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Age has important implications for health, and understanding how age

manifests in the human body is the first step for a potential intervention. This

becomes especially important for cardiac health, since age is the main risk

factor for development of cardiovascular disease. Data-drivenmodeling of age

progression has been conducted successfully in diverse applications such as

face or brain aging. While longitudinal data is the preferred option for training

deep learningmodels, collecting such a dataset is usually very costly, especially

in medical imaging. In this work, a conditional generative adversarial network

is proposed to synthesize older and younger versions of a heart scan by using

only cross-sectional data. We train our model with more than 14,000 di�erent

scans from the UK Biobank. The induced modifications focused mainly on the

interventricular septum and the aorta, which is consistent with the existing

literature in cardiac aging. We evaluate the results by measuring image quality,

the mean absolute error for predicted age using a pre-trained regressor, and

demonstrate the application of synthetic data for counter-balancing biased

datasets. The results suggest that the proposed approach is able to model

realistic changes in the heart using only cross-sectional data and that these

data can be used to correct age bias in a dataset.

KEYWORDS

aging heart, generative adversarial network, magnetic resonance imaging, synthesis,

data augmentation

Introduction

Understanding the effects of the aging process is becoming more important as the

life expectancy increases worldwide. Aging has crucial implications for health and age is

the main risk factor for the development of cardiovascular disease (1, 2). Insights into

the aging mechanism can be very valuable to inform new interventions to delay the

occurrence of possible adverse events and for improving health of the elderly.
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According to the medical literature, age is positively related

to morphological changes in the heart such as increased left

atrial diameter (3), increased wall thickness in the left ventricle

(LV) and reduced LV dimensions (1, 2). These changes are

associated with atrial fibrillation and heart failure with preserved

ejection fraction (2, 4). Females and males show differences in

the aforementioned changes with increased LV wall thickness

being more prevalent in women (5). Also, a marked increase

in epicardial adipose tissue deposition has been observed with

age (5).

Collecting longitudinal data is very time-consuming and

requires repeated visits of participants with the associate chance

of dropouts along the duration of the study. Two longitudinal

studies have analyzed cardiac health with more than three

decades of measurements. These are the Framingham Heart

Study (FHS) (6) and the Baltimore Longitudinal Study on

Aging (7). However, imaging is only available for the FHS

and only for echocardiography. Imaging with higher spatial

resolution may be found in two other longitudinal studies,

the UK Biobank (ukbiobank.ac.uk) and the Multi-Ethnic Study

of Atherosclerosis (MESA) study (8), where participants are

scanned using magnetic resonance imaging (MRI). However,

only a subset of participants have repeated scans adquired in

the next 1–10 years after the first scan visit. Thus, modeling

the aging process in the heart with good spatial resolution is

restricted to 10 years or less if one relies only on longitudinal

data, and the analysis may be limited by small differences in

the patient positioning between visits. A potential data-driven

approach, however, that leverages cross-sectional data, i.e., data

from different participants with different age, to synthetically

age or rejuvenate a real image could boost the efficient use

of such a large cohort. In recent years, models based on

generative adversarial networks (GANs) (9) have been proposed

for this task.

Deep learning models for synthesizing an aged version of

an input image have been proposed for several applications,

but especially for face aging. For example, Zhang et al. (10)

was one of the first works to propose learning a manifold

of images, via cross-sectional data, that can be navigated for

increasing or decreasing the apparent age of a human face.

The authors used an autoencoder and adversarial training to

generate photorealistic images of a younger and older version

of an input face. Later, Liu et al. (11) used a GAN-based model

that included also attribute conditioning such as race or sex to

enforce attribute preservation, highlighting the importance of

covariates for the modeling. Contrary to Zhang et al. (10), their

model had a last layer responsible for fusing the input image with

the generated features, so that themodel did not need to generate

the whole image as output.

In medical imaging, a recent study by Xia et al. (12)

proposed a conditional GAN (cGAN) (13) that considered age

and disease status for generating an aged brain MRI using only

cross-sectional data. Other works have modeled the changes

in the brain due to aging with autoencoders and adversarial

training (14, 15) or with normalizing flows (16), although the

image quality was worse in these cases. Finally, cGANs have also

been applied recently to synthesize future fundus images given a

lession probability map and a vessel segmentation (17).

