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Peroxisome proliferator-activated receptor β/δ (PPARβ/δ), the most PPAR abundant
isotype in the central nervous system, is involved in microglial homeostasis and
metabolism, whose disturbances have been demonstrated to play a key role in
memory impairment. Although PPARβ/δ function is well-established in metabolism, its
contribution to neuronal and specifically memory process is underexplored. Therefore, the
aim of the study is to determine the role of PPARβ/δ in the neuropathological pathways
involved in memory impairment and as to whether a risk factor implicated in memory loss
such as obesity modulates neuropathological markers. To carry out this study, 6-month-
old total knock-out for the Ppard gene male mice with C57BL/6X129/SV background
(PPARβ/δ-/-) and wild-type (WT) littermates with the same genetic background were used.
Animals were fed, after the weaning (at 21 days old), and throughout their growth, either
conventional chow (CT) or a palmitic acid-enriched diet (HFD). Thus, four groups were
defined: WT CT, WT HFD, PPARβ/δ-/- CT, and PPARβ/δ-/- HFD. Before sacrifice, novel
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object recognition test (NORT) and glucose and insulin tolerance tests were performed.
After that, animals were sacrificed by intracardiac perfusion or cervical dislocation. Different
techniques, such as GolgiStain kit or immunofluorescence, were used to evaluate the role
of PPARβ/δ in memory dysfunction. Our results showed a decrease in dendritic spine
density and synaptic markers in PPARβ/δ-/- mice, which were corroborated in the NORT.
Likewise, our study demonstrated that the lack of PPARβ/δ receptor enhances gliosis in
the hippocampus, contributing to astrocyte and microglial activation and to the increase in
neuroinflammatory biomarkers. Additionally, alterations in the hippocampal insulin
receptor pathway were found. Interestingly, while some of the disturbances caused by
the lack of PPARβ/δ were not affected by feeding the HFD, others were exacerbated or
required the combination of both factors. Taken together, the loss of PPARβ/δ-/- affects
neuronal and synaptic structure, contributing to memory dysfunction, and they also
present this receptor as a possible new target for the treatment of memory impairment.

Keywords: PPARβ/δ, memory impairment, high-fat diet, neuroinflammation, dendritic spines, synapsis, T2DM,
insulin signaling

INTRODUCTION

Peroxisome proliferator-activated receptors (PPARs) are ligand-
activated transcription factors that belong to the nuclear receptor
superfamily (Auwerx et al., 1999). PPARs are activated by natural
ligands derived from dietary lipids, such as polyunsaturated fatty
acids and their derivatives and exert an important physiological
role in regulating glucose, lipid, and lipoprotein metabolism.
Likewise, these receptors can be also activated by synthetic
ligands like fibrates, glitazones, or nonsteroidal anti-
inflammatory drugs (NSAIDs) (Carvajal et al., 2007; Chek
Kun et al., 2017), which make them promising targets for
several pathologies. Thus, the interest in the medical field for
these drug targets has increased exponentially in the last years.

The PPAR subfamily comprises three isotypes: PPARα, PPARγ,
and PPARβ/δ. Several studies have shown that PPARα and PPARγ
activation mediates by promoting the regulation of pathologic
processes including neuroinflammation, mitochondrial alterations,
and memory impairment (Heneka et al., 2005; Nicolakakis et al.,
2008). Interestingly, although PPARβ/δ has been shown to be the
most abundant isotype in the central nervous system (CNS)
(Moreno et al., 2004), being expressed in the main cellular
components of this system including astrocytes, neurons and
microglia (Schnegg and Robbins, 2011), its role in
neurodegenerative disorders has not been well characterized.

Inflammation not only actively contributes to the
development of several neurodegenerative diseases including
Alzheimer´s disease (AD) (Calsolaro and Edison, 2016; Regen
et al., 2017), but also plays an essential role in the progression of
metabolic pathologies, being a key point where both pathologies
converge. In fact, there is multiple evidence that insulin resistance
is one of the best predictors of memory impairment supporting
the hypothesis that AD represents a form of diabetes mellitus that
selectively affects the brain, receiving the name of “type 3
diabetes” (Monte and Wands, 2008). Moreover, several studies
demonstrated that people suffering from type 2 diabetes mellitus
(T2DM) also develop cognitive decline, which is defined as

reduction in one or more cognitive abilities, such as memory
(Biessels et al., 2008; Zilliox et al., 2016). In this line, it is well
known that obesity actively contributes to the development of
T2DM, but also has been related to inflammatory processes and it
is considered a clear risk factor in AD (Pugazhenthi et al., 2017;
Tumminia et al., 2018; Ebrahimpour et al., 2020). Notably, it has
been shown that PPARβ/δ downregulation could be linked to
both neuroinflammation and insulin resistance in the brain (De
La Monte and Wands, 2006). In fact, several clinical trials have
suggested that PPARβ/δ activation reduces inflammation and
ameliorates insulin sensitivity (Neels and Grimaldi, 2014;
Giordano Attianese and Desvergne, 2015; Vázquez-Carrera,
2016), among others. Therefore, they have been considered as
good candidates for the treatment of these pathologies
characterized by these hallmarks, such as T2DM (Salvadó
et al., 2012). In the CNS, synthetic PPARβ/δ-specific agonists
have been reported to ameliorate clinical symptoms, reducing the
severity of a variety of CNS pathologies by modulating oxidative
stress and inflammatory responses associated with these diseases
(Tong and Dominguez, 2016; Tong et al., 2016).

