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A growing number of artificial intelligence (AI)-based systems are being

proposed and developed in cardiology, driven by the increasing need to deal

with the vast amount of clinical and imaging data with the ultimate aim of

advancing patient care, diagnosis and prognostication. However, there is a

critical gap between the development and clinical deployment of AI tools. A

key consideration for implementing AI tools into real-life clinical practice is

their “trustworthiness” by end-users. Namely, we must ensure that AI systems

can be trusted and adopted by all parties involved, including clinicians and

patients. Here we provide a summary of the concepts involved in developing

a “trustworthy AI system.” We describe the main risks of AI applications and

potential mitigation techniques for the wider application of these promising

techniques in the context of cardiovascular imaging. Finally, we show why

trustworthy AI concepts are important governing forces of AI development.
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Introduction

In recent years, several artificial intelligence (AI) based systems have been developed

in cardiology. This trend is driven by the increasing need to deal with the vast amount

of clinical and imaging data produced in the field and with the ultimate aim to

advance patient care, diagnosis and prognostication (1, 2). It is not a question anymore
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whether AI will transform healthcare but rather how it will

do so (3). Transformative measures have already impacted

many areas of cardiovascular medicine, from smart devices

promising to diagnose arrhythmias based on single-lead ECG

(4) to automatic image segmentation tools shortening manual

image analysis (5, 6). However, there is a critical gap between

the development and deployment of AI tools. To date only

24 AI-driven cardiovascular imaging products have received

FDA approval (7), suggesting there remain critical challenges in

building and implementing these models into everyday practice.

It is easy to scare away busy clinicians with endless legal

documentation and specialized terms from philosophy, law and

data science. On the other hand, expecting the data science

community to be up to date with their field, understand complex

medical concepts and consider the ethical ramifications of AI is

the recipe for serious unintended consequences (8). Indeed, the

discussion around the ethical issues of AI should be inclusive of

all participants, from funding agencies to the patients.

The promise of AI revolutionizing cardiovascular imaging

could not be delivered without achieving the trust of the

end-users and patients. Currently, there are several ethical

frameworks for AI applications. One of the most universal

guideline was proposed by the European Commission in 2019

(9). This document provides a detailed technical summary and

general guidance for dealing with the ethical questions of AI.

However, it was written by senior data scientists, consequently

does not focus on issues of healthcare applications (10).

Indeed, to date, little is accessible to healthcare professionals

without an in-depth understanding of the technical terms of

the ethical questions embedded in AI applications. Notably,

the document written by the European and North American

Societies in Radiology detailing potential AI ethics issues can

work as a primer for other societies in medicine (11). More

recently, the first comprehensive guideline for assessing the

trustworthiness of AI-based systems in medical imaging was

developed, named FUTURE-AI (12). This technical framework

promises to transform AI development in medical imaging and

will help create an environment for safe clinical implementation

of novel methods (https://future-ai.eu/).

In this narrative review, we aim to summarize the main risks

of AI application and potential mitigation techniques in plain

language. We provide an overview of ongoing efforts to improve

the “trustworthiness” of AI in cardiovascular imaging. Finally,

we aim to provide key questions to help initiate dialogue within

research groups.

The basic concepts of AI

Several dedicated publications describe AI’s definitions and

main applications within cardiology in great detail (13–16). Here

we restrict ourselves to those basic concepts essential for further

discussion of AI trustworthiness.

AI is an umbrella term within data science, incorporating a

wealth of models, use cases and aiding methodologies to mimic

human thought processes and learning patterns (8). Within

AI, the most commonly used models are machine learning

(ML)-based in medical research; therefore, several important

source documents handle AI and ML almost synonymously (1).

An overly simplified definition of ML is computer algorithms

that “learn” from data. ML methods use pre-processed (e.g.,

anthropometric data derived from patients) and raw data (e.g.,

raw imaging files).Deep learning (DL) is a subset ofML that deals

with algorithms inspired by the structure and function of the

human brain. DL algorithms use neural networks to transform

the raw data into an abstract level, refine accuracy and adjust

when encountering new data (17).

We can differentiate between supervised and unsupervised

learning based on the type of data fed into an AI algorithm.

In supervised learning, humans curate and label data before

training, and the model is optimized for accuracy with

known inputs and outputs. The following models are used

for: classification (putting data into categories) and regression

(predicting continuous variables within the concept of ML).

On the other hand, unsupervised learning deals mainly with

unlabelled data, with the ultimate goal of identifying novel

patterns in a dataset such as clustering (14).

