manifolds of either the same periodic saddle orbit (homo-
clinic tangencies) or different saddles (heteroclinic tangencies). Under certain conditions bifurcations
of these tangencies lead to the emergence of symmetric pairs of sinks and sources, area-expanding
and area-contracting saddles as well as symmetric elliptic and saddle periodic orbits, and, hence, to
the reversible mixed dynamics. Some of such global symmetry-breaking bifurcations were studied
for non-transversal heteroclinic cycles of different types [GST97, LS04, DGGLS13, GGS20], see some
examples of such cycles in Figure 1.

3 Construction of reversible non-conservative perturbations

Following ideas of [GGS21] we construct reversible non-conservative perturbations in the following
conservative polynomial diffeomorphisms of the plane

Hn : x̄ = y, ȳ = −x+ Pn(y),

where Pn(y) is a polynomial of degree n. These maps are also called Hénon-like maps. In particular,
they include the cubic conservative Hénon maps for P3(y) = M1 +M2y ± y3.
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Figure 2: Two types of reversible pitchfork bifurcation: (a)→(b) supercritical pitchfork bifurcation at which an

elliptic orbit (in plot (a)) becomes a saddle orbit and a pair of stable and unstable orbits appears near the saddle (in

plot (b)); (c)→(d) subcritical pitchfork bifurcation at which a saddle orbit (in plot (c)) bifurcates into an elliptic orbit

surrounded by a couple of saddle orbits with the Jacobians J > 1 and J < 1 (in plot (d)).

The first approach to get reversible non-conservative perturbations is based on the fact that the
second iteration of the inverse conservative cubic Hénon maps H±

3 can be implicitly presented in the
reversible cross-form

f : (x, y) → (x̄, ȳ) : x̄ = F (x, ȳ), y = F (ȳ, x), (2)

for which it is easy to add such perturbations. Indeed, the map (2) is reversible with respect to the
involution h : (x, y) → (y, x), since h ◦ f ◦ h : ȳ = F (y, x̄), x = F (x̄, y), and the inverse of this
map coincides with (2). Thus, the map ȳ = F (x, ȳ) + ǫ(x, ȳ), y = F (ȳ, x) + ǫ(ȳ, x) with an arbitrary
smooth function ǫ is also reversible.

If F (x, y) in the right hand side of (2) is linear in x, i.e. F (x, y) = xG1(y) + G0(y), the map (2)
can be rewritten in the explicit form

f : x̄ = xG1(ȳ) +G0(ȳ), ȳ =
y −G0(x)

G1(x)
. (3)

If G0 and G1 are differentiable and G1(y) 6= 0, y ∈ R, the map (3) is a diffeomorphism. Indeed, the
Jacobian of (3) is J(f) = G1(ȳ)/G1(x), which is different from 0, since G1 6= 0.

If we take F (x, y) = −x+Pn(y)+ εϕ(x, y), where ε is a small parameter and ϕ(x, y) is a function
(preferably linear in x) such that (2) is non-conservative, we get

H̃2
n(ε) : x̄ = −x+ Pn(ȳ) + εϕ(x, ȳ), y = −ȳ + Pn(x) + εϕ(ȳ, x), (4)

which is a reversible perturbation of the second iteration of the inverse Hénon-like maps H−2
n . This

follows from the following lemma.

Lemma 1. For ε = 0, the diffeomorphism H̃2
n(ε), defined in (4), satisfies the following property:

H̃2
n(0) = (Hn)

−1 ◦ (Hn)
−1.

Proof. We write the inverse map (Hn)
−1 (solving the equations in (3) for x and y and swapping x̄ ↔

x, ȳ ↔ y) as
(Hn)

−1 : x̄ = −y + Pn(x), ȳ = x.

7



The second iteration of this map

(Hn)
−2 = (Hn)

−1 ◦ (Hn)
−1 : x̄ = −x+ Pn(−y + Pn(x)), ȳ = −y + Pn(x)

coincides with H̃2
n(0).

Recall that the bifurcation diagrams of Hn itself and the inverse map H−1
n are related in the sense

that an attractor of one map is a repeller of the other map and vice versa. Moreover, H̃2
n(0) appears

while studying bifurcations of heteroclinic cycles connecting a saddle with the Jacobian J > 1 and a
saddle with J < 1, see Figure 1.

In the case of the cubic polynomials P3(y) = M1+M2y±y3, the map (4) is the perturbed second
iteration of the inverse cubic conservative Hénon map H±

3

H̃±

3 (ε) : x̄ = M1 +M2ȳ ± ȳ3 − x+ εϕ(x, ȳ), y = M1 +M2x± x3 − ȳ + εϕ(ȳ, x). (5)

In [SSK17] a numerical study of bifurcations of 1:3 and 1:4 resonances was done for the perturbed
system H̃2+

3 choosing ϕ(x, y) = xy. For the convenience of the reader, we include these results in
Section 6. We also provide the same analysis for the perturbation H̃2−

3 with ϕ(x, y) = xy in Section 7.
In the case of the map (4), assuming the perturbation ϕ(x, y) = xϕ1(y) + ϕ0(y) is linear in the

first variable x, we can study the explicit map

H̃2
n(ε) : x̄ = −x+ Pn(ȳ) + εϕ(x, ȳ), ȳ =

−y + Pn(x) + εϕ0(x)

1− εϕ1(x)
.

Let us consider the perturbation ϕ(x, y) = xy. In particular, the cubic map H̃2±
3 (ε), given in (5),

turns out

H̃2±
3 (ε) : x̄ = M1 +M2ȳ ± ȳ3 − x+ εxȳ, ȳ =

M1 +M2x± x3 − y

1− εx
. (6)

For ε = 0, the map H̃2±
3 (0) is the composition (H±

3 )
−1 ◦ (H±

3 )
−1 due to Lemma 1, hence, it is

reversible and conservative. Also the perturbed map (6) is reversible with respect to the involution h :
(x, y) → (y, x) due to the cross-form presentation. However, for ε 6= 0, the map H̃2±

3 (ε) is not
conservative anymore since the Jacobian of the map is not equal to 1:

J =
1− εȳ

1− εx
6≡ 1.

