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MIXED DYNAMICS OF 2-DIMENSIONAL REVERSIBLE MAPS WITH

A SYMMETRIC COUPLE OF QUADRATIC HOMOCLINIC

TANGENCIES

A. DELSHAMS, M.S. GONCHENKO, S.V. GONCHENKO, AND J.T. LÁZARO

Abstract. We study dynamics and bifurcations of 2-dimensional reversible maps hav-
ing a symmetric saddle fixed point with an asymmetric pair of nontransversal homoclinic
orbits (a symmetric nontransversal homoclinic figure-8). We consider one-parameter fam-
ilies of reversible maps unfolding the initial homoclinic tangency and prove the existence
of infinitely many sequences (cascades) of bifurcations related to the birth of asymptot-
ically stable, unstable and elliptic periodic orbits.
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1. Introduction

The mathematical foundations of the Bifurcation Theory were laid in the famous paper
of Andronov and Pontryagin [2] where the notion of “rough” (structurally stable) systems
was introduced. Later on, in a series of (classical) papers by Andronov, Leontovich and
Maier (see e.g. books [3, 4]) it was proved that rough 2-dimensional systems form an open
and dense set in the space of dynamical systems. This notion of roughness of a system
(i.e. topological equivalence/conjugacy of the chosen system with any close system) is
naturally extended to multidimensional systems. Such extension was carried out in the
60’s (this period was called by Anosov as the time of the “hyperbolic revolution”) where
structurally stable systems were also entitled as “Hyperbolic Systems”.

Such systems are divided in two large classes: Morse-Smale systems (with a simple
dynamics) and hyperbolic systems with infinitely many periodic orbits. By definition,
structural stable systems are open subsets. However, in the multidimensional case (that
is, dimension ≥ 3 for flows and ≥ 2 for diffeomorphisms), they are not dense, as it was
first shown by Smale [36, 37].

A very important breakthrough was due to Newhouse [31, 33] who proved that, near
any 2-dimensional diffeomorphism with a homoclinic tangency there exist open regions
consisting of diffeomorphisms exhibiting nontransversal intersections between stable and
unstable manifolds of hyperbolic basic sets. Such sets were called wild hyperbolic by New-
house. The original formulation of Newhouse result is as follows:

Newhouse Theorem [33]. Let M2 be a C∞ compact 2-dimensional manifold and
let r ≥ 2. Assume that f ∈ Diff r(M2) has a hyperbolic set whose stable and unstable

This work has been supported by the Russian Scientific Foundation grant: sections 1–4, 6 and 7
were carried out under the project 14-41-00044, and section 5 under the project 14-12-00811. AD, MG
and JTL have been also partially supported by the MICIIN/FEDER grant MTM2015-65715-P and by
the Catalan grant 2014SGR-504 (AD, JTL). MG has been partially supported by Juan de la Cierva-
Formación Fellowship FJCI-2014-21229, the grant MTM2016-80117-P (MINECO/FEDER, UE) and the
Knut and Alice Wallenberg Foundation grant 2013-0315. SG also thanks RFBR (grant 16-01-00364) and
the Russian Ministry of Science and Education, project 1.3287.2017.

1

http://arxiv.org/abs/1412.1128v2


2 A. DELSHAMS, M.S. GONCHENKO, S.V. GONCHENKO, AND J.T. LÁZARO

manifolds are tangent at some point x. Then f may be Cr perturbed inside an open set
U ⊂ Diff r(M2) so that each g ∈ U has a wild hyperbolic set near the orbit of x.

Several consequences, derived from this theorem, have become crucial in the theory of
dynamical systems:

• There exist open regions in the space of 2-dimensional diffeomorphisms (3-dimensional
flows), with the Cr-topology, r ≥ 2, called Newhouse regions, where the systems
having a homoclinic tangency form a dense subset.

• These Newhouse regions exist in any neighbourhood of any 2-dimensional diffeo-
morphism having a homoclinic tangency.

Newhouse Theorem was extended to a general multidimensional context [16, 34, 35] and
later on to area-preserving diffeomorphisms [8, 9, 10].1 In the context of general parameter
unfoldings [33, 16], Newhouse regions are also regarded as open domains in the parameter
space such that the values of the parameters which give rise to homoclinic tangencies form
a dense subset. In the case of 1-parameter families, they are usually called Newhouse
intervals.

One of the most known and fundamental dynamical property of Newhouse regions is the
coexistence of infinitely many hyperbolic periodic orbits of different types. In the dissipative
framework, i.e. when the initial quadratic homoclinic tangency is associated to a fixed
(periodic) point O with multipliers λ1, ..., λm, γ, where |λi| < 1 < |γ| and the saddle value
σ = maxi|λi| · |γ| is less than 1, this property is known as Newhouse phenomenon:

• In the dissipative case, the set B of parameter values µ in any Newhouse interval
I giving rise to the coexistence of infinitely many periodic sinks and saddles form
a residual subset.

This result was first obtained in [32]. Its proof is based essentially on the theory of
bifurcations of homoclinic tangencies. The basic elements of this theory were settled
in the celebrated work by Gavrilov and Shilnikov [12] where the so-called Theorem on
Cascades of periodic sinks was proved. Indeed, this theorem states the existence of an
infinite sequence of intervals of values of a (splitting) parameter for which there exists
a single stable periodic. Multidimensional versions of this result and criteria of birth of
periodic sinks at homoclinic bifurcations were established in [13, 34, 17, 23].

Newhouse phenomenon is very important, in particular, in the theory of the so-called
quasiattractors [1], i.e. strange attractors which either contain periodic sinks of very large
periods or such periodic sinks appear under arbitrary small perturbations. Therefore, a
natural question arises: how often is the Newhouse phenomenon met in chaotic dynamics?

A partial answer to this question concerning the measure of the set B introduced above
was considered in a series of papers. Indeed, in [38, 28] the authors showed that this
set B contains a zero-measure secondary subset of parameter values for which there ex-
ist infinitely many single-round periodic orbits (i.e., orbits passing only once within a
neighbourhood of the initial homoclinic orbit).2

Since Newhouse regions exist near any system presenting a homoclinic tangency, they
can be found in the space of parameters of many dynamical models exhibiting chaotic
behaviour and in the absence of uniform hyperbolicity. Their extreme richness makes
a complete description an unreachable task: tangencies of arbitrarily high order as well
as highly degenerate periodic orbits are dense in these regions [15, 19]. called mixed
dynamics if the closures of the sets of periodic orbits of different types have non-empty

1Indeed, it also holds in the multidimensional symplectic case [11].
2 This set B can have positive measure for a dense set of suitable families [39] and also for generic

families of multidimensional (with dim ≥ 3) diffeomorphisms [5].
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intersections. This property can be generic3. Indeed (see [18]), there exist Newhouse
regions with mixed dynamics near any 2-dimensional diffeomorphism with a nontransversal
heteroclinic cycle containing at least two saddle periodic points O1, O2 whose Jacobians
satisfy that |J(O1)| > 1 and |J(O2)| < 1. This kind of cycles is commonly referred
as contracting-expanding and it appears to be rather usual in 2-dimensional reversible
diffeomorphisms.

Recall that a diffeomorphism f is called reversible if it is smoothly conjugated to its
inverse by means of an involution R (named a reversor), that is, R ◦ f = f−1 ◦ R, with
R2 = Id, R 6= Id. The involution R does not need to be linear. It is often assumed
to have the same smoothness as the diffeomorphism f . Equivalently, f is reversible if
and only if it can be written as the product of two involutions, f = g ◦ h with g2 =
h2 = Id. The points which are invariant by the involution R form the symmetry manifold
Fix R = {(x, y) | R(x, y) = (x, y)}. Along this work we will consider planar R-reversible
diffeomorphisms f with R such that dimFix R = 1, that is, a curve.

We say that an object Λ is symmetric when R(Λ) = Λ. To put more emphasis, the
notation self-symmetric may be used. By a symmetric couple of objects Λ1,Λ2, we mean
two different objects which are symmetric one to each other, i.e., R(Λ1) = Λ2 and, thus,
Λ1 = R(Λ2).