A critically important step in ML model development is a

large and consistently labeled data set—the diverse quality of

data and the inconsistent labeling could reduce the accuracy of

AI model. Another important step is data splitting: datasets are

generally split into training, validation and test sets. Training

and validation sets used to train and fit the model, more

specifically the validation provides an estimation of the model

fit for model selection or tuning of parameters, whilst the

test set is reserved to evaluate the final model (18). Given

the degradation in performance reported for deep-learning

algorithms for medical imaging, it is of paramount importance

that the test set consists of independent cohorts to allow

for external validation, a key requirement for ensuring the

trustworthiness of AI systems (19, 20). Moreover, the external

validation should be performed by independent parties to ensure

objectiveness. Please note, that validation in the original dataset

is not synonymous with external validation, which is performed

on a separate dataset.

The concept of trust and
trustworthiness of AI in medicine

It is easy to get lost in a philosophical discussion about

how to define trust or if it is even possible outside the

human realm (21, 22). From a practical standpoint, these

questions are confusing rather than helpful. For decades AI

was part of the scientific discussion, existing in research

environments, and science fictions. Therefore, the question
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of whether to trust AI tools in healthcare was merely

a discussion for scholars in the ethical and data science

fields. However, with novel tools emerging daily, we are

forced to reconsider the potential ramifications embedded

in AI.

The questions we face today are highly practical and

directly affect the field’s development. Can we trust the

CMR segmentation provided by the AI tool? Are we

confident that the new artifact-removing algorithm does

not mask any important clinical clue? Should we rely

on the novel diagnosis support toolkit? What does it

mean to trust the judgement of an automatic tool? How

do we communicate the uncertainties embedded in a

novel predictions score? Are we holding AI to a higher

standard than clinical judgement based on intuition

and experience?

As an example, left ventricular ejection fraction (LVEF)

measured using echocardiography is a long-standing “trusted”

parameter in cardiovascular medicine. Because with years

of development, validation, and experience, we learned to

comprehend the signals that link it to disease and outcome,

and communicate the findings to the patients so that they trust

their practitioners to understand echocardiography (23, 24).

Although the information it provides is far from complete

and prone to errors, the usefulness of knowing the EF of

a patient in a clinical situation is beyond question; even

when clinicans use eyeballing (25). On the other hand an

AI application based on the idea that the human eye and

brain can learn with experience how to estimate EF without

measuring ventricular volumes and making calculations is more

controversial, as this approach does not allow the revision

of the ventricular contours in case of seemingly disparate

results (26).

Wynants et al. reviewed multivariable COVID-19-related

prediction models at the beginning of the pandemic. They found

that the 232 models identified in the study all reported moderate

to excellent predictive performance, but all were appraised to

have a high or uncertain risk of bias owing to a combination of

poor reporting and poor methodological conduct for participant

selection, predictor description, and statistical methods used

(27). The most sobering conclusion was that none of the

proposed models proved to be of much help in clinical practice.

The same conclusion was drawn from the investigation by the

Alan Turing Institute (28) and others (29).

Main AI applications within
cardiovascular imaging

Within cardiovascular imaging, the main areas of AI

application are: (1) image acquisition and reconstruction—

which helps to reduce the scan time, (2) improving the

imaging workflow and efficiency of time-expensive tasks such as

segmentation, (3) improving the diagnosis-making process, (4)

evaluation of disease progression and prognosis, (5) assessment

of treatment effectiveness, and (6) generation of new knowledge.

Examples illustrating key areas of AI applications from non-

invasive cardiovascular imaging is summarized in Table 1,

further examples in can be found in dedicated publications

(15, 16, 18, 49, 50).

There has been a steep increase in publications using ML in

cardiovascular imaging in the past 5 years. This trend was driven

by the increasing availability of high computational power,

large datasets (16), and the discovery of the computational

effectiveness of convolutional neural network architecture

(AlexNet) (51).

It has been envisioned that AI tools will take over or at least

substitute the work of radiologists and cardiovascular imagers

to a great extent and consequently necessitate fewer human

resources creating cheaper and more accurate care in the future

(52). Roughly a decade into the area of accessible AI innovation,

we can see that changes are less rapid, and the results are beneath

our expectations (53). No segmentation is used unchecked, no

diagnosis is made without human supervision and approval, and

the need for well-trained imagers has increased (54). Notably,

only a small proportion of the proposed methods, models and

tools gain approval from the appropriate authorities (FDA or

European Medicines Agency), and reach the clinical application

stage. Should we then just conclude that AI is pointless and we

must not use it? On the contrary, these experiences and setbacks

should motivate the research into more robust AI models and

rigorous validation standards. Only by learning from the critical

issues raised by researchers and end-users can we move forward

in the field of AI.