In this work, we propose a conditional generative model

for extracting longitudinal patterns related to aging from cross-

sectional data and apply it to cardiac imaging for the first

time, to the best of our knowledge. Moreover, we demonstrate

the model applicability for counter-balancing biased datasets

with respect to age. Finally, we analyze the modeling ability

of the proposed approach for two other tasks: apparent body

mass index modification and end-systolic phase synthesis from

end-systolic frames.

Materials and methods

Dataset

For this work, MRI studies from the UK Biobank were

used. These studies contain short- and long-axis views of 43,352

participants (including 23,508 female subjects). The participants

were scanned at ages between 45 and 82 years old (mean age

64.1 ± 7.7). The scanner used was a MAGNETOM Aera, syngo

MR D13A (Siemens, Erlangen, Germany) with a field strength

of 1.5 Tesla [see (18) for further details about the imaging

protocol]. Only the four chamber view was used in this work

for simplicity and in order to include information from all heart

chambers during the modeling. The end-diastolic phase for each

subject was identified and used in this work, given that themodel

was two-dimensional. A total of 14,788 subjects were selected for

training the generative models. No preprocessing was applied to

the images.

Additionally, 764 ground-truth annotations of the four

chamber long axis view performed by expert cardiologists from

the Barts Heart Centre were made available to the authors

from a previous work (19). The regions of interest annotated

were the left and right ventricular cavities, the left ventricular

myocardium and the left and right atria. We also delineated

the aorta in 50 samples. Automatic segmentations for the

rest of participants were generated for the four chambers, the

myocardium and the aorta by training a U-Net model (20)

(details in Supplementary material).

Conditional generative modeling

In order to generate synthetic images of the heart

depending on a given covariate, a conditional generative

adversarial network is proposed, as depicted in Figure 1.

The two components of the model are a generator and a

discriminator. Specifically, the generator is responsible for
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FIGURE 1

Depiction of the proposed model for generating synthetically aged and rejuvenated heart images. The covariate is combined with the model

features by using conditional biasing. Heart scans reproduced by kind permission of UK Biobank ©.

creating the mapping that will be applied to the input image

when conditioned on different covariates to obtain a target

image, while the discriminator is trained to tell apart real and

synthesized images given some covariates.

The architecture of the generator follows a typical U-

Net (20) encoding-decoding scheme where each layer is

composed of stacks of two residual blocks with an intermediate

attention block. It is based on the generator used in recent state-

of-the-art diffusion models (21, 22) that was first introduced by

Ho et al. (23). The discriminator consists of an encoder, just as

the one used for the generator, and an adaptive pooling layer.

Each residual block along the networks is conditioned on the

input variable by using conditional biasing, i.e., by transforming

the variable into a vector of varying dimension and adding

one value per intermediate feature channel prior to a group

normalization step. Figure 2 depicts the conditional biasing

mechanism in more detail. This type of conditioning allows for

a better conservation of the input information throughout the

network by consistently introducing the conditional variable on

each layer. Additionally, the network is able to fit the different

parameters used to compute the conditioning vector on each

layer separately, enhancing the ability of the model to learn

different distributions at different resolutions.

As covariates, age and body mass index (BMI) were

considered for two separate tasks. The generator was

conditioned with the difference between the age (respectively

BMI) of the input image and the desired output age (respectively

BMI). The discriminator, however, was conditioned on the

actual age (respectively BMI) of the input image (real or

synthesized). The covariate was specified to the model using the

Transformer sinusoidal embedding (24).

Training details

The underlying framework for training the model relied on

the Wasserstein-GAN with a gradient penalty term (WGAN-

GP) (25, 26), that achieved better results than usual GANs,

by minimizing the Wasserstein-1 distance (also called Earth-

Mover distance).