Therefore, one can consider the map (6) as a non-conservative perturbation of (H±

3 )
−1 ◦ (H±

3 )
−1 that

preserves the reversibility.
The second method consists in writing the perturbations in the form

H̃n(ε) : x̄+ εϕ(ȳ, x̄) = y + εϕ(x, y), ȳ = −x+ Pn(y + εϕ(x, y)), (7)

where ε is a small parameter and ϕ is a smooth function which gives a non-conservative perturba-
tion. This perturbation can be obtained applying the so-called Quispel-Roberts method [QR92], see
also [GGS21, BCR15]. This method uses two facts: (i) any two-dimensional reversible map f can
be presented as the composition of two involutions, f = ζ1 ◦ ζ2, and a perturbed map is obtained
perturbing one of the involutions, f̃ = ζ1 ◦ ζ̃2; (ii) if ζ is an involution of f and the map T is a
diffeomorphism, then ζ̃ = T−1 ◦ ζ ◦ T is also involution of f . Indeed, Hn = h ◦ h1, where h : (x, y) →
(y, x), h2 : (x, y) → (−x + Pn(y), y) are involutions. Thus, H̃n = h ◦ h̃2 is obtained perturbing the
second involution h̃2 = h̃2 = T−1 ◦ h2 ◦ T with a near identity map T : x̄ = x, ȳ = y + εϕ(x, y).
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Lemma 2. The diffeomorphism H̃n(ε), defined in (7), is reversible with respect to the involution h :
(x, y) → (y, x).

Proof. The proof is similar to the one done in [DGGLS13] for the map (2), see also [GGS21]. Indeed,
to prove the reversibility of H̃n(ε), we have to show that H̃n(ε)

−1 = h ◦ H̃n(ε) ◦ h.
First, we write the inverse map H̃n(ε)

−1 swapping the bar and no-bar variables x̄ ↔ x, ȳ ↔ y:

H̃n(ε)
−1 : x̄ = −y + Pn(x+ εϕ(y, x)), ȳ + εϕ(x̄, ȳ) = x+ εϕ(y, x). (8)

Second, the composition H̃n(ε) ◦ h is obtained interchanging the variables x → y, y → x in H̃n(ε)
according to the involution h

H̃n(ε) ◦ h : x̄+ εϕ(ȳ, x̄) = x+ εϕ(y, x), ȳ = −y + Pn(x+ εϕ(y, x)).

Then we apply h onto H̃n(ε) ◦ h swapping the bar variables x̄ → ȳ, ȳ → x̄ and get h ◦ H̃n(ε) ◦ h
which coincides with H̃n(ε)

−1 in (8).

For ε = 0, the map (7) coincides with the conservative map (3), not with the second iteration of
the inverse map as in the first method. We consider the concrete perturbation ϕ(x, y) = xy

H̃±

3 (ε) : x̄+ εx̄ȳ = y + εxy, ȳ = −x+M1 +M2(y + εxy)± (y + εxy)3. (9)

Since we choose a perturbation linear in the first variable x, the equations in (9) can be solved for x̄
and ȳ. Thus, the maps H̃±

3 can be written in the explicit form. The Jacobian of the maps equals

J =
1 + εx

1 + εȳ

which is different from 1 for ε 6= 0. We analyze numerically the bifurcations of the 1:3 resonance
in the perturbed cubic conservative Hénon maps H̃d

3 (ε) for ε 6= 0 and construct the corresponding
bifurcation diagrams in Sections 6 and 7 paying special attention to the appearance of nonsymmetric
periodic orbits under reversible pitchfork bifurcations.

Remark 1. The maps (6) and (9) are not diffeomorphisms in the whole plane R2. However, the
dynamics of this map is concentrated close to the origin, and for small ε the map can be considered
as a diffeomorphism in a quite large neighborhood of the origin. Besides, for the first method, to have
truly diffeomorphisms one can choose the perturbation ϕ(x, y) = x arctan(y) instead of ϕ(x, y) = xy.

4 1:3 resonance for the unperturbed maps H±
3

In the general non-conservative setting, the analysis of the 1:3 resonance was done by Arnold [Arn88],
see also [AKN06, Kuz95]. For the study of the 1:3 resonance in conservative maps we refer to [BHJVW03,
SV09]. Recall that one can study the structure of such bifurcations writing the local normal form
expressed in complex coordinates z = x+ iy and z∗ = x− iy:

z̄ = ei2π/3(z + a02(z
∗)2 + a21z

2z∗) +O(|z|4), (10)

where the coefficient a02 is purely imaginary since map (10) is reversible with respect to the involu-
tion h : z → z∗. In this case the 1:3 resonance is degenerate when a02 = 0.

9



Figure 3: Bifurcation diagram for the conservative cubic Hénon map H+

3 . The bifurcations curves P+

1 , l+1:3,

and PD+

1 are the curves of a parabolic (pitchfork for M1 = 0) bifurcation, 1:3 resonance, and a period-doubling

bifurcation of fixed points, respectively. The curves P+

3 and PF+

3 are the curves of parabolic and pitchfork bi-

furcations of 3-periodic orbits, respectively. For the fixed value of M2 = −1.25, the phase portraits are presented

for M1 = 0, 0.03, 0.83, 0.915, 0.98 and 1.2. For M1 < 0 the phase portraits are reflected symmetrically with respect

to y = −x.

