
Dynamics of overheated relativistic bubbles

Author: Marc Romeu Casas
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Jorge Casalderrey Solana

Abstract: In this work we study the dynamics of overheated expanding relativistic bubbles in
the context of first order phase transitions. Contrary to overcooled bubbles, these have been poorly
studied. We use a simplified equation of state and determine the different kind of expanding regimes.
We find three possible regimes: deflagration, detonation and hybrids. For each of these regimes, we
compute the velocity and enthalpy profiles and find qualitative differences between the dynamics of
overcooled and overheated bubbles.

I. INTRODUCTION

The hydrodynamics of overcooled relativistic bubbles
has been studied in the context of cosmological first order
phase transitions (FOPT) [1–4] such as electroweak and
quark-hadron phase transitions. As the universe slowly
expanded and cooled, matter in the early universe could
have cooled past the phase transition point and enter
into a hot metastable state. Eventually, with the nucle-
ation of bubbles, the transition to the cold stable state
occurs. These bubbles expand and collide, producing gra-
vitational waves that could potentially be detected.

Another context where FOPT are important is neu-
tron star (NS) mergers. Before the collision, matter is
in the cold phase of quantum chromodynamics (QCD),
and heats up during the collision. This process is slow
enough to turn matter into a metastable state of over-
heated hadronic phase. Then, matter could decay to
the preferred hot deconfined phase via bubble nucleation.
These FOPT take place in the opposite direction of the
cosmological ones.

These collisions could produce Mega-Hertz gravita-
tional waves so they may give information about the
quantum chromodynamics interacting matter in presence
of a strong gravitational field [5]. For this reason, it’s in-
teresting to know and characterize the profiles of these
bubbles.

While the dynamics of overcooled bubbles has been
extensively studied, little is known about overheated re-
lativistic bubbles. In this thesis, we present the first hy-
drodynamic study of these bubbles, which could emerge
from cold to hot FOPT.

Natural units are used in this study (c = ℏ = 1).

II. EQUATIONS OF STATE AND BUBBLE
NUCLEATION

In this first exploratory study we use a simplified equa-
tion of state (EoS). Both phases are described with the
EoS of a relativistic gas. The only difference is that in
the EoS of the hadronic phase, we need to include the
self-interaction potential ϵ > 0. Having these two re-

quirements, we model the EoS of the hadronic phase as

ph =
1

3
ahT

4 + ϵ eh = ahT
4 − ϵ (1)

and in the quark phase

pq =
1

3
aqT

4 eq = aqT
4 (2)

where aq ̸= ah depends on the number of bosons and
fermions that are in the plasma. aq and ah don’t need
to be specified for computing v and w profiles. Adding
both quantities gives us the enthalpy (w = e+ p)

wq =
4

3
aqT

4 wh =
4

3
ahT

4 (3)

From EoS (1) and (2) we obtain the constant value for
the speed of sound c2s = dp/de = 1/3. Before the bubble
was nucleated, the matter was in a metastable hadronic
phase with enthalpy wN .
We consider now that there is a spherically symme-

tric bubble nucleated in the quark phase inside a region
of hadronic phase. This bubble has been expanding for
enough time with constant velocity vw so that it has ra-
dius Rbubble = vw t, where t is the elapsed time from
the nucleation. Far from the wall, we have that matter
in both phases is at rest. To guarantee this, the time
elapsed has to be large enough to ensure that inside the
bubble, far from the wall, the initial fluctuation disap-
peared and the matter is at rest. Outside the bubble,
the matter was already at rest before bubble nucleation.
Only solutions from which the velocity reaches zero at
both sides of the wall are compatible with these assump-
tions. To find the enthalpy and velocity profiles, we can
apply hydrodynamic equations when the velocity gradi-
ents are small enough.
To ensure that the bubble is expanding, the pressure

