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Abstract. Generalizing a classical result of Dwyer and Kan for simplicial

categories, we characterize the morphisms of multi-sorted simplicial algebraic
theories and simplicial coloured operads which induce a Quillen equivalence

between the corresponding categories of algebras.

1. Introduction

Given a small category C, we can think of the category of functors SetsC as
the category of representations (in Sets) of C. Two categories need not to be
equivalent to have equivalent categories of representations. In fact, recall that
every functor f : C → D between small categories induces an adjunction between
the corresponding categories of representations

f! : SetsC −−→←−− SetsD : f∗,

where the right adjoint f∗ is precomposition with f . The following is a classical
result in category theory (see for instance [EZ76], [BD86]).

Theorem 1.1. For every functor f : C → D, the adjunction (f!, f
∗) is an equiva-

lence of categories if and only if f is fully faithful and essentially surjective up to
retracts.

A functor satisfying the hypothesis of Theorem 1.1 is called a Morita equivalence.
In [DK87], Dwyer and Kan extended this characterization to the homotopical set-
ting. Let sSets be the category of simplicial sets equipped with the Kan–Quillen
model structure and let C be a small simplicial category, that is, a category enriched
in simplicial sets. The category of simplicial functors sSetsC can be endowed with
the projective model structure, in which the weak equivalences and fibrations are
defined levelwise. The projective model structure models the homotopy represen-
tations of C.

To every simplicial category C we can associate (functorially) a category π0(C),
called the path component category of C, which has the same objects as C, and
whose set of morphisms from x to y in π0(C) is π0(C(x, y)).

We call a functor between small simplicial categories f : C → D a Morita weak
equivalence if it is homotopically fully faithful (that is, f : C(x, y) → D(f(x), f(y))
is a weak equivalence for every x, y in C) and homotopically essentially surjective
up to retracts (that is, if π0(f) is essentially surjective up to retracts).

The result of Dwyer and Kan [DK87, Theorem 2.1] can be stated as follows
(even though it was originally formulated not making use of the language of model
categories).
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Theorem 1.2 (Dwyer–Kan). Let f : C → D be a functor between small simplicial
categories. The following are equivalent:

(i) The induced Quillen adjunction between the projective model structures

f! : sSetsC −−→←−− sSetsD : f∗

is a Quillen equivalence.
(ii) The functor f is homotopically fully faithful and homotopically essentially

surjective up to retracts.

The goal of this paper is to extend Theorem 1.1 and Theorem 1.2 to the case of
(simplicial) multi-sorted algebraic theories and (simplicial) coloured operads.

Algebraic theories and coloured operads can be regarded as extensions of the
concept of category that present algebraic structures with operations with multiple
inputs and one output in cartesian and symmetric monoidal categories, respectively,
in contrast with categories that can present structures with operations with one
input and one output only (but, consequently, admit representations in arbitrary
categories that do not need to be cartesian or symmetric monoidal).

Representations of algebraic theories and operads are called algebras. The cate-
gory of algebras over an algebraic theory T or operad O will be denoted by Alg(T )
or Alg(O), respectively. Every morphism of algebraic theories f : S → T or operads
f : O → P induces an adjunction:

f! : Alg(S) −−→←−− Alg(T ) : f∗ or f! : Alg(O) −−→←−− Alg(P) : f∗,

respectively. Our generalizations of Theorem 1.1 are Theorem 2.2 and Theorem 4.5,
and can be subsumed as follows:

Theorem 1.3. Let f be a morphism of multi-sorted algebraic theories or coloured
operads in Sets. The following are equivalent:

(i) The induced adjunction (f!, f
∗) is an equivalence of categories.

(ii) The morphism f is fully faithful and essentially surjective up to retracts.

The precise definition of fully faithful and essentially surjective up to retracts in
each case will be given in the corresponding sections of the paper.

In the homotopical setting, we consider simplicial multi-sorted algebraic theories
and simplicial operads. For every simplicial algebraic theory T or simplicial operad
O, its category of algebras in sSets, that we denote by sAlg(T ) or sAlg(O), respec-
tively, admit the projective model structure, which models the homotopy theory of
the respective algebras.

As in the case of simplicial categories, every morphism of simplicial algebraic
theories f : S → T or simplicial operads f : O → P induces a Quillen adjunction
between the projective model structures:

f! : sAlg(S) −−→←−− sAlg(T ) : f∗ or f! : sAlg(O) −−→←−− sAlg(P) : f∗,

respectively. The generalization of Theorem 1.2 for algebraic theories, presented in
Section 3.4 as Corollary 2.19 can be stated as follows:

Theorem 1.4. Let f be a morphism of simplicial multi-sorted algebraic theories.
The following are equivalent:

(i) The adjunction (f!, f
∗) is a Quillen equivalence between the projective model

structures on the corresponding categories of simplicial algebras.
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(ii) The morphism f , seen as a functor between simplicial categories, is a
Morita weak equivalence.

The generalization of Theorem 1.2 that we obtain in the operadic case is the
following:

Theorem 1.5. Let f be a morphism between Σ-cofibrant simplicial coloured oper-
ads. The following are equivalent:

(i) The adjunction (f!, f
∗) is a Quillen equivalence between the projective model

structures on the corresponding categories of simplicial algebras.
(ii) The morphism f is homotopically fully faithful and homotopically essen-

tially surjective up to retracts.

The morphisms between simplicial operads that are homotopically fully faithful
and homotopically essentially surjective up to retracts are also called Morita weak
equivalences.

The Cisinski–Moerdijk model structure on simplicial operads models the homo-
topy theory of ∞-operads. However, the homotopy theory of O-algebras in the
homotopy category of sSets for a simplicial operad O, seen as an ∞-operad, is not
equivalent to the homotopy theory of sAlg(O) (with the projective model struc-

ture), but it is rather represented by sAlg(Ô), where Ô is a cofibrant resolution
of O.

Cofibrant simplicial operads represent homotopy invariant algebraic structures.
Since every cofibrant operad is, in particular, Σ-cofibrant, Theorem 1.5 shows that,
restricted to cofibrant operads, the class of Morita weak equivalences is precisely the
class of morphisms which induce homotopical equivalences between the homotopy
invariant algebraic structures presented. This implies that the Morita model struc-
ture for simplicial operads presented in [CG19, Theorem 5.7] can be rightly called
the homotopy theory of homotopy invariant algebraic structures. This conclusion
was one of the main motivations to write this paper.

We would like to stress that our proof of Theorem 1.5 is highly dependent on
the corresponding result for algebraic theories, that is, Corollary 2.19. Moreover,
Theorem 1.5 provides a nice characterization of the weak equivalences of the Morita
model structure for simplicial operads from [CG19, Theorem 5.7].

Organization of the paper. We start with the case of multi-sorted algebraic
theories in Section 2. The first part of this section contains the results for algebraic
theories in Sets while the second part is concerned with the homotopical case. We
then start the transition from algebraic theories to operads. Section 3 recalls the
strong link between the concept of operad and algebraic theory, explained by Kelly
in [Kel05], that will permit us to recast the desired characterization of Morita
equivalences between coloured operads to the corresponding characterization for
algebraic theories. Finally Section 4 contains the main results about coloured op-
erads. We deduce the characterization of Morita equivalences for operads in sets
and we conclude by proving the homotopical analogue for simplicial operads.
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supported by the Spanish Ministry of Economy under the grants MTM2016-76453-
C2-2-P (AEI/FEDER, UE) and RYC-2014-15328 (Ramón y Cajal Program).
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2. Morita equivalences of multi-sorted algebraic theories

2.1. Multi-sorted algebraic theories. We start by recalling the definition of
multi-sorted algebraic theory. To encompass both the non-enriched and the sim-
plicial case, we give the definition of multi-sorted algebraic theory enriched in an
arbitrary cocomplete cartesian category M. However, in the paper we will only
consider the cases in which M is the category of sets or the category of simplicial
sets.

