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Structural magnetic resonance imaging (sMRI) studies have shown that children that
differ in some mathematical abilities show differences in gray matter volume mainly
in parietal and frontal regions that are involved in number processing, attentional
control, and memory. In the present study, a structural neuroimaging analysis based
on radiomics and machine learning models is presented with the aim of identifying
the brain areas that better predict children’s performance in a variety of mathematical
tests. A sample of 77 school-aged children from third to sixth grade were administered
four mathematical tests: Math fluency, Calculation, Applied problems and Quantitative
concepts as well as a structural brain imaging scan. By extracting radiomics related to
the shape, intensity, and texture of specific brain areas, we observed that areas from the
frontal, parietal, temporal, and occipital lobes, basal ganglia, and limbic system, were
differentially related to children’s performance in the mathematical tests. sMRI-based
analyses in the context of mathematical performance have been mainly focused on
volumetric measures. However, the results for radiomics-based analysis showed that
for these areas, texture features were the most important for the regression models,
while volume accounted for less than 15% of the shape importance. These findings
highlight the potential of radiomics for more in-depth analysis of medical images for the
identification of brain areas related to mathematical abilities.

Keywords: school-aged children, machine learning, mathematical performance, sMRI, radiomics

INTRODUCTION

Recent research has focused on determining the cognitive processes that are associated with
mathematical performance, as well as the brain areas involved. The goal is not only to achieve a
more comprehensive understanding of how children and adults solve mathematical problems, but
also to better characterize the disorders that affect mathematical abilities.

There is now ample evidence demonstrating the existence of crucial brain areas related to
mathematical abilities. For instance, voxel-based morphometry (VBM) studies have found that
children that differ in some mathematical abilities show differences in gray matter volume in several
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brain areas related to number processing, attentional control, and
memory, such as the posterior parietal cortex, left intraparietal
sulcus, right fusiform gyrus, areas of the frontal cortex such
as the inferior frontal gyrus and the middle frontal gyrus, the
hippocampus, and occipito-temporal cortex (Li et al., 2013;
Evans et al., 2015; Price et al., 2016; Peters and De Smedt,
2018; Fritz et al., 2019; Polspoel et al., 2020, 2021). The
relationship between domain-general cognitive abilities (e.g.,
attention, working memory) and mathematical performance has
been widely established in behavioral meta-analyses (Friso-van
den Bos et al., 2013; Peng et al., 2016), computerized working
memory-based interventions at school (Sánchez-Pérez et al.,
2018a), and fMRI studies (Rotzer et al., 2009; Dumontheil and
Klingberg, 2011; Ashkenazi et al., 2013; Metcalfe et al., 2013).

In the present study, we adopted a radiomics-based approach
to further explore which structural image features are better
predictors of children’s performance in a variety of mathematical
abilities. Radiomics refers to a type of image analysis mainly
applied in the field of precision medicine, that allows researchers
to perform a more exhaustive analysis of medical images, by
computing and mining a large pool (thousands) of advanced
imaging features (Gillies et al., 2016). Radiomic features
include shape and first and second order texture features.
Shape-based features describe geometric properties of regions
of interest (ROIs). These features include compactness and
sphericity, which describe how the shape of a ROI differs
from that of a circle or a sphere. First-order texture features
refer to commonly used histogram statistics that describe
ROI intensity distributions, such as mean, median, kurtosis,
skewness or entropy, among others. Second-order texture
features describe statistical interrelationships between voxels with
similar intensity values. In particular, these features account for
spatial characteristics of an image in terms of intensity values such
as coarseness, heterogeneity, symmetry and variability (Larroza
et al., 2016; Park and Kim, 2018; Mayerhoefer et al., 2020).