Let d = ±1 be the coefficient before the cubic term in (1), thus, d = 1 corresponds to H+
3

and d = −1 stands for H−

3 . Then, for the parameters M1 and M2 in the 1:3 resonance curve

ld1:3 : M
2
1 =

d

27
(1 +M2)(2M2 − 7)2, (11)

the map Hd
3 has the fixed point with eigenvalues e±i2π/3 which is P

(1)
1:3 =

√

−d(1 +M2)/3 (1, 1)

in the branch M1 > 0 and P
(2)
1:3 = −

√

−d(1 +M2)/3 (1, 1) in the branch M1 < 0. Note that
the curve l−1:3 has a self-intersection point at (M1,M2) = (0, 7/2) where the map H−

3 has two fixed

points P
(1)
1:3 =

(

√

3/2,
√

3/2
)

and P
(2)
1:3 =

(

−
√

3/2,−
√

3/2
)

with eigenvalues e±i2π/3 simultaneously.

The coefficients of the normal form (10) are as follows:

a02 = −2i
√

−d(1 +M2), for M1 > 0,

a02 = 2i
√

−d(1 +M2), for M1 < 0,

a21 = −4d(1 +M2) + 4
√
3dM2i.

It is easy to see that a02 and a21 do not vanish simultaneously. Moreover, a02 = 0 at M2 = −1,
therefore the 1:3 resonance is degenerate when M1 = 0,M2 = −1.
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Figure 4: Bifurcation diagram for the conservative cubic Hénon mapH−

3
. The bifurcations curves P−

1
, l−

1:3
, and PD−

1

are the curves of parabolic (pitchfork for M1 = 0) bifurcation, 1:3 resonance, and period-doubling bifurcation of

fixed points, respectively. The curves P−

3 and PF−

3 are the curves of parabolic and pitchfork bifurcations of 3-

periodic orbits, respectively. The sequence of phase portraits in the horizontal line M2 = −0.8 is displayed for M1 =

0, 0.025, 0.04, 0.742, 0.85, and 1.2. For M < 0 the phase portraits are reflected symmetrically with respect to y = −x.

A detailed bifurcation analysis for the conservative cubic Hénon maps H±

3 was carried out
in [DM00, GGO17, GGOV18]. In particular, bifurcations of 3-periodic orbits were studied in [DM00],
and one of the principal bifurcations were pitchfork bifurcations. For convenience, we display the
corresponding bifurcation diagrams for H+

3 and H−

3 and complement them with the related phase
portraits in Figures 3 and 4, respectively.

Let us briefly describe these figures. Besides the 1:3 resonance curve ld1:3, defined in (11), the
further bifurcation curves are P d

1 , PDd
1, P

d
3 and PF d

3 . The curves P d
1 and PDd

1, which have the
following equations

P d
1 : M2

1 =
4d

27
(2−M2)

3

PDd
1 : M2

1 = −4d

27
(2 +M2) (4−M2)

2 ,

are the curves of fixed points with double eigenvalue (1,1) and (-1,-1), respectively. The curve P d
1

corresponds to a parabolic bifurcation of a fixed point of the map for M1 6= 0,M2 6= 2. As a result of
this bifurcation, crossing P d

1 laterally, there appear elliptic and saddle (hyperbolic) fixed points for
parameters below P+

1 in the case of the map H+
3 and above P−

1 in the case of the map H−

3 . When
passing through the point M1 = 0,M2 = 2 at P d

1 vertically (being M1 = 0 fixed) a subcritical and
supercritical conservative pitchfork bifurcation takes place for H+

3 and H−

3 , respectively. Namely, in
the case of H+

3 , under this bifurcation the saddle fixed point for M2 > 2 (above P+
1 ) becomes elliptic

and a pair of saddle fixed points appears around for M2 < 2. For the map H−

3 , passing through the
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point M1 = 0,M2 = 2 from bottom to top, an elliptic fixed point undergoes a supercritical pitchfork
bifurcation, it turns into a saddle fixed point and a pair of elliptic fixed points appears nearby. The
curve PDd

1 is related to a period-doubling bifurcation of a fixed point. At crossing PD+
1 , the elliptic

fixed point becomes saddle and in its neighborhood there appears an elliptic 2-periodic orbit. The
curve PD−

1 corresponds for two different types of period-doubling bifurcation: the bottom part is
responsible for a subcritical period-doubling bifurcation of saddle fixed point (which becomes an
elliptic fixed point surrounded by a saddle 2-periodic orbit), while at the upper part of PD−

1 , an
elliptic fixed point undergoes a supercritical period-doubling bifurcation. See [GGO17] for more
details on these bifurcations. The other curves P d

3 and PF d
3 are associated with parabolic and

conservative pitchfork bifurcations of 3-periodic orbits, respectively. They were discovered by [DM00]
and they have too cumbersome expressions to be presented, so we omit their equations.

We note that the point (M1,M2) = (0,−1), corresponding to the case a02 = 0, is the cusp
point of the curves PF+

3 and PF−

3 in both maps H+
3 and H−

3 , respectively. This point also lies in P d
3

and ld1:3. Getting inside the region bounded by the curve PF+
3 (PF−

3 ), the symmetric elliptic (saddle)
3-periodic orbit becomes saddle (elliptic) and a pair of nonsymmetric elliptic (saddle) orbits of the
same period emerges for H+

3 (H−

3 ). It is worth mentioning that in the nonconservative reversible
case, instead of nonsymmetric elliptic (saddle) orbits, a pair of stable and unstable orbits (saddles
with the Jacobians J > 1 and J < 1) emerges as a result of a reversible pitchfork bifurcation.

In Figure 3 we present a sequence of phase portraits near the 1:3 resonance for a fixed M2 for H
+
3 .