Two examples of contracting-expanding heteroclinic cycle for a R-reversible diffeomor-
phism are shown in Fig. 1. In case (a) the diffeomorphism has a symmetric couple
of saddle periodic (fixed) points O1 and O2 = R(O1), as well as two heteroclinic or-
bits Γ12 ⊂ W u(O1) ∩ W s(O2) and Γ21 ⊂ W u(O2) ∩ W s(O1) such that R(Γ21) = Γ21,
R(Γ12) = Γ12. The orbit Γ12 is nontransversal: the manifolds W u(O1) and W s(O2)
have a quadratic tangency along that orbit. Since R(O1) = O2, their Jacobians verify
J(O1) = J−1(O2) and, provided that J(Oi) 6= ±1, i = 1, 2, the heteroclinic cycle is
contracting-expanding.

Figure 1. Two different examples of planar reversible maps with symmetric non-

transversal (quadratic tangency) heteroclinic cycles: (a) with a nontransversal symmet-

ric heteroclinic orbit to a symmetric couple of saddle points, and (b) with a symmetric

couple of nontransversal heteroclinic orbits to symmetric saddle points.

Reversible diffeomorphisms can present a very rich dynamics and it is worth studying
them by themselves. Moreover, when they are not conservative (this is an open property)

3It is also persistent in the case of a type of dynamical chaos [27], which is characterised by the funda-
mental property that the intersection of an attractor A and a repeller R is non-empty and A 6= R. This is
neither the situation in the dissipative chaos (strange attractor), when A∩R = ∅, nor in the conservative
chaos, when A = R.
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they can possess very interesting dynamics and, in particular, the so-called reversible mixed
dynamics. Its essence, for the 2-dimensional case, is given by the following two conditions:

• The reversible diffeomorphism has simultaneously infinitely many symmetric cou-
ples of periodic sinks-sources, periodic saddles with Jacobians greater and less than
1 as well as infinitely many symmetric periodic elliptic orbits and periodic saddles
with Jacobian equal to 1.

• The closures of periodic orbits of different types have non-empty intersections.

These properties seem to be universal when symmetric homoclinic tangencies and symmet-
ric nontransversal heteroclinic cycles are involved in the dynamics. Indeed, the following
assertion was formulated in [6].

Reversible Mixed Dynamics Conjecture (RMD). 2-dimensional reversible diffeo-
morphisms with reversible mixed dynamics are generic in Newhouse regions where diffeo-
morphisms with symmetric homoclinic or/and heteroclinic tangencies are dense.

This RMD conjecture is true when Newhouse regions with Cr-topology (2 ≤ r ≤ ∞)
are considered (see [26]). However, in the real analytic case and for parameter families, it
has been proved for a general 1-parameter unfolding only in two cases – for 2-dimensional
reversible diffeomorphisms with nontransversal heteroclinic cycles, as shown in Fig. 1. The
cycle of Fig. 1(a) was considered in [29]: such a cycle contains a symmetric couple of saddle
fixed (periodic) points (with Jacobians less and greater than 1, respectively) and a pair of
symmetric transverse and nontransversal heteroclinic orbits. The cycle of Fig. 1(b) was
considered in [6]: such a cycle contains a symmetric couple of nontransversal heteroclinic
orbits to symmetric saddle fixed (periodic) points.

Figure 2. Three examples of planar reversible maps with symmetric nontransversal

homoclinic tangencies: (a) a symmetric quadratic homoclinic tangency; (b) a symmetric

cubic homoclinic tangency; (c) a symmetric couple of nontransversal homoclinic (figure-

8) orbits to the same symmetric saddle point.

One of the targets concerning RMD conjecture is its proof for 2-dimensional reversible
diffeomorphisms which have a homoclinic tangency to a symmetric fixed (periodic) point.
There are three main cases, as illustrated in Fig. 2. Figure 2(a) and Figure 2(b) relate to
the case when the orbit of the homoclinic tangency is also symmetric and the tangency is
either (a) quadratic or (b) cubic. In Fig. 2(c) we have the case of a symmetric fixed point
and a symmetric couple of orbits with quadratic homoclinic tangencies.

This paper is devoted to this third case displayed in Fig. 2(c). Roughly speaking, it
will be shown that in a general (and symmetrical) unfolding of 1-parameter families of re-
versible maps with homoclinic tangencies, there exist Newhouse intervals with reversible
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mixed dynamics. We notice that the results of this paper will not only concern orientable
planar reversible maps, as the one showed in Fig. 2(c). They will be also valid for maps
defined on 2-dimensional non-orientable manifolds allowing a similar structure. For ex-
ample, on a manifold constructed as a disc surrounding the saddle point with two glued
symmetric Möbius bands.

The paper is structured as follows. Section 2 contains the statement of the problem,
the main hypotheses and the description of the principal results: Theorems 1–4. Section 3
deals with the construction of the local and global maps. Theorem 1 and Theorem 2
are proved in Section 4 and Section 5, respectively. Section 6 is devoted to the proof of
Theorems 3 and 4. Finally, in Section 7 we present some examples of periodically perturbed
reversible vector fields giving rise to reversible maps with quadratic hetero/homoclinic
tangencies as considered above.

2. Setting and main results

2.1. The framework. Let f0 be a Cr-smooth (r ≥ 4) reversible diffeomorphism of a
2-dimensional manifold M2 with reversor R satisfying dimFix R = 1. Assume that the
following hypotheses hold:

[A] The diffeomorphism f0 has a (symmetric) saddle fixed point O ∈ Fix R with
multipliers λ, λ−1 and 0 < λ < 1.

[B] f0 has a symmetric couple of homoclinic orbits Γ1 and Γ2 such that Γ2 = R(Γ1)
(and, thus, Γ1 = R(Γ2)) and satisfies that the invariant manifolds W u(O) and
W s(O) have quadratic tangencies at the points of Γ1 and Γ2.

Figure 3. (a) An example of reversible map with a couple of symmetric
homoclinic tangencies (homoclinic figure-8). (b) A neighbourhood of the
contour O ∪ Γ1 ∪ Γ2.

Let us be more precise with the latter hypothesis. Take U a small fixed neighbourhood
of the contour O ∪ Γ1 ∪ Γ2. U is formed by the union of a small neighbourhood U0 of the

point O and several neighbourhoods U j
1 and U j

2 , j = 1, ..., n, of those points of the orbits
Γ1 and Γ2 which do not lie in U0 (see Fig. 3(b)). Thus, Γ1 ⊂ U0 ∪ U1 and Γ2 ⊂ U0 ∪ U2,
where Ui = U0 ∪ U1

i ... ∪ Un
i is a neighbourhood of the homoclinic orbit Γi, for i = 1, 2. It

is not restrictive to assume that U is symmetric, that is R(U) = U . Indeed, this comes

from assuming that R(U0) = U0 and R(U j
1 ) = U j

2 (and so R(U j
2 ) = U j

1 ).
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Consider the orbit Γ1 and take a pair of its points, say, M−

1 ∈ Wu
loc(O) ∩ U0 and

M+
1 := f q

0 (M
−

1 ) ∈ W s
loc(O) ∩ U0, for a suitable positive integer value q. Denote by

Π−

1 ⊂ U0 a small neighbourhood of M−

1 and define the map T1 := f q
0 : Π−

1 → U0. Assume
that the following hypothesis is also satisfied:

[C] The Jacobian J1 = J(T1)|M−

1

of the map T1 at the point M−

1 is different from ±1.

Without loss of generality we can assume that |J1| < 1.

It is not difficult to check that condition [C] does not depend on the choice of the points
M−

1 and M+
1 . Moreover, it implies that the map T1, defined in a neighbourhood of M−

1
is not conservative.

Remark 1.

1. We do not consider the case when the fixed point O has multipliers λ, λ−1 with
−1 < λ < 0. This is a much more complicated case, since f0 would have an
additional symmetry due to the negativity of the two multipliers of O.

2. In condition [C], the case 0 < J1 < 1 corresponds to f0 orientable while the case
−1 < J1 < 0 relates to f0 non-orientable. The latter means that the manifold M2 is
non-orientable (the orbit behaves near the global pieces of Γ1 and Γ2, geometrically,
like on a Möbius band).