So far, radiomics-based analyses have been carried out mostly
in oncology and more recently in lung and cardiovascular
applications (Huang et al., 2016; Guerrisi et al., 2020; Raisi-
Estabragh et al., 2020). To date, few studies have explored
this technique in the field of cognitive disorders (Sun et al.,
2018; Cui et al., 2021), and importantly, texture features
allowed researchers to better differentiate between clinical
and typical populations and revealed as the most appropriate
biomarkers for diagnosis. sMRI-based analyses in the context
of mathematical performance have been focused primarily on
volumetric measures. By assessing volume only (as in VBM), a
great proportion of information available in the image is usually
ignored, including everything that relates to intensity values.
As an example, in neurodevelopmental pathologies with severe
cognitive symptoms, volume may remain within the normal
range, or the differences observed may also be associated with
other pathologies (Koolschijn et al., 2009). We hypothesized
that additional information extracted from structural images
of typically developing children regarding shape, intensity, and
especially texture, can aid in the identification of areas related
to mathematical performance. Therefore, the objective of the
present study is twofold. First, we sought to replicate and

extend the brain areas associated to different mathematical
abilities exhibited by typically developing children, in accordance
with the results of previous studies stemming from the use of
neuroimaging techniques. Second, to perform a more in-depth
analysis of the images extracted from the sMRI protocol, based on
radiomics, to determine which features of the brain areas are the
best predictors of mathematical abilities in school-aged children.

MATERIALS AND METHODS

Participants
One hundred and four 7–12-year-old typically developing
children that participated in a larger project (Sánchez-Pérez
et al., 2018a), took part in the present neuroimaging study.
Children were recruited from two primary education schools in
the Región de Murcia (Spain), and were enrolled in grades 3–6.
Data were collected from mathematical standardized tests and
sMRI. The final sample was reduced to 77 children (43 boys and
34 girls, mean age 9.7; SD 1.2) after excluding: data with excessive
motion (by looking qualitatively at each volume), children that
refused to enter into the scanner at the moment of scanning,
and equipment failures. The project was approved by the Ethics
Committee of the University of Murcia and it was conducted
in accordance with the approved guidelines and the Declaration
of Helsinki. Written informed consent was obtained from the
parents, and oral consent was obtained from the children at the
moment of scanning.

Behavioral Data
Children’s math abilities were assessed through the Woodcock-
Johnson III (WJ-III) Achievement battery for children aged 6–
13 years in Spain (Diamantopoulou et al., 2012). The battery
is composed of four tests: Math fluency, Calculation, Applied
problems, and Quantitative concepts. Descriptive data are shown
in Table 1.

The Math fluency test measures the ability to quickly solve
a total of 160 simple addition, subtraction, and multiplication
within 3 min. The Calculation test measures the ability to perform
mathematical computations and consists of 46 items of ascending
difficulty involving addition, subtraction, multiplication,
division, rational number arithmetic, trigonometry, algebra,
and calculus. The Applied problems test measures the ability to
analyze and solve 62 ascending difficulty math word problems.
The Quantitative concepts test measures the knowledge about
mathematical concepts, symbols, vocabulary and numerical
series, and consists of 57 items (Pina et al., 2015; Sánchez-Pérez
et al., 2018a). Each item represented one point if the child
answered correctly. The maximum score for each test is the
number of items. Partial correlations analyses, controlled by
age, between Math fluency, Calculation, Applied problems and
Quantitative concepts scores were all positive and ranged from
0.34 to 0.69 (see Table 2).

Image Acquisition
Anatomical MRI data were acquired using a General Electric 1.5
T HDX scanner located at the Hospital General Universitario
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TABLE 1 | Descriptors for the children’s characteristics and the mathematical ability tests considered in this study.

Math fluency Calculation Applied problems Quantitative concepts

Grade Boys/girls Age Score Est. grade Score Est. grade Score Est. grade Score Est. grade

3 9/15 8.5 (0.33) 37.6 (6.9) 2.8 13.0 (2.4) 3.3 29.7 (3.0) 3.0 16.9 (2.1) 3.4

4 15/9 9.4 (0.39) 46.5 (11.3) 3.6 16.8 (2.1) 4.7 33.8 (4.4) 4.1 19.4 (2.8) 4.7

5 12/5 10.6 (0.37) 62.4 (18.6) 5.0 18.4 (1.8) 5.4 35.8 (3.5) 4.7 20.6 (1.6) 5.1

6 7/5 11.6 (0.27) 63.3 (19.6) 5.1 19.3 (2.1) 5.9 39.3 (5.2) 6.1 22.8 (2.1) 6.4

All 43/34 9.7 (1.15) 49.9 (17.2) – 16.3 (3.2) – 33.8 (5.1) – 19.4 (3.0) –

Values are presented as mean (standard deviation).
Est. grade, estimated grade mean provided by each test.