Let us give some details of the bifurcations which take place in the horizontal line M2 = −1.25.
For M1 on the right hand side of the right branch of P+

3 (see phase portrait 1○ for M1 = 1.2),
there is an elliptic fixed point E1 which is born along with a saddle fixed point (the latter is not
presented in the phase portrait) after a parabolic bifurcation at P+

1 . At crossing P+
3 a parabolic

bifurcation of 3-periodic orbits occurs and close to the elliptic point E1 there appear 3-periodic
orbits E3 and S3 of elliptic and saddle type, respectively, in the right hand side of P+

3 (see, for
example, phase portrait 2○ for M1 = 0.98). In the 1:3 resonance curve l1:3, the saddle 3-periodic

orbit S3 collides with the elliptic point E1 and they become the saddle fixed point P
(1)
1:3 with 6

separatrices (see phase portrait 3○ for M1 ≈ 0.915). After this bifurcation, the saddle 3-periodic
orbit S3 is reconstructed, and the homoclinic connections are transformed into heteroclinic cycles
(see phase portrait 4○ for M1 = 0.83). At passage through the left curve PF+

3 the elliptic 3-
periodic orbit E3 undergoes a supercritical pitchfork bifurcation: it becomes saddle Ŝ3 and a pair of
nonsymmetric elliptic 3-periodic orbits Ê1

3 and Ê2
3 appears nearby (see, for instance, phase portrait 5○

for M1 = 0.03). Then the elliptic orbits Ê1
3 and Ê2

3 move away from Ŝ3 and get closer to S3. At the
same time, the separatrices of interior saddle Ŝ3 increase until they connect with the separatrices
of the exterior saddle S3 (the phenomenon of splitting of separatrices takes place). After some
bifurcation related with homo/heteroclinic connections (phase portrait 6○ at M1 = 0) the saddle and
elliptic 3-periodic orbits are rotated. Afterwards, by the symmetry in the (M1,M2)-plane, forM1 > 0,
the periodic orbits undergo an inverse pitchfork bifurcation (the elliptic 3-periodic orbits Ê1

3 and Ê2
3

merge into the saddle orbit S3 which becomes elliptic E3) at PF+
3 ; a 1:3 resonance bifurcation (the

saddle 3-periodic orbit Ŝ3 is reconstructed after passing through the saddle fixed point P
(2)
1:3 with 6

separatrices) takes place at l+1:3; an inverse parabolic bifurcation (the saddle and elliptic 3-periodic
orbits E3 and Ŝ3 merge into the elliptic fixed point E1) occurs at crossing P+

3 .
In Figure 4 one can observe the bifurcations which occur at crossing the curves l−1:3, P

−

3 and PF−

3

in the case of the map H−

3 . We consider the horizontal line M2 = −0.8. For M1 in the right
hand side of P−

3 (see, for example, phase portrait 1○ for M1 = 1.2), there are an elliptic fixed
point E1 and a saddle 2-periodic orbit (the latter is absent in the figure) which appear after a
period-doubling bifurcation at PD−

1 . Decreasing M1 and passing through the curve P−

3 , elliptic and

12



saddle 3-periodic orbits E3 and S3 show up surrounding the elliptic fixed point E1 (see, for instance,
phase portrait 2○ for M2 = 0.85). Further, for M1 in the curve l−1:3 the elliptic point E1 and the

saddle orbit S3 are transformed into the saddle point P
(1)
1:3 with 6 separatrices (see phase portrait 3○

at M1 ≈ 0.74245), and after crossing L−

1:3 the saddle 3-periodic orbit S3 is rotated reconstructing
the homoclinic configuration into the heteroclinic connections (see phase portrait 4○ for M1 = 0.04).
After that at crossing the right branch of PF−

3 , the saddle 3-periodic orbit S3 goes through a
subcritical pitchfork bifurcation: the saddle orbit becomes elliptic Ê3 and in its neighborhood there
appear two nonsymmetric saddle 3-periodic orbits Ŝ1

3 and Ŝ2
3 (as in phase portrait 5○ at M1 = 0.025).

Varying further M1 the nonsymmetric saddle orbits Ŝ1
3 and Ŝ2

3 move away from the elliptic orbit Ê3

toward the other elliptic orbit E3 (see, for instance, phase portrait 6○ for M1 = 0). For M1 < 0,
the two saddle orbits Ŝ1

3 and Ŝ2
3 get closer to E3. These three orbits undergo an inverse pitchfork

bifurcation while crossing the left branch of PF−

3 : the two saddle and elliptic 3-periodic orbits Ŝ1
3 , Ŝ

2
3

and Ê3 collide into the saddle 3-periodic orbit S3. At crossing the left branch of l−1:3, the rotation of
the saddle 3-periodic orbit S3 takes place. Finally, for the parameters in the curve P−

3 the 3-periodic
orbits Ê3 and S3 disappear and the elliptic fixed point E1 remains.

Remark 2. The phase portraits in Figures 3 and 4 for values of parameters (M1,M2) and (−M1,M2)
are central symmetric with respect to the origin x = y = 0. This is due to the fact that the maps (1)
are invariant under the change x → −x, y → −y,M1 → −M1. This also results in the symmetries
of the bifurcation curves in the (M1,M2) parameter plane with respect to M1 = 0.

Remark 3. In Figures 3 and 4, the saddle separatrices are shown coinciding for simplicity, although
they are not expected to be exactly merged since the phenomenon of splitting of separatrices occurs
(see, for instance, [DGG16, DGG20] and references therein for more details about this phenomenon).

5 On the degeneracy of the p : q resonances with odd q > 3

in H±
3 with M1 = 0.

Let us consider the conservative cubic Hénon maps with M1 = 0. Due to Remark 2, there is the
central symmetry in the phase portraits x → −x, y → −y. A normal form for the p : q resonance,
where p and q are mutually prime and q > 3 is odd, is as follows

z̄ = ei2πp/q(z + Ω(|z|2)z∗ + A(z∗)q−1 +Bzq+1 + Cz(z∗)q).

The corresponding flow normal form in this case can be written as follows:

ż = iz + Ω(|z|2)z∗ + A(z∗)q−1 +Bzq+1 + Cz(z∗)q. (12)

It is conservative and reversible with respect to the involution (t, z) → (−t, z∗). Applying the
involution gives

−ż∗ = iz∗ + Ω(|z|2)z + A(z)q−1 +B(z∗)q+1 + Cz∗(z)q.