Unintended consequences of AI
applications in cardiovascular
imaging and mitigation strategies

To understand why AI applications are not approved

and used to the rate it was predicted during the height of

the ML hype in 2016, we have to look into the potential

limitations of these tools. Here we provide an introduction

to the main risks of AI applications within cardiovascular

imaging: (1) lack of robustness and reliability causing patient

harm, (2) issues of AI usability and the misuse of tools, (3)

bias and lack of fairness within the AI application which can

perpetuate existing inequities, (4) privacy and security issues,

(5) lack of transparency, (6) gaps in explainability, (7) gaps in

accountability, and (8) obstacles in implementation (Table 2).

In each section, we describe the main attributes of each risk,

provide relevant examples within cardiovascular imaging and

illustrate potential mitigation strategies.
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TABLE 1 Examples of AI applications from non-invasive cardiovascular imaging.

AI application Purpose Modality References

Image acquisition and

reconstruction

Improving image

quality, decreasing

image artifacts

CCTA Wolterink et al. (30)

CMR Oksuz et al. (31)

Lowering radiation dose CT Benz et al. (32)

Increasing imaging

speed

CMR Caballero et al. (33)

Improving non-expert

usage (e.g., view

classification,

automated planning)

Echocardiography Zhang et al. (34)

CMR Edalati et al. (35)

Improving the imaging

workflow and

efficiency of

time-expensive tasks

Automatization of

previously manual tasks

for increased speed,

effectiveness, and

potentially improved

standardization (e.g.,

image segmentation)

Echocardiography Leclerc et al. (36)

CCTA Huang et al. (37)

CMR Bai et al. (5)

Diagnosis making Supporting early

diagnosis and timely

treatement initiation or

prevention

Echocardiography Sengupta et al. (38)

CCTA de Vos et al. (39)

CMR Zhang et al. (40)

Disease

prognostication

Improving the

discrimination of high

risk imaging features

Echocardiography Samad et al. (41)

CCTA Patel et al. (42)

CMR Cheng et al. (43)

Assessment of

treatment effectiveness

Monitoring response to

medication, device

therapy etc.

Echocardiography Tokodi et al. (44)

CCTA Queirós et al. (45)

Generation of new

knowledge

Discovering new

patterns, cardiovascular

phenotypes or disease

presentations (key role

for unsupervised

learning methods)

Echocardiography Casaclang-Verzosa et al.

(46)
CCTA Hoshino et al. (47)

CMR Zheng et al. (48)

CCTA, coronary computed tomography angiography; CMR, cardiovascular magnetic resonance.

Robustness and reliability

AI robustness is defined as the ability of a system

to maintain its performance under changing conditions

(56). The promise of a robust AI tool is that it can

consistently deliver accurate outputs, even when it

encounters unexpected or subquality data. When a model’s

functionality and accuracy change easily, it is considered

“brittle” (8).

Medical imaging encapsulates a wealth of potential sources

for AI brittleness (12):

(1) Heterogeneity within imaging types of equipment

and vendors.

(2) Image acquisition heterogeneity within imaging centers

and operators.

(3) Patient-related heterogeneity (including clinical status

and anthropometric peculiarities).

(4) Data labeling and segmentation heterogeneity

between annotators.

As mentioned above, ML algorithms play an increasingly

important role in the image acquisition of all cardiovascular
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TABLE 2 Questions to promote discussion of AI trustworthiness

between clinicians and technical experts.

Robustness and reliability

• Did you perform any pre-processing that can potentially affect the

reliability of your models?

• Did you use homogenous/ single center data OR

heterogenous/multicenter data?

Are there any checkpoints for quality control in your pipeline?

Usability

• Do you have an understanding of the end-users needs in terms of the

tool’s interface?

• Does the implementation of your tool viable within the

clinical workflow?

Bias and fairness

• What fairness means for your application?

• Are there any potential hidden sources of bias?

• Does the algorithm exhibit discrimination toward any group? Is it

harmful or beneficial for the use case?

• Did you document and report these potential biases?

Security and safety

• Did you document potential risks of your AI tool? How do you

communicate these?