Morales Meseguer (Murcia, Spain). A parent was present with
the child during the scanning session and earplugs were used for
protecting the child’s hearing. Soft pads were also used to reduce
motion artifacts. The sequence parameters was: TR, 12.4 ms; TE,
5.2–15 ms; voxel size, 1 × 1 × 1 mm; flip angle, 12◦; 142 axial
slices (Sánchez-Pérez et al., 2019).

Image Analysis
Several pre-processing steps were conducted prior to the cortical
parcellation and features extraction (see Figure 1).

First of all, possible low frequency intensity inhomogeneities
were corrected using N4 Bias Field (SimpleITK, version
1.2.4, Lowekamp et al., 2013). Then, image intensities were
standardized using histogram matching for the whole volume
with a reference participant selected visually (scikit-image,
version 0.18.1). Finally, three-dimensional image registration
was used to transform the images to a common space with
Advanced Normalization Tools (ANTs, version 0.2.2, Tustison
et al., 2014) for Python. The pre-processed images were then used
to extract and parcellate the brain with the Freesurfer package
(version 6, Fischl et al., 2004) according to the Destrieux Atlas
(Destrieux et al., 2010). The parcellated ROIs were transformed
back into native space for radiomics feature extraction. Within
each of the 191 brain areas, a set of 100 radiomics features
were computed accounting for its shape, intensity and texture
using the PyRadiomics library (version 2.2.0, van Griethuysen
et al., 2017) with the default configuration (bin width of 25). See
Supplementary Table 1 for the list of extracted features.

Machine Learning-Based Area Ordering
To determine the main brain areas involved in each mathematical
test a regression-based analysis, with age as a control variable,
was proposed to predict the final test scores. For each regression
analysis and for each brain area, a prediction error was extracted

TABLE 2 | Partial correlations between the Woodcock Johnson III mathematical
tests controlled by age.

Calculation Applied problems Quantitative concepts

Math fluency 0.386* 0.344* 0.360*

Calculation 0.503** 0.498**

Applied problems 0.686**

*p < 0.01, **p < 0.001.

using the mean absolute deviation of the actual score (Mean
Absolute Error, MAE). This allowed us to rank the brain areas
from the most predictive to the least predictive. MAEs were
also computed for regression analyses using only age as input
variable to assess the added value of radiomics features. MAE was
considered a more appropriate measure than the mean squared
error (MSE) due to its robustness to deal with outliers.

A Random Forest (RF) regression model is proposed to
account for the linear and non-linear relationships of brain
areas characteristics with mathematical abilities. A RF is a
combination of decision trees built from dataset sub-samples
that uses averaging of the individual predictions for improving
overall accuracy and reducing overfitting to the training sample
(Friedman et al., 2001). For this reason and motivated by its
simplicity and its wide usage, RF was selected over other options
in the present study. A set of hyperparameters need to be selected
prior to model training. For the current research, all parameters
were chosen as default but for the maximum number of decisions
that each tree can make. This value was set to 5 to prevent
decision trees from being too specific to the training set and
to reduce overfitting. By default, the number of trees was 100
(scikit-learn, version 0.22.1).

Due to our rather small sample size and the large input feature
space, a feature selection was conducted for each brain area
during training. Variables with a squared correlation coefficient
higher than 0.8 (Pearson |ρ| ≈ 0.9) between them were assumed
to share similar information and only one was preserved.
Comparisons were performed sequentially following the order
established in Supplementary Table 1, i.e., at step i the feature
with index i was compared against all others and those with high
correlation were removed, while preserving most of the shape
features. This ensured that any texture feature that showed a
high correlation with shape features was removed (see Figure 2,
for illustration). This method of feature selection was selected
over other alternatives because of its simplicity and the interest
in linearly eliminating redundant features. The final selected
features accounted for a percentage between 81 and 39% of
the initial features, depending on the area under consideration
(see Supplementary Figure 1 for further details). The selected
features, together with age, were entered as input variables in the
correlation analyses.

For each test and each ROI, the following pipeline was used to
ensure the robustness of the final results (see Figure 3): (1) 20
random partitions of the dataset in training (80%) and testing
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FIGURE 1 | Schematic pipeline for extracting radiomics features from sMRI.

FIGURE 2 | Example of a correlation matrix for radiomics features before and after the feature reduction for a given area, showing significant reduction in the number
of correlated features.

FIGURE 3 | Method pipeline used for computing the resulting errors for each area and for each mathematical test.