Further, let us consider the complex conjugate system

−ż = −iz + Ω∗(|z|2)z∗ + A∗(z∗)q−1 +B∗(z)q+1 + C∗z(z∗)q.

Thus, the reversibility implies that Ω = −Ω∗, A = −A∗, B = −B∗, C = −C∗, i.e. all coefficients in
(12) should be pure imaginary. Therefore, equation (12) takes the form

ż = iz + iΩ(|z|2)z∗ + iA(z∗)q−1 + iBzq+1 + iCz(z∗)q, (13)
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where all coefficients Ω, A, B, C are real. The conservativity condition means zero divergence, i.e.

∂ż

∂z
+

∂ż∗

∂z∗
≡ 0

As it follows from (13)
∂ż

∂z
= i+ iΩ′(z∗)2 + i(q + 1)Bzq + iC(z∗)q

and
∂ż∗

∂z∗
= −i− iΩ′(z)2 − i(q + 1)B(z∗)q − iC(z)q

Thus, the conservativity condition is

C +B(q + 1) = 0.

The symmetry z → −z implies A = B = C = 0 since q is odd. Thus, the above condition is
automatically fulfilled, and the following result holds.

Lemma 3. For maps H±

3 with M1 = 0, any p : q resonance at the fixed point O(0, 0), where q > 3
is odd, is at least triple degenerate.

In Figure 5 we illustrate this result for both cubic Hénon maps H±

3 . In Figures 5a,b we show
phase portraits near the degenerated 1:5 and 1:7 resonances for the map H+

3 . These resonances
occur at M2 ≈ 0.575 and M2 ≈ 1.15, respectively. As a result, four periodic orbits emerge: a pair of
symmetric periodic saddles (colored in light and dark green, respectively) and a pair of nonsymmetric
periodic elliptic orbits (colored in grey and black, respectively). In Figure 5c,d we demonstrate phase
portraits for the map H−

3 . In contrast to the previous case, here periodic elliptic orbits are symmetric
while periodic saddles are nonsymmetric. Here the 1:5 resonance occurs at M2 ≈ 0.66 and the 1:7
resonance takes place at M2 ≈ 1.36.

6 On the 1:3 resonance for the perturbed maps H̃+
3 (ε) and H̃2+

3 .

In this section we describe symmetry-breaking bifurcations near the 1:3 resonance in H̃+
3 (ε) in the

form (9). Note that the bifurcation picture is qualitatively similar for H̃2+
3 (ε), defined in (6).

We apply reversible non-conservative perturbations to the conservative map H+
3 and study their

impact on the structure of the 1:3 resonance. We display the bifurcation diagram for the fixed
perturbation parameter ε = 0.05 in Figure 6. In comparison to the unperturbed case, we can see
the slightly changed bifurcation curves l+1:3, P

+
3 and PF+

3 , related to the 1:3 resonance, a parabolic
bifurcation of the appearance of 3-periodic orbits and a reversible pitchfork bifurcation of 3-periodic
orbits, respectively. Unlike the conservative case, the bifurcation curves are not symmetric since the
invariance of the map with respect to the change M1 → −M1 (see also Remark 2) is not conserved
anymore at adding the perturbation. However, the symmetry in the phase portraits with respect to
the straight line y = x is preserved due to the reversibility. Also the curve PF+

3 here is associated
with the symmetry-breaking bifurcations which are non-conservative reversible pitchforks.

Let us describe the sequence of bifurcations which occur for the fixed parameter M2 = −1.25 and
decreasing the parameter M1 in Figure 6. To the right hand side of the curve P+

3 (see, for example,
the phase portrait 1○ at M1 = 1.2), the map H̃+

3 (ε) (and also H̃2+
3 ) has an elliptic fixed point E1. At

crossing P+
3 , there appear a symmetric elliptic 3-periodic orbit E3 and a symmetric saddle 3-periodic

14



Figure 5: Phase portraits near the degenerated 1:5 (left column) and 1:7 (right column) resonances in the conservative

cubic Hénon maps H+

3 (top row) and H−

3 (bottom row).

orbit S3 with homoclinic loops (see the phase portrait 2○ for the parameter value M1 = 0.96). Then
approaching the curve l+1:3, the orbits S3 and E1 merge into a saddle fixed point with 6 separatrices
(phase portrait 3○ at M1 ≈ 0.882737). After that the saddle splits into elliptic point E1 and
saddle 3-periodic orbit S3, now S3 is rotated and form heteroclinic connections (phase portrait 4○
for M1 = 0.15). Further, the elliptic 3-periodic orbit E3 undergoes a reversible pitchfork bifurcation
at crossing the right branch of the curve PF+

3 : the elliptic 3-periodic orbit E3 breaks into saddle,
stable and unstable 3-periodic orbits Ŝ3, Â3 and R̂3, respectively (phase portrait 5○ for M1 = 0.08).
Note that under this bifurcation a pair of nonsymmetric 3-periodic orbits Â3 and R̂3 is born. The
separatrices of each component of the new saddle Ŝ3 tend to the the corresponding components of
the stable and unstable orbits Â3 and R̂3 at forward and backward iterations, respectively, forming
homoclinic loops, and all the three components are surrounded by invariant curves in the similar
way as in Figure 2(a). Decreasing M1, the stable and unstable orbits Â3 and R̂3 move away from
each other. Moreover, one of the components of the stable (or unstable) 3-periodic orbit gets away
from the symmetry line y = x, while the other two components move closer each other and to
the line y = x. At the same time, the separatrices of the inner saddles become larger. At some
moment (close to M1 = 0.055, see phase portrait 6○), the separatrices of the inner and exterior
saddles Ŝ3 and S3 merge (not exactly due to splitting of separatrices) and the transformation of
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Figure 6: Bifurcation diagram for the reversible non-conservative map H̃+
3 (ε) for ε = 0.05 near the

