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Abstract: Recent experiments show a relation between cell’s shape and collective motion in
confluent monolayers. Collective motion can cause structural changes in biological tissues that can
be rationalized within the framework of Voronoi models. Using Monte Carlo method, we have studied
the equilibrium properties of the model using as control parameters the typical cell elongation and
the intensity of the noise. We have studied the dynamical and structural changes in the tissues,
which has let us explore the phase diagram around the solid-to-liquid transition.

I. INTRODUCTION

Collective cell migration is a phenomenon that has
been observed in a variety of biological situations, such
as wound healing, cancer metastasis or embryogenesis
[3, 4, 7, 10]. Recent studies have shown that when cells
are heavily packed this motion is mostly due to cell-cell
junction, and some transitions might coincide with a col-
lective solid-to-liquid jamming transition [5, 11]. This
behaviour, which involves much bigger scales than cell
sizes, suggest that a physical model should only count
a few parameters [12]. One of the several models that
studies this collective cell motility is the Voronoi model,
which was first proposed by Honda in [6] and has some
strong experimental support [1]. In a Voronoi model,
the biological tissue results from the Voronoi tessellation
of the cell centers, i.e., the set of points that are closer
to the cell’s center than to any other cell’s center. In
this picture, cells are polygons with well-defined areas
and perimeters. Because of this construction, this model
describes confluent monolayers, where cells are packed
without free space. In Voronoi models, it is possible to
define a configurational energy, i.e., an energy functional
that depends on the geometrical properties of the system,
that is expressed as

E =
∑
cells i

KA(Ai −A0)
2 +KP (Pi − P0)

2 (1)

where Ai and Pi are the area and perimeter of the cell
i, respectively. The first term is related to the incom-
pressibility in three dimensions as well as the resistance
of the layer to height fluctuations, where A0 behaves as
a preferred or target area and KA is the elastic area con-
stant. The second term corresponds to the competition
between cell-cell adhesion and active contractility in the
actomyosin cortex, where P0 and KP are the analogous
of A0 and KA, respectively.

Consequently, it is possible to introduce a dimension-
less parameter p0 that is called target shape index and
whose definition is

p0 =
P0√
A0

.

p0 is an estimator of the typical cell elongation, geomet-

rically the shape index of a regular hexagon is phex0 =

6/
√
3
√
3/2 ≈ 3.722, and the shape index of a regular

pentagon is ppent0 = 5/

√
1/4 ·

√
5(5 + 2

√
5) ≈ 3.81. The

energy E given by Eq.(1) can be seen as a cost function
that the system tends to minimize. This cost function de-
pends on the shape index p0 so that is minimized when
each cell is a polygon whose shape parameter ( Pi√

Ai
) is

p0. We will call q the mean observed shape parameter:

q =
1

N

∑
cells i

Pi√
Ai

. (2)

Bi et al. [1] studied the mechanical energy required to
execute T1 transitions in simulated systems, which con-
sist of the shrinking of an edge between two cells until
a new edge arises between two neighbouring cells. They
concluded that there is a critical value of q, q∗ ≈ 3.81, by
which if q <∼ q∗ the system behaves like a solid, whereas
if q >∼ q∗ the system behaves like a liquid. These pre-
dictions have been verified by recent experiments on the
asthmatic airway epithelium [9].
From now on we set KA,KP , A0 = 1, and thus the

energy in Eq.(1) can be expressed as

E =
∑
cells i

(Ai − 1)2 + (Pi − p0)
2. (3)

Furthermore, we can define the effective mechanical in-
teraction over the cell i as Fi = −∇iE, with ∇i indi-
cating the gradient with respect the cell center ri. In
addition to this force, cells can move because of self-
propulsion, i.e., the motion of the cell in the absence
of neighbours. Cells achieve self propulsion by extending
different types of protrusion and adhering them to their
surroundings [12]. We can consider a stochastic force rep-
resenting cell motion, for example, Bi et al. [2] assigned
a polarity vector to each cell

n̂i = (cos θi, sin θi) (4)

where the time evolution of θi can be represented by
a white-noise process (zero mean and finite variance).
Along this vector the cell exerts a self-propulsion force of
constant magnitude v0µ, where µ is the mobility.
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At low Reynolds numbers (when inertia forces can be
neglected) this gives rise to the overdamped equation of
motion of each cell center:

dri
dt

= Fi + fsi (5)

where fsi is the stochastic force, which in our case acts as
white noise.