The generator (G) and the discriminator (D) were trained

using the adversarial objective loss for WGAN-GP:

LWGAN-GP = Ex̃∼Pgen. [D(x̃, at)]− Ex∼Preal [D(x, at)]

+λGPEx̂∼Px̂
[(||∇2

x̂
D(x̂, at)|| − 1)2],

(1)

where as and at stand for source and target age, respectively, x is

the input image, x̃ = G(x, ad) is the generated sample with age

gap ad = at − as, and x̂ = ǫx + (1 − ǫ)x̃, with ǫ ∼ U(0, 1), is

a random point along the line connecting the real and generated

samples. Preal and Pgen represent the distributions of real and

generated images, respectively. The gradient penalty factor, λGP ,

was set to 10 in all experiments following the original work by

Gulrajani et al. (26).
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FIGURE 2

Depiction of a general residual block and the conditional biasing mechanism used to pass covariates to the model. A sinusoidal embedding is

applied to transform the scalar covariate into a vector that is later converted to a vector with the same dimensionality as the number of

intermediate feature channels. Each value in the vector is then added to its corresponding channel in order.

In addition to the adversarial loss, a cycle-consistency term

was considered to enforce the reconstruction of the original

image after two generator steps, one for aging (rejuvenating) and

one for rejuvenating (aging) the subject back to the original state.

In detail, the difference between the transformed image (after

adding ad years) and the reconstructed image (after subtracting

ad years to the transformed image) was minimized. This term is

formally written as

Lcc = E
x∼Preal

[||x− G(G(x, ad),−ad)||1]. (2)

Overall, the final objective loss was

L = min
G

max
D

(LWGAN-GP + λccLcc) , (3)

where the weight λcc was empirically set to 1 based on

model performance.

During training, WGAN-GP requires the discriminator

performance to be close to optimal. For this reason, the first 20

epochs were used as a warm-up period, and the discriminator

was updated 50 times for every generator update. For the

remaining epochs, the discriminator was updated five times

for every generator update. The AdamW (27) optimizer was

used for both networks with a learning rate and weight decay

of 10−4 and first and second moments equal to 0.9 and

0.999, respectively. Data augmentation was used to increase the

variability in the input images appearance. The transformations

considered were random bias field addition, random histogram

shift and random contrast adjustment (28). The images were

cropped along the x axis by 90 pixels, resized to 1282 pixel size

and the intensities rescaled to the [0, 1] range. The generated

mapping is an array of shape 1282 with values clipped to

the range [−1, 1] (the maximum modification allowed to the

input image). After the addition of the mapping, the resulting

image was again clipped to [0, 1]. The whole training process

took ∼90 h in a Nvidia 3090 GPU for 300 epochs and with a

batch size of 12 images. PyTorch (version 1.10.0) was used for

the implementation.

Results

Given the lack of real longitudinal data with a time span

between visits larger than 10 years and the added factor

of morphological variations attributed to different patient

positioning, we propose to evaluate the current model using two

proxy approaches that circumvent the limited time span and

the potential disalignment between scans. First, we assess the

resulting synthetic images via age accuracy and image quality,

and compare the proposed model against two baselines. Second,

we train age regressors with an imbalanced dataset augmented

with synthetic samples. Moreover, in order to demonstrate

the modeling capabilities of the current approach, two

alternative tasks with an easier interpretation are considered:

(1) BMI modification and (2) end-diastolic to end-systolic

phase transformation.
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FIGURE 3

Synthetic aged and rejuvenated images for a randomly selected subject from the test set for the current proposal and the two baselines. Each

pair of rows contain the generated image and the mapping applied to the original image to obtain it. The column with age gap equal to zero

represents the reconstructed image. Reproduced by kind permission of UK Biobank ©.

TABLE 1 Mean absolute error (MAE) for age prediction of images generated synthetically from a random testing set of 907 subjects with varied age

and grouped in age gaps of 5 years.

MAE for predicted age (|predicted age − target age|) ↓

Age gap −20 −15 −10 −5 5 10 15 20

Ours 7.24.3 5.83.8 6.04.0 4.73.6 4.83.4 5.83.8 5.83.7 6.23.6

Xia et al. (12) 12.84.7 9.44.8 6.84.4 5.74.2 5.73.9 8.74.7 10.64.9 12.85.0

Zero order 16.44.3 12.64.7 8.74.7 5.64.1 6.04.1 9.24.8 12.84.9 16.64.7

Results are presented for models with the ability to generate a variable age gap: our proposal and the adapted model by Xia et al. (12). The Zero order shows the prediction error for

unmodified images. The best results are shown in bold face and standard deviations as subscripts.

