
Impact of noise and spatial constraints in Kuramoto oscillators

Author: Oriol Paricio Juan and Advisor: Dr Jordi Soriano Fradera
Departament de F́ısica de la Matèria Condensada
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Abstract: The Kuramoto model is one of the simplest models used to study collective synchro-
nization. We consider the stochastic Kuramoto model with two sources of noise, quenching and
asymmetrical inducing, in both a spatial independent (Erdős–Rényi) and a spatial dependent (ran-
dom geometric graph) networks. We study how them affect to the order parameter and the critical
coupling in the steady state. We observed that quenched noise mainly lowers the order parameter
after synchronization, while the asymmetrical inducing noise causes an increase of critical coupling
for synchronization to be achieved. Finally, we observed that both noise sources overall decreases
synchronization capacity when a spatial dependence is introduced in the network.

I. INTRODUCTION

The whole is greater than the sum of its parts. This
quote, attributed to Aristotle could be the simplest defi-
nition of both complexity and emergent phenomena. The
concept of an emergent property is understood as a prop-
erty that appears in macroscopic scales but not in mi-
croscopic ones, even though the macroscopic scale can
be understood as the sum of plenty of microscopic sys-
tems [1].

One of most intriguing emergent properties is collective
synchronization, understood as the spontaneous locking
of a group of oscillators to one another in ensembles of
them [2], a phenomenon that appears everywhere in na-
ture, from the clapping in concerts [3] to flashing fire-
flies [4]. In our case, we are interested in the phenomenon
from the point of view of neuronal population dynamics.

In 1967 the theoretical biologist A. Winfree published
the first model to study collective synchronization [5].
This rather complex model was later simplified in 1975
by Y. Kuramoto, creating a model that can still be
used to study several properties of this phenomenon, es-
pecially for systems where spontaneous synchronization
happens [6].

The Kuramoto model is simple enough to be studied
mathematically and simulated with most programming
languages and, thus, is usually the model used as an ex-
ample to explain this synchronization. Due to this fact
this model is often described as paradigmatic [7].

When applying synchronization models to real world
systems, the ideal Kuramoto model stops working due
to fluctuations. Furthermore, these fluctuations are
stochastic and do not add useful information to the prob-
lem under study. This character is commonly known as
noise [8]. Noise has been regarded for decades as an ‘an-
noying problem’ when modeling systems, but it is a very
important property in neuronal systems. It affects both
the synaptic connections and the dynamics of the ion
channels in the membrane [9] and therefore it is impor-
tant for the dynamics of all neuronal networks.

Even though there exist plenty of types of noise and
sources, the interaction between different noise contribu-
tions in a system has been barely studied. For instance,

Sarkar et al. recently studied the interaction between
quenched and annealed noises in Ref. [10]. Given the in-
terest of the problem, and following some of the ideas in-
troduced by Sarkar, here we explored the impact of two
noise terms in the Kuramoto model, particularly when
one of the noise terms increased asymmetries in the Ku-
ramoto model.

II. METHODS

A. The Kuramoto model

The code used is a modification of the package
Kuramoto obtained from Ref. [11], with the modifica-
tion consisting in adding stochastic terns. Everything
has been programmed in Python 3.9.

The simplest Kuramoto model consists of N coupled
oscillators θ(t) with a natural frequency of ω. The evo-
lution of the oscillators is governed by N first order dif-
ferential equations:

dθi
dt

= ωi +

N∑
j=1

Ki,j

N
sin(θi − θj), (1)

where K is the coupling strength between two oscilla-
tors [6]. In our case we will study the model with a
constant value of K. However, we will not consider that
every oscillator is coupled with each other. As such, the
equation can be rewritten as:

dθi
dt

= ωi +
K

Mi

N∑
j=1

Ai,jsin(θi − θj), (2)

where Ai,j is 1 if i is coupled with j and 0 otherwise, and
Mi is the number of oscillator coupled with the oscilla-
tor i. The initial phases for every oscillator take random
values from a uniform distribution: θ0,i ∈ [0, 2π]. The
natural frequencies have been chosen from a normal dis-
tribution ωi ∼ N (0, 1).