inside the bubble must be larger than the pressure on
the outside. This implies that the enthalpy of the quark
region must be larger than the hadronic one. Before the
nucleation of the bubble occurred, all the plasma was in
equilibrium in the hadronic phase with a constant energy
density. After the nucleation, outside and far from the
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bubble wall, the energy density has not changed and, in-
side the bubble (far from the wall), the matter in the hot
phase has higher energy density. This implies that the
energy density in the surroundings of the wall is lower
than the nucleation energy outside and far from the wall,
so the energy is conserved. The fact that the energy dens-
ity inside the bubble is higher than on the outside implies
that the velocity of the matter in the surroundings of the
wall must go towards the inside of the bubble. We choose
the inflowing velocity field to be negative (v < 0). This
is opposite to what we have in cosmological phase tran-
sitions, where energy outside the bubble is greater than
inside, so the fluid must go from the inside to the outside
of the bubble (v > 0).

III. HYDRODYNAMIC EQUATIONS

To describe the hydrodynamics of the bubbles, we
assume that the matter can be described as a perfect
fluid. This implies that the energy-momentum tensor is
Tµν = w uµ uν − gµνp, with w and p being the enthalpy
and pressure of the matter, respectively. We assume that
there is an expanding bubble of quark matter (subindex
q) with spherical symmetry in a medium of hadronic mat-
ter (subindex h). The interphase wall has constant ve-
locity 0 < vw < 1 in the rest frame of the centre of the
bubble.

The evolution equations of the system can be obtained
starting with the conservation condition ∂µT

µν = 0 with
spherical symmetry. A detailed derivation of the pro-
cedure required to obtain these equations can be found
in [1, 3]. As a result, we get two ODE: the first gives
the fluid velocity v in the rest frame of the centre of
the bubble, which can be integrated independently; the
second one gives the enthalpy w. Using the assump-
tion that the bubble is expanding with constant velo-
city vw, the hydrodynamic profile becomes self-similar.
Both equations can be written with respect to the di-
mensionless parameter ξ = r/t (with r being the radial
coordinate representing the distance from the centre of
the bubble and t, the time elapsed from the nucleation
of the bubble). This implies that the profiles do not
change its shape and each point in a radius r is expan-
ding with the same velocity ξ with respect to the centre
of the bubble. As consequence, the quark phase becomes
bigger as time passes, and eventually could merge with
other bubbles resulting in a entire region of quark phase.
The equations are

dv

dξ
=

2v

ξ(1− ξv)γ2

(
µ2

c2s
− 1

)−1

(4)

dw

dξ
= w

(
1 +

1

c2s

)
γ2µ

dv

dξ
(5)

where γ(v) = 1/
√
1− v2 is the Lorentz factor and

µ(ξ, v) = ξ−v
1−ξv , the Lorentz-tranformed velocity v in the

local rest frame expanding with velocity ξ. We can in-
tegrate these two equations and obtain the fluid profile if
we specify the initial conditions. Figure 1 shows different
solutions for the equation (4) for v < 0. This condition
on v is necessary to obtain solutions that fulfill the de-
sired equations of state. In this picture it has also been
included several relevant conditions for the discussion of
the possible physical solutions.
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Figure 1. Solution curves of the ODE in (4) with several
initial conditions. The red dotted line represents the point
where velocity in the RF of the wall equals the speed of sound
(µ(ξ, v) = cs). The blue dashed line represents the points
where the shock front ends (µ(ξ, v)ξ = c2s). The green dotted-
dashed line represents ξ = cs. Shadowed region is not allowed
as explained in section VA.