1:3 resonance. The bifurcations curve l+1:3 is the curve of the 1:3 resonance of fixed points, while the
curves P+

3 and PF+
3 are related to parabolic and reversible pitchfork (non-conservative symmetry-

breaking) bifurcations of 3-periodic orbits, respectively. For the fixed value of M2 = −1.25, the phase
portraits are given for M1 = −1.2,−1.05,−.0.95, 0, 0.003, 0.055, 0.08, 0.15, 0.8827, 0.96 and 1.2. The
green, grey, red and blue stand for saddle, elliptic, stable (sinks) and unstable (sources) fixed points
and periodic orbits, respectively.

homoclinic/heteroclinic connections takes place after which all the involved 3-periodic orbits are
rotated (as in phase portrait 7○ for M1 = 0.03). At crossing the left branch of PF+

3 an inverse
pitchfork bifurcation occurs: the saddle, stable and unstable 3-periodic orbits S3, Â3 and R̂3 merge
into an elliptic 3-periodic orbit E3 (phase portrait 8○ at M1 = 0). The remaining saddle 3-periodic
orbit Ŝ3 and elliptic point E1 collide at crossing the left branch of l+1:3, there is a saddle point with
6 separatrices for the parameters in this curve (for a parameter close to M1 = −0.95, see phase
portrait 9○). After the bifurcation, the 6-separatrix saddle splits into saddle and elliptic 3-periodic
orbits Ŝ3 and E3 in the left hand side of l+1:3, now Ŝ3 is rotated by π/3 and the heteroclinic cycles
change into homoclinic loops (phase portrait 10○ for M1 = −1.05). Finally, we transit the curve P+

3

and the 3-periodic orbits Ŝ3 and E3 disappear (phase portrait 11○ for M1 = −1.2).

Thus, at transition into the domain lying below the curve PF+
3 , there appears a symmetric pair

of nonsymmetric stable and completely unstable 3-periodic orbits. This fact is relevant for detecting
mixed dynamics in maps with symmetric cubic homoclinic tangencies whose truncated first return
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Figure 7: Bifurcation diagram for the the reversible non-conservative map H̃−

3 (ε) for ε =
0.05 near the 1:3 resonance. The bifurcations curve l−1:3 is related to bifurcations of the
1:3 resonance of fixed points, while the curves P−

3 and PF−

3 correspond to parabolic and
reversible pitchfork (non-conservative symmetry-breaking) bifurcations of 3-periodic orbits, re-
spectively. For the fixed value of M2 = −0.8, the phase portraits are given for M1 =
−1.3,−0.8,−0.72,−0.4,−0.065,−0.005,−0.025, 0.5, 0.7494, 0.9 and 1.23. The green and grey points
stand for saddle and elliptic orbits, respectively.

map is H̃+
3 (ε) or H̃2+

3 (ε). Thus, there are Newhouse domains where maps with infinitely many
attracting, repelling, saddle and elliptic periodic orbits are dense.

7 On the 1:3 resonance in the perturbed maps H̃−
3 (ε) and H̃2−

3 (ε)

In this section we study how the 1:3 resonance evolves under the perturbation in the case of the
map H̃−

3 (ε). The corresponding bifurcation diagram is illustrated in Figure 7. Unlike the unper-
turbed case in Figure 4, the 1:3 resonance curve l−1:3 as well as the curves P−

3 and PF−

3 related to
parabolic and reversible pitchfork bifurcations of 3-periodic orbits, respectively, are nonsymmetric
and slightly moved, since the symmetry with respect to M1 = 0 (see also Remark 2) is not conserved
anymore. Also PF−

3 corresponds to a non-conservative symmetry-breaking bifurcation after which
two nonsymmetric saddle 3-periodic orbits appear, one of them with the Jacobian J > 1 and the
other with the Jacobian J < 1. Note that for H̃2−

3 (ε), the bifurcation diagram and bifurcation
sequence of phase portraits is qualitatively the same.
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Let us give details on the bifurcations taking place in the bifurcation diagrams in Figure 7. We
choose the horizontal lineM2 = −0.8. We start with the parameters in the right hand side of P−

3 (see,
for instance, phase portrait 1○ for M1 = 1.23), where the map H̃−

3 (ε) (and H̃2−
3 (ε)) has an elliptic

fixed point E1. The point E1 undergoes a parabolic bifurcation at crossing P−

3 and there appear 3-
periodic orbits S3 and E3 of saddle and elliptic type close to E1 for the parameters in the left hand side
of P−

3 (phase portrait 2○ for M1 = 0.9). Note that the three components of the saddle orbit S3 have
homoclinic loops. In the 1:3 resonance curve l−1:3 (at M1 ≈ 0.74943), the saddle 3-periodic orbit S3

and the elliptic point E1 merge into a saddle fixed point with 6 separatrices (see phase portrait 3○)
which for the parameters in the left hand side of l−1:3 breaks into saddle and elliptic 3-periodic orbits S3

and E3 again, but in the left hand side of l−1:3 the orbit S3 is rotated by π/3 and the homoclinic loops
of S3 are reorganized into heteroclinic connections (see, for example, phase portrait 4○ at M1 = 0.5).
Crossing the right branch of the curve PF−

3 , the saddle orbit S3 undergoes the subcritical pitchfork
bifurcation. As a result, the saddle orbit is converted into an elliptic 3-periodic orbit Ê3 and two
saddle 3-periodic orbits Ŝ1

3 and Ŝ2
3 show up nearby (see the phase portrait 5○ for M1 = −0.025).