Two sources of random noise are added to the phase
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evolution equation:

dθi
dt

= ωi +
K

Mi

N∑
j=1

Ai,jsin(θi − θj + ξi,j) + ηi,j , (3)

where ηi,j is a quenched noise and ξi,j is an asymmetrical
inducing noise.
The quenched noise η obeys:

⟨ηi,j⟩ = 0,

⟨ηi1,j1 ηi2,j2⟩ = σ2
η δi1,i2 δj1,j2,

ηi,j = ηj,i. (4)

And asymmetrical inducing noise ξ obeys:

⟨ξi,j⟩ = 0,

⟨ξi1,j1 ξi2,j2⟩ = σ2
ξ δi1,i2 δj1,j2,

ξi,j = ξj,i. (5)

Note that σ2
η and σ2

ξ are particularly important since
they represent the strength of the noise.

In our study we do not consider the temporal evolution
of the system. Instead, we will only study its steady
state properties. Thus, to understand the effects of the
two sources of noise on synchronization, there are two
macroscopic descriptors that must be defined: r and Kc.

The quantity r is the module of the order parameter
used to study the Kuramoto model, which is in general
a complex variable described as:

z = r eiψ = N−1
N∑
i=1

eiθ, (6)

where ψ is the average phase of the angles. Thus, r is
only the module and intuitively represents how similar
are the phases. Indeed, r = 1 when all the oscillators are
synchronized and 0 when none of them are [6].

The quantity Kc is related with the critical coupling,
and represents the bifurcation point between a disordered
and an ordered system. Even though there are plenty of
analytical equations to estimate Kc [6, 12] none of them
work well in a noisy formulation of the model. Thus,
we chose the turning point on the growth of the order
parameter in the steady state (see later in Fig. 1). Even
though this is not a formal definition, it can be used to
study the evolution of this parameter.

B. Networks generation

It is convenient to view the coupled oscillators as in
a network, where nodes are each oscillator and links
(or edges) are the coupling strength between oscillators.
To investigate the impact of network structure, we have
studied the Kuramoto model in two different network
constructions. One of them without spatial constraints,
i.e. purely topological, and one spatial–dependent. The

latter is useful since better represents neuronal systems,
which are embedded in a physical space.

For the purely topological network we considered the
Erdős–Rényi (random graph) model, in which the prob-
ability of an edge being present is independent of the
existence of the other ones. We have arbitrarily chosen a
probability for the existence of a link between two nodes
of p = 1

2 .
On the other hand, for the spatial model, we consid-

ered a random geometric graph, which is suited to include
strong spatial constraints. As such, we have placed the
oscillators in a dimensionless 1× 1 space. There is also a
probability of being a link between two nodes of p = 1

2 .
However, the connection exists only if the distance be-
tween two nodes is d ≤ 0.3. This distance has been cho-
sen to be optimal for sake of the interest of the results
after several explorations.
Note that for d >

√
2, both models would have been

equivalent (d larger than spatial size). The code for the
networks has been programmed with the help of the pack-
age NetworkX 2.8.8.

III. RESULTS

All the simulations have been made with 100 Ku-
ramoto oscillators. For every value we have made a sweep
of the coupling K ∈ [0, 10] rad s−1, in times in the range
t ∈ [0, 100] s with steps of 0.1 s. We have chosen this
values due to limitations in computer processing power.

A. Erdős–Rényi network and noise

Firstly, we have made a few simulations in the
Erdős–Rényi (ER) random graph model combining dif-
ferent noise strengths ση and σξ.

FIG. 1: Order parameter as a function of the coupling for
3 sets of noise strengths ση and σξ, in a ER network. The
critical coupling for each set is marked with vertical lines.

In Figure 1 we have plotted the average order param-
eter of the last 100 steps as a function of the coupling.
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The position of the critical couplings has been chosen
in the turning point, the position where the numerical
derivative is 0. We observe that with a relatively small
change in σξ the critical coupling increases significantly.
However, the decrease of the order parameter after the
synchronization is only observable if we increase ση. It is
also perceptible that the region where the synchroniza-
tion is increasing is less stable to when we increase the
value of ση so, in order to compute the value of Kc, we
have carried out population averages.