(20%) were generated, (2) 100 different RF regression models
were trained on each partition to obtain an average MAE for the
hold-out validation set, and (3) the resulting MAE was obtained
as the median across the 20 partitions. The median was chosen
over the mean due to its robustness against outliers.

Finally, the contribution of each family of features was
assessed for the selected models by computing the Gini
importance (also called mean decrease of impurity importance).
The Gini importance is a measure derived from the training of
each model and indicates how often a particular feature was
selected for a split, and how large its overall discriminative value
was for the problem under study (Menze et al., 2009).

RESULTS

To explore any effects of our independent variables (age and
sex) on children’s mathematics performance, we conducted two-
way ANOVAs with age and sex as between-participants
factors and scores on each mathematics test as the

dependent variables. The results showed that age produced
statistically significant main effects in all mathematics
tests, Math fluency [F(4,67) = 8.3, p < 0.001, ηp2 = 0.33],
Calculation [F(4,67) = 9.77, p < 0.001, ηp2 = 0.37], Applied
problems [F(4,67) = 6.48, p < 0.001, ηp2 = 0.28], and Quantitative
concepts [F(4,67) = 7.57, p < 0.001, ηp2 = 0.31].

[F(4, 67) = 8.3, p < 0.001], Calculation [F(4, 67) = 9.77,
p < 0.001], Applied problems [F(4, 67) = 6.48, p < 0.001], and
Quantitative concepts [F(4, 67) = 7.57, p < 0.001]. In contrast,
sex did not produce any significant main effect, nor did it interact
with age in any of the mathematics tests (all ps > 0.05). These
results would be in line with the results of several meta-analyses
that have found no sex differences in mathematics performance
at the behavioral level (e.g., Lindberg et al., 2010).

For each mathematical test the most predictive and significant
areas were selected. To do this, the resulting MAEs were assumed
to follow a normal distribution and those areas with an error
below two standard deviations from the mean (p < 0.022)
were classified as “the most relevant.” To assess whether the
RF regression model prediction was significantly better than
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random, the p-value associated with the selected areas was
obtained using a non-parametric randomization test. In this test
random features were provided as input for the regression models
to extract the noise distribution (Manly and Navarro Alberto,

2020). A similar approach was proposed by He et al. (2020) to
find significant brain biomarkers related to inhibitory control,
using sMRI data. Results below two standard deviations from the
noise distribution mean (p < 0.022) were classified as significant.

TABLE 3 | Predictive areas of math performance in the four tests of the WJ-III battery.

Test Atlas label H Loc Area name—Acronym P-value (Rand. test) MAE

Math fluency 12,140 R IF Vertical ramus of the anterior segment of the lateral sulcus (or fissure)—ASLS 1.2 × 10-7 0.210

12,154 R MF Middle frontal sulcus—MFS 4.7 × 10-7 0.212

11,157 L PL Intraparietal sulcus and transverse parietal sulci—IPS 6.1 × 10-7 0.212

12,128 R PL Post-central gyrus—PSTCG 8.1 × 10-6 0.216

11,154 L MF Middle frontal sulcus—MFS 1.3 × 10-5 0.217

Calculation 26 L BG Nucleus accumbens—NA 1.5 × 10-3 0.116

11,108 L LS Middle-posterior part of the cingulate gyrus and sulcus—PCG 3.6 × 10-3 0.118

12,171 R FL Suborbital sulcus (sulcus rostrales, supraorbital sulcus)—SS 4.0 × 10-3 0.118

12,111 R OL Cuneus gyrus—CG 4.0 × 10-3 0.118

12,128 R PL Post-central gyrus—PSTCG 5.1 × 10-3 0.118

Applied problems 12,131 R IF Straight gyrus, Gyrus rectus—SG 7.4 × 10-10 0.106

12,113 R IF Orbital part of the inferior frontal gyrus—OIFG 1.2 × 10-5 0.112

Quantitative
concepts

11,123 L LS Parahippocampal gyrus, parahippocampal part of the middle occipito-temporal
gyrus—PHPG

3.0 × 10-4 0.098

11,125 L PL Angular gyrus—AG 1.7 × 10-3 0.100

11,133 L TL Anterior transverse temporal gyrus (of Heschl)—HG 2.8 × 10-3 0.100

H and Loc stand for Hemisphere and Localization, respectively. MAE, Mean absolute error. Localization: IF, inferior Frontal; MF, middle frontal; PL, parietal lobe; BG, basal
ganglia; LS, limbic system; FL, frontal lobe; OL, occipital lobe; TL, temporal lobe.