Let S be a set and let Sq(S) denote the set of finite words or finite sequences
over S. Let M be a cocomplete cartesian category. An S-sorted M-algebraic
theory T is a small category enriched in M with finite products whose objects
consist of finite sequences 〈a1, . . . , an〉 in Sq(S) with n ≥ 0, and such that for every
a = 〈a1, . . . , an〉 and b = 〈b1, . . . , bk〉 in Sq(S) there is an isomorphism

ab = 〈a1, . . . , an, b1, . . . , bk〉 ∼= 〈a1, . . . , an〉 × 〈b1, . . . , bk〉 = a× b.

A multi-sorted M-algebraic theory is an S-sorted M-algebraic theory for some
set S.

A morphism from an S-sortedM-algebraic theory T to an S′-sortedM-algebraic
theory T ′ is a pair (f, ϕ) where ϕ : S → S′ is a function of sets and f : T →
T ′ is a product-preserving M-functor such that f(a) = ϕ(a) for every a in S.
We will denote by M-AT h the category of multi-sorted M-algebraic theories (cf.
Section 3.4).

Let S be a fixed set of sorts. The categoryM-AT hS has as objects the S-sorted
M-algebraic theories and as morphisms the morphisms of algebraic theories that
are the identity on S.

Let M-Cat be the category of small M-enriched categories. There is a forgetful
functor

u : M-AT h −→M-Cat

that sends each algebraic theory to its underlying category. By abuse of notation,
we denote u(T ) simply by T when no confusion can arise.

Given a M-algebraic theory T , the category of T -algebras in M, denoted by
M-Alg(T ) is the full subcategory of Mu(T ) spanned by the product preserving
M-functors.

2.2. Morita equivalences of multi-sorted algebraic theories. We now focus
on the multi-sorted algebraic theories in Sets. The category Sets-AT h will be
simply denoted by AT h, and for every T in AT h, its category of T -algebras in
sets will be denoted by Alg(T ). The category Alg(T ) is a reflective subcategory of
SetsT . In other words, the inclusion functor N : Alg(T )→ SetsT has a left adjoint

S : SetsT −−→←−− Alg(T ) : N.

Given a morphism of algebraic theories f : S → T , the extension-restriction
adjunction associated to the underlying functor u(f), restricts to an adjunction
between the respective categories of algebras. The fact that the right adjoint f∗

sends product preserving functors in SetsT to product preserving functors in SetsS

follows since f is product preserving. The left adjoint f! is defined as the left Kan
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extension along f as represented in the following diagram

S
f
//

F
��

T

j!F||yy
yy
yy
yy

Sets.

Since Sets is cartesian closed and both S and T have finite products, if a functor
F preserves finite products, so does the left Kan extension j!F . This shows that f!

also restricts to the categoris of algebras. Thus, we have the following commutative
diagram of adjunctions:

(2.1) SetsS
f! //

S

��

SetsT

f∗
oo

S

��

Alg(S)
f! //

N

OO

Alg(T ).
f∗
oo

N

OO

We now define Morita equivalences in AT h and characterize them as the mor-
phisms inducing an equivalence at the level of algebras. Recall that a functor
f : C → D between small categories is called a Morita equivalence if and only if it is
fully faithful and essentially surjective up to retracts (that is, for every y in D there
exist x in C such that y is isomorphic to a retract of f(x)); see [CG19, Section 1.2].

Definition 2.1. A map f of algebraic theories is called a Morita equivalence if the
underlying functor u(f) is a Morita equivalence of categories.

Recall that given an algebraic theory T , the category of T -algebras Alg(T ) is
the full subcategory of SetsT spanned by the product preserving functors. As in
the case of Morita equivalences of categories, the Morita equivalences of algebraic
theories can be characterized in terms of their categories of algebras.

Theorem 2.2. Let f : S → T be a morphism between algebraic theories. The
following are equivalent:

(i) The morphism f is a Morita equivalence.
(ii) The extension-restriction adjunction f! : Alg(S) � Alg(T ) : f∗ is an equiv-

alence of categories.

Proof. The fact that (i) implies (ii) follows from Theorem 1.1 applied to u(f) and
from diagram (2.1). If the top horizontal extension-restriction adjunction in (2.1)
is an equivalence then the adjunction between algebras is also an equivalence.

For the converse, consider the following commutative diagram

Sop f
op

//

��

T op

��

Alg(S)
f!

// Alg(T ),

where the vertical arrows denote the Yoneda embeddings. Since f! and the Yoneda
embeddings are fully faithful, so is f

op

. To prove that f
op

is essentially surjective up
to retracts consider an object a in T . The functor f! is essentially surjective by as-
sumption, so there exists X in Alg(S) such that f!X ∼= T (a,−). Now, we can check
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using the fully faithfulnes of f! that the functor Alg(S)(X,−) preserves all colimits.
Since every S-algebra is a colimit of corepresentables, if X ∼= colimi S(ai,−), then

Alg(S)(X, colimi S(ai,−)) ∼= colimiAlg(S)(X,S(ai,−)),

and taking the identity in Alg(S)(X,X) we can show that X is a retract of a corep-
resentable S(aj ,−) for some j. Applying f! to this retraction and using Yoneda

lemma we obtain that a is the retract of f(aj), which is in the image of f
op

. We

finish the proof by observing that f is a Morita equivalence if and only if f
op

is a
Morita equivalence. �

2.3. Simplicial algebraic theories and their algebras. We now pass to the
homotopical case and focus therefore on simplicial algebraic theories. We will de-
note the category of algebraic theories enriched in sSets by sAT h. Recall that for
every simplicial algebraic theory T , its category of algebras in sSets, denoted by
sAlg(T ), is the full subcategory of sSetsT spanned by the product preserving sim-
plicial functors. As in the non-enriched case, the inclusion N : sAlg(T ) → sSetsT

that sends a simplicial T -algebra X to sAlg(h(−), X) ∼= X, where h denotes the
corepresentable functor, has a left adjoint that we will denote by S.

Let T be an S-sorted simplicial algebraic theory. For every object a in T of the
form 〈a1, . . . , an〉, let ha be the corepresentable functor T (a,−) in sSetsT , and let
pa be the canonical map

pa : ha1 t · · · t han −→ ha.

Observe that ha is product preserving, that is, it is in the essential image of N.
We denote by LT = {pa | a ∈ Sq(S)} the set of all such maps. A simplicial

functor F in sSetsT is in the (essential) image of N if and only if it is orthogonal
to LT , that is, if and only if the induced map

(pa)∗ : sSetsT (ha, F ) ∼= F (a) −→ F (a1)× · · · × F (an) ∼= sSetsT (ha1 t · · · t han , F )

is an isomorphism for every a in Sq(S).
Given a morphism of simplicial algebraic theories f : S → T , the extension-

restriction adjunction associated to the simplicial functor u(f), restricts to an ad-
junction between the corresponding categories of simplicial algebras, as represented
by the following commutative diagram of adjunctions:

sSetsS
f! //

S

��

sSetsT

f∗
oo

S

��

sAlg(S)
f! //

N

OO

sAlg(T ).
f∗
oo

N

OO

2.4. The homotopy theory of algebras over an algebraic theory. We now
recall some facts about the homotopy theory of algebras over a simplicial algebraic
theory. From now on the category sSets will be always considered equipped with
the Kan–Quillen model structure, that models the homotopy theory of spaces.