3. Our assumptions also cover the case of reversible maps like in Fig. 4, i.e. when only
one pair of stable and unstable separatrices of O create the homoclinic orbits Γ1 and
Γ2. Fig. 4(b) shows how such “fish” configuration nontransversal heteroclinic cycle
may be created by perturbation of a reversible map with a symmetric transverse
homoclinic orbit.

Consider two points M−

2 ∈ Wu
loc(O) and M+

2 ∈ W s
loc(O) of the orbit Γ2 being the

symmetric images of the homoclinic points M+
1 and M−

1 , i.e. M−

2 = R(M+
1 ) and M+

2 =
R(M−

1 ). Since f0 is (R-)reversible it follows that f q
0 (M

+
2 ) = M−

2 . Let T2 denote the
restriction of the map f q

0 onto a small neighbourhood of the point M−

2 . Moreover, we can

consider T2 defined from Π−

2 = R(Π+
1 ) onto Π+

2 = R(Π−

1 ) (see Fig. 8). Since T2 = R(T−1
1 )

we have that J(T2)|M−

2

= (J(T1)|M−

1

)−1 and from [C] it follows that |J2| = |J(T2)|M−

2

| > 1.

As it will be properly defined later, iterations of f0 in the neighbourhood U0 around O
will be represented by the map T k

0 , for positive integer k.
Observe that, for close to f0 maps, one can subdivide nonwandering orbits on U (except

for O) into three different types: 1-orbits that stay only in U0∩U1; 2-orbits that stay only
in U0 ∩U2; and 12-orbits that visit both U0 ∩U1 and U0 ∩U2. From these types of orbits,
we select the so-called single-round periodic orbits, that is those which pass only once
inside U . We will refer to them, respectively, as single-round periodic 1-, 2- and 12-orbits.

For 1-orbits, we will consider points x ∈ Π+
1 , take its image under suitable iterates k of

T0, reaching Π−

1 and studying x̄ = T1T
k
0 (x) ∈ Π+

1 as its return point. If x̄ = x we say that

x is a fixed point of the first return map T1k = T1T
k
0 . Analogously, the first return maps for

single-round periodic 2-orbits may be represented in the form T2k = T2T
k
0 , from Π+

2 onto
itself. And finally, we will also look for single-round periodic 12-orbits or, equivalently,
fixed points of T2m1k = T2T

m
0 T1T

k
0 from Π+

2 onto itself, for large enough integers k and
m. For more details, see Section 3 and Figs. 3 and 5.

2.2. The results. Let {fµ} be a 1-parameter family of (R-)reversible diffeomorphisms
that unfolds at µ = 0 the initial homoclinic tangencies of the diffeomorphism f0 defined
above. Assume that f0 satisfies conditions [A,B,C]. Then, the following theorem shows the
global symmetry-breaking bifurcations undergone in this case:
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Figure 4. (a) A reversible diffeomorphism with a symmetric transversal
homoclinic orbit; (b) creation of a symmetric couple of nontransversal ho-
moclinic orbits Γ1 and Γ2 (a “fish” configuration).

Theorem 1. For the family {fµ}, in any segment [−µ0, µ0] with µ0 > 0 small, there are

infinitely many intervals δk, with boundaries µ = µ+
k and µ−

k where µ±

k → 0 as k → ∞,
satisfying:

• Symmetric (and simultaneous) single round 1-orbits and 2-orbits of period k + q
undergo non-degenerate saddle-node and period-doubling bifurcations at the values
µ = µ+

k and µ = µ−

k , respectively.
• The first return maps T1k and T2k have at µ ∈ δk two fixed points: a sink and a
saddle for T1k and a source and a saddle for T2k.

This theorem can be seen as an extension of the theorem on cascade of periodic sinks
in [12, 32] for the case when the saddle fixed point is conservative and the global dy-
namics near the homoclinic orbit is dissipative. In general, these intervals δk will be
non-intersecting (see Remark 3 for a wider explanation on that).

In contrast to Theorem 1, the following theorem deals with the global bifurcations giving
rise to symmetric conservative dynamics, that is, the bifurcations of birth of symmetric
single-round elliptic 12-orbits.

Theorem 2. For the family {fµ} under consideration, in any segment [−µ0, µ0] with
µ0 > 0 small, there exist infinitely many intervals δckm accumulating at µ = 0 as k,m → ∞
such that the first-return map T2m1k has at µ ∈ δckm symmetric elliptic and saddle fixed
points.

Next result is Newhouse Theorem for the case under consideration.

Theorem 3. For the family {fµ}, in any segment [−µ0, µ0] with µ0 > 0 small, there exist
open intervals ni such that the set of values µ ∈ ni for which the corresponding map fµ
satisfying the following two properties (a) and (b) form a dense subset of ni:

(a) fµ has a symmetric couple of homoclinic orbits Γ1µ ⊂ U1 and Γ2µ = R(Γ1µ) ⊂ U2

to the symmetric saddle fixed point Oµ.
(b) The manifolds W u(Oµ) and W s(Oµ) of fµ have quadratic tangencies at the points

of Γ1µ and Γ2µ.
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Summarising, from Theorems 1– 3 the following result on existence of mixed dynamics
is obtained.

Theorem 4. Let {fµ} be a 1-parameter family of 2-dimensional reversible maps which
unfolds at µ = 0 a couple of homoclinic tangencies satisfying conditions [A,B,C]. Then,
for any µ0 > 0, the intervals ni ⊂ [−µ0, µ0] from Theorem 3 are Newhouse intervals with
reversible mixed dynamics.

The proof of Theorems 1 and 2 extends along Sections 3– 5. In contrast, the proofs of
Theorems 3 and 4 are quite standard and are deferred to the end of the paper: Theorem 3
is proved in Section 6.1 and Theorem 4 in Section 6.2.

3. Preliminary geometric and analytic constructions

Let us consider a map fµ from our 1-parameter family and let denote by T0 ≡ fµ
∣∣
U0

its restriction onto a neighbourhood U0 of the fixed point O. This µ-dependent map T0

is called the local map. We introduce the so-called global maps T1 and T2 through the
following relations: T1 ≡ f q

µ : Π−

1 → Π+
1 and T2 ≡ f q

µ : Π−

2 → Π+
2 . They are well defined

for small values of µ since f q
0 (M

−

1 ) = M+
1 and f q

0 (M
−

2 ) = M+
2 . Then the first-return maps

T1k : Π+
1 7→ Π+

1 , T2k : Π+
2 7→ Π+

2 and T2m1k : Π+
1 7→ Π+

1 can be defined by the following
composition of maps:

Π+
1

T k

0−→ Π−

1
T1−→ Π+

1 ,

Π+
2

T k

0−→ Π−

2
T2−→ Π+

2 ,

Π+
2

T k

0−→ Π−

1
T1−→ Π+

1

Tm

0−→ Π−

2
T2−→ Π+

2 ,

(see Fig. 5 and 6). In short, we will denote these compositions by T1k = T1T
k
0 , T2k = T2T

k
0

and T2m1k = T2T
m
0 T1T

k
0 . As it is usual in this kind of problems, one seeks for suitable local

Figure 5. A geometric structure of the homoclinic points M+
1 ,M−

1 ,M+
2

and M−

2 and their neighbourhoods in the case of figure-8 homoclinic con-

figuration. Schematic actions of the first return maps: (a) T1k = T1T
k
0 , (b)

T2k = T2T
k
0 and (c) T2m1k = T2T

m
0 T1T

k
0 .

coordinates on U0 in which the map T0 exhibits its simplest form. The following lemma
introduces Cr−1-coordinates that allow our local map T0 to be written in the so-called
(saddle) normal form or first order (saddle) normal form.
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Figure 6. A geometric structure of the homoclinic points M+
1 ,M−

1 ,M+
2

and M−

2 and their neighbourhoods in the case of “fish” homoclinic config-
uration. Schematic actions of the first return maps: (a) T1k = T1T

k
0 , (b)

T2k = T2T
k
0 and (c) T2m1k = T2T

m
0 T1T

k
0 .