Qualitative results

At a qualitative level, as presented in Figure 3, the changes

of our proposal tend to be more localized in space than the

modifications introduced by the other baseline models. These

modifications focus mostly on the interventricular septum and

the aorta with opposed transformations for opposite age gaps. In

detail, for increased age, the interventricular septum is enlarged

toward the LV cavity and the aorta is enlarged. Finally, although

most of the changes occur in the heart, some modifications are

observed in surrounding areas.

Quantitative assessment of generated
images

Assessment via predicted age

The apparent age of synthesized images was assessed using a

pre-trained ResNet18 (29) age regressor (MAE: 4.6 ± 3.2 years

for males and 3.9 ± 3.1 years for females). The hypothesis was

that images aged (respectively rejuvenated) by the model should

have a target age greater (respectively lower) than the original

images. Tables 1, 3 show the mean absolute error (MAE) for age

predictions using the pre-trained regressor when tested on the
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TABLE 2 Image quality in terms of Fréchet inception distance (FID) and peak signal-to-noise ratio (PSNR) for images generated synthetically from a

random testing set of 907 subjects with varied age and grouped in age gaps of 5 years.

FID ↓ PSNR (dB) ↑

Age gap −20 −15 −10 −5 5 10 15 20 −20 −15 −10 −5 5 10 15 20

Ours 1.0 1.0 1.0 0.9 1.1 1.2 1.8 2.2 19.7 21.2 24.4 25.9 26.6 25.0 21.2 19.2

Xia et al. (12) 0.4 0.4 0.2 0.0 0.0 0.0 0.2 0.5 28.0 28.4 30.7 49.8 63.8 58.7 44.0 31.2

Results are presented for models with the ability to generate a variable age gap: our proposal and the adapted model by Xia et al. (12).

TABLE 3 Mean absolute error (MAE) for age prediction and image quality metrics (FID and PSNR) for synthetically generated images from a subset of

subjects with 60 and 70 years old (for an age gap of 10) and with 55 and 75 years old (for an age gap of 20).

MAE for predicted age ↓ FID ↓ PSNR (dB) ↑

Age gap −20 −10 10 20 −20 −10 10 20 −20 −10 10 20

Ours 4.74.1 5.03.1 4.13.3 5.43.0 0.9 1.2 1.2 1.5 19.4 24.5 25.0 19.1

Xia et al. (12) 10.84.1 5.63.2 7.84.4 12.64.6 0.4 0.2 0.0 0.5 28.1 29.7 58.8 30.9

StarGAN-v2 4.24.3 5.23.0 9.24.0 5.14.7 12.5 5.0 12.4 9.9 9.8 10.3 10.0 9.7

Zero order 16.44.3 8.74.7 9.24.8 16.64.7 – – – – – – – –

Best results are shown in bold face and standard deviations as subscripts.

images generated by the proposed approach and compare it to

a model adapted from the work of Xia et al. (12) that generates

images with a controllable age gap and to StarGAN-v2 (30) that

transforms images between fixed age gaps (gaps of 10 and 20

years), respectively.

The last row (Zero order) corresponds to the results obtained

when the original images are not modified at all, i.e., the

predicted age is always the same but the target age changes

according to the desired age gap. We find that the proposed

model with residual and attentional blocks outperforms the

model based on the work by Xia et al. (12) and it obtains

comparable results to StarGAN-v2, while StarGAN-v2 can only

translate images between fixed domains. The proposed approach

presents a significant improvement in MAE when compared to

the Zero order.

Assessment via image quality

Image quality was assessed via the Fréchet inception

distance (FID) (31) and the peak signal-to-noise ratio

(PSNR). The FID gives a sense of how different two

datasets are in terms of features extracted from a pre-

trained deep learning model (better quality corresponds

to lower values). An InceptionV3 model (32) was trained

on the UK Biobank for this purpose (further details in

Supplementary material). PSNR, on the other hand, evaluates

the amount of corruption or noise in the generated images

by directly comparing them to the original ones (better

quality corresponds to higher values). As observed in Table 2,

both metrics were coherent and showed better image quality

for the model based on the work on Xia et al. (12), while

StarGAN-v2 obtained images with significantly worse image

quality (see Table 3).