Collectively, although PPARβ/δ seems to play a key role in
several pathologic processes, including memory impairment, the
mechanisms responsible for these effects remain unknown.
Therefore, the aim of the study is to determine the role of
PPARβ/δ in the neuropathological pathways involved in the
development of memory impairment and as to whether a risk
factor involved in cognitive loss and in the development of T2DM
such as obesity (high-fat diet, HFD) consumption) modulates
hippocampal neuropathological markers in mice lacking this
nuclear receptor.

MATERIALS AND METHODS

Animals
To perform this study, 6-month-old total knock-out for the
PPARβ/δ gene male mice with C57BL/6X129/SV background
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(PPARβ/δ-/-) (Karim et al., 2006) and wild-type (WT) littermates
with the same genetic background were used. In all cases, animals
were obtained from established breeding couples in the animal
facility (Animal facility from the Pharmacy and Food Sciences
Faculty from the University of Barcelona; approval number C-
0032). After the weaning (at 21 days-old), and throughout their
growth, animals were fed either conventional chow (control diet,
CT) (ENVIGO, Madison, Wt 53744-4220) or a palmitic acid-
enriched diet containing 45% of fat mainly from hydrogenated
coconut oil (HFD) (Research Diets Inc., NB, United States). Thus,
four groups were defined:WTCT,WTHFD, PPARβ/δ-/- CT, and
PPARβ/δ-/- HFD.

All animals were kept under stable conditions of humidity and
temperature, standard light-dark cycle (12-h light/dark cycle) and
food and water ad libitum, following the ethics guidelines defined
by the European Committee (European Communities Council
Directive 2010/63/EU). Manipulation protocols were previously
approved by the ethics committee from the University of
Barcelona and, at all times, it was made sure that animal
numbers, their stress, and pain were kept under a necessary
minimum following the appropriate animal manipulation ethical
methodologies.

Glucose and Insulin Tolerance Tests
For both tests, mice were fasted for 6 h and the tests were
performed in a quiet room, preheated to +28°C. In the glucose
tolerance test (GTT), glucose was administered at a dose of 1 g/kg
intraperitoneally (i.p). On the other hand, in the insulin tolerance
test (ITT), the dosage of insulin used was 0.75 IU/Kg and it was
also administered i.p. Next, samples from the tail vein were
extracted in consecutive periods of time and glucose levels
were measured using an Accu-check®Aviva glucometer. In
GTT, measurements were made at 5, 15, 30, 60, and 120 min
after the administration of glucose. In the ITT case, samples were
extracted at 15, 30, 45, 60, and 90 min after the insulin
administration.

The animals were monitored in every moment, and in those
cases where glucose levels dropped under a concentration of
20 mg/dl, a dosage of 1 g/Kg of glucose was administered i.p. and
they were kept in observation until blood glucose concentrations
were stable and the animal behavior was normal. Twelve animals
per group were analyzed.

Novel Object Recognition Test
This behavioral test is used for testing the hippocampal-
dependent recognition memory of mice based on the
spontaneous tendency of rodents to spend more time
exploring a novel object than a familiar one. It consists of
three phases: habituation, familiarization, and test phase. In
the first one, mice were placed in a circular open-field arena
of 40 cm in diameter surrounded by black curtains where the light
intensity in the middle of the field was 30 lux. Their tracking was
monitored (Smart 3.0; Panlab) for three consecutive days for
10 min each mouse. In the fourth day, two identical objects
(A-A’) were placed in the arena at an equal distance and 24 h
later, one object was replaced by a new one (A-B) and the
exploration time (10 min) of each mouse was measured.

Exploration was defined as the orientation of snout of the
animals toward the object, sniffing or touching (Antunes and
Biala, 2012; Ettcheto et al., 2016). In those cases, when the total
time exploring both objects was less than 5 min, the mouse was
excluded. Data were measured by discrimination index (DI),
which indicates the difference in exploration time in seconds
between familiar and novel object, using the followingt equation:

DI � B exploration time − A exploration time

Total exploration time

All spaces were properly cleaned with 96% ethanol between
animals, in order to eliminate odor or other cues.

Hippocampal Spine Density Analysis
To carry out the spine density analysis, five animals per group
were used which were sacrificed by cervical dislocation. After, the
brain was isolated, it was processed following the instructions of
the GolgiStainTM Kit purchased from FD Neurotechnologies,
Inc. (FD Rapid GolgiStainTM Kit; Cat #PK401). Images were
obtained with a BX61 Laboratory Microscope (Melville NY-
Olympus America Inc.). The quantification was carried out by
selecting five neurons per animal in the dentate gyrus (DG) of the
hippocampus. Measurement was done at least 50 μm from the
soma along consecutive 10 μm on secondary branches starting
10 μm after branching from the primary dendrite. Spine density
was calculated by dividing the number of spines per segment by
the length of the segment and was expressed as the number of
spines per 10 μm of dendrite.