Moreover, the Jacobian in Ŝ1
3 is greater than 1 and the Jacobian in Ŝ2

3 is less than 1. Decreasing
the parameter M1, the saddle orbits Ŝ1

3 and Ŝ2
3 distance from each other and they move toward the

elliptic orbit E3 (phase portraits 6○ and 7○ for M1 = −0.05 and M1 = −0.065). In the left branch
of PF−

3 , an inverse pitchfork bifurcation takes place: the orbit E3 merges along with Ŝ1
3 and Ŝ2

3 into
a saddle 3-periodic orbit S3 (phase portrait 8○ for M1 = −0.4). Afterwards, the reconstruction of S3

happens in the 1:3 resonance curve l−1:3 (phase portrait 9○ and 10○ for M1 = −0.72 and M1 = −0.8).
Finally, the 3-periodic orbits Ê3 and S3 disappear at crossing P−

3 (phase portrait 11○) for M1 = −1.3).
Note that in the domain above the curve PF−

3 there emerges a symmetric pair of nonsymmetric
saddle 3-periodic orbits whose Jacobians are greater and less than 1. This configuration also implies
the existence of mixed dynamics in maps with cubic homoclinic tangencies whose truncated first
return map is H̃−

3 (ε) or H̃2−
3 (ε). Also in H̃−

3 (ε) itself we show numerically the existence of mixed
dynamics for the parameters from the domain inside PF−

3 since heteroclinic connections between
two saddle orbits, one with the Jacobian J > 1 and the other with the Jacobian J < 1, leads to the
presence of the so-called Lamb-Stenkin non-transversal heteroclinic cycle [LS04]. See more details in
Section 8.

8 Numerical evidence of mixed dynamics in the perturbed

map H̃−
3 (ε)

In this section we provide a numerical evidence of the existence of mixed dynamics in the perturbed
map H̃−

3 (ε) in (9) for which in Section 7 we show the existence of a pair of saddle 3-periodic orbits Ŝ1
3

and Ŝ2
3 with the Jacobians J < 1 and J > 1, respectively. Recall that these orbits appear due to

a subcritical reversible pitchfork bifurcation of the symmetric saddle 3-periodic orbit S3. For better
visibility, we take a quite large value of perturbation, ε = 0.3. In Figure 8 we show the phase portraits
of H̃−

3 (ε) for M1 = −0.364 and M2 = −0.5. The orbits Ŝ1
3 with J < 1, Ŝ2

3 with J > 1 and symmetric
elliptic orbits are marked by blue, red and black bold points, respectively. For the convenience, we
rotate the phase portraits by π/4, then the horizontal axis corresponds to Fix(h).

From Figure 8 it is clear to see that the phase portrait is self-symmetric with respect to the
horizontal axis which means that the attractor of the system seems coincident with the repeller.
Moreover, we are not able to find periodic sinks and sources nor even nonsymmetric orbits (except
for points Ŝ1

3 and Ŝ2
3) which would confirm mixed dynamics in H̃−

3 (ε).
However, we find a non-transversal heteroclinic cycle of Lamb-Stenkin type [LS04] which con-
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Figure 8: Phase portrait and the zoomed fragment for the map H̃−

3 (ε) in (9) for M1 = −0.364,M2 =
−0.5 and ε = 0.3. For the convenience, the phase portrait is rotated by π/4. In this representation,
the horizontal axis becomes Fix(h). The chaotic dynamics (in the gray region) seems conservative
(the phase portrait is self-symmetric with respect to the horizontal axis). The orbits Ŝ1

3 and Ŝ2
3

are the pair of non-conservative saddle 3-periodic orbits with the Jacobians J(Ŝ1
3) = 0.995 < 1

and J(Ŝ2
3) = 1.005 > 1.

nects Ŝ1
3 and Ŝ2

3 . As it was shown in [LS04], bifurcations of such cycles lead to a reversible mixed
dynamics. A schematic representation of this cycle is shown in Figure 9a. The numerically obtained
cycle is presented in Figure 9b. From this figure, one can see that the stable and unstable man-
ifolds of Ŝ1

3 and Ŝ2
3 have both transversal (see also the zoomed region near Ŝ2

3 in Figure 9c) and
non-transversal (see the zoomed fragment in Figure 9b) intersections. Thus, we can state that the
chaotic dynamics presented in the gray zone in Figure 8 is mixed.

Also in this section we would like to note that the presence of mixed dynamics near elliptic points
of two-dimensional reversible maps plays an important role. As well-known, the phase portrait near
an elliptic point of a two-dimensional reversible diffeomorphism is organized in many details as in
the conservative case. There is also a continuum of KAM-curves surrounding the elliptic point.
The KAM-curves are separated by resonant zones [Sev86]. However, the behavior in the resonant
zones for reversible maps principally differs from the conservative ones, see, for example, Figures 10a
and 10b. In the conservative setting, ε-orbits can run away from any neighborhood of an elliptic
point, i.e. such point is not stable under permanently acting perturbations (Lyapunov instability
by ε-orbits) [GT17], see Figure 10a.

On the other hand, in the reversible nonconservative case, as it follows from [GLRT14, GT17],
it is typical when in resonant zones periodic saddle points alternate with symmetric pairs of sinks
and sources, see Figure 10(b). In this case, it is possible when there exist intersecting absorbing
domain BA and repelling domain BR around an elliptic point such that forward as well as backward ε-
orbits of any point, that belongs to the intersection BA ∩BR, cannot leave any neighborhood of this
elliptic point [GT17, GGK20]. These resonances are called impassable or isolated. In future papers,
we plan to study such resonances for the perturbed reversible non-conservative Hénon maps.
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Figure 9: (a) A schematic representation of non-transversal heteroclinic cycle of Lamb-Stenkin type.
(b), (c) Non-transversal heteroclinic cycle connected saddles Ŝ1

3 and Ŝ2
3 in the map H̃−

3 (ε) at M1 =
−0.364,M2 = −0.5 and ε = 0.3. A pair of manifolds W s

1 and W u
1 intersects transversally, while the

other pair W s
2 and W u

2 has a quadratic tangency.