Lemma 1 (Saddle Normal Form [14, Lemma 1]). Assume r ≥ 4 and let T0 be a Cr-
smooth reversible planar map with reversing (nonlinear in general) involution R satisfying
that dimFixR = 1. Suppose that T0 has a saddle fixed (periodic) point O at the origin
which belongs to FixR and has multipliers λ and λ−1, with |λ| < 1. Then there exist
Cr−1-smooth local coordinates near O in which the map T0 can be written in the so-called
Shilnikov cross-form:

T0 :

{
x̄ = λx+ h(x, ȳ)x2ȳ,
y = λȳ + h(ȳ, x)xȳ2.

(1)

Remark 2. In these local coordinates the map T0 is reversible under the linear involution
L(x, y) = (y, x). Indeed (see [6], for instance), it is enough to check that (LT0L)

−1 = T0.
Observe that

LT0L :

{
ȳ = λy + h(y, x̄)y2x̄,
x = λx̄+ h(x̄, y)yx̄2

and thus (LT0L)
−1, which corresponds to interchange (x̄, ȳ) ↔ (x, y), gives rise to the

expression for T0. Bochner theorem [30] ensures the simultaneous conjugation of both the
map and the reversor.

Next lemma provides a suitable expression for the iterates of T0. Namely,

Lemma 2 (see [14]). Let T0 be a Cr-smooth R-reversible map written in (local) normal
form (1) in a neighbourhood V of a saddle fixed point O. Let us consider iterates of T0 in
V : (x0, y0), . . . , (xℓ, yℓ) such that (xℓ+1, yℓ+1) = T0(xℓ, yℓ), ℓ = 0, . . . , j− 1. Then, one has
that

xj = λjx0
(
1 + jλjhj(x0, yj)

)
, (2)

y0 = λjyj
(
1 + jλjhj(yj, x0)

)
,

where the functions hj(x0, yj) are O2(x0, yj) and satisfy that they and all their derivatives
up to order r − 2 are uniformly bounded with respect to j .

Lemmas 1 and 2 are also valid if T0 depends on parameters. Moreover, if T0 is Cr with
respect to both coordinates and parameters, it can be seen that the normal form (1) is
Cr−1 with respect to the coordinates and Cr−2 with respect to the parameters. Moreover,
the derivatives in (2) with respect to the parameters and up to order r − 2 have order
O
(
(λ+ ǫ)j

)
for any ǫ > 0 (we refer the reader to [23], Lemmas 6 and 7, for more details).
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3.1. Construction of the local and global maps. We choose in U0 the local coor-
dinates (x, y) given in Lemma 1. In these coordinates, the local stable and unstable
invariant manifolds of the point O are straightened: Wu

loc(O) can be represented by x = 0

and W s
loc(O) by y = 0. Moreover, the previously chosen homoclinic points read as follows:

M+
1 = (x+1 , 0), M

−

1 = (0, y−1 ), M
+
2 = (x+2 , 0) and M−

2 = (0, y−2 ). Since R(M+
1 ) = M−

2 and
R(M−

1 ) = M+
2 , we have that they are L-symmetric and therefore x+1 = y−2 and y−1 = x+2 .

From the geometry of the figure-8 homoclinic case (see Fig. 5) we can assume that

x+1 = y−2 = −α < 0, y−1 = x+2 = β > 0 (3)

Analogously, in the “fish” configuration we have that α < 0 and β > 0 (see Fig. 6).
It is not restrictive to assume that T0(Π

−

i ) ∩ Π−

i = ∅, i = 1, 2 (if not, one can reduce

the size of Π−

i ). Therefore, the domains of definition of the transfer map from Π+
i into

Π−

j , i, j = 1, 2, under iterations of T0 consist of infinitely many non-intersecting strips σ0ij
k

which belong to Π+
i and accumulate at W s

loc(O) ∩Π+
i as k → ∞. On its turn, the range

of the transfer map consists of infinitely many strips σ1ij
k = T k

0 (σ
0ij
k ) belonging to Π−

i and

accumulating at Wu
loc(O) ∩ Π−

i as k → ∞ (see Figure 7). So, our first return maps are

Figure 7. Domains of definition and range of the successor map from Π+
i

into Π−

j , i, j = 1, 2, under iterations of T0 in the cases of (a) homoclinic

figure-8; (b) homoclinic “fish”.

defined on those strips in the following way:

T1k = T1T
k
0 : σ011

k

T k

07−→ σ111
k

T17−→ σ011
k ,

T2k = T2T
k
0 : σ022

k

T k

07−→ σ122
k

T27−→ σ022
k ,

T2m1k = T2T
m
0 T1T

k
0 : σ021

k

T k

07−→ σ121
k

T17−→ σ012
m

Tm

07−→ σ112
m

T27−→ σ021
k .

For large enough values of k, Lemma 2 asserts that the map T k
0 : σ0ij

k {(x0, y0)} 7→
σ1ij
k {(xk, yk)} can be written in the form

T k
0 :

{
xk = λkx0

(
1 + kλkhk(x0, yk)

)
,

y0 = λkyk
(
1 + kλkhk(yk, x0)

) (4)
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where (x0, y0) ∈ σ0ij
k , (x1, y1) ∈ σ1ij

k , i, j = 1, 2. In the “fish” configuration case this cor-

responds to T k
0 : Π+

1 {(x01, y01)} 7→ Π−

1 {(x11, y11)} while in the figure-8 situation this be-
comes T k

0 : Π+
2 {(x02, y02)} 7→ Π−

1 {(x11, y11)} and Tm
0 : Π+

1 {(x01, y01)} 7→ Π−

2 {(x12, y12)}
(see Fig. 8). The global map T1 : Π

−

1 → Π+
1 admits the following form

T1 :





x01 − x+1 = F1(x11, y11 − y−1 , µ)
≡ ax11 + b(y11 − y−1 ) + ϕ1(x11, y11, µ),

y01 = G1(x11, y11 − y−1 , µ)
≡ µ+ cx11 + d(y11 − y−1 )

2 + ϕ2(x11, y11, µ),

(5)

where F1(0) = G1(0) = 0 (since T1(M
−

1 ) = M+
1 at µ = 0) and ϕ1 = O

(
(y11 − y−1 )

2 + x211
)
,

ϕ2 = O
(
x211 + |y11 − y−1 |3 + |x11||y11 − y−1 |

)
. Since Wu

loc(O)) and W s
loc(O) have (local)

expressions {x11 = 0} and {y01 = 0} and T1(W
u
loc(O)) and W s

loc(O) undergo a quadratic
tangency at µ = 0, this implies that

∂G1(0)

∂y11
= 0,

∂2G1(0)

∂y211
= 2d 6= 0.

Its Jacobian J(T1) has the form

J(T1) = −bc+O
(
|x11|+ |y11 − y−1 |

)
, (6)

and so J1 = J(T1)|M− = −bc where 0 < |bc| < 1 by condition [C].
Concerning the global map T2, its expression is closely related to that of T1. Indeed,

reversibility implies that T2 = R T−1
1 R or, equivalently, T1 = R T−1

2 R. Then, by
expression (5) and having in mind the local L-reversibility on the domains Π−

2 (Bochner’s
theorem ensures its conjugation with the non-linear reversor R) we obtain that the map
T−1
2 : Π+

2 {(x02, y02)} 7→ Π−

2 {(x12, y12)} can be written as

T−1
2 :





x12 = G1(y02, x02 − x+2 , µ) =
µ+ cy02 + d(x02 − x+2 )

2 + ϕ2(y02, x02, µ),
y12 − y−2 = F1(y02, x02 − x+2 , µ) =

ay02 + b(x02 − x+2 ) + ϕ1(y02, x02, µ),

which means to write x+1 = y−2 , y−1 = x+2 in (5) and to swap x ↔ y variables, i.e.
x01 ↔ y12 and x11 ↔ y02. As it was done in a previous remark, this expression defines
the map T2 : Π−

2 {(x12, y12)} 7→ Π+
2 {(x02, y02)} in the implicit form: x12 = G1(ȳ02, x̄02 −

x+2 , µ), y12 − y−2 = F1(ȳ02, x̄02 − x+2 , µ) by swapping bar and no-bar variables.