Immunoblot Blot Analysis
Fresh brains of at least four mice per group were extracted right
after euthanasia (cervical dislocation) and the hippocampus were
dissected and kept frozen at −80°C until use. Next, samples were
homogenized in lysis buffer (Tris HCl 1 M pH 7.4, NaCl 5 M,
EDTA 0.5 M pH 8, Triton, distilled H20) containing protease and
phosphatase inhibitor cocktails (Complete Mini, EDTA-free;
Protease Inhibitor cocktail tablets, 11836170001, Roche
Diagnostics GmbH, Germany; Phosphatase Inhibitor Cocktail
3, P0044, Sigma-Aldrich, United States). The samples were
centrifuged at 14,000 rpm for 10 min at 4°C after a 30-min
incubation at the same temperature. The supernatant was
recovered and frozen at −80°C until use.

Sample protein concentration was determined using the
PierceTM BCA Protein Assay Kit (Thermo ScientificTM). For
immunoblot assays, 10 µg per sample was used and denatured at
95°C for 5-min in a sample buffer [0.5 M Tris HCl, pH 6.8, 10%
glycerol, 2% (w/v) SDS, 5% (v/v) 2-mercaptoethanol, 0.05%
bromophenol blue]. Electrophoresis was performed on
acrylamide gels of 7%, 10%, and 12% concentration at
constant 120 V and transferred to polyvinylidene difluoride
sheets (Immobilon®-P Transfer Membrane; IPVH00010; Merk
Millipore Ltd., United States) at constant 200 mA for 120 min.
Then, membranes were blocked for 1-h with 5% non-fat milk
dissolved in TBS-T buffer [0.5 mM Tris; NaCl, Tween® 20
(P1379, Sigma-Aldrich, United States), pH 7.5], washed with
TBS-T 3 times for 5-min, and incubated with the appropriate
primary antibody, detailed in Supplementary Table S1,
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overnight (O/N) at 4°C. Subsequently, blots were washed in TBS-
T buffer and incubated at room temperature for 1 h with the
appropriate secondary antibody (Supplementary Table S1).
Finally, results were obtained through chemiluminescence
detection using the Pierce® ECL Western Blotting Substrate
(#32106, Thermo Scientific, United States), a Bio-Rad
Universal Hood II Molecular Imager, and the Image Lab
v5.2.1 software (Bio-Rad laboratories). Measurements were
expressed in arbitrary units and all results were normalized
with the corresponding loading control (Glyceraldehyde-3-
phosphate dehydrogenase; GAPDH).

Immunofluorescence
At least four animals per group were previously anesthetized by
the i.p. injection of ketamine (100 mg/Kg) and xylazine (10 mg/
Kg). When they were in the no-pain sleep phase, they were
intracardially perfused with 4% paraformaldehyde (PFA) diluted
in 0.1 M phosphate buffer (PB). After perfusion, brains were
removed and stored in 4% PFA O/N at 4°C. The next day, the
solution was changed into 4% PFA+30% sucrose. Coronal
sections of 20 µm were obtained by a cryostat (Leica
Microsystems) and kept in a cryoprotectant solution at −20°C
until their use.

On the first day of the assay, free-floating sections were washed
three times with 0.1 M PBS pH 7.35 and after, five times with
PBS-T (0.1 M PBS; 0.2% Triton X-100). Then, they were blocked
in a solution containing 10% fetal bovine serum (FBS) and 1%
Triton X-100 diluted with PBS-T five times for 5 min each and
incubated with the primary antibody (Supplementary Table S2)
O/N. On the second day, slices were washed with PBS-T 5 times
for 5 min and incubated with the pertinent secondary antibody
(Supplementary Table S2) for 2 h at room temperature. Finally,
sections were treated with 0.1 μg/ml Hoechst (Sigma-Aldrich, St
Louis, MO, United States), used for cell nuclei staining, for 8 min
in the dark at room temperature and washed with 0.1 M PBS. All
reagents, containers and materials exposed to Hoechst were
properly managed and processed to avoid any cytotoxic
contamination. Finally, brain slices were mounted in gelatin-
coated slides using Fluoromount G (EMS) and were left to dry
O/N. Image acquisition of dentate gyrus of hippocampus was
obtained in a blinded manner using an epifluorescence
microscope (BX61 Laboratory Microscope, Melville, NY-
Olympus America Inc.) and quantified by ImageJ.

Statistical Analysis
All results are presented as MEAN ± SD. Groups were compared
against each other using two-way ANOVA. When variables
independently were significant, we denoted #p < 0.05, ##p <
0.01, ###p < 0.001, and ####p < 0.0001 for the diet factor and
$p < 0.05, $$p < 0.01, $$$p < 0.001, and $$$$p < 0.0001 for the
genotype factor. When the interaction between two analyzed
factors in ANOVA was significant, Tukey’s post hoc test was
performed for comparison among groups (pp < 0.05. ppp < 0.01,
pppp < 0.001, and ppppp < 0.0001). All analyses and GAPDH
representations were obtained using Graph Pad Prism software
for Mac version 6.01; Graph Pad Software, Inc.