To observe the interaction between the two sources of
noise, we repeated simulations for different values of ση
and σξ and calculated r. The values for σξ have a top
value of 1 rad and the ones for ση a top value at 4 (see
Table I). We note that an increase in σξ substantially
grows computation time, which is not so harsh for ση.
For this reason, we have just taken a total of 25 values,
and the intermediate ones were interpolated. This also
helped to reduce computation power.

The same methodology was applied to explore the val-
ues of the critical coupling as a function of the noise
terms (see Table II). In order to work with the explo-
ration in this table, we had to work with the inverse of
the critical coupling, K−1

c , since it is possible for the sys-
tem to never reach synchronization, which would provide
Kc → ∞ that can not be plotted. Additionally, although
we do not have values of Kc for stronger noises, we know
that they are typically bigger than 10, as indicated in the
table.

In Figure 2 we show the results. We Note that in every
phase diagram we have plotted 4σξ and not σξ due to
limitations in the matplotlib package. In Figure 2(a) we
observe that the value of the order parameter decreases
while we increase any source of noise as far as ση is not

TABLE I: Values of the order parameter as a function of noise
for the ER network averaged for 10 simulations.

r ± 0.01
ση

0 1 2 3 4

σξ (rad)

0 1.00 0.97 0.88 0.61(*) 0.20

0.25 1.00 0.97 0.85 0.53(*) 0.18

0.5 1.00 0.95 0.81 0.22 0.17

0.75 1.00 0.92 0.75 0.20 0.15

1 1.00 0.86 0.20 0.15 0.12

TABLE II: Values of the critical coupling as a function of
noise for the ER network averaged for 10 simulations.

Kc ± 0.1(rad s−1)
ση

0 1 2 3 4

σξ(rad)

0 2.0 2.5 3.0 4.2 >10

0.25 2.3 3.4 4.6 6.2 >10

0.5 2.5 3.7 6.6 >10 >10

0.75 3.0 4.0 9.3 >10 >10

1 3.5 5.8 >10 >10 >10

FIG. 2: Phase diagrams exploring the dependence of r or Kc

as a function of the noise, and for the ER model. (a) For r.
(b) For the inverse of Kc. The interpolation between values
is Gaussian.

zero. Moreover, up until the red frontier, we observe
that r barely decreases when we increase σξ. However,
this could happen due to the smaller scale of σξ. We see
that the value is relatively close to 1 up until it harshly
falls after reaching the red frontier. The values in the
purple area have a lot of variability. As such the two
values noted with (*) in Table I range from r ∼ 0.2 to
r ∼ 0.8.
In Figure 2(b) we observe that the value of the crit-

ical coupling increases (i.e., lower K−1
c ) as we increase

any source of noise. We can see that the critical cou-
pling increases much faster while we increase σξ. We
note, again, the small range of this variable. Simulations
made for values around the limit between the purple and
the black areas show a bistability region around the crit-
ical coupling, quickly oscillating between complete and
partial synchronization.

B. The random geometric graph model

Before fully introducing the impact of spatial embed-
ding and noise terms, we found convenient to run a sim-
ple simulation comparing the ER and random geometric
models without noise.
An example of a constructed random geometric graph

is shown in Figure 3, which has a probability of having
an edge between two nodes of p = 1

2 , and only when the
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distance between two nodes is d ≤ 0.3. We have chosen
this distance arbitrarily. Note that if d ≥

√
2 we would

get the same results that in the Erdős–Rényi model.

In Figure 5 we compare the two models, where we plot-
ted the average order parameter of the last 100 steps as
a function of the coupling. The position of the critical
couplings has again been chosen in the turning point, the
position where the numerical derivative is 0. From the
plot it is clear that it is easier for the ER system to syn-
chronize as compared to the random geometric, indicat-
ing that spatial constraints do affect network dynamics.

We next concentrated in the exploration of r and Kc

for the geometric graph as a function of the noise. We
also took 25 values and interpolated the intermediate
ones.

For r, we consider now Table III. It shows that the
order parameter decreases even with ση = 0. All the
values (as compared to Table I) are also smaller. The
value in ση = 4, σξ = 0.75 rad is smaller than the one on

FIG. 3: Random geometric graph used for the simulations.