Conclusions

In the present paper we have obtained a series of new results devoted to the structure of the 1:3
resonance in conservative cubic Hénon maps and their reversible perturbations. First, we have used
two methods to construct reversible non-conservative perturbations of the conservative cubic Hénon
maps. The first method provides perturbations of the second iteration of the inverse cubic Hénon
maps in the so-called cross-form, while the second more delicate method gives perturbations of the
cubic Hénon maps themselves. In both cases, we have proved that the resulting perturbed pertur-
bations preserve reversibility. Second, we have considered the conservative cubic Hénon maps H+

3

and H−

3 as examples and studied the influence of reversible non-conservative perturbations on the
structure of bifurcations of the 1:3 resonance. We have provided a detailed analysis of these bifurca-
tions in the perturbed maps. We have focused on local symmetry-breaking bifurcations which have
led to the appearance of nonsymmetric orbits. These bifurcations are reversible pitchfork bifurcations
of 3-periodic orbits, and we have found the domains of parameters corresponding to nonsymmetric
orbits. Moreover, for perturbations of H+

3 , there appear nonsymmetric asymptotically stable and
completely unstable 3-periodic orbits, while in perturbed H−

3 there emerge two nonsymmetric saddle
3-periodic orbits, one with the Jacobian greater than 1 and the other with the Jacobian less than 1.
The presence of these nonsymmetric orbits leads to the existence of mixed dynamics in maps with
cubic homoclinic tangencies whose first return maps are H±

3 . Third, for the unperturbed conserva-
tive maps H+

3 and H−

3 with M1 = 0, we have demonstrated that all p : q resonances are degenerate
when q > 3 is odd. And finally, we have provided a numerical evidence of mixed dynamics in per-
turbed H−

3 , since a heteroclinic configuration between these nonsymmetric saddle orbits implies the
emergence of a Lamb-Stenkin non-transversal heteroclinic cycle.

These results can be used for further study of mechanisms of the appearance of mixed dynamics
after a break-down of conservative dynamics. As pointed out in the introduction, the maps (1) are
related to the study of cubic homoclinic tangencies and the phenomenon of mixed dynamics, the third
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Figure 10: Different types of behavior in resonant zones of a symmetric elliptic point in the con-
servative (a) and reversible (b) cases. Periodic elliptic orbits are marked by gray bold points, while
periodic sinks and sources are colored in blue and red, respectively. In plot (b) the absorbing do-
main BA of a sink orbit (bounded by the blue dashed curves) intersects with the repelling domain of
the source orbit (bounded by the red dashed curves). Thus, ε-orbits of any point belonging to this
intersection cannot leave the resonant zone with neither forward nor backward iterations (isolated
resonance). It means that an elliptic point of a typical two-dimensional reversible diffeomorphism is
stable under permanently acting perturbations (Lyapunov stability by ε-orbits).

(and the last) type of chaos. We have shown some global and local mechanisms of its emergence. The
global ones are connected with the presence of homoclinic and heteroclinic cycles of different kinds,
while one of the interesting local mechanisms is related to bifurcations of resonances among which we
highlight the 1:3 resonance. It is easy to associate the bifurcation structure of the cubic Hénon maps
with the bifurcations which take place near the cubic homoclinic tangencies [GGO17]. In the present
paper we have proposed a local mechanism corresponding to the occurrence of degenerate resonances
in the cubic Hénon maps. In the reversible context, symmetry-breaking pitchfork bifurcations of 3-
periodic orbits lead to the appearance of pairs of nonsymmetric and non-conservative periodic orbits
(periodic sinks and sources, periodic saddles with the Jacobians greater and less than 1) near the
degenerate 1:3 resonant point. In this regard, we think that it is of great importance to consider
the problem of local 1:3 resonance, especially the degeneracy a02 = 0 in (10), and the accompanying
symmetry-breaking bifurcations in general reversible maps, since degenerate resonances in reversible
systems are the main local mechanism of the appearance of mixed dynamics. It is also worth
mentioning that the similar problem for the 1:4 resonance, the structure of bifurcations associated
with fixed points with eigenvalues e±π/2 = ±i and, consequently, 4-periodic orbits, is of great interest
as well. An exhaustive study of 1:4 resonance for (1) was done in [GGO17, GGOV18], see also [Gon05].
It was also established in these works that for some (M1,M2), the 1:4 resonance can be degenerate and
the 4-periodic orbits are subject to pitchfork bifurcations. The study of reversible non-conservative
perturbations for this case is planned in a forthcoming paper.
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[DM00] H. R. Dullin, J. D. Meiss. Generalized Hénon maps: the cubic diffeomorphisms of the plane.
Physica D: Nonlinear Phenomena, 143(1):262–289, 2000.

[GG09] S.V. Gonchenko, M.S. Gonchenko. On cascades of elliptic periodic points in two-dimensional
symplectic maps with homoclinic tangencies. Regular and Chaotic Dynamics, 14(1):116–136,
2009.

[GGK13] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov. Richness of chaotic dynamics in non-
holonomic models of a Celtic stone. Regular and Chaotic Dynamics, 18(5):521–538, 2013.

[GGK20] S.V. Gonchenko, A.S. Gonchenko, A.O. Kazakov. On three types of attractors and mixed
dynamics in nonholonomic models of rigid body dynamics. Proceedings of the Steklov Institute
of Mathematics 2020. Vol. 308. pp. 125-140.

[GGKT17] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, D. V. Turaev. On the phenomenon
of mixed dynamics in Pikovsky-Topaj system of coupled rotators. Physica D: Nonlinear Phe-
nomena, 350:45–57, 2017.

[GGO17] M. Gonchenko, S. Gonchenko, I. Ovsyannikov. Bifurcations of cubic homoclinic tangencies
in two-dimensional symplectic maps. Mathematical Modelling of Natural Phenomena, 12(1):41–
61, 2017.

[GGOV18] M. Gonchenko, S. Gonchenko, I. Ovsyannikov, A. Vieiro. On local and global aspects of
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