RESULTS

HFD Feeding Induces BodyWeight Increase
and Glucose Alterations at Peripheral Level
Body weight profile was analyzed at 6 months of age in WT and
PPARβ/δ-/- mice after being fed conventional chow or HFD from
their weaning. Two-way ANOVA revealed that feeding HFD
significantly increased (p < 0.0001) their body weight in both
genotypes compared to mice fed the control diet (Figure 1A),
reaching an increase of 135% in body weight in HFD vs. CT.
Moreover, GTT and ITT were performed in order to evaluate
peripheral alterations of glucose metabolism in these
experimental groups. In line with our previous studies, two-
way ANOVA showed a significant effect of diet variable in
both GTT (p < 0.0001) and ITT (p < 0.0001), with an increase
of 145% due to HFD feeding in both tests, thereby indicating that
feeding the HFD affects both genotypes (Figures 1B–E).

Evaluation of Memory Impairment
To determine the impact of PPARβ/δ deficiency onmemory function
together with HFD intake, we evaluated the hippocampal-dependent
recognition memory by Novel Object Recognition Test (NORT)
(Figure 2). Two-way ANOVA revealed a significant effect of diet and
genotype (p < 0.05 and p < 0.05, respectively) with interaction of both
variables (p < 0.05). Therefore, Tukey’s post hoc was performed
which showed that HFD feeding promoted a significant reduction of
39% in the memory capacity in WT animals. However, PPAR β/δ-/-
mice demonstrated to have a significant decrease in recognition
memory compared toWT CT independently of the diet (WT CT vs.
WTHFD p < 0.05; WT CT vs. PPAR β/δ-/- CT p < 0.05; WT CT vs.
PPAR β/δ-/- HFD p < 0.05).

PPARβ/δ-/- Mice and Obesity Are
Associated With Decreased Dendritic Spine
Density
The memory process was also evaluated by the analysis of
dendritic spine density in the hippocampus, since it has been
demonstrated that the number of dendritic spines positively
correlates with synaptic plasticity and cognition (Yuste and
Bonhoeffer, 2001; Sala and Menahem, 2014). In our study, the
dendritic spine detection and subsequent quantification were
performed where the obtained results correlated with those of
the behavioral test. Specifically, our data demonstrated a
significant effect of diet and genotype (p < 0.01 and p <
0.0001, respectively) with the interaction between both
variables (p < 0.01). Following, Tukey´s post hoc was
performed and our results showed a significant decrease of
30% in hippocampal spine number in WT mice after being
fed with HFD (p < 0.0001). By contrast, animals with PPARβ/
δ deficiency also exhibited a significant reduction compared to
WT, but HFD feeding did not induce a synergic effect (WT CT vs.
PPAR β/δ-/- CT 22%, p < 0.001; WT CT vs. PPAR β/δ-/- HFD
30%; p < 0.0001) (Figures 3A,B). Moreover, as can be observed in
Figure 3A, the reduction in spine number was accompanied by
shorter and smaller dendritic spines (qualitative evaluation).
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Therefore, our results indicated that HFD feeding induces
memory alterations in WT. However, when animals exhibit
PPARβ/δ deficiency memory profile was similar, but it was
not enhanced by the diet.

In order to support these findings, proteins directly involved in
memory process and plasticity in the hippocampus such as the
drebrin 1 (DBN1), neurexin, density protein 95 (PSD95),
synaptophysin, and brain-derived neurotrophic factor (BDNF)
were evaluated. DBN1 has been demonstrated to play a key role in
dendritic spine regulation (Ivanov et al., 2009a; Ivanov et al.,
2009b). In this line, two-way ANOVA revealed a significant
reduction (p < 0.01) in DBN1 protein levels in PPARβ/δ-/-
mice compared with WT mice. Likewise, neurexin (a
presynaptic protein) showed the same pattern, a significant
implication of the genotype (p < 0.01) in its protein level.
Moreover, a significant effect of the genotype (p < 0.05) also
was observed in PSD95, (a postsynaptic protein) but in this case,
with interaction between two variables (p < 0.05). Therefore,
Tukey’s post hoc was carried out to analyze the differences among
the experimental groups. Our results exhibited a significant
reduction in PSD95 in PPARβ/δ-/- CT compared to WT CT.
Regarding synaptophysin, this protein is expressed in synaptic
vesicles and its reduction has been associated with impairments to
neuronal health together with BDNF (J. T. Yang et al., 2019). In
this line, our results showed a significant reduction of
synaptophysin in those animals fed HFD, demonstrating a
significant effect of this variable (p < 0.05), but this reduction

FIGURE 1 | (A) Analysis and representation of changes in body weight (n = 12 animals per group). (B) GTT and (D) ITT experiment profiles (n = 12 animals per
group). Area under curve (AUC) data were calculated from the time point 0 until the end of the experiment for both (C)GTT and (E) ITT. Statistical analysis was performed
through two-way ANOVA. Significant differences were found between control and high-fat diet groups: #### denote p < 0.0001.