FIG. 4: Order parameter as a function of the coupling without
noise in a Erdős–Rényi and in a Random geometric graph
networks. The critical coupling for each data set is denoted
by the vertical lines.

TABLE III: Values for the order parameter for the Random
geometric graph network averaged for 10 simulations.

r ± 0.03
ση

0 1 2 3 4

σξ (rad)

0 1.00 0.97 0.11 0.09 0.08

0.25 0.97 0.35 0.10 0.08 0.08

0.5 0.94 0.20 0.09 0.07 0.06

0.75 0.91 0.16 0.09 0.07 0.07

1 0.81 0.11 0.07 0.06 0.05

ση = 4, σξ = 0.5 rad. However, this is due the stochastic
nature of the measures and both values mean complete
disorder. No values in Table III have as much variability
as the ones in the ER model, which were marked with
(*).

TABLE IV: Values for the critical coupling for the random
geometric graph network averaged for 10 simulations.

Kc ± 0.1(rad s−1)
ση

0 1 2 3 4

σξ (rad)

0 2.6 5.8 >10 >10 >10

0.25 3.3 >10 >10 >10 >10

0.5 4.2 >10 >10 >10 >10

0.75 6.7 >10 >10 >10 >10

1 9.9 >10 >10 >10 >10

For the critical coupling, we can see in Table IV that,
when spatial constraints are included, it is much more
difficult for the system to synchronize. There are much
more values for both σ that do not synchronize in our
range of couplings. Again, for plotting those values we
considered Kc → ∞.
Overall, the qualitative behavior of r is shown in

Fig. 5(a) is very similar to the one shown in Fig. 2(a),
with a relatively stable order parameter near to 1 until
it reaches the red boundary, followed by a harsh and fast
decrease. However, as a major difference, the diagrams
are shifted leftwards and downwards. This means that
with weaker noise the synchronization stops being stable
and the system does not reach synchronicity.
In Fig. 5(b) we observe that the value of the critical

coupling Kc increases while we increase any source of
noise, much more harshly here than before, though. The
graph has a similar shape that in Fig. 2(b) but shrunk
down. We Note that the plot shows the inverse of the
critical coupling. Thus, this shrinking is translated into
a really high growth of the critical coupling.

IV. DISCUSSION

One of the main limitations of this work is that every
measure has been studied in its steady state. For further
studies it would be interesting to study the dynamics of
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FIG. 5: Phase diagrams for the random geometric graph net-
work. (a) Order parameter. (b) Inverse of critical coupling
The interpolation is Gaussian.

the system along time and taking into account differences
between network repetitions.

We note that the asymmetrical inducing noise ξ com-
plicates synchronization. This can be observed analyti-
cally by analyzing Eq. (3), which can be written using
trigonometric identities as:

dθi
dt

= ωi +
K

Mi

N∑
j=1

Ai,j(sin(θi − θj)cos(ξi,j)+

+cos(θi − θj)sin(ξi,j)) + ηi,j ,

(7)

where the cosine term in a Kuramoto model is repul-
sive [13] and tries to desynchronize the system against
the sine term.

The use of the random geometric graph is also inter-
esting since it provides a step towards modeling living
neuronal networks. In particular, this living networks
often have nodes that aggregate (nodes closer to one an-
other) as we can see in Figure 3 for x ≃ 0.6 and y ≃ 0.5.
If aggregation is strong, synchronization would be highly
local and the whole system could never synchronize.

V. CONCLUSIONS

We investigated synchronization in Kuramoto models
and compared the behavior of an ER graph with one that
included spatial constraints. In both cases, the system
incorporated noise terms, and we explored their interplay.

We concluded that, firstly, the two noise terms in-
cluded, quenched (η) and the asymmetrical inducing (ξ),
acted differently. While η mainly reduced the order pa-
rameter in the steady state, ξ increased the critical cou-
pling. Secondly, that the role of noises was essentially a
faster decrease of both the order parameter and the criti-
cal coupling. And, thirdly, that that when networks with
spatial constraints were considered, the effect of both
noises was strengthened, meaning that spatial constraints
made the system much more difficult to synchronize.
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