4. Proof of Theorem 1

This proof is mainly based on Lemma 3 which provides, by computing the correspond-
ing equations and performing a suitable rescaling, an asymptotic expression for the first
return map for large enough values of k. Rescaling method has become, since the work
of Tedeschini-Yorke [38], a very useful tool when dealing with homoclinic connections (see
also [17, 21, 22, 23, 25] and references therein for many examples of such use).

Lemma 3. Let {fµ} be the family under consideration satisfying conditions [A,B,C]. Then,
for large enough values of k, the first return map T1k : σ0

k → σ0
k can be brought, by a linear

change of coordinates and a convenient rescaling, to the following form

X̄ = Y + kλkh1k(X,Y ), Ȳ = M1 +M2X − Y 2 + kλkh2k(X,Y ), (7)

with

M1 = −dλ−2k
(
µ− λk(y−1 − cx+) + ρ̃k

)
, M2 = bc, (8)

where ρ̃k = O(kλk) is a small constant and the functions hjk have all their derivatives
uniformly bounded up to order (r − 2).
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Figure 8. Domains of definitions and associated coordinates for the first
return map T2m1k = T2T

m
0 T1T

k
0 .

Proof. To ease its reading we give first a “lightweight” proof of the lemma for a simpler
case, i.e. when the local map T0 is linear, x̄ = λx, ȳ = λ−1y, and the global map has the
form:

x̄0 − x+ = ax1 + b(y1 − y−),
ȳ0 = µ+ cx1 + d(y1 − y−)2 + f11x1(y1 − y−).

We have only considered linear terms in the first equation and up to quadratic terms in
the second one. We use also (only for a simplification of formulas) the notation x+ =
x+1 , y

− = y−1 and denote the coordinates on Π+
1 as (x0, y0) and on Π−

1 as (x1, y1). Then
the first return map T1k = T1T

k
0 is written as

x̄0 − x+ = aλkx0 + b(y1 − y−),
λkȳ1 = µ+ cλkx0 + d(y1 − y−)2 + f11λ

kx0(y1 − y−),

This (first) highly simplified case will serve the reader (we hope) to be familiar with the
different transformations we apply to get the asymptotic Hénon map. The general case
(that is included rear after this one) will follow the same ideas and procedure.

Introduce the coordinates ξ = x0 − x+, η = y1 − y−. Then T1k reads

ξ̄ = aλkξ + bη + aλkx+,
λkη̄ = m1 + cλkξ + dη2 + f11λ

kξη + f11λ
kx+η,

(9)

where m1 = µ+ cλkx+ − λky−.
Further, we make one more coordinate shift, ξ = x+αk, η = y+βk with small coefficients

αk = O(λk) and βk = O(λk), in order to vanish the constant terms in the first equation
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and the linear in y terms in the second one. Then we obtain

x̄ = aλkx+ by +
[
bβk − αk + aλkx+ + aλkαk

]
,

λkȳ = m2 + (c+ f11βk)λ
kx+ dy2 + f11λ

kxy +
(
2dβk + f11λ

kx+ + f11λ
kαk

)
y,

where m2 = m1+λk(cαk−βk+f11x
+βk+f11αkβk)+dβ2

k = m1+O(λ2k). The expressions
in square brackets are nullified at

αk =

(
ax+1 − bf11x

+

2d

)
λk +O(λ2k), βk = −f11x

+

2d
λk +O(λ2k). (10)

For such choice of αk and βk, the map T1k takes the form

x̄ = aλkx+ by,
ȳ = λ−km2 + (c+ φk)x+ dλ−ky2 + f11xy,

where φk = O(λk) is a small coefficient. Now, by rescaling the coordinates,

x = − b

d
λkX, y = −1

d
λkY, (11)

we bring the map T1k to the claimed form:

X̄ = Y +O(λk), Ȳ = M + bcX − Y 2 +O(λk),

where M = −dλ−2km2 = −dλ−2k
[
µ+ (cx+1 − y−1 )λ

k +O(λ2k)
]
.

Let us now deal with the general case, that is, with T k
0 given by

xk = λkx0

(
1 + kλkhk(x0, yk)

)

y0 = λkyk

(
1 + kλkhk(yk, x0)

)

and the global map T1 given by

x̄0 − x+ = ax1 + b(y1 − y−) +O
(
(y1 − y−)2, x21, (y1 − y−)x1

)
,

ȳ0 = µ+ cx1 + d(y1 − y−)2 + f11x1(y1 − y−) +O
(
x21, (y1 − y−)3

)
.

Consider the map T1k = T1T
k
0 and apply the change of coordinates: ξ = x0 − x+, η =

yk − y−. Then, T1k admits the expression

ξ̄ = aλkξ + bη +
(
λkax+ +O(kλk)

)
+ γ1η

2 + γ2λ
kξη + λkη, (12)

λkη̄(1 +O(kλk)) =
(
µ+ cλkx+ + cλk(ξ + x+)kλkhk + f11kλ

2k(ξ + x+)ηhk+

γ1λ
2k(ξ + x+)2(1 + kλkhk)

)
+ cλkξ + dη2 + (13)

f11λ
kξη + f11λ

kx+η.

Following the same steps as for the simplified case, we consider the following shift :

ξ = x+ αk, η = y + βk

with αk, βk to be determined in such a way that the constant term in the equation for
x̄ and the coefficient of y in ȳ both vanish. After performing this shift, equations (12)
become

x̄ = aλkx+ by +
(
(aλk − 1)αk + b(1 + λk)βk + λkax+ +O(kλk)

)
(14)
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and

λkȳ =
(
µ+ cλk(x+ − y−) + ckλ2k(αk + x+)h0k + f11kλ

2k(αk + x+)βkh
0
k+

γ1λ
2k(αk + x+)2 + γ2β

3
k + cλkαk + dβ2

k + f11λ
kαkβk + f11λ

kx+βk − λkβk+

O(kλ4k)
)
+

(
cλk + f11λ

kβk + ckλ2kh0k + f11kλ
2kβkh

0
k

)
x+ (15)

(
f11λ

k(1 + kλkh0k)αk + 2dβk + 3γ2β
2
k + f11kλ

2kx+h0k + f11λ
kx+

)
y +

(d+ 3γ2βk) y
2 +

(
f11kλ

2kh0k + f11λ
k
)
xy +O3(x, y),

where h0k stands for the constant term of hk(x
++ ξ, y−+η) in (ξ, η)-variables and we have

taken into account that (1 +O(kλk))−1 = O(kλk). Thus, we determine αk, βk to satisfy

(aλk − 1)αk + b(1 + λk)βk = −λkax+ +O(kλk) (16)

f11λ
k(1 + kλkh0k)αk + 2dβk + 3γ2β

2
k = −f11kλ

2kx−h0k − f11λ
kx+.

It is straightforward to check that αk, βk = O(λk). Now, consider the linear system

(aλk − 1)αk + b(1 + λk)βk = −λkax+ +O(kλk)

f11λ
k(1 + kλkh0k)αk + 2dβk = −f11kλ

2kx−h0k − f11λ
kx+.

This linear system has solutions

α0
k =

(
ax+ +

bf11
2d

)
λk +O(kλk)

β0
k = −f11x

+

2d
λk +O(kλk).