The goal for the upcoming sections is to prove Corollary 2.19, providing a charac-
terization of the morphisms of simplicial algebraic theories inducing a homotopical
equivalence between the corresponding categories of algebras.

In [Bad02] (for one-sorted algebraic theories) and [Ber06] (for multi-sorted alge-
braic theories) two models are presented for the homotopy theory of algebras over
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a (simplicial) algebraic theory T : a model structure on the category of algebras
(strict models), and a model structure obtained as localization of the projective
model structure on sSetsT , in which the fibrant objects are the weak models for T .
In these papers, Badzioch and Bergner proved the equivalence of these two ap-
proaches.

In order to prove Corollary 2.19, we roughly proceed as follows. First we show
that if f : S → T in Theorem 1.2 is a map of algebraic theories (not just of cate-
gories), then the equivalence restricts to an equivalence between the weak models
of the two theories (Theorem 2.18). We then exploit the above mentioned equiva-
lence between the weak models and the strict models to conclude that f induces a
Quillen equivalence between the corresponding categories of algebras.

Let T be an S-sorted simplicial algebraic theory. The projective model structure
on sSetsT can be transferred to a model structure on sAlg(T ) along N to model
the homotopy theory of simplicial algebras over T ; see [Rez02, Theorem 7.1]. We
will always consider sAlg(T ) with this model structure.

Theorem 2.3 (Rezk). Let T be an S-sorted simplicial algebraic theory. Then the
category of algebras sAlg(T ) admits a right proper simplicial model structure in
which a map X → Y is a weak equivalence (respectively a fibration) if and only if
for every a in Sq(S), the map X(a) → Y (a) is a weak equivalence (respectively a
fibration) of simplicial sets.

Given a map of simplicial algebraic theories f : S → T , the extension-restriction
adjunction

f! : sAlg(S) −−→←−− sAlg(T ) : f∗

is a Quillen pair.
A model for the theory of homotopy algebras over T can be obtained by left

Bousfield localizing the projective model structure on sSetsT with respect to the
set of maps LT = {pa | a ∈ Sq(S)}; see [Ber06, Proposition 4.9] and [Bad02,
Section 5]. We will denote this localization by sSetsTwm and we will call its weak
equivalences LT -local equivalences.

Definition 2.4. Let T be an S-sorted algebraic theory. A functor X in sSetsT is
called a weak model or a homotopy T -algebra if for every a = 〈a1, . . . , an〉 in Sq(S)
the induced map of simplicial sets

(pa)∗ : X(a) −→ X(a1)× · · · ×X(an)

is a weak equivalence.

The fibrant objects in sSetsTwm are precisely the functors that are weak models
and levelwise fibrant [Ber06, Proposition 4.10]. Badzioch (for ordinary algebraic
theories) and Bergner (in the multi-sorted case) proved that the model structures
sAlg(T ) and sSetsTwm are Quillen equivalent; see [Bad02, Theorem 6.4] and [Ber06,
Theorem 5.1].

Theorem 2.5 (Badzioch, Bergner). The adjunction S : sSetsTwm � sAlg(T ) : N is
a Quillen equivalence.

Remark 2.6. The theorem above is, in fact, proved by Badzioch and Bergner for
algebraic theories enriched in sets and not in simplicial sets. However, as mentioned
in [Bad02, Note 1.5], the same proof is valid for simplicial algebraic theories.
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For every map f : S → T of simplicial algebraic theories we have a commutative
diagram of Quillen pairs

(2.2) sSetsS
id //

f!

��

sSetsSwm

S //

f!

��

id
oo sAlg(S)

f!

��

N
oo

sSetsT
id //

f∗

OO

sSetsTwm

S //

id
oo

f∗

OO

sAlg(T )

f∗

OO

N
oo

Recall that the path component functor π0 : sSets → Sets extends to a functor
π0 : sCat → Cat such that π0(C)(x, y) = π0(C(x, y)) for every simplicial category C
and every x, y ∈ C.

Definition 2.7. Let f : S → T be a morphism of simplicial algebraic theories. We
say that

(i) f is homotopically fully faithful if u(f) is homotopically fully faithful, that
is, if f : S(c, c′)→ T (f(c), f(c′)) is a weak equivalence for every c, c′ ∈ S;

(ii) f is homotopically essentially surjective up to retracts if the functor π0(u(f))
is essentially surjective up to retracts;

(iii) f is a Morita weak equivalence if it is homotopically fully faithful and ho-
motopically essentially surjective up to retracts.

Our goal is to prove that the adjunction (f!, f
∗) on the right in (2.2) is a Quillen

equivalence if and only if f is a Morita weak equivalence of algebraic theories.
Thanks to Theorem 2.5, we can equivalently prove that f is a Morita weak equiv-
alence if and only if the vertical adjunction in the middle of (2.2) is a Quillen
equivalence. We will show this in Corollary 2.19.

2.5. Homotopy left Kan extensions and weak models. Let C be a small
simplicial category. Given a finite sequence of objects c = {ci}ni=0 of C, we will

denote by C(c) the simplicial set
∏n−1
i=0 C(ci, ci+1).

Consider two simplicial functors X and Y in sSetsC and sSetsC
op

, respectively.
The (two sided) bar construction of X and Y is the bisimplicial set B•(X, C, Y )
which is defined as

Bn(X, C, Y )m =
∐

c={ci}ni=0∈Cn+1

X(c0)m × C(c)m × Y (cn)m

for every m,n ≥ 0. Thus, an element of Bn(X, C, Y )m is represented by a tuple
(c | x; {αi}n−1

i=0 ; y), where:

• c = (c0, . . . , cn) ∈ Cn+1;
• x is an element of X(c0)m;
• {αi}n−1

i=0 belongs to C(c)m, that is, αi ∈ C(ci, ci+1)m for every 0 ≤ i ≤ n−1;
• y is an element of Y (cn)m.

We will denote by the symbol B•(X, C, Y ) the simplicial set obtained as the diagonal
of the bisimplicial set B•(X, C, Y ).

Let f : C → D be a map of simplicial categories and consider the right C-module

D(f(−),−) : Cop −→ sSetsD

c 7−→ D(f(c),−).
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It is well known that for every left C-module X in sSetsC , the left Kan extension
of X along f , denoted by f!(X), is isomorphic to the coend

f!(X) ∼=
∫ c∈C

X(c)×D(f(c),−).

Let f(X) in (sSets∆op

)D be the functor that assigns to each d in D the bar
construction B•(X, C,D(f(−), d)). The homotopy left Kan extension of X along

f , denoted by f̃!(X), can be computed as the diagonal of f(X). In other words,

f̃!(X)(d)n ∼= f(X)(d)n,n ∼= Bn(X, C,D(f(−), d)) ∼=∐
c0,...,cn∈C

X(c0)n × C(c0, c1)n × · · · × C(cn−1, cn)n ×D(f(cn), d)n,

for every d in D and n ≥ 0. This assignment extends to a (simplicial) functor

f̃! : sSetsC → sSetsD. The functor f̃! has a right adjoint f̃∗ defined as

f̃∗(Y )(c) ∼= sSetsD(f̃!(C(c,−)), Y )

for every Y in sSetsD and c in C; see [DK87, §3] for more details about the con-

struction of the functors f̃! and f̃∗. The following result can be found in [DK87,
§3.5–§3.8] (cf. [GJ99, Ch.IX.2])

Proposition 2.8 (Dwyer–Kan). Let f : C → D be a map of simplicial categories

and let f̃! : sSetsC � sSetsD : f̃∗ be the adjunction given by homotopy left Kan
extension. The following holds:

(i) There exists a natural weak equivalence from f∗ to f̃∗.