FIGURE 2 | NORT, DI expressed in seconds (Number of animals ≥10).
Statistical analysis was performed by two-way ANOVA and Tukey post-test
(WT CT vs. WT HFD: * denotes p < 0.05; WT CT vs. PPAR β/δ-/- CT: * denotes
p < 0.05; WT CT vs. PPAR β/δ-/- HFD * denotes p < 0.05).
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was not exacerbated by the absence of PPAR β/δ. Finally,
concerning BDNF, results showed a significant effect of the
diet (p < 0.001) and genotype (p < 0.01) with the interactions
between both variables (p < 0.001). Next, Tukey´s post hoc test
revealed a significant decrease in hippocampal BDNF protein
levels in PPARβ/δ-/- mice fed HFD compared to the other groups
(WTCT vs. PPAR β/δ-/- HFD p < 0.001;WTHFD vs. PPAR β/δ-/-
HFD p < 0.001; PPAR β/δ-/- CT vs. PPAR β/δ-/- HFD p < 0.0001)
(Figure 4). Collectively, as previously described (Saiyasit et al.,
2020), our results confirm that HFD feeding contributes to
disturbances in the synaptic transmission. However, when
there is a PPAR β/δ deficiency, biomarkers related to neuronal

function are directly altered independently of diet, suggesting the
essential role that PPAR β/δ plays in the synaptic transmission.

PPAR β/δ Deficiency Increases Glial
Markers Activation
Evaluation of the reactive profile of astrocytes and microglia in
the hippocampal dentate gyrus was performed through the
detection of glial fibrillary acidic protein (GFAP) and ionized
calcium-binding adapter molecule 1 (IBA1) proteins by
immunohistofluorescence. Representative images of all four
experimental groups can be found in Figure 5. Moreover,

FIGURE 3 | (A)Optical microscope images of the DG of hippocampus GolgiStain. Scale bar: 10 μm. (B)Quantification of dendritic spines for each 10 μm. Groups
were compared against each other using two-way ANOVA and Tukey post-test (n = 5) (WT CT vs.WTHFD: **** denote p < 0.0001;WTCT vs. PPAR β/δ-/- CT: *** denote
p < 0.001; WT CT vs. PPAR β/δ-/- HFD: **** denote p < 0.0001).

FIGURE 4 | Immunoblot detection of synaptic proteins where two representative samples out of four per group are shown. All results are presented asMEAN ±SD.
Data were analyzed by two-way ANOVA (n ≥ 4) (DBN1 and neurexin:WT vs. PPAR β/δ-/-: $$ denotes p < 0.01) (synaptophysin: CT vs. HFD: # denote p < 0.05). In the case
of PSD95 and BDNF, Tukey post-test was performed (PSD95: WT CT vs. PPAR β/δ-/- CT: *denotes p < 0.05) (BDNF: WT CT vs. PPAR β/δ-/- HFD: *** denote p < 0.001;
WT HFD vs. PPAR β/δ-/- HFD: *** denote p < 0.001; PPAR β/δ-/- CT vs. PPAR β/δ-/- HFD: **** denotes p < 0.0001.
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graphic quantification of fluorescence intensity measured by
ImageJ is shown in Figure 5I for GFAP and j for IBA1. In the
case of GFAP, two-way ANOVA showed a significant effect of
diet (p < 0.05) and genotype variables (p < 0.01) without
interaction between them, demonstrating that, on the one
hand, HFD induced a significant activation of astrocytes
compared to control diet, and on the other, PPARβ/δ-/- mice
presented a significantly higher basal profile of reactive astrocytes
than WT mice (Figure 5I). In the study of microgliosis, our
results revealed a significant effect of both diet (p < 0.01) and
genotype (p < 0.0001) with an interaction between both factors
(p < 0.0001). Subsequently, Tukey’s post hoc showed a significant
microgliosis in WT mice fed HFD compared to those fed
conventional chow (p < 0.0001). In the case of PPAR β/δ-/-
mice, both groups exhibit a significant microglial activation
compared to WT regardless of the consumed diet (PPARβ/δ-/-
CT vs. WT CT p < 0.0001; PPARβ/δ-/- HFD vs. WT CT)
(Figure 5J).

At the molecular level, the levels of different proteins related to
the neuroinflammation process were analyzed in the
hippocampus including toll-like receptor 4 (TLR4), nuclear
factor kappa B(NFKβ), and protein tyrosine phosphatase
(PTP1B). Regarding TLR4 protein levels, two-way ANOVA
showed a significant effect of genotype (p < 0.05) with the

interaction between both variables, genotype and diet (p <
0.05). Next, Tukey’s post hoc revealed a significant TLR4
increase in PPARβ/δ-/- mice compared to WT fed the
standard chow diet (WT CT vs. PPARβ/δ-/- CT p < 0.001;
WT CT vs. PPARβ/δ-/- HFD p < 0.01; WT HFD vs. PPARβ/
δ-/- CT p < 0.05) (Figure 6).

In the case of NFKβ and PTP1B, two-way ANOVA revealed a
significant effect of diet and genotype for both proteins (p < 0.05
and p < 0.05; p < 0.01 and p < 0.05, respectively), although none of
them demonstrated interaction between both factors (Figure 6).
Collectively, our results confirm that feeding the HFD and the
lack of PPARβ/δ differently affect the levels of proteins involved
in neuroinflammation.