(17)

Since d 6= 0, the determinant
∣∣∣∣

aλk − 1 b(1 + λk)
f11λ

k +O(kλ2k) 2d

∣∣∣∣ = −2d+ (2ad− bf11)λ
k − bf11λ

2k +O(kλ2k) 6= 0,

and so by the Implicit Function Theorem, there exist αk = α0
k + O(kλk) and βk = β0

k +

O(kλk) solutions of (16), which are O(kλk)-close to α0
k, β

0
k . Thus, considering the shift

ξ = x + αk, η = y + βk, with these already determined αk, βk = O(λk), one gets the
following equations for T1k:

x̄ = aλkx+ by + γ1y
2

λkȳ = m2 + (cλk +O(λ2k)x+ (d+O(λk))y + (f11λ
k +O(kλ2k))xy +O3(x, y),

(18)
where m2 := µ+ cλkx+ − λky− +O(λ2k). And last, we perform the scaling

x = − b

d
λkX, y = −1

d
λkY,

under which the previous system becomes

X̄ = Y +O(λk)
Ȳ = M1 +M2X − Y 2O(λk),

(19)

with M1 = −dλ−2km2 = −dλ−2k
(
µ+ (cx+ − y−)λk +O(kλk)

)
and M2 = bc, as it was

claimed.
�

Lemma 3 shows that the limit form (that is, for large enough values of k or, in other
words, for close-enough orbits to W s

loc(O)) for the first return map T1k = T1T
k
0 (and
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similarly for T2m) is the standard Hénon map H:

x̄ = y, ȳ = M1 +M2x− y2,

with Jacobian J = −M2 = −bc. Recall that by (6) and condition [C] we have 0 < J < 1.
Bifurcations of fixed points of the standard Hénon map are well known. In the (M1,M2)-
parameter plane, there are two bifurcation curves, namely

L+1 :=
{
(M1,M2) : 4M1 = −(1 +M2)

2
}
,

L−1 :=
{
(M1,M2) : 4M1 = 3(1 +M2)

2
}
,

corresponding to the existence of a fixed point with a multiplier +1 (saddle-node fixed
point) and a fixed point with a multiplier −1 (period doubling bifurcation), respectively.
For −1 < M2 < 0, the Hénon map has no fixed points below the curve L+1, has a stable
(sink) fixed point in the region between the bifurcation curves L+1 and L−1, while at L−1

a period doubling bifurcation takes place and a stable 2-periodic orbit appears above the
curve L−1.

Thus, using the relation (8) between the rescaled and the initial parameters we find
that

µ+
k = λk(cα + β + ρk) +

(1−bc)2

4d λ2k,

µ−

k = λk(cα + β + ρk)− 3(1−bc)2

4d λ2k,

where ρk = O(kλk) is small, α, β have been defined in (3) and b, c, d are Taylor coefficients
of the map T1 (see (5)). This completes the proof of Theorem 1.

�

Remark 3. In general, the intervals δk do not intersect each other for different sufficiently
large k. However, when cα+β = 0, they can intersect and even appear nested. In the latter
case, this implies that the diffeomorphism f0 can possess simultaneously infinitely many
periodic sinks and sources of all successive periods beginning from some (sufficiently) large
number. This is a more delicate problem and it is out of the scope of this work. We recall
that such phenomenon of “global resonance” with elliptic points was introduced in [20] for
area-preserving maps with homoclinic tangencies (see also [24, 7]).

5. Proof of Theorem 2

This proof will follow similar ideas and techniques as those employed in the proof
of Theorem 1. We begin by taking on U0 the local Cr−1-coordinates (x, y) provided
by Lemma 1. Recall that in these local coordinates the homoclinic points are denoted
by M+

1 = (x+1 , 0), M−

1 = (0, y−1 ) in Γ1 and M+
2 = (x+2 , 0) and M−

2 = (0, y−2 ) in Γ2.
They satisfy that L(M+

1 ) = M−

2 and L(M−

1 ) = M+
2 (locally) since R(M+

1 ) = M−

2 ,
R(M−

1 ) = M+
2 , respectively. Now we consider the first return map T2m1k = T2T

m
0 T1T

k
0

for single-round periodic 12-orbits. Thus, the following result holds:

Lemma 4. Let us consider the family {fµ} of Theorem 2, satisfying conditions [A,B,C].
Then, for large enough values of k,m, with k ≃ m, the first return map T2m1k : σ0

k → σ0
k

can be brought, by a linear change of coordinates and a suitable rescaling, to a reversible
map asymptotically close as k,m → ∞ to an area-preserving (symplectic) map of the form
(see also [6]):

H :

{
x̄ = M̃ + c̃x− y2,

c̃ȳ = −M̃ + y + x̄2,
(20)
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where

c̃ =
c

b
λk−m, M̃ = − d

b2
λ−2m

(
µ+ cλkβ + λmα+O(kλk +mλm)

)
. (21)

The constants α, β are defined in (3) and b, c, d in expression (5).

From hypotheses [A] and [C] it follows that λ > 0 and also c̃ < 0 in the orientable case
(if T1 is orientable) and c̃ > 0 in the non-orientable case (if T1 is non-orientable).

Proof. First, let us remind how coordinates are denoted on each domain around the
homoclinic points M−

1,2. Thus, (x, y)-coordinates on Π+
i are denoted by (x0i, y0i) and by

(x1i, y1i) on Π−

i , for i = 1, 2. From Lemma 2, the map T k
0 : Π+

2 → Π−

1 will be defined

on the strip σ021
k ⊂ Π+

2 and T k
0 (σ

021
k ) = σ121

k ⊂ Π−

1 . Analogously, there exist strips

σ011
k , σ012

k ⊂ Π+
1 , and σ022

k ⊂ Π+
2 such that T k

0 (σ
011
k ) = σ111

k ⊂ Π−

1 , T
k
0 (σ

012
k ) = σ112

k ⊂ Π−

2

and T k
0 (σ

022
k ) = σ122

k ⊂ Π−

2 (see Fig. 7 for a comprehensive plot). The first return map
T2m1k is given by the following chain of compositions:

σ021
k

T k

07−→ σ121
k

T17−→ σ012
m

Tm

07−→ σ112
m

T27−→ σ021
k

(for a geometrical illustration see Fig. 8). These relations can be expressed in coordinates
through the following set of equations (T k

0 , T1, T
m
0 , and T2, respectively):

x11 = λkx02(1 + kλkhk(x02, y11))
y02 = λky11(1 + kλk

1hk(y11, x02)),

x01 − x+1 = F1(x11, y11 − y−1 , µ) ≡
ax11 + b(y11 − y−1 ) + ϕ1(x11, y11, µ),

y01 = G1(x11, y11 − y−1 , µ) ≡
µ+ cx11 + d(y11 − y−1 )

2 + ϕ2(x11, y11, µ),

x12 = λmx01(1 +mλmhm(x01, y12))
y01 = λmy12(1 +mλmhm(y12, x01)),

x12 = G1(ȳ02, x̄02 − x+2 , µ) =
µ+ cȳ02 + d(x̄02 − x+2 )

2 + ϕ2(ȳ02, x̄02, µ),
y12 − y−2 = F1(ȳ02, x̄02 − x+2 , µ) =

aȳ02 + b(x̄02 − x+2 ) + ϕ1(ȳ02, x̄02, µ).

(22)

Observe that these formulas are presented in two different forms. Indeed, the local maps

T k,m
0 are given in cross-form while the global maps T1,2 are written in explicit form. Thus,

our first-return map T2m1k can be defined, in cross-variables, as T2m1k : (x02, y11) 7→
(x̄02, ȳ11), through the equation ȳ02 = λkȳ11(1 + kλk

1hk(ȳ11, x̄02)) which plays an interme-
diate rôle. As we did in Lemma 3, we introduce new variables

x1 = x01 − x+1 , x2 = x02 − x+2 , y1 = y11 − y−1 , y2 = y12 − y−2
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and rewrite system (22) as follows:

x1 = by1 +O(λk) +O(y21),

λmy2(1 +mλ2mO(|x1|+ |y2|)) =
(µ + cλkx+2 − λmy−2 +O(kλ2k +mλ2m)) + cλkx2 + dy21+
O(λ2k|x2|+ λk|x2y1|+ |y1|3),

λmx1(1 +mλ2mO(|x1|+ |y2|)) =
(µ + cλky−1 − λmx+1 +O(kλ2k +mλ2m)) + cλkȳ1 + dx̄22+
O(λ2k|x̄2|+ λk|x̄2ȳ1|+ |ȳ1|3)

y2 = bx̄2 +O(λk) +O(x̄22),

(23)

Take x1 and y2 from the first and fourth equations of (23) and substitute them in the
second and third ones. After this, we obtain the map T2m1k : (x2, y1) 7→ (x̄2, ȳ1) given in
the following implicit form

λmbx̄2(1 +mλmO(x̄2)) =

M + dy21 + cλkx2 +O(λ2k|x2|+ λk|x2y1|+ |y1|3),
λmby1(1 +mλmO(y1)) =

M + cλkȳ1 + dx̄22 +O(λ2k|x̄2|+ λk|x̄2ȳ1|+ |ȳ1|3),

where M = µ+ cλky−1 − λmx+1 +O(kλ2k +mλ2m) or, equivalently,

M = µ+ cλkβ + λmα+O(kλ2k +mλ2m).