FIGURE 4 | Significant areas for the Math fluency test with corresponding plots of the logarithmic p-values for each area. Coordinates are in MNI space. Brain areas:
ASLS [Vertical ramus of the anterior segment of the lateral sulcus (or fissure)], MFS (Middle frontal sulcus), IPS (Intraparietal sulcus and transverse parietal sulci),
PSTCG (Post-central gyrus).
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Multiple test comparison corrections were not applied in this
study because the initial hypothesis refers to the relationship of
individual areas with mathematical tests and as such, falls into the
domain of individual testing (Rubin, 2021). Table 3 summarizes
the final selected areas for each test. The added value of the
feature selection step is demonstrated in Supplementary Table 2
by comparing the drop in accuracy of the predictive areas.

For the Math fluency test (Figure 4), five areas were
found below the two-sigma threshold with high significance
(ps < 0.0014), involving the two brain hemispheres. In particular,
the right lateral sulcus (Sylvian fissure), the left intraparietal
sulcus and the right postcentral gyrus in the parietal lobe, and
the middle frontal sulci bilaterally. For the Calculation test
(Figure 5), five areas from both hemispheres were selected
showing ps-values between 0.0052 and 0.0015. The most relevant
region was the left accumbens area, followed by the left middle
cingulate gyrus and sulcus, the right suborbital sulcus, the right
cuneus gyrus, and the right postcentral gyrus.

For the Applied problems test (Figure 6), two significant areas
were obtained (ps < 0.000013). In particular, the right rectus
gyrus and the right inferior frontal gyrus.

Finally, for the Quantitative concepts test (Figure 7), three
areas from the left hemisphere were found with p-values below
0.0029. In particular, the parahippocampal gyrus was the most
relevant area, followed by the angular gyrus and the Hesch gyrus.

The relative importance variable is presented as given by
the Gini importance index for each brain area selected in
Table 3 (see Figure 8). The results were grouped by feature
family to assess the relative importance of age, volume, shape,
intensity, and texture, separately. The area volume, used mainly
in VBM, was considered apart from shape features to assess
its contribution independently. Among radiomics variables,
texture features showed the greatest relative importance for
all tests, which indicated their superior discriminative value.
Importantly, volume represented less than 15% of the shape
features contribution in all cases. Additionally, as a proxy for
feature stability, radiomics with a great variability on Gini
importance were highlighted. In detail, features with a variability
above two standard deviations from the mean variability were
flagged as outliers for every task. Four features were found as
outliers across tasks. In order from most to least stable they were:
10th and 90th percentile, interquartile range (1st order), and long
run emphasis (GLRLM).

DISCUSSION

The majority of sMRI studies that have explored the brain
areas involved in mathematical abilities have primarily
used volume-related measures. However, through the use

FIGURE 5 | Significant areas for the calculation test with corresponding plots of the logarithmic p-values for each area. Coordinates are in MNI space. Brain areas:
NA (Nucleus accumbens), PCG (Middle-posterior part of the cingulate gyrus and sulcus), SS [Suborbital sulcus (sulcus rostrales, supraorbital sulcus)], CG (Cuneus
gyrus), PSTCG (Post-central gyrus).
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FIGURE 6 | Significant areas for the applied problems test with corresponding plots of the logarithmic p-values for each area. Coordinates are in MNI space. Brain
areas: SG (Straight gyrus, Gyrus rectus), OIFG (Orbital part of the inferior frontal gyrus).

of radiomics-based analyses we have shown here that texture
features are the most important for the regression models
explored, followed by shape features. Volume, however, is just
one of the features belonging to the shape features family and
provides a relatively small percentage of importance in the
regression models in predicting children’s performance on math
tests. This result suggests that other aspects of the brain areas,
such as surface, length in a given direction, or the intensity
pattern shown in the image, are even more important measures
for predicting children’s mathematics performance. All these
features together provided more information than volume alone.
In fact, texture features have been found to be very important
biomarkers for cognitive traits such as autism spectrum disorder
(Chaddad et al., 2017) or schizophrenia (Park et al., 2020). The
present study suggests that radiomics-based analyses can provide
further detailed information about the medical image than more
traditional measures. In fact, when compared with models that
only took age into consideration, the current regression models
that used radiomics features were able to reduce the MAE by
a percentage between 5% (from 0.112 to 0.106 for Applied
problems) and 18% (from 0.257 to 0.210 for Math fluency).