We have studied the phase diagram of the model fo-
cusing on two phases, one where the system behaves as
a solid and another one where cells move as molecules in
the liquid state.

II. MONTE CARLO METHOD

The trajectories of cells centers and therefore the evolu-
tion of the system are determined by Eq.(5), which can be
solved numerically as in [2]. Another approach is to con-
sider the Monte Carlo dynamics of the energy in Eq.(3).
Following [8] we have implemented the Metropolis Monte
Carlo method, which works as follows: first the N cells
are given a random configuration, i.e., the N cell’s cen-
ter are given random coordinates. Next we perform the
Voronoi tessellation of these points and we calculate the
energy of the system according to Eq.(3). Now we take
a cell center and we move it a certain distance smaller
than a fixed dr and in a random direction (with periodic
boundary conditions), and we compute the energy of the
system in this new configuration. Let ∆E := En − Eo

denote the difference between the energy of the previous
configuration and the energy of the new one, we accept
this trial move with probability

Pacc ∝ exp(−β∆E) (6)

where β = 1/T and T is a control parameter that mea-
sures the strength of the noise, i.e., the temperature in
the case of an equilibrium system in contact with a ther-
mal bath. We are therefore considering that cells perform
a Brownian motion, where T controls the intensity of the
random motion as a fluid in a thermal equilibrium at
temperature T . The system samples a stationary value
of energy after a certain number of Monte Carlo steps,
thus the physical observables of the system are computed
after this value.

III. SIMULATIONS AND RESULTS

For studying the phase diagram of the system we per-
formed Monte Carlo simulations of a confluent monolayer
composed of N = 100 cells. For obtaining the stationary
properties of the system, we have followed the dynamics
for tmax = 104 Monte Carlo (MC) steps. As one can
see in Fig.(1) where we report the typical evolution of

the energy Eq.(3), the energy converges towards station-
ary values after an initial transient that is smaller than
100 MC steps. Furthermore, we have fixed the maxi-
mum displacement of the cell center in the trial moves of
the Monte Carlo method at dr = 0.25 (as in [8]). This
value cannot be too small, otherwise we are not exploring
new configurations, or too large (compared with the typ-
ical cell length) so that the energy reaches the minimum
quicker.

FIG. 1: Evolution of the energy of the system computed with
Eq.(3) (in arbitrary units) throughout the simulation, for 5 ·
104 MC steps with T = 0.08 and p0 = 3.4. We can see
that energy quickly reaches a stationary state within the first
hundred MC steps.

A. Structural properties

The aim of the first part of the analysis is to explore
the phase diagram of the tissues using as control param-
eters the target shape parameter p0 and the temperature
T . As structural order parameter we measure the average
observed shape parameter q, since as explained above it
determines the state (solid or liquid) of the system. Our
study will be around the critical point q∗ ≈ 3.81 hence
following [2] p0 will take values in [3, 4]. This limits the
range of temperatures that allows us see a solid-to-liquid
transition, which will be (0, 0.1) (notice that if tempera-
ture is too high then Eq.(6) approaches 1 and therefore
every trial move is accepted). As Fig.(2) shows, q fluc-
tuates around a certain value, so we will consider the
average of q over the last 300 steps as the one that de-
termines the state of the system.
In Fig.(3) we have this averaged value of q represented

for different conditions of temperature and p0. It is worth
noting that for most conditions of p0 and T , q does not
match the target p0 (the dashed lined represents the iden-
tity line), which means that the system cannot dynam-
ically satisfy the constraints imposed by the mechanical
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FIG. 2: Evolution of q over time in the left image and distri-
bution of q (after termalisation) on the right, for p0 = 3.73
and T = 0.01 As with energy, q quickly starts fluctuating in
a small interval

energy, i.e., all cells with the same p0. Therefore the sys-
tem remains blocked at some configuration, which for low
values of p0 and T has q ≈ qhex. Taking the transition
point from solid to liquid q∗ = 3.81 we can find the state
of every system in the phase space (p0, T, q), obtaining
the phase diagram in Fig.(4).

FIG. 3: Representation of the mean observed shape param-
eter q (averaged over the last 300 MC steps) versus the tar-
get shape parameter p0, for different temperatures (error bars
have not been included). The dashed line represents the iden-
tity function.

