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ABSTRACT 
 
Cancer is one of the most common diseases worldwide. Despite that a lot of time and 

resources have already been spent into resolving cancer, there is still a long way to go 

to be able to cure every patient and improve their quality of life. To contribute to these 

efforts, we integrate and study a joint dataset of whole genome, whole exome and panel 

sequencing data from primary and metastatic tumours from 25,499 donors with 

different cancer types. This dataset consists out of four cohorts: the Pan-Cancer Analysis 

of Whole Genomes (PCAWG) dataset, the Hartwig Medical Foundation (HMF) dataset, 

The Cancer Genomes Atlas (TCGA) dataset and the Breast-CAncer STratification study 

(B-CAST) dataset. By describing mutations found in the individual cohorts and the joint 

dataset, we provide an overview of the genomic landscape across various cancer types. 

We also assess the landscape of mutational signatures in primary and metastatic 

tumours focused on breast, colorectal and uterus cancer and identify groups based on 

the dominant mutational signatures. We observe groups with the same dominant 

signature across all three cancer types, as well as differences between primary and 

metastatic tumours. To illustrate the importance of studying the genomic landscape we 

take the PCAWG dataset as a use case and compute 42 genomic features based on either 

all or only the recurrent mutations. Using these features, we are able to divide the 

dataset into biologically relevant clusters. Studying recurrent mutations also reveals 

susceptible sequence motifs, including TT[C>A]TTT and AAC[T>G]T for the Pol e and 

‘gastric-acid exposure’ clusters, respectively. 

To go beyond the genomic landscape, we focus on the mutations that results in an amino 

acid change in the protein and characterize these protein changes with a combination 

of amino acid, evolutionary and structural properties. We provide an overview of the 

amino acid changes observed within breast cancer specifically. In our joint dataset, one 

of the most frequently mutated genes in breast cancer is PIK3CA, which is also 

frequently mutated in colorectal and uterus cancer. The comparison of the protein 

changes in p110α protein, encoded by PIK3CA, and their protein features across these 

cancer types elucidates differences in the proportion of mutations across the different 

protein domains. Deciphering the underlying causes of this could provide information 

on the mechanisms playing a role in the three cancer types. Our results show that 
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mutational processes such as hypermutation activity of polymerase epsilon (Pol e) or 

defective DNA damage repair in uterus cancer could be causing the mutations in the 

ABD domain. For uterus cancer, patients with a PIK3CA mutation have a higher survival 

rate than those without. In breast cancer we show that there is an association between 

the ER-positive status of the tumour and having a PIK3CA mutation. Breast cancer is the 

most diagnosed cancer and characterized by a high heterogeneity. Therefore, improving 

the stratification of patients is key to tailoring the treatment strategy and to improve 

the management of this disease. We assess the composition of the tumour 

microenvironment and demonstrate that its composition is different in PIK3CA mutated 

breast tumours compared to those without. We also find differences within the group 

of PIK3CA mutated tumours. For example, tumours with a mutation in the linker ABD-

RBD region present an exhausted profile in T cells characterized by a significantly higher 

expression of LAG3. 

In conclusion, the analysis of somatic mutations and corresponding protein changes 

combined with the evaluation of clinical data and the tumour immune 

microenvironment (TIME) across and within cancer types is useful to stratify cancer 

patients and identify groups for whom a specific treatment strategy, such as 

immunotherapy, might be beneficial. 
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1. INTRODUCTION 

Cancer is one of the most common diseases worldwide, with an estimated 19.3 million 

new cases and causing almost 10 million deaths in 2020, according to the statistics 

recorded by the International Agency for Research on Cancer (IARC) [1]. Despite all the 

effort put in by many researchers all over the world and for many years, there is still a 

lot to study, find out and solve regarding this disease. Many cancers could be cured if 

detected early and treated effectively. Making progress in any of these aspects by, for 

example, discovering molecular causes of cancer initiation, progression and metastasis 

or biomarkers that make the treatment selection easier, would help fight the disease 

and improve the patient’s quality of life, therefore being of great importance. 

 

1.1. Cancer origin: mutations in the genome and mutational processes 
 

Cancer is caused by the accumulation of mutations in the genome. In the process of a 

cell becoming a cancer cell, the cellular division speeds up and there is an accumulation 

of mutations because of a combination of mistakes during the DNA replication and the 

lack of repair. The mutations that are identified in the tumour but not in the normal 

tissue are called “somatic mutations”. Somatic mutations are not inherited by offspring, 

in contrast to germline mutations that occur in sperm, eggs and their progenitor cells, 

and therefore are present in all tissues of the individual. Critical somatic mutations can 

affect a wide variety of pathways and functions in the cell. This deregulation makes cells 

grow without control, invading adjacent parts in the body or spreading further to other 

organs through the blood and lymphatic system (metastasis). Every cell type in every 

tissue and organ can undergo this malignant transformation, resulting in a large variety 

of cancer types that can affect any part of the body, from a common lung cancer to rare 

cancers such as the Kaposi sarcoma that originates in the cells lining lymph or blood 

vessels. As each organ has a different function and is exposed to different mutagens, for 

example skin is the most exposed to UV light [2] and lung to smoking [3], different 

mutational processes and defective DNA repair processes can be involved in the 

occurrence of mutations, which result in different mutational imprints left on the 

genome [4]. In addition, the epigenetics, the regulation and the transcription of the 

genome are different across tissues affecting the mutational patterns observed. 
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1.2. Mutation rates and mutation subtypes across cancer types 
 