The results highlight the involvement of frontal areas, mainly
in Math fluency and Applied problems, and parietal areas,
mainly in Math fluency but also in Calculation and Concepts.

Occipital areas were found in Calculation and temporal areas
in Quantitative concepts. Finally, basal ganglia were associated
with Calculation and areas of the limbic system to Calculation
and Quantitative concepts. In line with previous neuroimaging
studies, these areas seem to play a role in mathematical
operations as well as in cognitive control and motivation
(Arsalidou et al., 2018).

Math fluency is based on basic arithmetic operations that
depend on recovery of number facts from long-term memory
(Andersson, 2008), and therefore is expected to pose minimal
demands on participants’ attentional/working memory capacity.
Inferior frontal cortex, middle frontal cortex, and post-central
gyrus (in the parietal cortex), mainly from the right hemisphere,
are associated with mathematical abilities that are mainly based
on automatized processes (Arsalidou et al., 2018). The left
intraparietal sulcus plays also a central role in basic quantitative
representation (Dehaene et al., 2004) and in addition and
subtraction (Arsalidou and Taylor, 2011), representing the basis
of the Math fluency test. In addition, the middle frontal
cortex and the intraparietal sulcus may have shown a stronger
relationship with this test given the attentional effort expected
when children perform a test with important time constraints.
Calculation is based on the rapid activation of the numerical
magnitude of Arabic numerals, and arithmetic operations go in
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FIGURE 7 | Significant areas for the Quantitative concepts test with corresponding plots of the logarithmic p-values for each area. Coordinates are in MNI space.
Brain areas: PHPG (Parahippocampal gyrus, parahippocampal part of the middle occipito-temporal gyrus), AG (Angular gyrus), HG [Anterior transverse temporal
gyrus (of Heschl)].

increasing order of complexity. As for Math fluency, important
areas of the right frontal and parietal lobes usually associated
with numerical automatized processes were also observed
here (suborbital sulcus and post-central gyrus). More complex
operations may be related to the posterior cingulate cortex, an
area involved in memory retrieval (Rolls, 2019). In addition,
the basal ganglia may be related to the motivational/affective
components linked to the performance of this test. Accordingly,
the nucleus accumbens has been associated with motivational
behavior and effort regulation (Salamone, 1994; Nicola et al.,
2005; Salamone et al., 2007). While the cuneus gyrus has been
related to visual recognition of objects, the right cuneus gyrus has
been specifically associated with the approximate calculation in
children (Kucian et al., 2008). The results showed that the post-
central gyrus was related to both Math fluency and Calculation.
Previous studies have found that the cortical complexity of this
region is associated with a high capacity for mathematical fluency
(Polspoel et al., 2020). The activation of this somatotopic region
responsible for the mouth, fingers and hands has been related to
subvocalization and finger counting as a mathematical strategy
(Kesler et al., 2006). Among the areas related to Calculation,
only inferior frontal and occipito-temporal areas were also found
in previous sMRI studies, showing reduced volume for children