We can visually check these predictions in the exam-
ples in Fig.(5) (liquid state) and Fig.(6) (solid state). We
can see that a solid shows a more homogeneous state,
where cells are mostly regular hexagons (q ≈ 3.72) and
the shape parameter is approximately constant through-
out the tissue. On the other hand, the liquid state dis-

FIG. 4: Representation of q (color scale) for different con-
ditions of temperature and p0 in a 3D plot. The semi-
transparent red plane is the constant value q = q∗ = 3.81,
and therefore the points below it correspond to a solid state
and the points above it to a liquid.

plays a wider variety of polygons with 4,5 and 6 sides,
and therefore the shape parameter is less uniform. In
Fig.(7) we have tracked the trajectories of 10 arbitrary
cells in a solid tissue (left) and liquid tissue (right). We
clearly see that in a solid cells remain in a very bounded
space, while in a liquid they are able to move.

FIG. 5: Voronoi tesseletion of the final coordinates of the cells
centers of a 400 cell tissue with temperature 0.08 and p0 = 3.9
(liquid state) with the same color scale as Fig.(4)

B. Dynamical properties

We start with studying the mean squared displace-
ment, which is defined as

∆r2(t) =

∑
cells i(ri(t)− ri(0))

2

N
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FIG. 6: Final snapshot of a tissue of 400 cells with tempera-
ture 0.02 and p0 = 3.2 (solid state) with the same color scale
as Fig.(4)

FIG. 7: Coordinates of the cells centers of 10 arbitrary cells
for the last 1000 MC steps, the left figure for p0 = 3.8 and
T = 0.08 (liquid state) and the second one p0 = 3.2 and
T = 0.02 (solid state).

where ri(0) is the position of the i-th cell center after
termalisation. In Fig.(8) we see a representation of the
mean squared displacement over time for different simu-
lations. As we can see it exhibits a dependence on both,
temperature and shape index. For liquid states it shows
a linear dependence on t (diffusive regime). When ap-
proaching the transition we observe a subdiffusive regime
(∆r2 ∝ tµ with 0 < µ < 1) in between, and for solids we
see diffusive-subdiffusive, where the subdiffusive regime
develops a plateau. The plateau indicates that cells are
being caged by their neighbours [2].

We can thus define the effective diffusion constant

Deff = lim
t→∞

∆r2

4t
.

Deff is measured from the final value the mean squared
displacement. In Fig.(9) we see that for low values of p0
Deff is (almost) zero, until at a certain value of p0 it

FIG. 8: Representation of the mean squared displacement
over time for different conditions of p0 and q. We have also
represented a line with slope 1 (in log-log scale) that repre-
sents a diffusive regime.

becomes non-zero. Since the states with non-zero diffu-
sion coefficient correspond to liquid states whereas solids
have zero diffusion constant, we have obtained another
way to determine the state of the tissue [2]. If we take
this critical value of transition and represent it in the
p0 − T plane (Fig.(10)) we see that it matches remark-
ably well with the transition points that we obtain if we
take the systems in the phase diagram with q ≈ q∗. As
a matter of fact, the critical value of q obtained in this
section is q = 3.82± 0.03.

FIG. 9: Representation of the dependence Deff (p0) for dif-
ferent temperatures.

Treball de Fi de Grau 4 Barcelona, January 2023



Phase diagram of the Voronoi model of biological tissue Oriol Reig

FIG. 10: Representation of the coordinates (p0, T ) by which
Deff starts having a non-zero value (orange line) and of the
coordinates that lay on the plane q = q∗ in Fig.(4) (blue
line), i.e., the transition points in the structural study. The
blue points have an error on p0 of ≈ 0.04, while for the red
points the error is ≈ 0.03. As one can see, the two methods
provide compatible results.

IV. CONCLUSIONS

We have explored the structural and dynamical prop-
erties of biological tissue in the framework of Voronoi
models. We have considered a model of biological tis-
sue where cells randomly move because of a thermal-like

noise and studied the equilibrium states using the Monte
Carlo method. Using as control parameters the shape
index p0, which measures the typical cell elongation, and
the temperature T , which measures the strength of the
noise, we have developed a phase diagram of the tissue
that counts two phases: a solid state where cells do not
move, and a liquid state where cells move. We can sum-
marize our results as follows:

• The solid-liquid transition can be individuated us-
ing the structural order parameter q, which is a di-
mensionless relation between cells area and perime-
ter and separates solid states from liquid states at
a critical value q∗ ≈ 3.81.

• The same transition can be studied by looking at
the long-time behavior of the mean-square displace-
ment, which leads us to define a parameter that is
non-zero for liquids and zero for solids.

• The transition line obtained by the two methods
are consistent, and we reach the same critical value
of the structural parameter from the dynamical ap-
proach.
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