PPAR β/δ Deficiency Disrupts the Insulin
Signaling Pathway in the Hippocampus
Since previous studies have demonstrated that hippocampal
insulin signaling plays a key role in the memory processes
(McNay and Recknagel, 2011; Talbot et al., 2012; Barber et al.,
2021), we next evaluated different proteins involved in this
molecular pathway, including glycogen synthase kinase 3 beta
(GSK3β) and protein kinase B (AKT). The phosphorylation levels
of these proteins showed a similar profile. When two-way

FIGURE 5 | Evaluation of inflammatory responses. Representative images for the detection of astrocytes (A–D) and microglia (E–H) (red color in both cases) in the
DG of the hippocampus. All samples are co-stained with Hoechst for the detection of cellular nucleus (blue). Scale bar: 200 μm. Graphic representation of fluorescence
intensity for GFAP (I) and IBA1 (J). In the case of GFAP, statistical analysis was performed through two-way ANOVA (Number of animals ≥4) (Control diet vs. HFD: #

denote p < 0.05) (WT vs. PPAR β/δ-/-: $$ denote p < 0.01). For IBA1, two-way ANOVA and Tukey’s were used for statistical analysis (WTCT vs.WTHFD: **** denote
p < 0.0001, WT CT vs. PPAR β/δ-/- CT: **** denote p < 0.0001, WT CT vs. PPAR β/δ-/- HFD: **** denote p < 0.0001).
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ANOVA was applied, a significant effect of the genotype was
observed (p < 0.01 and p < 0.01) without interaction between
genotype and diet, thereby suggesting that PPARβ/δ deficiency
reduces their activation. However, GSK3β and AKT did not show
a significant effect on variables after statistical analysis.
Surprisingly, when insulin receptor (IR) was evaluated, results
showed that the genotype significantly affected IR levels (p <
0.05), probably to compensate for the inefficacy of the pathway
(Figure 7).

DISCUSSION

The present work provides novel findings on the neurological role
of PPARβ/δ in mice under standard conventional chow diet and
after HFD intake, which indicate that PPARβ/δ plays a prominent
role in dendritic spine preservation and memory process;
therefore, it may protect against the memory impairment.
Interestingly, HFD consumption does not exacerbate brain

cognitive pathology observed in the PPARβ/δ-deficient mice at
this level. These results are in agreement with those observed in
central insulin signaling and neuroinflammation markers,
reinforcing the importance of this receptor at central level. On
the other hand, our data demonstrated that alterations in body
weight, GTT, and ITT were induced due to continuous HFD
intake and not due to the lack of this nuclear receptor, probably
due to continued dietary intervention. Thus, using the well-
established line of PPARβ/δ-/- mice and its WT controls, we
assessed the impact of PPARβ/δ deficiency on cognitive function,
synaptic plasticity, dendritic spine density, and synaptic markers,
and evaluated whether HFD intake deteriorates this pathological
status.

It has been widely demonstrated that the PPAR superfamily
plays a key role in metabolic processes. In fact, their agonists are
used for the treatment of pathologies including T2DM.
Specifically, it has been demonstrated that PPARβ/δ is
expressed throughout the brain, with prominent localization in
the mouse hippocampus, entorhinal cortex, and hypothalamus

FIGURE 6 | Semi-quantification of protein levels for TLR4, NFKβ, and PTP1B where two representative samples out of four per group are shown. All results are
presented as MEAN ± SD. Groups were compared against each other using two-way ANOVA (n ≥ 4) (CT vs. HFD: ## denote p < 0.01; WT vs. PPAR β/δ-/-: $ denotes p <
0.05). In the case of TLR4, Tukey post-test was performed (WT CT vs. PPAR β/δ-/- HFD: ** denote p < 0.01; WT CT vs. PPAR β/δ-/- CT: *** denote p < 0.001;WT HFD vs.
PPAR β/δ-/- CT: * denotes p < 0.05).

FIGURE 7 | Immunoblot detection of IR and related signaling proteins where two representative samples out of four per group are shown. All results are presented
as MEAN ± SD. Groups were compared against each other using two-way ANOVA (n ≥ 4) (WT vs. PPAR β/δ-/-: $$ denote p < 0.01; $ denote p < 0.05).
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(Braissant et al., 1996; Heneka and Landreth, 2007; Hall et al.,
2008). Interestingly, several studies have demonstrated the link
between metabolic dysfunctions and memory impairment. In
fact, AD is considered as type 3 diabetes (Small et al., 2000; Leszek
et al., 2017). Therefore, taking all these into account, the interest
in this receptor and its agonists has increased for potential
therapeutic interventions in the treatment of AD and cognitive
disorders related to obesity.

Regarding metabolic alterations, PPAR β/δ agonists
substantially decrease adiposity and improve glucose
intolerance and insulin resistance in animal models (Barak
et al., 2002; Nicolakakis et al., 2008; Salvadó et al., 2012; Tan
et al., 2016; Palomer et al., 2018). However, it has been observed
that PPAR β/δ-null mice showed a significant body weight
reduction compared to control mice in the first week after
birth, differences that disappear when they are adults (Peters
et al., 2000). These data agree with the results presented in this
study in which we did not observe changes in weight depending
on the genotype.

On the other hand, it is well known that feeding the HFD
causes a significant increase in body weight, glucose intolerance,
and insulin resistance, (Musso et al., 2003; Álvarez-Amor et al.,
2021). However, we did not find alterations in these parameters
due to the genotype. One possible explanation for these
discrepancies could be the differences in time exposition to the
HFD. In this context, previous studies have exposed animals to a
hypercaloric diet following a different pattern compared to ours
in which animals were fed from their weaning at 21 days old until
their sacrifice at 6 months. Therefore, in line with previous
studies, young animals exposed to a HFD might show more
plasticity to adapt to the diet (Burke et al., 2021) and for this
reason, our mice did not show differences due to lack of the
receptor.