Figure 1 gives the key information to determine the
possible kinds of solutions that could exist. There are
two ways to build solutions which fulfill that the veloci-
ties on both sides of the wall go to zero. The first one is
that the velocity profile evolves to zero smoothly. This
is only possible if the solution lies on the top left side
of Figure 1. The second possibility is through a discon-
tinuity in the profile that fulfills the energy conservation
conditions. There are two different kinds of discontinui-
ties, bubble walls, where the phase changes, and shocks,
where the phase is the same in both sides. Bubble wall
velocity depends on microscopic velocities of the matter
in the bubble and cannot be determined without resort-
ing to microscopic calculations. The velocity of the shock
is determined by hydrodynamics. There is no possibility
of connecting smoothly to zero neither when ξ → 0 (in-
terior of the wall) or when ξ → 1 (exterior of the wall),
consequently, discontinuities are necessary to meet the
physical requirements.
In this work, we use two different rest frames (RF). The

first one is the most natural one, the RF of the centre of
the bubble. Velocities in this RF are denoted with no
distinction (v), as done in equations (4) and (5). The
other RF is the local one of a specific velocity ξ, whose
velocities are denoted with a tilde (ṽ). Figure 2 shows
our conventions for positive velocities in both RF. The
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left hand side of each picture represents the quark matter
bubble and the right hand side, the outside with hadronic
matter.

ṽw = 0

ṽ+ṽ−

vw

v− v+

quark hadronic quark hadronic

Figure 2. Notation and positive definitions for velocities in
both RF. The diagram on the left represents the centre of
bubble RF, where the velocity of the wall is defined. The dia-
gram on the right represents the wall RF, where the velocity
of the wall is zero.

We can transform the velocities from one RF into the
other using the function µ(ξ, v). The velocity in the local
RF of some velocity ξ is ṽ = µ(ξ, v). With our choose of
signs it also holds that v = µ(ξ, ṽ).

IV. RELATIONS OF HYDRODYNAMIC
DISCONTINUITIES

Integrating the same conservation equation (∂µT
µν =

0) across the wall, we can get the following equations
that relate the properties of the matter in front (+) and
behind (-) the wall in the RF of the wall:

w+ṽ
2
+γ

2
+ + p+ = w−ṽ

2
−γ

2
− + p− (6)

w+ṽ+γ
2
+ = w−ṽ−γ

2
−. (7)

We can insert the EoS (1) and (2) in the equation (6) to
get another matching condition (MC) that only depends
on w and v at both sides of the wall (equation (7) already
fulfills this). The matter behind the wall belongs to the
quark phase and the matter in front of the wall, to the
hadronic phase. This leaves us with

w+(ṽ
2
+γ

2
+ +

1

4
) + ϵ = w−(ṽ

2
−γ

2
− +

1

4
) (8)

Relations (7) and (8) give us how w and v are related
behind and in front of the wall. We refer to these two
equations as matching conditions (MC). These are very
important because it allows us to build profiles that reach
v = 0 in regions where the evolution of the equation (4)
do not go to zero smoothly. Shocks (discontinuities in

the same phase) follow the same equations but setting
the value of ϵ = 0.
Equations (7) and (8) can be solved for ṽ+ and ṽ− us-

ing α+ = 4ϵ
3w+

as a parameter to see the possible region

where solutions of the matching conditions exist. These
can be seen in Figure 3. The MC of a shock corresponds
to setting the parameter α+ = 0 which gives us the condi-
tion ṽ+ṽ− = c2s. This condition in represented in Figures
1 and 3 with a blue dashed line.
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Figure 3. Matching conditions solutions for ṽ+ and ṽ− using
α+ as a parameter.

It is known from the studies of hydrodynamics that
only regions where both ṽ+ and ṽ− are either supersonic
or subsonic are allowed. This is necessary to ensure that
the entropy inside the bubble is larger than in the outside.
A detailed discussion can be found in [6]. For this reason,
the MC solutions that do not hold these conditions are
shadowed.
In Figure 3, the three coloured lines correspond to the

limits of the regions where the result of solving the MC
gives a physical profile that fulfills the mentioned entropy
conditions. These three lines can be represented in Figure
1 using Lorentz transformation and assuming that one of
the velocities of the discontinuity is zero in the RF of the
centre of the bubble (v− = 0 for deflagration and v+ = 0
for detonations).
The upper left region in Figure 3 corresponds to the