• Does the implementation of your AI can potentially harm patients,

worsen outcome or create security breach? If not, how do you know?

Transparency

• Did you document the characteristics of your dataset?

• Did you follow any relevant reporting guideline or checklist?

Explainability

• Do you know what level of explainability your end-users require?

• Can you explain, how your model reaches a certain decision?

• Did you explore complementary explainability methods?

Accountability

• What are the relevant regulations in terms of liability in your use

case?

• Who is responsible for errors occurring during the clinical

application of the AI tool?

• Who is monitoring the application and how frequently?

Summary of potential questions to support the discussion of AI trustworthiness between

clinicians and technical experts adapted from Ammanath (8) and Lekadir et al. (55).

imaging modalities. However, these applications are not without

certain limitations. For example, Antun et al. (57) highlighted

possible sources of instability of deep learning algorithms at

CMR reconstructions. The instabilities usually occur in several

forms e.g., undetectable perturbations may result in artifacts in

the reconstruction, or a small structure like tumors may not be

captured in the reconstruction phase.

The potential brittleness of AI tools is also very well-

illustrated by the recent developments in CMR image

segmentation (58). Critically, DL-based segmentation tools

are often trained and tested on images from single clinical

centers, using one vendor with a well-defined protocol

resulting in homogenous datasets (59, 60). Furthermore, CMR

protocols across prominent multi-center cohort studies are

also standardized, prohibiting wider generalizability (5, 61, 62).

A notable effort to develop segmentation tools on more

heterogeneous datasets to promote robust AI tool development

is the Multi-Center, Multi-Vendor and Multi-Disease Cardiac

Segmentation (M&Ms) Challenge (63). Investigators of the

euCanSHare international project established an open-access

CMR dataset (six centers, four vendors, and more than nine

phenotype groups) to enable generalizable DL models in cardiac

image segmentation. The Society of Cardiovascular Magnetic

resonance Imaging (SCMR) registry (64) and Cardiac Atlas

project (65) are also aimed at providing diverse databases for

similar research ambitions. These efforts are still ongoing, and

Campello et al. (63) noted that further research is necessary to

improve generalizability toward different scanners or protocols.

Automated coronary computed tomography angiography

(CCTA) segmentation faced similar challenges in the

past decade. Although the accuracy of the CCTA plaque

segmentation tools has been validated against the gold standard

invasive methods, the interplatform reproducibility remains

disputed (66, 67). Indeed, the time-consuming and labor-

intensive nature of quantitative plaque assessment is still

responsible for the frequent visual evaluation of coronary

artery disease in clinical practice, despite some emerging

solutions (68).

Apart from well-curated diverse datasets for benchmarking

of segmentation algorithms and the development of novel

segmentation tools, the reliability of the output is also a

critical to the clinical implementation of these tools. Recently,

automated quality control tools have been suggested in

high-volume datasets where manual expert inspection is not

achievable. Automated quality control tools utilizing different

methods, such as Dice similarity coefficient, reverse classification

accuracy (RCA) framework, and quality control-driven (QCD)

framework, have been implemented within ventricular (69),

T1 mapping (70), aortic (71), coronary, and pericardial fat

segmentation (72).

AI robustness largely relies on the adaptability of a given

model to changing circumstances. A segmentation tool might

perform well in a given dataset of healthy hearts, but it might

not directly translate into a heterogeneous dataset. The following

concepts help promote robustness and reliability in medical

imaging applications of AI:

(1) Heterogeneous training data (multi-center, multi-vendor,

multiple diseases).

(2) Checking intra- and interobserver variability and

whether automated AI tool difference lies within the

observer variability.

(3) Applying well-established annotation with powerful

annotation software.

(4) Image quality control (to identify artifacts within the data,

applying algorithms which help to reduce artifacts).
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(5) Applying image harmonization techniques (including the

use of phantoms and dedicated harmonization tools such

as histogram normalization).

(6) Applying feature harmonization techniques (using test-

retest studies and feature selection methods to select stable,

robust features for the models).

(7) Data augmentation.

(8) Uncertainty estimation [there is a variety of uncertainty

quantification methods, including prediction intervals,

Monte Carlo dropout, and ensembling; they are designed to

pick up the distance of the new observation to observations

the algorithm has already seen Kompa et al. (73)].

Potential issues that can arise during the assessment

of robustness and clinical usability is well-illustrated by

the adaptation of radiomics in cardiovascular imaging (74).