Take into account that x+1 = −α < 0 and y−1 = β (see formulas (3) have been used.
Notice that up to this point, the procedure is symmetric. That is, we could have started
our first-return map with Tm

0 instead of T k
0 and the formulas would have been the same.

This is reflected in the fact that all the equations up to now, including the definition of
the constant M , are invariant under k ↔ m. Following the same procedure performed in
the proof of Theorem 1, we rescale the coordinates. Indeed, consider

x2 = − b

d
λmx, y1 = − b

d
λmy,

which bring the first return map T12k into the following rescaled form

x̄ = M̃ + c̃x− y2 +O(λk + λ2k−m),

y = M̃ + c̃ȳ − x̄2 +O(λk + λ2k−m),

where c̃ and M̃ satisfy (21). This ends the proof of the lemma.
�

To complete the proof of Theorem 2 we need to detect the bifurcation boundaries of the
intervals δckm. Since at µ ∈ δckm the first return map T2m1k has two symmetric fixed points,
one elliptic and another saddle, such boundaries can be found from the corresponding
analysis of the map (20). The bifurcation diagram for the symmetric fixed points of
map (20) is shown in Fig. 9. We notice that it is essentially as the one in [6, page 16].
However, for the goals of [6], searching only for symmetric fixed points was not sufficient,
since the main problem there was to study symmetry breaking bifurcations (leading to the
birth of a symmetric couple sink-source fixed points). This is not necessary here because
the symmetric breaking bifurcations have been already determined in Theorem 1.
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Figure 9. Elements of the bifurcation diagram for the map H: painted
regions correspond to the existence of symmetric elliptic and saddle fixed
points of H.

Like in [6, page 16], the equations of the bifurcation curves F (symmetric fold bifurca-
tion), PD1 and PD2 (symmetric period doubling) and PF (symmetry breaking pitch-fork)
are the following:

F0 : M̃ = −1

4
(c̃− 1)2,

PD1 : M̃ = 1− 1

4
(c̃− 1)2,

PD2 : M̃ =
(c̃+ 1)(3c̃ − 1)

4
,

PF : M̃ =
3

4
(c̃− 1)2.

(24)

These curves have the same equations for the orientable case, corresponding to the half-

plane P1 = {c̃ < −ε} of the (c̃, M̃ )-parameter plane, and for the non-orientable case,
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corresponding to the half-plane P2 = {c̃ > ε}, with an arbitrary small ε > 0. Note that
if c̃ = 0, then c = 0 and therefore T1 is not a diffeomorphism. So we exclude from the
analysis a thin strip along the axes c̃ = 0 (the dashed strip in Fig. 9).

The curves (24) divide the half-plane P1 in 6 domains Iℓ, . . . , VIℓ and the half-plane P2

in 9 domains Ir, . . . , IXr. From these domains, we select two domains IIℓ and Vℓ belonging
to P1 and four domains IIr, IVr, VIr and VIIIr belonging to P2 which correspond to those

values of the rescaled parameters (c̃, M̃) at which the map H (and also the corresponding
first return map T2m1k) has two symmetric fixed points: one saddle and another elliptic.
Note that for a given map T2m1k the value of the parameter c̃ is uniquely determined.

Then, the interval δckm of values of the parameter µ corresponds to one of the intervals

∆c̃|c̃ = const of values of M̃ that intersects some of the selected domains from its lower to
its upper boundaries.

For instance, let us compute in the orientable case (c̃ < 0) the corresponding intervals

δckm of values of M̃ for the domain IIℓ:

δckm =

(
−1

4
(c̃− 1)2, 1− 1

4
(c̃− 1)2

)
for c̃ ≤ −1, (25)

and

δckm =

(
−1

4
(c̃− 1)2,

1

4
(c̃+ 1)(3c̃ − 1)

)
for − 1 < c̃ < −ε.

In both cases, the lower boundary corresponds to the symmetric fold bifurcation and the
upper one to the symmetric period doubling.

Analogously, let us compute in the non-orientable case (c̃ > ε) the corresponding inter-
vals δckm for the domains IIr and VIr:

δckm =
(
−1

4(c̃− 1)2, 14(c̃+ 1)(3c̃ − 1)
)

for ε̃ < c ≤ 1/2;

δckm =
(
−1

4(c̃− 1)2, 34(c̃− 1)2
)

for 1/2 < c̃ < 2 and c̃ 6= 1;

δckm =
(
−1

4(c̃− 1)2, 1− 1
4(c̃− 1)2

)
for c̃ ≥ 2.

In all three cases, the lower boundary corresponds to a symmetric fold bifurcation. How-
ever, the upper boundary corresponds to a symmetric period doubling for the first and
the third case and to a symmetry breaking pitch-fork bifurcation for the intervals in the
second case.

We clearly will skip values of k and m such that c̃ = 1, that is, c
bλ

k−m = 1. This is

equivalent to say that k−m = 1
lnλ ln b

c . Finally, we represent the intervals δ
c
km as intervals

of values of µ using the relations (21). For example, for the intervals δckm with c̃ ≤ −1

(see (25)), we obtain the following expressions for their bifurcation boundaries µc+
km ∈ F

and µc−
km ∈ PD1:

µc+
km = −cλkβ − λmα+

b2

4d
(c̃− 1)2λ2m

µc−
km = −cλkβ − λmα+

b2

d

(
1− 1

4
(c̃− 1)2

)
λ2m,

and so on. Analogous explicit formulas can be obtained for the rest of the cases.
�
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6. Proof of Theorems 3 and 4

6.1. Proof of Theorem 3. Its proof is quite standard (see, for instance, [33, 16, 19]).
Namely, consider a single orbit Γ1 and its neighbourhood U1. From [19] it is known that
there exist {µk}k, satisfying µk → 0 as k → ∞, such that the map fµk

presents in U1 a
hyperbolic invariant set Λk (a Smale horseshoe) such that (i) W u(Λk) is quadratically tan-
gent to W s(Oµ) and (ii) simultaneously, W u(Oµk

) intersects transversally with W s(Oµk
)

(see Fig. 10). Since all periodic points in Λk have Jacobian less than 1 (by condition [C])
and, by the λ-Lemma, their stable and unstable manifolds accumulate (in a Cr-sense) to
W s(Oµ) and W u(Oµ), it follows that Λk is a wild hyperbolic set (see [33]). The latter
assertion implies that, arbitrary close to µ = 0, there exist intervals of values of µ for
which W u(Λk) and W s(Λk) have points with quadratic tangency. Thus, one obtains that
the values of µ for which the map fµ has a nontransversal homoclinic orbit Γ1µ ⊂ U1 are
dense in these intervals.

Figure 10. Two examples of creation of secondary homoclinic tangencies
to the point O together with their Smale horseshoes

�

6.2. Proof of Theorem 4. The proof of this theorem follows from Theorems 1 and 2
and a standard procedure of embedding intervals applied to any arbitrary point belonging
to any interval ni from Theorem 3. Indeed, take any µ̄ ∈ ni. Arbitrary close to µ̄ there is
µ̄1 ∈ ni such that fµ̄1

has a couple of homoclinic tangencies of the initial type. Hence, by
Theorem 1, near µ̄1 there exists an interval I1 ⊂ ni such that at µ ∈ I1 the diffeomorphism
fµ has a periodic couple “sink-source”. In turn, since ni is the Newhouse interval, in I1 we
find an interval I2 such that the diffeomorphism fµ at µ ∈ I2 has simultaneously, a periodic
couple “sink-source” (as µ ∈ I1) and a symmetric elliptic periodic orbit. Repeating this
procedure beginning from the interval I2 we obtain a sequence I2, I4, ... of embedding
intervals such that at µ ∈ I2j the diffeomorphism fµ has j periodic couples “sink-source”
and j symmetric elliptic periodic orbits, etc.