(ii) The adjunction (f̃!, f̃∗) is a Quillen pair between sSetsC and sSetsD with

the projective model structures. Furthermore, both f̃! and f̃∗ preserve weak
equivalences.

(iii) The adjunction (f!, f
∗) is a Quillen equivalence if and only if (f̃!, f̃∗) is a

Quillen equivalence.

Remark 2.9. We warn the reader that the notation we use for the homotopy left
Kan extension and its right adjoint differs from the one used in [DK87] and [GJ99].

While Goerss–Jardine use f̃∗ and f̃∗ for what we denote by f̃! and f̃∗, Dwyer–Kan
use f∗−→

for the homotopy left Kan extension and f∗
−→

for its right adjoint.

Let T be a simplicial algebraic theory and suppose that g : X → Y is a weak
equivalence in sSetsT with the projective model structure. Then X is a weak model
if and only if Y is a weak model, since weak equivalences are closed under taking
products.

Proposition 2.10. Let T be a simplicial algebraic theory. A map g : X → Y
between weak models in sSetsT is an LT -local equivalence if and only if it is a
projective weak equivalence.

Proof. Using the factorization axioms of model categories in sSetsT with the pro-
jective model structure we can find a commutative diagram

X
g
//

∼
��

Y

∼
��

X̂
ĝ
// Ŷ
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such that X̂ and Ŷ are fibrant in sSetsT . Since X and Y are weak models, so

are X̂ and Ŷ . Therefore X̂ and Ŷ are fibrant in sSetsTwm. Since sSetsTwm is a left
Bousfield localization of the projective model structure on sSetsT , the map ĝ is an
LT -local equivalence if and only if it is a projective weak equivalence. The vertical
maps are projective weak equivalences, so g is an LT -local equivalence if and only
if it is a projective weak equivalence. �

Proposition 2.11. For every morphism f of simplicial algebraic theories the func-
tor f̃∗ sends weak models to weak models.

Proof. Since f is product preserving, the functor f∗ preserves weak models. The
statement then follows from Proposition 2.8(i). �

Corollary 2.12. For every morphism f : S → T of simplicial algebraic theories
the adjunction f̃! : sSetsSwm � sSetsTwm : f̃∗ is a Quillen pair.

Proof. It is enough to prove that f̃! preserves cofibrations and f̃∗ sends weak equiv-
alences between fibrant objects to weak equivalences. Since sSetsSwm is a left Bous-

field localization it has the same cofibration as sSetsS , so f̃! clearly preserves cofi-
brations.

Let g be an LT -local equivalence between fibrant objects. Since fibrant objects
in sSetsTwm are in particular weak models, g is a projective weak equivalence, by

Proposition 2.10. Hence f̃∗(g) is a projective weak equivalence in sSetsS by Propo-

sition 2.8(ii). But since f̃∗ preserves weak models, by Proposition 2.11, f̃∗(g) is an
LS -local equivalence, again by Proposition 2.10. �

Remark 2.13. Since by Proposition 2.8 the functor f∗ is weakly equivalent to f̃∗,
it follows that for every morphism f : S → T of simplicial algebraic theories the
adjunction f̃! : sSetsSwm � sSetsTwm : f̃∗ is a Quillen equivalence if and only if
f! : sSetsSwm � sSetsTwm : f∗ is a Quillen equivalence.

Proposition 2.14. The functor f̃! sends weak models to weak models for every
map f of simplicial algebraic theories.

Proof. Let f : S → T be a map of simplicial algebraic theories. It suffices to prove
that if X is a weak model for S, then the canonical map

p : f̃!(X)(ab) −→ f̃!X(a)× f̃!X(b)

is a weak equivalence for every a,b in T .
We can consider two bisimplicial objects associated to X, namely:

f(X)(ab) = B•(X,S, T (f(−),ab))

and

f(X)(a)× f(X)(b) = B•(X,S, T (f(−),a))×B•(X,S, T (f(−),b)).

We are also going to consider the following auxiliary bisimplicial object:

(f × f)(X)(a,b) = B•(X(−×−),S × S, T (f(−),a)× T (f(−),b)).

Given two finite sequences of the same length u = {ui}ni=0 and v = {vi}ni=0 of
objects in S we will denote by (u,v) the sequence {(ui,vi)}ni=0 of objects of S ×S
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and by uv the sequence {uivi}ni=0 in S. There are natural morphisms

(f × f)(X)(a,b)

ψ

wwnnn
nnn

nnn
nnn φ

))SSS
SSSS

SSSS
SSS

f(X)(ab)
δ

// f(X)(a)× f(X)(b).

Since the diagonal of δ is isomorphic to p, in order to prove our statement it is
sufficient to prove that δ is a levelwise weak equivalence, by the realization lemma
for bisimplicial sets.

The morphism φ is a levelwise weak equivalence, since X is a weak model. By
the two out of three property it is then enough to show that ψ is a levelwise weak
equivalence.

For every n,m ∈ N the set ((f × f)(X)(a,b))m,n is isomorphic to∐
u0,...,un∈S
v0,...,vn∈S

X(u0v0)m × (S × S)(u,v)m × T (f(un),a)m × T (f(vn),b)m,

and the set (f(X)(ab))m,n is isomorphic to∐
u0,...,un∈S

X(u0)m × S(u)m × T (f(un),a)m × T (f(un),b)m.

The morphism ψm,n sends (u,v | x; {αi, βi}n−1
i=0 ; g, h) in ((f × f)(X)(a,b))m,n to

(uv | x; {αi × βi}n−1
i=0 ; gπ1, hπ2).

There is also a morphism σ : f(X)(ab) → (f × f)(X)(a,b) in the opposite di-
rections, sending (u | x; {γi}n−1

i=0 ; g, h) to (u,u | ∆∗(x); {γi, γi}n−1
i=0 , ; g, h).

We are going to prove that σm• is a homotopy inverse for ψm• for every m ∈ N.
We begin by exhibiting a simplicial homotopy J from id to (σψ)m•. Recall that a
simplicial homotopy between two maps of simplicial sets f, g : X → Y can be defined
by giving for every n ∈ N a set of functions {Hn

i : Xn → Yn+1}ni=0 satisfying certain
relations (see, for example, [May67, §5] for details). In particular, δ0H

n
0 = fn and

δn+1H
n
n = gn.

The evaluation of (σψ)m• on an n-simplex (u,v | x; {αi, βi}n−1
i=0 ; g, h) is

(σψ)m,n(u,v | x; {αi, βi}n−1
i=0 ; g, h) = (uv,uv | x; {αi × βi, αi × βi}n−1

i=0 ; gπ1, hπ2).

For every sequence u in Sn+1 and 0 ≤ j ≤ n we define three objects u?j , u|j and
uj| in Sn+2 as follows:

u?ji =

{
ui i ≤ j,
ui−1 i > j,

u
|j
i =

{
ui i ≤ j,
∗ i > j,

u
j|
i =

{
∗ i ≤ j,
ui−1 i > j.