Radiomics enable the extraction of voxel-level information

from digital images, promising the quantitative description of

tissue shape and texture. The utility of CT radiomics has been

demonstrated in identifying vulnerable coronary atherosclerotic

plaques (75–77) and linking pericoronary adipose tissue patterns

to local inflammation (78, 79). CMR radiomics has also been

shown to improve the discrimination of cardiomyopathies (80–

82) and improve risk prediction among ST-elevation myocardial

infarction patients (83, 84). Despite these advances, the clinical

implementation of radiomics is in its infancy. The general

critique of the technique lies in the poor repeatability of

radiomics features. To improve radiomics usability in CMR,

Raisi-Estabragh et al. (85) conducted a multi-center and multi-

vendor test-retest study to evaluate the repeatability and

reproducibility of CMR radiomics features using cine imaging.

The authors reported variable levels of repeatability of the

features, which are likely to be clinically relevant. To reduce

the radiomics variability introduced by the acquisition center

Campello et al. (86) evaluated several image- and feature-

based normalization techniques. The authors demonstrated

that ComBat, a feature-based harmonization technique, can

remove center information, but this does not translate to

better algorithmic generalization for classification. The best

performing approach in this respect was piecewise linear

histogram matching normalization.

Usability

Usability is defined as the extent to which an AI application

can be utilized to achieve specific goals by specified users with

effectiveness, efficiency and satisfaction (87). As the interaction

between healthcare professionals and technology is increasingly

important, more and more research effort is aimed at testing

clinical usability. However, AI tools are barely tested regarding

how they interact with clinicians, and most applications are still

in “proof-of-concept” status (88). Key issues of usability include

lack of a human-centered approach for the development of the

AI technologies, e.g., lack of involvement of the end-user for the

definition of the clinical requirements and of multi-stakeholder

engagement throughout the production lifecycle.

Bias and fairness

In AI, defining bias and fairness is challenging due to

the ever-changing applications we put AI to ISO/IEC TR

24027:2021 (89). Within the healthcare domain, fairness means

that AI algorithms should be impartial and maintain the same

performance when applied to similarly situated individuals

(individual fairness) or different groups of individuals, including

under-represented groups (group fairness) (12).

Until now, little data is available regarding the bias and

fairness of algorithms in cardiovascular imaging, even though

the phenomenon is well-known. As Rajkomar et al. summarized:

any type of bias depicted within the dataset is learned and

adapted into model performance (90). Overrepresentation of a

certain group leads to data collection bias (18), as exemplified by

Larrazabal et al. (91). They demonstrated in a large-scale analysis

of chest X-ray images that gender imbalance in the training

dataset led to incorrect classification of important conditions

such as atelectasis, cardiomegaly or effusion. Puyol-Antón et al.

performed the first analysis of DL fairness in cardiovascular

segmentation using the UKB dataset (92). They found that the

segmentation algorithm trained on a dataset balanced regarding

participant sex but imbalanced concerning ethnicity resulted

in less reliable outcomes for minority groups. It is easy to

see how data biases might lead to a less inclusive distribution

of resources. Lack of fairness might not only lead to loss

of opportunities and worse health outcomes among minority

groups but may also reduce public trust in AI applications.

Lekadir et al. identified the main guiding principles for

fairness in medical imaging AI (12). Actions to promote AI

fairness are not one step but should be implemented throughout

the AI lifecycle. Here we summarize the main recommendations

from a clinical perspective:

(1) Multi-disciplinarity, which stands for the inclusion

of all important stakeholders (AI developers, imaging

specialists, patients, and social scientists) in the AI design

and implementation.

(2) Context-specific definition of fairness with regards to

potential hidden biases in the dataset and data annotators.

(3) Standardization of key variables (e.g., sex, and ethnicity

should be collected in a standardized way, because these

descriptors of the groups can help test, and verify

AI fairness).

(4) The data should be probed for (im)balances, particularly

participant age, sex, ethnicity, and social background.
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Once we know the potential biases, we have several options

to deal with them. There are tools to promote AI fairness on a

data collection and curation level, as well as in themodel training

and testing process.

(1) Data collection process in itself should be transparent

and well-documented.

(2) Collecting multi-center data.

(3) Application of specialized statistical methods to

evaluate fairness (e.g., true positive rate disparity,

statistical parity group fairness, equalized odds,

predictive/equality) (93, 94).

(4) Application of specialized statistical methods to mitigate

bias (e.g., re-sampling, data augmentation, development of

stratified models by sex, or ethnicity).