It is well known that dendritic spines play a pivotal role in the
learning process, whereas synaptic plasticity alterations have been
directly correlated to memory impairments (Terry et al., 1991;
Scheff et al., 2006; Bourne and Harris, 2007; Knott and Holtmaat,
2008; Chidambaram et al., 2019; Ettcheto et al., 2020). This
prompted us to focus our study on the evaluation of these
structures in order to assess the effect of PPARβ/δ deficiency
in dendritic spines density at the hippocampal level, since
PPARβ/δ has been associated with the neuroinflammatory
process and insulin resistance in the brain, which are
considered important contributors for neurodegeneration. In
this line, our results highlighted that PPARβ/δ-/- mice showed
a significant reduction of these structures in mice fed a standard
diet and this was not exacerbated by the HFD, suggesting that this
receptor is necessary for the maintenance of dendritic spines and,
in consequence, for eluding memory impairment. By contrast, in
WT mice, we observed a reduction of dendritic spines due to
HFD intake for a long period of time. These results agreed with
previous studies that demonstrated that HFD-induced obesity is
considered a clear risk factor for the development of AD. These
data were correlated with those obtained in the NORT, also in
previous studies performed by our group (Barroso et al., 2013).
Moreover, it has been widely demonstrated that PPARβ/δ plays a
key role in running endurance (Wang et al., 2004; Schuler et al.,

2006; Röckl et al., 2007; Thomson et al., 2007). PPAR β/δ is the
most expressed isoform in the skeletal muscle, especially in the
oxidative fibers. These fibers mainly expressed enzymes involved
in the fatty acids oxidation. In this line, it has been demonstrated
that the overexpression of PPARβ/δ in this tissue induces the
reorganization of these fibers increasing the percentage of
oxidative fibers and decreasing muscle fatigue (Hämäläinen
and Pette, 1995), being crucial also for endurance (Wang
et al., 2004). Therefore, the lack of this isotype has been
associated with alterations in physical performance that imply
an intense exercise including swimming or running. Therefore,
the lack of PPARβ/δ may affect the swimming performance,
making MWM unreliable to assess the mice cognition.

On the other hand, it is known that obesity-associated with
HFD intake heightens alterations in dendritic spine density,
neuronal loss, and memory impairment through several
mechanisms, including neuroinflammation (Stranahan et al.,
2011; Duffy et al., 2019). Our results confirm this dendritic
spine reduction in WT fed HFD compared to WT mice fed
the standard chow.

Going in depth at the molecular level, DBN1 is an actin-
binding protein abundant within dendritic spines, which is
typically located in postsynaptic receptive regions of excitatory
synapses (Sekino et al., 2007) and it is thought that it controls
spine morphology and function (Hayashi et al., 1996). In fact, its
reduction in the hippocampus has been correlated with cognitive
deficits and, by contrast, its preservation has been associated with
neuroprotection (Harigaya et al., 1996; Hatanpää et al., 1999;
Kojima and Shirao, 2007; Counts et al., 2012). In line with these
previous studies, our study showed a significant decrease in
DBN1 protein level in the hippocampus induced by PPARβ/δ
deficiency. This is in agreement with the findings obtained in

FIGURE 8 | Schematic representation of the effects of PPARβ/δ
deficiency. The figure shows how this receptor is a key molecule in the
development of some of the most important features of memory impairment
such as neuroinflammation, reduction in the number of dendritic spines,
as well as an alteration of synaptic biomarkers, and insulin signaling disruption.
In this way, this transcription factor represents a promising target for the
treatment and improvement of memory impairment, an important hallmark of
neurodegenerative diseases.
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dendritic spine analysis. Likewise, it has been reported that dbn1
loss in the brain is not sufficient to induce synaptic dysfunction
(Willmes et al., 2017). Therefore, our study suggests that PPARβ/
δ actively contributes to the preservation of these structures
together with DBN1. Consistent with this, neurexin and
PSD95 protein levels also showed a similar pattern, which
confirms that PPARβ/δ plays a pivotal role in synaptic plasticity.

Regarding synaptophysin, the reduction of this glycoprotein,
which predominates in the synaptic vesicles, has been related to
memory impairment (Zhang et al., 2019; Du et al., 2020) In this
context, as it has been previously commented, obesity also plays a
key role in the correct function of memory interconnecting these
three concepts (Daniels et al., 2005; Kalarchian and Marcus,
2012). Our results showed a significant decrease in
synaptophysin protein levels in the hippocampus induced by
the HFD feeding. However, we did not observe any significant
reduction related to the genotype. The neuronal activity has also
been described to regulate BDNF transport into dendrites, which
have been involved in the modulation of synaptic transmission
and synaptogenesis (Lu and Figurov, 1997; Tongiorgi et al., 1997;
Tongiorgi, 2008). In this study, we observed a significant
reduction in its levels in PPARβ/δ-/- fed HFD compared to the
other groups, suggesting that PPARβ/δ deficiency alone is not
enough to alter BDNF protein levels at this time.