The homotopy J is defined as follows: for every n ∈ N, every 0 ≤ j ≤ n, and every
n-simplex (u,v | x; {αi, βi}n−1

i=0 ; g, h) the n+1 simplex Jnj (u,v | x; {αi, βi}n−1
i=0 ; g, h)

is equal to

(u?jv|j ,u|jv?j | ∆∗(x); (α0×β0, α0×β0), . . . , (π1, π2), αj×βj , . . . , αn−1×βn−1; g, h).

The collection {Jnj }n∈N,0≤j≤n defines a simplicial homotopy from (σψ)m• to the
identity.
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To conclude we have to exhibit a homotopy K from (ψσ)m• to the identity. For
every n-simplex (u | x; {γi}n−1

i=0 ; g, h) we have that

(ψσ)m,n(u | x; {γi}n−1
i=0 ; g, h) = (uu | ∆∗(x); {γi × γi}n−1

i=0 ; gπ1, hπ2).

The homotopy K is defined by the requirement that for every n ∈ N, every
0 ≤ j ≤ n and every n-simplex (u | x; {γi}n−1

i=0 ; g, h), the n + 1-simplex Kn
j (u |

x; {γi}n−1
i=0 ; g, h) is equal to

(uj|u | x; γ0, γ1, . . . ,∆, γj+1 × γj+1, . . . , γn−1 × γn−1; gπ1, hπ2).

It is easy to check that K is indeed a well-defined homotopy. �

Corollary 2.15. For every morphism f : S → T of simplicial algebraic theories the
functor f̃! sends LS-local equivalences between weak models to LT -local equivalences.

Proof. Since f̃! preserves projective weak equivalences by Proposition 2.8(ii), the
result follows from Proposition 2.10 and Proposition 2.14. �

2.6. Characterization of Morita weak equivalences of algebraic theories.
We are finally ready to prove that a morphism of simplicial algebraic theories in-
duces a Quillen equivalence between the respective homotopy theories of simplicial
algebras if and only if it is a Morita weak equivalence.

Lemma 2.16. Let f : S → T be a morphism of simplicial algebraic theories. If the
Quillen pair f̃! : sSetsSwm � sSetsTwm : f̃∗ is a Quillen equivalence, then:

(i) For every weak model X in sSetsS the unit ηX : X → f̃∗f̃!X is an LS-local
equivalence.

(ii) For every weak model Y in sSetsT the counit εY : f̃!f̃∗Y → Y is an LT -local
equivalence.

Proof. We only prove part (i); the proof of part (ii) is analogous. Let X be a weak

model in sSetsSand let X̃ be a projective cofibrant replacement of it. Let
̂̃
f!X̃ and̂̃

f!X be projective fibrant replacements of f̃!X̃ and f̃!X, respectively. Consider the
commutative diagram in sSetsS :

X
ηX // f̃∗f̃!X

∼ // f̃∗
̂̃
f!X

X̃
η
X̃

//

∼

OO

f̃∗f̃!X̃ ∼
//

∼

OO

f̃∗
̂̃
f!X̃,

∼

OO

∼

OO

where all the arrows except ηX and ηX̃ are projective weak equivalences, by Propo-

sition 2.8(ii). If (f̃!, f̃∗) is a Quillen equivalence, then the bottom horizontal com-
position is an LS -local equivalence, hence ηX̃ is an LS -local equivalence. Note that

X̃ is a weak model since X is so. By Proposition 2.10 it follows that ηX and ηX̃
are LS -local equivalences. �

Given a simplicial category C and an object c of C, we denote by hc the corep-
resentable functor C(c,−) : C → sSets. Recall from Section 1 that a morphism of
simplicial categories is called a Morita weak equivalence if it is homotopically fully
faithful and homotopically essentially surjective up to retracts.
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Proposition 2.17. A morphism of simplicial categories f : C → D is a Morita
weak equivalence if and only if the following two conditions hold:

(i) For every c in C the unit ηc : hc → f̃∗f̃!hc is a projective weak equivalence
in sSetsC.

(ii) For every d in D the counit εd : f̃!f̃∗hd → hd is a projective weak equivalence
in sSetsD.

Proof. If f : C → D is a Morita weak equivalence, then (f̃!, f̃∗) is a Quillen equiv-

alence and both f̃! and f̃∗ preserve weak equivalences, by Proposition 2.8. It then
follows that (i) and (ii) holds, not only for corepresentable functors but for all
functors.

Conversely, suppose that (i) and (ii) hold. By [DK87, Proposition 3.3], for every c

in C the functor D(f(c),−) is a strong deformation retract of f̃!C(c,−). This means

that there exists maps r : f̃!C(c,−) → D(f(c),−) and s : D(f(c),−) → f̃!C(c,−)
such that r ◦ s = id and s ◦ r ∼ id. Then, the map

i = s∗ ◦ ηc : C(c, c′) −→ f̃!C(c,−)(f(c′))

is a weak equivalence for every c′ in C. We have a commutative diagram

C(c, c′) i //

''NN
NNN

NNN
NNN

f̃!C(c,−)(f(c′))

r

��

D(f(c), f(c′)).

Since i and r are weak equivalences, so is the map on the left. Hence, f is homo-
topically fully faithful.

To show that f is homotopically essentially surjective we use the same argument
as in the proof of [DK87, Theorem 2.1]. Let d be any object of D and consider the
weak equivalence

f̃!f
∗D(d,−)(d) −→ f̃!f̃

∗D(d,−)(d) −→ D(d, d).

Let j : d → f(c0), q : f(c0) → d be a 0-simplex of f̃!f
∗D(d,−)(d) that is sent to

the component of the identity by the previous map. Then d is a retract of f(c0)
in π0(D). �

Theorem 2.18. Let f : S → T be a morphism of simplicial algebraic theories.
Then the induced Quillen pair

f̃! : sSetsSwm
//
sSetsTwm : f̃∗oo

is a Quillen equivalence if and only if f is a Morita weak equivalence of algebraic
theories.

Proof. Suppose that the morphism of simplicial algebraic theories f : S → T is a
Morita weak equivalence of algebraic theories, that is, the underlying map of simpli-
cial categories is a Morita weak equivalence. We have to show that for X cofibrant
in sSetsSwm and Y fibrant in sSetsTwm, a morphism α : X → f̃∗Y is an LS -local

equivalence if and only if the adjoint ᾱ : f̃!X → Y is an LT -local equivalence.
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First, we factor the map α into an LS -local trivial cofibration β followed by a
an LS -local fibration γ, and we consider the following commutative diagrams:

X ��

β

∼

��
@@

@@
@@

@@
α // f̃∗Y

X ′

γ

== =={{{{{{{{

f̃!X

f̃!β ""D
DD

DD
DD

D
ᾱ // Y

f̃!X
′.

γ̄

>>||||||||

Thus, α is an LS -local equivalence if and only if γ is a projective trivial fibration.
But γ is a projective weak equivalence if and only if γ̄ is a projective weak equiv-
alence. Since γ̄ is a map between weak models, γ̄ is a projective weak equivalence
if and only if it is an LT -local equivalence by Proposition 2.10. Finally, γ̄ is a
LT -local equivalence if and only if ᾱ is.