Exploratory data analysis is also a great tool to probe

the dataset for hidden biases (8) and should not be a

solitary task for the data scientist. Researchers with a medical

background are more adept at picking up chance associations

and odd correlations within the dataset. Among other things,

data scientists can produce synthetic data to compensate for

missing values to create a more balanced dataset. At the

same time, we must always stay vigilant to the potential

biological meaning of missing data before deciding to make

up for it. Therein lies another strong argument for inclusive

AI research.

Privacy and security

Any potential breach in healthcare AI systems can seriously

undermine the trust of end-users. Therefore, developers should

cooperate with cybersecurity experts to protect personal

information against bad actors before clinical implementation.

In some critical areas, such as data protection, there are

firmly outlined rules in place: e.g., EU General Data Protection

Regulation (GDPR) or the California Privacy Rights Act

(CPRA). However, these regulations can never keep up with the

speed of innovation.

Key issues surfacing with the use of clinical data for AI

development (95):

(1) Sensitive data being shared without informed consent.

(2) Inappropriate informed consent forms (e.g., information

within the consent form is detailed beyond the processing

capability of the patient/user, no dedicated time allocated

for consent review, and opaque use cases permitting

patients from understanding how their datamight be used).

(3) Data re-purposing without the patient’s knowledge

and consent.

(4) Personal data being exposed.

(5) Attacks on AI applications (e.g., data poisoning,

adversarial attacks).

For example, the South Denver Cardiology Associates

recently confirmed a data breach affecting 287,000 patients.

The stolen dataset contained dates of birth, Social Security

numbers, driver’s license numbers, patient account numbers,

health insurance information, and clinical information (96).

This leakage might result in identity theft, insurance fraud or

other inappropriate use of sensitive data. Moreover, in the field

of medical imaging, particular attention is necessary toward

dealing with potential adversarial attacks (97), including “one-

pixel” attacks (98). These attacks involve slight changes to the

input images intending to fool the AI and produce a false result.

In other cases details of large scale data sharing agreements

remain gray for the public (99), which might lead to data privacy

controversies in the future.

Fortunately, several steps can be taken to mitigate these risks

on an individual and institutional level:

(1) Increasing the awareness of privacy and

security risks, informed consent and cybersecurity

through (self)education.

(2) Transparent regulations of data privacy,

data re-purposing.

(3) De-centralized, federated learning approaches such as

federated learning. Federated learning is an ML setting

where many de-centralized clients collaboratively train a

model under the arrangement of a central server, keeping

the data in several individual locations (100). Despite

this, some researchers might be hesitant to use federated

learning, because of the potential disclosure of the model.

However, the data is never exposed to third parties, not

even to the data scientist.

(4) Ongoing cybersecurity research into novel, more

secure algorithms.

Transparency and traceability

Transparency in AI is a broad term; it refers to the

information about the dataset, processes, uses, and outputs

that is a prerequisite for accountability. AI transparency

within medicine aims to provide all stakeholders with enough

information to join in the discussion in a meaningful way. Two

universal requirements guide and promote AI transparency:

(1) Data transparency includes transparent methods and

guidelines for data collection, utilization, storage, sharing,

and documentation.

(2) Model transparency means we have enough

knowledge/information about a model’s internal properties

to apprehend its output meaningfully.
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The goal of traceability is to document the entire

development process and to monitor the behaviour and

functioning of an AI model or system over time. This approach

allows tracking any drift from the original training settings.

As clinical practice constantly evolves, images provide greater

granularity or novel guidelines emerge; keeping track of the

model performance and adapting it to the new circumstances is

critical (101). Two main concepts driving a decrease in model

performance over time are “concept drift” and “data drift”.

Concept drift means that some underlying characteristics of

variables change (for example, a novel type of cardiomyopathy is

distinguished, creating a new class for a classification algorithm),

which decreases the accuracy of the model. Data or dataset drift

refers to the change in the data, meaning that a difference in

the scanning device or image acquisition may directly affect the

prediction model deployed (12).

Standardized dataset documentation methods can facilitate

ML results’ transparency, accountability and repeatability.

Recently, Gebru et al. posed a list of questions on how and why

data was collected, what is the composition of the data, and how

it was curated and labeled in their document entitled "Datasheets

for Datasets” (102). Sendak et al. proposed the use of “Model

facts cards” for each ML model to ensure that clinicians have a

thorough understanding of “how, when, how not, and when not

to” incorporate the output into their decisions (103).

Explainability

In terms of an AI system, explainability means that it

is possible to comprehend how the output was reached.