Neuroinflammation is a common feature of every central
nervous system diseases and is being highly recognized as a
potential mediator of memory impairment (Fourrier et al.,
2019; McGrattan et al., 2019). The impact of this complex
process, which includes the alteration of the TLR4 pathway
and glial activation among other processes, induces the release
of pro-inflammatory cytokines and aberrant neuronal circuits,
contributing altogether to the acceleration of cognitive decline
(Zhang et al., 2018a; Jin et al., 2019; Malpetti et al., 2020).
However, the involvement of inflammation is not fenced only
in the brain. In fact, it has been demonstrated that HFD intake
and obesity also impair cognitive function in animal models
(Kanoski and Davidson, 2011), as well as in humans (Power et al.,
2015), by disrupting hippocampal morphology and synaptic
plasticity caused by inflammation (Porter et al., 2010; Wang
et al., 2015). In this context, PPARβ/δ has been involved in
the modulation of inflammation at both peripheral and central
levels. Our study demonstrated that the lack of PPARβ/δ receptor
enhances the gliosis in the hippocampus, contributing to
astrocyte and microglial activation. Likewise, TLR4 and NFKβ
protein levels also showed a significant increase in PPAR β/δ-/-
mice. In agreement with these data, studies performed by
Rodríguez-Calvo and colleagues demonstrated that the
PPARβ/δ agonist GW501516 inhibited LPS-induced cytokine
production by preventing NFKβ activation (Rodríguez-Calvo
et al., 2008). Interestingly, HFD promoted similar alterations
to those observed when there is a deficiency of PPARβ/δ.
Exceptionally, in the case of microglial activation, whereas
feeding HFD induced neuroinflammation in WT mice, feeding
KOmice HFD did not exacerbate these changes, similar to TLR4,
probably due to the inflammation observed in PPARβ/δ-/- mice
that reached so high levels that it can be increased by chronic low-
intensity intervention such as diet.

Interestingly, our results showed a significant increase in
PTP1B protein levels in the hippocampus caused by the
genotype. This increase was similar to that observed after
HFD intake. An analogous trend was observed for NFKβ and
astrogliosis. The PTP1B expression is highly increased in
activated microglia, which in turn is enhanced due to pro-
inflammatory processes, suggesting that it is an important
positive regulator of inflammation (Song et al., 2016).
However, PTP1B has not only been related to
neuroinflammatory mechanisms. In fact, it has been
demonstrated that it is a key regulator of insulin sensitivity
since mice with Ptp1b gene deletion present a reduction of
insulin resistance, turning it into a promising target not only
for the design of anti-diabetic drugs (Elchebly et al., 1999; Zhang
and Lee, 2003) but also to elude synaptic alteration and cognitive
loss (Fuentes et al., 2012; Ricke et al., 2020), since PTP1B activity
in the hippocampus has been correlated with impaired neuronal
insulin signaling (Wang et al., 2017). Taking all these data into
account, our results confirm the studies performed by de laMonte
and colleagues that demonstrated that downregulation of
PPARβ/δ could be linked to both inflammation and insulin
resistance in the brain (De La Monte and Wands, 2006).

It is well known that IR and insulin signaling play an
important role in neuronal physiological functions,
contributing to synapse formation, neuronal plasticity
(Kleinridders et al., 2014; Agostinone et al., 2018), and
reduction in neuroinflammatory process, which all together
promote the cognitive function (Chiu et al., 2008; Craft et al.,
2012; Carlson et al., 2014). Once IR is activated, AKT is
phosphorylated/activated, which in turn phosphorylates
various biological substrates, including GSK3β. In this context,
the dysfunction of this pathway occurs, which has been associated
with insulin resistance leading to memory impairment (Qi et al.,
2015; Zhang et al., 2018b; Yang et al., 2020). In our study, p-AKT
and p-GSK3β protein levels showed a significant decrease in the
hippocampus of PPARβ/δ-/- mice in agreement with spine
dendritic reduction and increased neuroinflammation observed
in this genotype. Moreover, we did not observe changes in the diet
variable, probably due to the fact that the lack of this receptor
interferes in the attachment of fat to its receptor. Of note, an
increase in IR protein level was observed in these mice, suggesting
that it could be a compensatory mechanism to deal with this
insulin signaling disruption. These results concur with previous
studies performed by Buck and colleagues who demonstrated that
when insulin-like growth factor 1 receptor (a co-receptor of
insulin signaling pathway) was inhibited, a compensatory IR
activation was observed (Buck et al., 2010), demonstrating the
key role of PPARβ/δ in this process.

CONCLUSION

In conclusion, the present study demonstrates for the first time
that PPARβ/δ deficiency in the brain constitutes not only a new
risk factor associated with cognitive loss in neurological diseases
but also a key molecule targeting the pivotal pathways leading to
memory impairment which include neuroinflammation, insulin
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resistance, dendritic spine regulation, and synaptic plasticity,
among others (Figure 8). On the other hand, we observed
that HFD intake affects mechanisms involved in the memory
process in the presence of the receptor, but did not exacerbate this
process in the presence of PPARβ/δ. Therefore, PPARβ/δ
provides a new and promising therapeutic target in order to
design novel strategies focused on curbing or improving memory
impairment present in most neurological diseases.
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