Conversely, suppose that (f̃!, f̃∗) is a Quillen equivalence. Then, by Lemma 2.16

the unit and the counit of (f̃!, f̃∗) are weak equivalences on weak models. It follows
that f is a Morita weak equivalence by Proposition 2.17, since corepresentable
functors are weak models. �

Corollary 2.19. A map f : S → T of simplicial algebraic theories is a Morita
weak equivalence if and only if the induced Quillen pair

f! : sAlg(S)
//
sAlg(T ) : f∗oo

is a Quillen equivalence.

Proof. The result follows from Theorem 2.18, Remark 2.13 and Theorem 2.5. �

3. Symmetric operads, cartesian operads and algebraic theories

We have ended the previous section with the desired characterization of Morita
equivalences between simplicial algebraic theories. In the upcoming sections we are
going to recall the connection that binds algebraic theories and operads pointed out
by Kelly in [Kel05], that will allow us to exploit the results obtained for algebraic
theories to prove a similar characterization of Morita equivalences for (simplicial)
coloured operads.

We start by recalling the definition of symmetric operad and cartesian operad
enriched in a cartesian category M. Cartesian operads are just a different pre-
sentation of algebraic theories (see Section 3.3). The insight given by Kelly is that
cartesian operads (algebraic theories) and symmetric operads are basically the same
construct in two different contexts: the cartesian one and the symmetric monoidal
one, respectively.

Although classically coloured operads are defined as sequences of objects together
with a composition product and a unit (see, for instance, [BM07] for an account),
for the purpose of this paper it will be more useful to define operads as monoids in
certain categories of collections.

Even though the definitions and results of this section will be given for a general
cartesian category M, we will only need to consider the cases in which M is Sets
or sSets in the rest of the paper.
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3.1. Symmetric and cartesian ordered sequences. Let Fin be a skeleton for
the category of finite sets. Each object of Fin is uniquely determined by its cardi-
nality. Let Σ be the wide subcategory of Fin spanned by all the isomorphisms.

Let C be a fixed set. We will denote by FinC and ΣC the comma categories Fin ↓
C and Σ ↓ C, respectively. Their objects can be represented as finite sequences
c = (c1, . . . , cn) in C. For such a sequence c we denote by |c| its cardinality. The
sequence of cardinality zero will be denoted by [−]. The categories Finop

C and Σop
C

can be characterized as being the free cartesian category generated by C and the
free symmetric monoidal category generated by C, respectively.

Let Sign(C) and CSign(C) denote the categories ΣC ×C and FinC ×C, respec-
tively. The objects of these categories will be written as (c; c), where c is an object
of ΣC or FinC , respectively, and c ∈ C. The inclusion of Sign(C) into CSign(C)
will be denoted by

(3.1) p : Sign(C) −→ CSign(C).

Note that both FinC and ΣC have as set of objects the set of finite ordered sequences
of elements of C.

Let (M,×, ∗) be a bicomplete closed cartesian category. We will call MSign(C)

and MCSign(C) the category of symmetric C-coloured M-collections and the cate-
gory of cartesian C-coloured collections, respectively.

We will denote by ⊗ both Day convolution tensor products on the categories
MFinC and MΣC . Observe that ⊗ on MFinC is isomorphic the cartesian product
[Kel05, §8].

Every cartesian C-collection O in MCSign(C) defines a functor

O(−;−) : C −→MFinC

c 7−→ O(−; c).

By the universal property of Finop
C , this extends to a product preserving functor

O(−) : Finop
C −→MFinC

(c1, . . . , cn) 7−→ O(−; c1)⊗O(−; c2)⊗ . . .⊗O(−; cn).

In the same way, for every symmetric C-collection O in MSign(C) we get a functor

O(−) : Σop
C −→MΣC

(c1, . . . , cn) 7−→ O(−; c1)⊗O(−; c2)⊗ . . .⊗O(−; cn).

3.2. Symmetric operads and cartesian operads. There is a non-symmetric
monoidal product � on MSign(C) defined as the coend:

O � P ∼=
∫ c∈ΣC

O(c)× P c.

In this formula, we identify O with an object of (MFinC )C and P (−) as an ob-

ject of (MFinop
C )FinC so that the (parametrized) coend defined on the right is in-

deed an object of MCSign(C). The unit for this monoidal product is given by the
C-collection IC given by:

IC(c; c) =

{
∗ if c = c,

∅ otherwise.
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Similarly, there is a non-symmetric monoidal product � on MCSign(C) defined
as the coend:

O � P ∼=
∫ c∈FinC

O(c)× P c.

The unit of this product is the object I ′C of MCSign(C) defined as I ′C(c; c) =
FinC(c, c).

The category of monoids in (MFinop
C )FinC with the monoidal product � is the

category of C-coloured symmetric operads in M, denoted byM-OperC . The cate-
gory of C-coloured cartesian operads in M (or clones), denoted by M-COperC , is
the category of monoids in (MCSign(C),�, I ′C).

Given a C-coloured operad O in M-OperC , the category of O-algebras in M,
denoted by Alg(O), is the category of left O-modules concentrated in arity 0. In
other words, the functor ζ : C → Sign(C) that sends c to ([−]; c) induces a functor
ζ! : MC → MSign(C) by left Kan extension. An O-algebra is then an object X
of MC together with a left action O-action O � ζ!(X) → ζ!(X). Algebras over
cartesian coloured operads are defined similarly.

Consider the left extension-restriction adjunction between symmetric and carte-
sian collections, induced by the morphism p defined in (3.1)

p! : MSign(C) //MCSign(C) : p∗.oo

Proposition 3.1. The adjunction (p!, p
∗) restricts to an adjunction between C-co-

loured symmetric operads and C-coloured cartesian operads in M:

p! : M-OperC
//M-COperC : p∗.oo

Proof. The functor p! preserves the monoidal product [Kel05, §8] and I ′C = p!(IC).
Hence, p! is strong monoidal functor. It follows that the right adjoint p∗ is a lax
monoidal functor. So both functors preserve monoids. �

In the follow up we will need a more explicit description of the left adjoint p!.
For every c in CSign(C) let us denote by Ordc the full subcategory of p ↓ c spanned
by those objects f : b→ c such that the underlying map of finite sets

f : {1, . . . , |b|} → {1, . . . , |c|}

is an ordered map.

Lemma 3.2. For every c in CSign(C) the inclusion i : Ordc → p ↓ c is final.

Proof. We have to show that for every object d in p ↓ c, the comma category d ↓ i
is non-empty and connected. This follows from the fact that every map of finite
sets factors into a bijection followed by an ordered map, and the ordered map is
uniquely determined. �

The preceding lemma can be used to simplify the computation of p!. Explicitly,
for every operad O in M-OperC and every (c; d) in CSign(C) we have that

(p!O)(c; d) ∼=
∫ b∈ΣC

FinC(b, c)×O(b; d) ∼=

colim
{(b,d)→(c,d)}∈p↓c

O(b; d) ∼=
∐

{f :(b,d)→(c,d)}∈Ordc

O(b; d)/Σf ,
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where, for every f : (b, d) → (c, d) in Ordc, the group Σf is defined to be the
subgroup of ΣC(b,b) spanned by the automorphisms that fix the fibers of f , this
is,

Σf = {σ ∈ ΣC(b,b) | fσ(i) = f(i) for every i ∈ {1, . . . , |b|}}.
Here we identify ΣC(b,b) with a subset of Σ|b|.

3.3. From symmetric operads to algebraic theories. We can associate to
every cartesian C-coloured M-operad O a C-sorted M-algebraic theory PO as
follows: for every c,d ∈ Sq(C) we set

PO(c,d) ∼= Od(c) ∼=
|d|∏
i=1

O(c; di).