shadowed region in Figure 1. The bottom right region
also corresponds to the region in Figure 1 between the
blue and the green lines. Unlike the former case, this
region is not shadowed in this figure, because it exist as
a hybrid solution, as explained in section VC.
In the following section, the possible profiles are dis-

cussed. To get a solution, we need to specify only two
parameters: vw and ϵ. For each profile, the quantity
r = w−/w+, which measures the energy jump across the
wall, is computed.
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Figure 4. Velocity and enthalpy profiles for the three kind of solutions discussed. Subfigures 4a and 4d correspond to a
deflagration with vw = 0.2. Subfigures 4b and 4e correspond to a hybrid with vw = 0.5. Subfigures 4c and 4f correspond to a
detonation with vw = 0.7.

V. EXPANSION REGIMES

In this section, we discuss the possible expansion re-
gimes depending on the velocity of the bubble wall.

If vw < cs, we need to start with v− = 0 behind the
wall. This implies that, in the RF of the wall, ṽ− = vw.
To have v+ < 0, it is necessary that ṽ+ > ṽ−. This
means that the velocities just behind and in front of the
wall both belong to the lower left region of Figure 3, with
both velocities being subsonic. This kind of solutions are
called deflagrations.

If vw > cs, it is required that we start with v+ = 0 in
front of the wall. So, in the RF of the wall, ṽ+ = vw in
order to have the matter at rest outside of the bubble. To
have negative velocities behind the wall, it is necessary
that ṽ− > ṽ+. This implies that the velocities just behind
and in front of the wall belong to the upper right region of
Figure 3, which means that both velocities are subsonic.
This solutions are called detonations.

It is possible to build an alternative profile that com-
bines both a detonation and a deflagration. This is dis-
cussed in subsection VC.

A. Deflagrations (vw < cs)

This type of profile corresponds to the upper left area
of Figure 1. To build these solutions, we start just behind
the wall (ξ0 = vw), where v− = 0. This means that

ṽ− = vw. Then we can find the values just in front of the
wall solving the MC (setting an arbitrary value for w−)
which results in a value for ṽ+ and w+. Computing the
Lorentz transformed velocity v+, we can evolve using the
equations 4 and 5 until v reaches zero, which is a fixed
point. Performing a shooting method algorithm to find
the value of w− that builds the desired profile is required
to reach the value of w = wN outside the bubble.
It is not possible to have this profile for an arbitrary

vw with an arbitrary large ϵ. If we increase the value
of ϵ for a certain value of vw, the value of ṽ+ (and also
v+) will increase until the value of ṽ+ reaches cs, from
which there are not any physical solutions. This limit is
represented with the dotted red line in Figures 1 and 3,
where the shadowed part shows the inaccessible region.
Figures 4a and 4d show the computed profiles for a

deflagration with vw = 0.2 and ϵ/wN = 0.16. This profile
resulted in α+ = 0.31 and r = 2.34.

B. Detonations (vw > cs)

This kind of solutions are the ones that begin on the
right side of Figure 1. Starting from a point ξ0 > cs, there
is no way to evolve the equation smoothly to v = 0. It
necessarily means that a shock front connects the profile
to zero inside the bubble. The position of this shock is
determined by the point where we can solve the MC with
ϵ = 0 (as there is no phase transition) from the actual v+
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and w+ to v− = 0.
To build the solution, we start with ξ0 = vw, v+ = 0

and w+ = wN . Transforming the velocities to the RF of
the wall and solving the MC, we find v− and w− to evolve
the profile until it reaches the shock, where we know that
the profile can be connected with v = 0, keeping all con-
servation rules. Shock front line is showed in Figure 1
and 3 with a blue dashed line.

Figures 4c and 4f are the result of a detonation with
vw = 0.7 and ϵ/wN = 0.1. It resulted in α+ = 0.14 and
r = 0.25.