with low mathematical performance (De Smedt et al., 2019).
The Applied problems test requires both to hold information in
memory and to integrate new information with previous one (Lee
Swanson, 2011; Pina et al., 2014), and therefore it is expected to
impose more demands on executive control capacity than the two
previous tests. Accordingly, the straight gyrus and orbital part of
the inferior frontal gyrus seem to be associated with performance
in this test. Less gray matter volume in the inferior frontal gyrus
has been observed in children with poor mathematical abilities in
sMRI studies (Peters and De Smedt, 2018). The straight gyrus is
involved in attention control and it is functionally related with
the orbital cortex (Nestor et al., 2015). Bilateral implication of
the inferior frontal gyrus and the straight gyrus in arithmetic
principles vs. computation has been reported (Liu et al., 2019).
In addition, previous studies have shown the involvement of the
frontal lobe, concretely bilateral activation of the inferior frontal
gyri, in mathematical word problems (Prabhakaran et al., 2001).
Finally, the Quantitative concepts test assesses mathematical
knowledge (e.g., formulas and terms) and quantitative reasoning.
Poor performance on this test is expected when participants
show limited vocabulary or insufficient conceptual development
(Pina et al., 2015). Accordingly, brain areas associated with
performance in this test are expected to be lateralized in the
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FIGURE 8 | Relative percentage of variable importance presented by feature group for the selected brain areas. The total sum is rescaled to 100% to better
appreciate differences between features. Note the smaller size of volume (green) compared with shape (orange) or texture (purple) features. Brain areas: ASLS
[vertical ramus of the anterior segment of the lateral sulcus (or fissure)], MFS (middle frontal sulcus), IPS (intraparietal sulcus and transverse parietal sulci), PSTCG
(post-central gyrus), NA (nucleus accumbens), PCG (middle-posterior part of the cingulate gyrus and sulcus), SS [suborbital sulcus (sulcus rostrales, supraorbital
sulcus)], CG (cuneus gyrus), OIFG (orbital part of the inferior frontal gyrus), PHPG (parahippocampal gyrus, parahippocampal part of the middle occipito-temporal
gyrus), AG (angular gyrus), HG [anterior transverse temporal gyrus [of Heschl)].

left hemisphere, which could reflect a language mediation role
(Grabner et al., 2007). Concretely, the parahippocampal part of
the middle occipito-temporal gyrus is involved in remembering
facts and rules (Squire et al., 2004) and it has been proposed
that this area maintains memory representations during test
performance (Rivera et al., 2005). The left angular gyrus located
near the intraparietal sulcus has been related to the language
required in some arithmetic operations that use verbal coding
or are based on verbally stored knowledge (Grabner et al.,
2007). Also, we observed the implication of Heschl gyrus, which
corresponds to the primary auditory cortex. This area could
be associated with this test because the items were read aloud,
and children needed to be attentive to verbal information.
Both parietal and occipito-temporal areas have been previously
observed in sMRI studies in children with poor mathematical
abilities (De Smedt et al., 2019).

Our results involved different brain areas depending on
the processes required by the different mathematical abilities,
and the main areas observed agree with those reported in
both fMRI and sMRI studies. Importantly, the present study
addressed the issue from a broader and novel perspective.
First, a wide range of mathematical tests was considered, which
differed not only in the specific mathematical abilities, but also
in the degree of complexity of arithmetic operations and the
demands on children’s attentional/working memory capacity.
This makes the present study an important contribution to

a better understanding of the brain areas that predict the
diverse abilities required when people are confronted with
mathematical facts. Second, areas related to specific mathematical
abilities, mainly reported with fMRI, were found with sMRI by
using radiomics.

Regarding children’s performance on mathematics tests, it
should be taken into account that neurocognitive tests involve not
only general ability but also capture a set of acquired abilities and
skills (Colom et al., 2002). Consequently, children’s mathematical
performance may depend on several factors in addition to the
specific knowledge acquired during schooling (see Sánchez-Pérez
et al., 2018b). Children may score higher on mathematics tests
because they spend more time studying or because they have
received extra tutoring, among other factors. Our results have
shown the involvement of different brain areas as a function
of the processes required by different mathematics tests, and
the main areas observed here coincide with those reported in
previous neuroimaging studies. Future studies should investigate
the influence of these acquired skills on the correlations between
brain structure and mathematical performance.

Two limitations have been identified for the present study.
First, the sample size used is relatively small in comparison to
other studies in precision medicine, although clearly superior
to other neuroimaging approaches with children. Second,
the 1.5T images used in this study have a relatively lower
signal-to-noise ratio compared to those collected at 3T or
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higher, which could affect the robustness of texture features
(Ammari et al., 2021). Despite the aforementioned limitations,
to the best of our knowledge, this is the first study that
analyzes mathematical performance in school-aged children with
radiomics through sMRI images.

Briefly, the present study makes an important contribution to
a better understanding of the brain areas that predict school-aged
children’s performance in math tests. We extended the findings
of previous sMRI related studies by using radiomics. Texture
features rather than standard volumetric measures reached
higher importance in predicting children’s performance on math
tests. The open-sourced radiomics-based method proposed here
can be easily automated and therefore potentially used by
researchers and clinicians to perform a more exhaustive analysis
of radiological studies that can help to better characterize brain
anomalies associated with difficulties in learning mathematics.
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