One can check that the category of PO-algebras is equivalent to the category of
O-algebras in M.

This construction defines a functor P : M-COperC → M-AT hC which is actu-
ally an equivalence of categories. Its inverse functor C assigns to every C-sorted
M-algebraic theory T the cartesian M-operad C(T ) defined as

C(T )(c; d) ∼= T (c, d), for every (c; d) in CSign(C).

We can now compose the functors p! and P to get a functor

T : M-OperC −→M-AT hC

that associates to each symmetricM-operad anM-algebraic theory. Explicitly, for
every O in M-OperC and every c,d ∈ Sq(C), we have that

(3.2) T(O)(c,d) ∼=
|d|∏
i=1

 ∐
{f :(a;di)→(c;di)}∈Ord(c;di)

O(a; di)/Σf

 .

Thus, a morphism f in T(O)(c,d) will be a sequence f = {[fi,ai, oi]}|d|i=1, where
fi : (ai; di) → (c; di) in Ord(c;di) and oi ∈ O(ai; di)/Σfi . Composition in T(O) is

defined as follows: if f = {[fi,ai, oi]}|d|i=1 in T(O)(c,d) and g = {[gj ,bj , qj ]}|e|j=1 in

T(O)(d, e), then

gf = {[fg1(1) t · · · t fg1(|b1|) t · · · t fgk(1) t · · · t fgk(|bk|),

ag1(1) . . .agk(|bk|), (og1(1), . . . , ogk(|bk|)) ◦ qk]}|e|k=1

The category of O-algebras is equivalent to the category of T(O)-algebras inM.

3.4. The category of coloured operads. Let f : C → D be a function between
sets. This function extends to two functors

f : Sign(C) −→ Sign(D)
(c1, . . . , cn) 7−→ (f(c1), . . . , f(cn)),

f : CSign(C) −→ CSign(D)
(c1, . . . , cn) 7−→ (f(c1), . . . , f(cn)).

The restriction functors

f∗ : MSign(D) →MSign(C) and f∗ : MCSign(D) →MCSign(C)

are both monoidal, therefore they restrict to functors

f∗ : M-OperD →M-OperC and f∗ : M-COperD →M-COperC .



18 G. CAVIGLIA AND J. J. GUTIÉRREZ

There is also an evident functor

f∗ : M-AT hD →M-AT hC .

It is easy to see that these assignments are natural in f . In other words they extend
to functors:

Op : Sets −→ Cat
C 7−→ M-OperC ,

COp : Sets −→ Cat
C 7−→ M-COperC ,

ATh : Sets −→ Cat
C 7−→ M-AT hC .

We can apply the (contravariant) Grothendieck construction to Op and COp to get
two categoriesM-Oper andM-COper fibered over Sets. The categoryM-Oper is
called the category of symmetric colouredM-operads while the categoryM-COper
will be called the category of cartesian coloured M-operads.

In the same way we can construct the category (fibered over Sets) of multi-sorted
algebraic theories M-AT h. The category M-AT h is equivalent to M-COper.
The functors p! and P considered in the previous sections define (pseudo)natural
transformations between Op and COp, and COp and ATh, respectively. In fact,
p!f
∗ ∼= f∗p! and Pf∗ ∼= f∗P, for every function f : C → D.
Via the Grothendieck construction, these natural transformations correspond to

a diagram of functors

(3.3) M-COper

P

&&NN
NNN

NNN
NNN

M-Oper

p!
88pppppppppp

T
//M-AT h,

which is natural in M for functors that preserve products and colimits.

4. Morita equivalences of coloured operads

Recall that for every cocomplete cartesian categoryM there is an adjunction be-
tween the category of smallM-enriched categories and the category ofM-enriched
coloured operads

(4.1) j! :M-Cat −−→←−−M-Oper : j∗.

The right adjoint j∗ associates to every C-coloured operad its underlying category
with set of objects C. More explicitly, j∗(O)(c, d) ∼= O(c; d) for every c, d ∈ C and
composition and identities are inherited directly from the ones in O. Note that a
morphism of operads f is essentially surjective if and only if j∗(f) is essentially
surjective.

4.1. A characterization of Morita equivalences of coloured operads. In
this section we characterize the Morita equivalences between operads in Sets as
those morphisms of coloured operads which induce an equivalence of categories
between the respective categories of algebras. We will use the notation and results
of Section 3 in the particular case M = Sets.

Definition 4.1. A morphism of coloured operads f is a Morita equivalence if it is
fully faithful and the functor j∗(f) is essentially surjective up to retracts.

Our goal is to prove that a morphism f of coloured operads in Sets is a Morita
equivalence if and only if the morphism of algebraic theories T(f) is a Morita equiv-
alence of algebraic theories, or equivalently, if and only if the induced adjunction
(f!, f

∗) between the categories of algebras is an equivalence of categories.
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Lemma 4.2. A morphism f between symmetric coloured operads in Sets is fully
faithful if and only if the associated functor of algebraic theories T(f) is fully faith-
ful.

Proof. Let f : O → P be a morphisms of symmetric coloured operads. Let C be the
set of colours of P. For every (c; c0) in Sign(C) the following diagram commutes:

(4.2) O(c; c0)
f(c;c0)

//

〈idc〉

��

P(f(c); f(c0))

〈idf(c)〉

��∐
α:{b→c}∈Ordc

O(b; co)/Σα

∐
α
f(b;c0)/Σα

//
∐

α∈Ordo

P(f(b); f(c0))/Σα,

where the bottom horizontal arrow is isomorphic to

T(O)(c, c0)
T(f)(c;c0)

// T(P)(f(c), f(c0)).

From the description of the components of T(f) it is clear that if f is fully faithful,
then T(f) is fully faithful.

On the other hand, it follows from the commutativity of the above diagram that if
T(f)(c,c0) is an isomorphism, then f(c;c0) is an isomorphism. Since (c, c0) was chosen
arbitrarily, this proves that if T(f) is fully faithful then f is fully faithful. �

Lemma 4.3. Suppose that O is a symmetric C-coloured operad and let c ∈ C. If c
is the retract of some d = (d1, . . . , dn) in T(O), then there exists 1 ≤ j ≤ n such
that c is a retract of dj.

Proof. Recall from (3.2) the notation for the morphisms and composition in T(O).
By assumption, there exist

f = {[fi,ai, oi]}|d|i=1 ∈ T(O)(c,d) and g = [g,b, q] ∈ T(O)(d, c)

such that gf = idc, that is,

[fg(1) t · · · t fg(|b|),ag(1) . . .ag(|b|), (og(1), . . . , og(|b|)) ◦ q] = [idc, c, idc].

This implies that there exists 1 ≤ k ≤ |b| such that ag(k) = c and ag(i) = [−] for all
i 6= k. Therefore og(k) ∈ O(c; dg(k)), fg(k) = idc and oi ∈ O(−; di) for every i 6= k.

Let q′ ∈ O(dg(k); c) be the composition

(og(1), . . . , og(k−1), iddg(k) , og(k+1), . . . , og(|b|)) ◦ q

and set

f ′ = [fg(k), c, og(k)] ∈ T(O)(c, dg(k)) and g′ = [iddg(k) , dg(k), q
′] ∈ T(O)(dg(k), c).

By construction g′f ′ = idc and therefore c is a retract of dg(k). �

Corollary 4.4. A morphism f of symmetric coloured operads in Sets is essentially
surjective up to retracts if and only if T(f) is essentially surjective up to retracts.