This can be attributed to Xia et al.’s model introducing less

modifications in the image (see Figure 3), resulting in synthetic

images that are more similar to the original images but that

do not represent the target age accurately as shown when

computing the predicted age error in Table 1. On the other

hand, StarGAN-v2 is introducing more modifications in the

image, degrading its quality (see Figure 3), while maintaining a

competitive predicted age error in Table 3.

Volumetric analysis

In order to quantify the specific changes performed in

the heart, the LV size, the interventricular septum width

and the ejection fraction are derived from automatically

generated segmentations of the original and synthesized images

(more details about the segmentation model are provided in

Supplementary material). The normalized variation for these

metrics after adding or subtracting 20 years to the original

subjects is presented in Figure 4 separated by sex.

As observed in the figure, the model shows a clear tendency

for decreased LV size with age, going from a 5% increase

for rejuvenated subjects to a 5% decrease for aged subjects

(with respect to the original sample) for both sexes. With

respect to the interventricular septum average width, a decrease

around 25% for males and 15% for females is observed for

rejuvenated images, while the aged images also show a decrease
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FIGURE 4

Normalized volumetric variations of synthesized images for the left ventricle, the interventricular septum and the ejection fraction. Every dot

represents a subject and the boxes represent the interquartile range. The normalized variation is computed as the normalized di�erence of the

selected metric with respect to the mean value for the original distribution (i.e., the “Original age” distribution). The results are obtained for a

subset of participants aged 60.

of around 5–10% for both sexes. Finally, the ejection fraction

shows a similar distribution for rejuvenated and original images

while the aged subjects present a larger variability and an

overall mean decrease of around 20% for males and 5%

for females.

Synthetic images as data augmentation

Finally, in order to assess the utility of generated images

for data augmentation, several age regressors (ResNet18) were

trained with two datasets created from a new sample of

1,000 subjects with a particular age imbalance. Dataset one

(D1) consisted of an imbalanced dataset with 90% of subjects

younger than 70 years old. Dataset two (D2) was constructed

to manifest an imbalance for younger patients, with 90% of the

subjects being older than 60 years. These datasets were gradually

augmented with 1, 5, 10, and 25% of synthetically aged (for D1)

or rejuvenated (for D2) subjects. The results are presented in

Table 4. A clear reduction in prediction error is observed when

using synthetically age (or rejuvenated) subjects and the error

when using 10 or 25% of synthetic images is comparable to the

error obtained with a balanced dataset (12.7± 8.9).

Alternative tasks

In order to showcase the capabilities of the proposed

approach, the same model is used for modifying the BMI of an

input patient and for transforming an image in the end-diastole

(ED) time frame to an image in end-systole (ES).

Table 5 compares the prediction error (MAE) between

apparent BMI and the target BMI, as obtained from a pre-trained

ResNet18 BMI regressor (MAE 1.4± 1.1 for males and 1.6± 1.4

for females), for images generated with the proposed model and

for images that were not modified at all (Zero order). The MAE

TABLE 4 Mean absolute error (MAE) of ResNet18 age regressors when

trained with two imbalanced datasets and di�erent proportions of

added synthetic images.

MAE ↓

0% 1% 5% 10% 25%

D1 (10% of older subjects) 14.59.0 13.38.6 14.29.3 12.88.6 11.07.6

D2 (10% of younger subjects) 18.09.7 17.09.7 17.810.0 15.49.4 13.99.2

Balanced dataset 12.78.9 – – – –

Standard deviations are presented as subscripts.

increases slightly with higher BMI differences between input and

synthetic images, although it shows a significant improvement as

compared to the Zero order error, indicating a relative increase

(respectively decrease) for positive (respectively negative) gaps

in the apparent BMI of the subject.

With regards to the transformation of cardiac time frames,

the model obtained a root mean square error between generated

images and the real ES frames of 0.06 (±0.01), when compared

at the whole image level. Figure 5 shows some qualitative results

obtained for this task that include the generated mapping and

the pixel-wise absolute difference between the generated frames

and the real ones. As observed in the figure, the model captured

the thickening of the myocardium, the contraction of the right

ventricle as well as the smaller changes in size in the atria

between ED and ES. However, several hallucinations were also

introduced (highlighted with orange arrows) by the model that

are not clinically accurate.