The greater the explainability of a model, the better we can

understand the internal mechanisms of a decision-making tool.

However, as Arbelaez Ossa et al. (104) point out, the key issue in

AI explainability is the lack of consensus among data scientists,

regulators, and healthcare professionals regarding the definition

and requirements.

Notably, explainability is not necessary for all ML models.

Simple rule-based models applying linear regression or decision

trees are inherently explainable. If we can calculate how a given

parameter is weighted within the model, it is unnecessary to

push the limits of explainability further.

From a strictly clinical end-user perspective, it is also not

necessary to understand all steps involved in a complex DL

network if the output is readily accessible and visually verifiable

by a physician, such as segmentation. On the other hand, if the

algorithm promises to deliver a clinical diagnosis or prognostic

information based on imaging data or a combination of imaging

features, the clinical application needs to reach high levels of

intelligibility. A clinician who does not understand how the

algorithm reached its conclusion will likely to rely on their own

expertise rather than an opaque output.

To deal with the “black box” nature of particularly DL

methods, several post-hoc explainability algorithms were defined

to create more interpretable models. The so-called saliency

maps or heat maps are the most widely adopted explainability

tools in medical imaging. These color-coded maps show the

contribution of each image region to a given model prediction

(105, 106). Several distinct approaches can be utilized, such

as Gradient-weighted Class Activation Mapping (Grad-CAM)

(105) or Dense Captioning (DenseCap) (107), to capture the

most crucial image areas. Saliency maps have long been applied

in image analysis to understand better the key areas supporting

the model’s decision. As an example, Candemir et al. (108)

trained a 3-dimensional convolutional neural network (CNN)

to differentiate between coronary arteries with and without

atherosclerosis and has shown the essential features learned by

the system on color-coded maps. Saliency maps can also suggest

if an algorithm picks up temporal data: Howard et al. (109)

applied time distributed CNN model with saliency maps for

disease classification based on echocardiography images. The

author found that these new architectures more than halve the

error rate of traditional CNNs, possibly because of the networks’

ability to track the movement of specific structures such as heart

valves throughout the cardiac cycle.

Local Interpretable Model-Agnostic Explanations (LIME)

is used to explain the model locally for one single subject

(110). LIME evaluates a given variable’s contribution to the

whole of the predictive model. SHapely Additive exPlanations

(SHAP) is a model agnostic explainability model (can be

used to interpret any model) (111). SHAP is based on game

theory and can reveal each predictor’s effect on the outcome.

It calculates a score for each feature in the model, showing

the feature’s size and direction effects on the outcome. Al’Aref

et al. (112) applied boosted ensemble algorithm (XGBoost) in

the participants of the CONFIRM registry and showed that

incorporating clinical features (e.g., age, sex, cardiovascular

risk factors, laboratory values, and symptoms) in addition to

coronary artery calcium score can accurately estimate the pretest

likelihood of obstructive coronary artery disease on CCTA. They

could supply the 20 most crucial features supporting the model’s

prediction using the SHAPmethod. Similarly, Fahmy et al. (113)

applied the SHAP to support the interpretation of their model

looking into the association between CMR metrics and adverse

outcomes (cardiovascular hospitalization and all-cause death) in

patients with dilated cardiomyopathy. Many other explainability

techniques are also available, and new tools are likely to become

more sophisticated and model-specific.

Although these models can improve model interpretation,

their understanding requires additional efforts from the

physicians. We are yet to see if their outputs can become as

acceptable to the community and if they can overcome current

limitations. Critiques of current explainability models warn that

the performance of the explanations are not routinely quantified,

and we can rarely elucidate if a given decision was sensible or
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FIGURE 1

Principles of trustworthy AI within the machine learning lifecycle.

not (114). Moreover, they might reduce the complexity of a

model to a level that is not representative and promote a false

sense of security among users. Ghassemi et al. note that with

the currently available methods, our best hope is to go through

rigorous internal and external validation and use explainability

models for troubleshooting and system audits (114).

Accountability and liability

Accountability refers to the state of being responsible.

However, in the context of AI, where algorithms are based

on both ML and human ingenuity, the mistakes or errors

of the application come from humans developing or using

machines (95, 115, 116). On the other hand, it is not clearly

defined and regulated yet, with whom the responsibility of AI-

powered medical tools lies. Does liability fall on developers,

chief executive officers of the developing company, leaders of the

healthcare institution buying and authorizing clinical utilization

or the doctors using them? Notably, sometimes it is also hard

to pinpoint why the AI-related medical error happened (95);

therefore, responsibility issues can lead to daunting detective

work, steering away the attention from the actual patient care.