Theorem 4.5. Let f : O → P be a morphism of symmetric coloured operads in
Sets. The following are equivalent:

(i) The morphism f is a Morita equivalence of operads.
(ii) The functor T(f) is a Morita equivalence of algebraic theories.
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(iii) The induced adjunction

f! : Alg(O) −−→←−− Alg(P) : f∗

is an equivalence of categories.

Proof. By Lemma 4.2 and Corollary 4.4 the morphism f is fully faithful and essen-
tially surjective up to retracts if and only if T(f) is so. This proves the equivalence
between (i) and (ii). The equivalence between (ii) and (iii) is immediate since the
categories of algebras for O and T(O) are equivalent. �

4.2. A characterization of Morita equivalences of simplicial operads. Let
O be a C-coloured operad in simplicial sets. Its category of algebras Alg(O) admits
a transferred model structure via the free-forgetful adjunction, which is called the
projective model structure; see [BM07, Theorem 2.1]. The weak equivalences and
the fibrations are the morphisms X → Y such that X(c; d) → Y (c; d) is a weak
equivalence or a fibration of simplicial sets for every (c, d) ∈ Sign(C), respectively.
Moreover, for a morphism of operads f : O → P the induced adjunction

f! : Alg(O) −−→←−− Alg(P) : f∗

is a Quillen pair with respect to the corresponding projective model structures.
Recall that a symmetric C-coloured operad O is called Σ-cofibrant if for ev-

ery (c, c) in Sign(C) the ΣC(c, c)-module O(c; c) is cofibrant in sSetsΣC(c,c) en-
dowed with the projective model structure.

The following definition extends the definition of Morita weak equivalence be-
tween simplicial categories to simplicial operads (see [CG19, Definition 5.3]):

Definition 4.6. Let f : O → P be a morphism of simplicial coloured operads. We
say that

(i) f is homotopically fully faithful if f : O(c, c′) → P(f(c), f(c′)) is a weak
equivalence for every signature (c, c′) ∈ Sign(C), where C is the set of
colours of O;

(ii) f is homotopically essentially surjective up to retracts if the functor π0(j∗(f))
is essentially surjective up to retracts;

(iii) f is a Morita weak equivalence if it is homotopically fully faithful and ho-
motopically essentially surjective up to retracts.

Proposition 4.7. A map f between Σ-cofibrant simplicial coloured operads is ho-
motopically fully faithful if and only if the associated map T(f) of simplicial alge-
braic theories is homotopically fully faithful.

Proof. The proof uses the same arguments as in the proof of Lemma 4.2. The main
difference being that in this case we are dealing with weak equivalences instead of
isomorphisms.

We need to check that in the commutative diagram (4.2) the top horizontal map
is a weak equivalence if and only if the bottom horizontal map is a weak equivalence.
This will follow at once from the following facts about projective model structures
on simplicial sets (we use the same notation as in the proof of Lemma 4.2):

(i) Consider the inclusion of groups Σα → ΣC(c, c). Then the forgetful functor

sSetsΣC(c,c) −→ sSetsΣα

between the corresponding projective model structures preserves cofibrant
objects; see [BM06, Lemma 2.5.1].
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(ii) If f : X → Y is a Σα-equivariant map between cofibrant objects in sSetsΣα ,
which is a projective weak equivalence, then f/Σα : X/Σα → Y/Σα is a
weak equivalence of simplicial sets.

(iii) A coproduct of maps
∐
i∈I fi in sSets is a weak equivalence if and only if

fi is a weak equivalence for every i ∈ I. �

Consider the functor π0 : sSets → Sets. This functor preserves products and
colimits and thus, by naturality of diagram (3.3), it induces a commutative diagram

sOper
T //

π0

��

sAT h

π0

��

Oper
T
// AT h.

Proposition 4.8. A map f between simplicial coloured operads is homotopically
essentially surjective up to retracts if and only if T(f) is homotopically essentially
surjective up to retracts.

Proof. A map of simplicial operads is homotopically essentially surjective up to
retracts if the map of simplicial categories π0(f) is essentially surjective up to
retracts. By Corollary 4.4, π0(f) is essentially surjective up to retracts if and only
if T(π0(f)) ∼= π0(T(f)) is essentially surjective up to retracts. But this happens if
and only if T(f) is homotopically essentially surjective up to retracts. �

Theorem 4.9. Let f : O → P be a map between Σ-cofibrant simplicial coloured
operads. The following are equivalent:

(i) The map f is a Morita weak equivalence of simplicial operads.
(ii) The functor T(f) is a Morita weak equivalence of simplicial algebraic the-

ories.
(iii) The Quillen pair

f! : Alg(O) −−→←−− Alg(P) : f∗

is a Quillen equivalence.

Proof. The equivalence between (i) and (ii) follows directly from Proposition 4.7
and Proposition 4.8. The equivalence between (ii) and (iii) follows from Corol-
lary 2.19 and the fact that for every operad O, the categories of O-algebras and
T(O)-algebras are equivalent. �

Remark 4.10. The fact that (i) implies (iii) was proved in [BM07, Theorem 4.1]
for operads with a fixed set of colours C in a monoidal model category. Our
result, which is an if and only if, works for the category of all coloured operads in
simplicial sets and hence implies the one by Berger and Moerdijk in the simplicial
case. However, our proof is different from the one in [BM07], since we use simplicial
algebraic theories, the theory of weak models developed by Badzioch and Bergner,
and a functor from simplicial operads to simplicial algebraic theories.

Remark 4.11. Note that the equivalence of implications (ii) and (iii) can be proved
without the Σ-cofibrancy conditions. At first, the fact that among the class of
maps that we have defined as Morita weak equivalences, only those between Σ-
cofibrant operads induce homotopy equivalences on the homotopy categories of
algebras might seems disappointing. However, one has to keep in mind that this was
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already the case for the class of weak equivalences in the Cisinski–Moerdijk model
structure [CM13] on sOper, which models the homotopy theory of ∞-operads. We
also recall that every cofibrant operad in the Cisinski–Moerdijk model structure is
Σ-cofibrant and that the class of Morita weak equivalence includes the Cisinski-
Moerdijk weak equivalences. In [CG19, Theorem 5.7] the authors have proved
that there exists a localization of the Cisinski–Moerdijk model structure, called the
Morita model structure, that has the Morita weak equivalences as class of weak
equivalences.

The above theorem shows that Morita weak equivalences are the only morphisms
of ∞-operads inducing an equivalence between the homotopy invariant algebraic
structures determined by source and target. The Morita model structure can there-
fore be regarded as the homotopy theory of homotopy invariant algebraic structures.
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Géom. Différentielle Catég., 27(2):133–146, 1986.
[CG19] G. Caviglia and J. J. Gutiérrez. Morita homotopy theory for (∞, 1)-categories and

∞-operads. Forum Math. 31(3): 661–684, 2019.

[CM13] D.-C. Cisinski and I. Moerdijk. Dendroidal sets and simplicial operads. J. Topol.,
6(3):705–756, 2013.

[DK87] W. G. Dwyer and D. M. Kan. Equivalences between homotopy theories of diagrams.

In Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), volume 113 of
Ann. of Math. Stud., pages 180–205. Princeton Univ. Press, Princeton, NJ, 1987.

[EZ76] B. Elkins and J. A. Zilber. Categories of actions and Morita equivalence. Rocky Moun-

tain J. Math., 6(2):199–225, 1976.
[GJ99] P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174 of Progress
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