C. Hybrids (vw < cs)

There exists another possibility of subsonic (vw < cs)
solution that combines both profiles previously described.
This hybrid profile behaves like the described deflagra-
tions behind the wall and like the detonations in front
of the wall. The profile inside the bubble is in the re-
gion between the green and the blue lines in Figure 1. If
we tried to build a profile using the same procedure as
for detonations, the MC through the wall would give us a
non-physical profile. The reason is that setting v+ = 0 in
a region ξ < cs implies that ṽ+ < cs and the region that
we are looking at has supersonic velocities in the local
RF. The only way of building a profile in this region is
that, in front of the wall the local velocity is ṽ+ = cs,
that is the lower limit for this velocity that respects the
entropy conditions.

To build this solution we start with ξ0 = vw <∼ cs, to
ensure that, behind the wall, the velocity is below (more
negative) the line µ(ξ, v)ξ = c2s. As we discussed, the
only possible value for the velocity in front of the wall in
the local RF is ṽ+ = cs. We can solve the MC and get
the velocity behind the wall, which will be in the region
between the blue and the green line in Figure 1. We
can evolve this condition until it reaches the shock, that
will connect the profile to zero. On the other side of the
wall, we have that ṽ+ = cs, so in the RF of the centre of
the bubble, the velocity will be on the red line in Figure
1. From this point, the profile can be evolved to zero
smoothly, like a typical deflagration.

This kind of profile could not happen in the shadowed
region of the Figure 1 because both sides of the wall
would evolve in the same direction, so it is impossible

to connect to v = 0 behind the wall.
Figures 4b and 4e show the profiles of this kind of

solutions with vw = 0.5 and ϵ/wN = 0.07. The solution
obtained has α+ = 0.095 and r = 0.077.

VI. CONCLUSIONS

This work is the first one that studies the velocity
and enthalpy profile of overheated relativistic bubbles in
an astrophysical context. We have found three different
kinds of solutions depending on the bubble wall velocity
vw and the self-interacting energy ϵ.
It can be seen that, in all the profiles, enthalpy de-

creases at the surroundings of the wall. This, together
with the fact that v < 0, are consequences of the energy
conservation and the equations of state that we have im-
posed, which require that the enthalpy inside the bubble
is greater than outside.
The three regimes found are also present in the stu-

dies of overcooled bubbles but all of them have qualita-
tive differences. The deflagration profiles found in this
work present a rarefaction region in front of the wall
that smoothly connects with the metastable state. In
contrast, for overcooled bubbles, the deflagrations are
preceded by a compression region which ends in a shock
front. Complementary, for overheated bubbles, detona-
tions are followed by a compression region that ends in a
shock, while for overcooled bubbles there is a rarefaction
region that smoothly connects with the interior of the
bubble. Finally, in both situations there are hybrid solu-
tions but, in contrast to overcooled bubbles these appear
for subsonic wave fronts.
As we explained, this model could be representative of

the bubble profiles nucleated in a NS merge.
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Martin Pauly. Phase transitions in the early universe.
SciPost Phys. Lect. Notes, page 24, 2021.

[4] A. Tawfik and T. Harko. Quark-hadron phase transitions
in the viscous early universe. Phys. Rev. D, 85:084032,
Apr 2012.

[5] Jorge Casalderrey-Solana, David Mateos, and Mikel
Sanchez-Garitaonandia. Mega-hertz gravitational
waves from neutron star mergers. arXiv preprint
arXiv:2210.03171, 2022.

[6] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz.
Fluid Mechanics: Landau and Lifshitz: Course of Theor-
etical Physics, Volume 6, volume 6. Elsevier, 2013.

Bachelor’s Thesis 5 Barcelona, January 2023


	Dynamics of overheated relativistic bubbles
	Abstract
	Introduction
	Equations of state and bubble nucleation
	Hydrodynamic equations
	Relations of hydrodynamic discontinuities
	Expansion regimes
	Deflagrations (vw<cs)
	Detonations (vw>cs)
	Hybrids (vw<cs)

	Conclusions
	Acknowledgments
	References