�
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7. Some examples

In this section we provide some simple examples of planar reversible maps undergoing a
“fish” or figure-8 quadratic homoclinic tangency. They are Poincaré maps of periodically
perturbed planar reversible differential systems. By construction hypotheses [A,B] will
be straightforwardly satisfied. The fulfilment of condition [C] is expected by numerical
checking because of the large freedom one has to produce many close variants of the
periodic perturbations. The basic systems will be the well-known Duffing equation and
the Cubic potential (the “fish”), both Hamiltonian and reversible. A similar approach was
performed by Duarte in [9].

7.1. Perturbed Duffing equation. Let us consider the vertical Duffing equation

{
ẋ = y − y3 +εf(x, y, t)
ẏ = x +εg(x, y, t).

(26)

For ε 6= 0, system (26) is Hamiltonian, reversible (with respect to linear involutions,
R(x, y) = (x,−y) and S(x, y) = (−x, y)) and presents a couple of (R-)symmetric homo-
clinic solutions to the origin. These figure-8 homoclinic curves (single-round 12-orbits)
can be parameterized by Γ−

h (t) = (xh(t),±yh(t)), where

xh(t) = −
√
2sech(t) tanh(t), yh(t) =

√
2sech(t)

for t ∈ (−∞,+∞). Moreover, the following properties hold: (i) xh(t) = ẏh(t); (ii)
(xh(0), yh(0)) = (0,

√
2); (iii) yh(t) has a pole of order 1 at the points±πi/2 (and, therefore,

xh(t) has poles of order 2 at the same points).
Our aim is to provide some examples of periodic perturbation of (26), preserving R-

reversibility and not in general the Hamiltonian character, such that the homoclinic in-
variant curves of the origin undergo a quadratic tangency (and, therefore, infinitely many
of them). It is straightforward to check that, for ε 6= 0, system (26) is R-(time) reversible
if and only if f(x,−y,−t) = −f(x, y, t) and g(x,−y,−t) = g(x, y, t). The existence of
(tangent) quadratic homoclinic points will be carried out by selecting a simple suitable
perturbation and parameters ωj, t

∗
0 such that the corresponding Melnikov function M(t0)

has a double-zero at t0 = t∗0. Melnikov function is given by

M(t0) =

∫ +∞

−∞

(F ∧G) (xh(t), yh(t), t+ t0) dt,

where

F (x, y) =

(
y − y3

x

)
, G(x, y, t) =

(
f(x, y, t)
g(x, y, t)

)

and F ∧G = (y−y3)g(x, y, t)−xf(x, y, t). To produce such example, we restrict ourselves
to the case where g ≡ 0 and f(x, y, t) a (periodic) linear combinations of odd functions of
the form x sinωt, that is,

{
ẋ = y − y3 +εx

∑N
j=0 aj sinωjt

ẏ = x
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with commensurable ω0, ω1, . . . , ωN . Having in mind that x2h(t) sinωjt is an odd function
in t (and, therefore, its integral over (−∞,+∞) is null) it follows that

M(t0) = −
N∑

j=0

aj

∫ +∞

−∞

x2h(t) sinωj(t+ t0) dt =

−
N∑

j=0

aj

(∫ +∞

−∞

x2h(t) cosωjt dt

)
sinωjt0 =

− eπ/2

3 sinh(π/2)

N∑

j=0

(
aj sinh

(πωj

2

)
(ω2

j − 2)ωj sinωjt0

)
,

provided by the residues integration

Res

(
x2h(t) cosωjt, t =

πi

2

)
=

eπ/2

3 sinh(π/2)
sinh

(πωj

2

)
(ω2

j − 2)ωj .

Let us consider as a particular example, the case ω0 = 1, ω1 = ω ∈ Z \ {1}, a0 = α and
a1 = β with αβ 6= 0. Indeed,

{
ẋ = y − y3 +εx (α sin t+ β sinωt)
ẏ = x.

Now, the Melnikov function reads

M(t0) = − eπ/2

3 sinh(π/2)

(
−α sinh

(π
2

)
sin t0 +β sinh

(πω
2

)
(ω2 − 2)ω sinωt0

)
.

We seek for values of ω and t0 satisfying that M(t0) = M ′(t0) = 0 and M ′′(t0) 6= 0,
i.e., giving rise to a quadratic homoclinic tangency. Denoting A = α sinh(π/2) and Bω =
β sinh(πω/2) (ω2−2)ω, this is equivalent to look for double zeroes of ϕω(t0) = −A sin t0+
Bω sinωt0. Since β 6= 0 and ω 6= 0 it turns out that Bω does not vanish as well. It is
straightforward to check that ϕω(t0) = ϕ′

ω(t0) = 0, ϕ′′
ω(t0) 6= 0 reduces to find ω and t0

with ωt0 6= kπ, for k ∈ Z, satisfying A sin t0 = Bω sinωt0 and A cos t0 = ωBω cosωt0.
It is simple to prove that there is no solution t0 for ω = 2. Indeed, ωt0 /∈ πZ implies that

t0 6= kπ/2 for k ∈ Z. Imposing the two other conditions leads us, first, to A = 2B2 cos t0
and, second, to sin t0 = 0, a contradiction with the fact that t0 6= kπ/2. If we choose
ω = 3 and (for instance) t0 = π/2, that is

{
ẋ = y − y3 +εx (α sin t+ β sin 3t)
ẏ = x,

the latter conditions reduce to B3 = −A and having in mind that A = α sinh(π/2) and
B3 = 21β sinh(3π/2) it follows that we have a quadratic homoclinic point at t0 = π/2 for
ω = 3 provided

β = − sinh(π/2)

21 sinh(3π/2)
α.

7.2. Perturbed “fish” equation. This example of single-round 1- and 2-orbits, based
on the fish equation, is given by

{
ẋ = y +εf(x, y, t)
ẏ = x− x2 +εg(x, y, t).

For ε = 0 this fish equation is (time) R-reversible, with R the involution (x, y) 7→
(x,−y), and presents a (R)-symmetric homoclinic solution to the origin, namely, Γh(t) =
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(xh(t), yh(t)), where

xh(t) =

√
3

2
sech2

(
t

2

)
, yh(t) = ẋh(t) = −

√
3

2
sech2

(
t

2

)
tanh

(
t

2

)

Function xh(t) has a pole of order 2 at ±πi and, therefore, yh(t) has them of order
3. If we ask the perturbation (f, g) to preserve the R-reversibility, it must satisfy that
f(x,−y,−t) = −f(x, y, t) and g(x,−y,−t) = g(x, y, t). Proceeding like in the previous
example, the Melnikov function for a general reversible perturbation (f, g) reads as follows

M(t0) =

∫ +∞

−∞

(F ∧G) (xh(t), yh(t), t+ t0) dt =

∫ +∞

−∞

yh(t)g(xh(t), yh(t), t+ t0) dt−
∫ +∞

−∞

(xh(t)− x2h(t))f(xh(t), yh(t), t+ t0) dt.

As before, we restrict ourselves to a simpler case, namely,

f ≡ 0, g(x, y, t) = g(y, t) = y
N∑

j=0

bj sinωjt,

again with ω0, ω1, . . . , ωN commensurables. As we did for the Duffing equation, we select
a simple example giving rise to a homoclinic quadratic point. Indeed, we choose ω0 = 2,
ω1 = 6 (they are the smallest satisfying it), t0 = π/4 and denote b0 = α, b1 = β (with
αβ 6= 0). Indeed, {

ẋ = y
ẏ = x− x2 +εy (α sin 2t+ β sin 6t) .

Thus, our Melnikov function reads

M(t0) =
4
5π

(
α sinh(2π) · (24 − 1) · 2 · sin(2t0)

+β sinh(6π) · (64 − 1) · 6 · sin(6t0)
)
,

which can be written as A sin 2t0 +B sin 6t0 with

A =
4

5
πα sinh(2π) · (24 − 1) · 2, B =

4

5
πβ sinh(6π) · (64 − 1) · 6.

Taking A = B it follows that M(π/4) = M ′(π/4) = 0 and M ′′(π/4) = 32B 6= 0, which
provides the condition

β =
(24 − 1) sinh(2π)

3(64 − 1) sinh(6π)
α.
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