The main proposed tools to mitigate accountability issues within

AI are: (1) the roles and responsibilities of developers and users

should be defined, (2) a regulatory framework for accountability

should be in place, and (3) dedicated regulatory agencies should

be established and monitor AI use.

Clinical implementation

Even if an AI tool complies with all of the criteria mentioned

earlier, integrating a new tool into clinical practice hides

several expected and unexpected difficulties. The main obstacles

to clinical implementation stem from three primary sources:

(1) the differences among institutions regarding equipment,

staffing, location, financial possibilities, and inner structures

of each healthcare institution, (2) change in physician-patient

relationship, and (3) difficulties of clinical and technical

integration into existing workflows (95, 117).

Medical data, in general, is very noisy and requires human

oversight before integration. Cardiovascular imaging data is

slightly more structured than clinical records but still lacks

interoperability to a great extent (118). Several initiatives already

aim at increasing interoperability among healthcare providers

[e.g., European Commission (119), Health Data Research UK

(120)]. However, it seems fairly evident that medical AI tools

will have to adapt to a certain level of data heterogeneity.

The physician-patient relationship has been transformed by

technical advances and the maturity of social sciences, but it

is yet uncertain how AI tools will impact this relationship.

Some argue that it will help by easing clinician workload

and providing more personalized data for shared decision-

making, while others question doctors’ role once critical tasks are

delegated to sophisticated algorithms (121). Clinical guidelines

will need to be updated to consider the potential role of AI tools

between healthcare workers and patients (95, 122). Moreover,
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these guidelines will also need to be updated to integrate novel

tools into the clinical workflow without severe disruption of

care (123).

Actionable steps

Trustworthy AI is not an obscure concept reserved for

technical specialists and scholars of ethical reals (124), but rather

a practical set of steps and questions, which, when implemented,

can provide us with reliable tools for a new era in healthcare.

In an effort to improve the overall quality of the AI prediction

models, van Smeden et al. presented 12 critical questions for

cardiovascular health professionals to ask (125). Moreover, the

use of the Proposed Requirements for Cardiovascular Imaging-

Related Machine Learning Evaluation (PRIME) checklist has

been suggested by Sengupta et al. (126), a framework that

contains a comprehensive list of crucial responsibilities that need

to be completed when developing ML models. Here we report

key questions to promote discussion of AI trustworthiness

between clinicians and technical experts (Table 2), moreover

we summarize how these principles fit into the ML lifecycle

(Figure 1).

We have to acknowledge that in some instances medical

research and consequently medical AI research is plainly

inaccurate, but we can rectify these mistakes over time. AI

competitions provide an excellent platform for robust validation

or rebuttal of results. As an example, a recent competition to

predict O(6)-Methylguanine-DNA-methyltransferase (MGMT)

promoter methylation from brain magnetic resonance imaging

(MRI) scans (127). Overall, 1,555 teams of many thousands

of researchers took a large dataset of MRI scans and the

results clearly demonstrate that this task is not possible with

current approaches, even tough several group claimed to have

achieved an ROC scores of up to 0.85 previously (128–130). This

suggest that well designed competitions provide and excellent

opportunity to improve the quality of AI research.

In order to promote the safe adoption of AI-powered tools

in cardiovascular imaging, practicing doctors and futuremedical

professionals need to be properly trained in the technical

aspects, potential risks and limitations of the technology (131).

McCoy et al. (132) and Grunhut et al. (133) proposed crucial

points to improve AI literacy in medical education programs.

Furthermore, the involvement and education of the general

public are also essential for the broader adoption of these

emerging tools.

Embracing the human-in-the-loop principle may offer

further benefits where both imagers and ML algorithms

fall short (134). It means that we can benefit from the

advantages of AI models (i.e., automated segmentation or

diagnosis) and having a human at various stages or checkpoints

to correct potential errors or use critical thinking where

algorithms are not confident in their results. The human

can validate or correct the results where the algorithm

delivers lower confidence outputs, creating a combined and

better decision.

In essence, it does not matter if we call it trustworthy

AI, reliable AI or responsible AI—the driving idea is

to create an inclusive, collaborative effort in healthcare

between all stakeholders. Our task is to consider the possible

impact and test our AI tool and all elements of the AI

development by posing the right questions relevant to our

desired aims.
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