Discussion

A conditional generative model is proposed that allows for

the modification of a cardiac image in two directions, i.e., for
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TABLE 5 Mean absolute error (MAE) for apparent BMI of generated images, obtained from a pre-trained ResNet18 BMI regressor.

MAE ↓

BMI gap −8 −6 −4 −2 −1 0 1 2 4 6 8

Ours 2.31.6 2.01.5 1.81.4 1.71.3 1.61.3 1.51.2 1.51.3 1.71.4 2.11.6 2.31.7 2.71.8

Zero order 7.22.0 5.61.9 3.81.8 2.21.4 1.71.3 1.51.2 1.71.4 2.31.6 4.11.8 6.01.8 7.91.7

Standard deviations are presented as subscripts.

FIGURE 5

Qualitative results for end-systole (ES) frame generation from end-diastole (ED) frames. Orange arrows highlight clinical inaccuracies of the

generated images such as incomplete interventricular septum or mitral valve or an extra “blob” in between the atria. Reproduced by kind

permission of UK Biobank ©.

increased and decreased age. This is the first approach, to the

best of our knowledge, for modeling the aging heart trained

only on cross-sectional data. Realisticmodifications are obtained

without the need of complicated pre-processing steps, such

as image registration or histogram matching, or of manual

subdivision of the dataset in age groups. The accuracy and image

quality of the results is comparable to state-of-the-art GAN

methods, such as StarGAN-v2 (30), while the current model

allows for a controllable target age and does not need to train

several models for the aging task.

The results obtained for increasing age show in general a

qualitative thickening of the interventricular septum, with the

associated reduction of the LV cavity size, and an enlargement

of the aorta. These changes are observed in the opposite

direction for rejuvenated hearts. Quantitatively, there is a clear

tendency for reduced LV size with age that is consistent with

the literature (1, 2). The interventricular septum average width

however, is reduced for both increased and decreased age, with

the literature signaling this region as the most affected by the

asymmetrical concentric LV hypertrophy observed with age (2).

The ejection fraction suffers a small decrease in the mean value,

while the literature states that it is preserved with age (1), and the

distribution becomes wider with age, which might be related to a

potential larger group of pathological subjects for increased age

and the introduction of uncontrolled bias in the model which

should be investigated in future works. Finally, an increased

diameter is also observed in the aorta with increased age in

both sexes according to the literature (33). Notably, the aorta

and the interventricular septum are important areas also for

age predictors based on deep learning, according to a recent

study (34).

A potential application for this method has been showcased

by counter-balancing biased datasets which improves the

accuracy of age regression models trained on them. Recent

works in the literature (35, 36) also demonstrate the feasibility

of synthetic data augmentation. Such augmentation may be

especially interesting for counter-balancing datasets with an age

bias between healthy and diseased patients or when there are

simply not enough control subjects.

Finally, two alternative tasks are presented to demonstrate

the model ability to synthesize images given cross-sectional data.

On one hand, the model was able to successfully increase and
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decrease the apparent BMI of subjects in an analogous manner

to the aging task. On the other hand, four chamber images in

the ES cardiac frame were synthesized from ED frames with a

relatively low error when compared to the real frame.

Limitations

The proposed model presents several limitations. First of all,

the model has not been validated against real longitudinal data.

This validation is particularly challenging, since repeated visits

may have images acquired at slightly different slice positions

which may then introduce changes in the heart morphology not

associated with age. Additionally, the time gap between visits

needs to be sufficiently large in order to observe visible changes,

while current longitudinal datasets have a time span of<10 years

between scans.

Secondly, the model is observed to produce images with

clinical inaccuracies, as observed in Figure 5, where the synthetic

images present an incomplete interventricular septum, an

extra “blob” in between the right and left atria or a partially

missing mitral valve. One possible approach to avoid incomplete

structures is to use deformable maps, instead of modifying

directly the pixel intensities, at the expense of preventing the

appearance of new structures that are not present in the original

image in the first place.

Conclusions

This work proposes a conditional generative model to

extract longitudinal patterns using only cross-sectional data.

Such a model may be applied to compare population groups,

such as subjects following a specific treatment vs. a control

group, that are spread in time in a cross-sectional dataset,

without the need of acquiring a cost- and time-expensive

longitudinal dataset. Moreover, we demonstrate the feasibility of

using the generated images for dataset balancing.
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