Different cancer types can be clustered according to their different mutational patterns 

as the result of the influence of the different mutational and/or defective repair 

processes. Main differences can be the mutation rate and mutation type. The mutation 

rate is influenced by replication time [5], is linked to epigenomic features (chromatin 

accessibility) [6], shows a periodic pattern around nucleosomes [7] and can depend 

strongly on the 5’ and 3’ flanking base as shown in mutational signatures for several 

mutational processes [8]. Considering Somatic Single-base Mutations (SSMs), the cancer 

type with the highest mutation rate is skin cancer [9]. In contrast, haematological and 

pediatric tumours have a low mutation rate [9]. Considering Somatic Insertion/deletion 

Mutations (SIMs), they are high in certain cancer types such as renal cell carcinomas 

[10]. Regarding mutation type, which type of mutation takes place is linked to the 

mutational process behind it. Generally, the most frequent substitution is C>T, followed 

by C>A [11], although this ranking can change depending on the cancer type. For 

example, in lung cancers, C>A (or in particular here G>T) is the most frequent 

substitution, since this transversion is a typical mutation as a consequence of tobacco 

smoke carcinogens such as polycyclic aromatic hydrocarbons (PAH) [12]. 

 

1.3. Mutational signatures: a general overview 
 

Mutational signatures are the result of the endogenous and exogenous mutational 

processes affecting the DNA, which provides the individual history of the tumour. The 

mutational signatures differ in the number, type and distribution of SSMs along the 96 

different trinucleotide contexts considering the six conventional mutations in the centre 

of the trinucleotide. We consider as “conventional mutations” the one indicating the 

mutation happening in the pyrimidine base (C or T) first. In the version v3.3 of COSMIC 

(June 2022 - https://cancer.sanger.ac.uk/signatures/), signatures are described at four 

levels: single-base substitutions (SBS), small insertions and deletions (ID), double-base 

substitutions (DBS) and copy number variation (CN) signatures. There are 94 different 

SBS signatures and 18 ID signatures described, however the aetiology for many of them 

is not known. Examples of well-known signatures are shown in Figure 1.  
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Figure 1. Examples of mutational processes and their corresponding SBS mutational signatures. All 
signature plots were obtained from COSMIC v3.3 - June 2022 (https://cancer.sanger.ac.uk/signatures/). 
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1.4. From somatic mutations in the genome to protein changes 
 

The vast majority of somatic mutations happen in the non-coding sequence of the 

genome, since it is 99% of the whole genome against the 1% that corresponds to the 

coding sequence. Despite the limited size of coding sequence, driver mutations are 

commonly found in this region. We refer to ‘driver’ as somatic mutations with the ability 

to drive tumourigenesis after conferring to the cell certain advantages that are positively 

selected with respect to its neighbouring cells [13]. Although the impact of non-coding 

mutations is more difficult to establish, it is known that a small proportion of them are 

also potential cancer drivers involved in the initiation of the tumour, or can contribute 

to cancer progression once initiated, such as those affecting regulatory elements (e.g. 

mutations in the TERT promoter [14][15]). Recurrence plays an important role to find 

these cases since it is difficult to detect the functional effect of mutations in non-coding 

regions. Sequencing and mapping artefacts, incomplete annotation of regulatory 

regions, inaccurate estimation of the background mutation rate and poorly understood 

localized hypermutations processes [16][17][18] are some aspects that add to the 

challenge of non-coding driver identification [19]. In the case of mutations affecting the 

coding region of the genome, their impact can be studied when translating them into 

the changes that they make in the corresponding protein. Proteins are structural and 

motor elements, serving as catalysts in virtually every biochemical reaction in our cells. 

Their folded conformation depends directly on their linear amino acid sequence [20]. 

Changes in this sequence caused by mutations in the gene encoding the protein could 

affect their structure and, consequently, its function. Point changes, i.e., substitutions 

of a single nucleotide, in the protein-coding region of the genome can be divided into 

synonymous, which do not change the amino acid sequence of the protein, and non-

synonymous, which do cause a change (Figure 2). The latter change can be missense, 

non-sense or non-stop mutations if the consequence is an amino acid change, the 

appearance of an early stop codon or the deletion of the expected stop codon, 

respectively. Aside from point changes, there are also insertions or deletions (indels) of 

nucleotides, which in coding regions can be divided into frameshift and in-frame 

mutations, if they cause a shift in the reading frame of the original protein or not, 

respectively.  
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Figure 2. Main consequences of single-base somatic substitutions at protein level. Adapted from 
Martínez & Quiñones (2018) Chapter in book “ADME Processes in Pharmaceutical Sciences”. 
 

 

 

1.4.1. Evaluation of the effect of protein changes 
 

Understanding the effect of the coding mutations that the tumours harbour is extremely 

important to be able to find targets to develop new cancer treatments. All coding 

mutations are potential contributors to cancer development and progression. There are 

drastic mutations that can produce a big change in the protein and therefore have a 

clear deleterious effect, such as large insertions or deletions, as well as nonsense 

mutation at the beginning of the protein. In contrast, other mutations that produce just 

a subtle change in the protein, such as missense mutations, are more uncertain with 

respect to their pathogenicity and more in-depth study is required to clarify their 

possible involvement in cancer in the absence of more drastic changes to the protein 

structure. In addition, understanding the effect of these subtle mutations at molecular 

level is interesting for the study of drug treatment responses across individuals [21]. 

Current efforts in this field are, therefore, aimed at predicting how much they affect the 

protein and whether or not these mutations are deleterious [22]. The features used to 

make such predictions are many, but can be classified in three main categories according 

to what they are taking into account: a) amino acid properties, b) evolutionary 

properties and c) structural properties [22].  
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a) Amino acid properties 

Although there are over 500 amino acids found in nature, the human genetic code only 

directly encodes 20 amino acids [23]. These 20 amino acids differ in size, shape, solubility 

and ionization properties of its side chain [24]. Amino acids can be classified in different 

ways according to the different characteristics mentioned. Focusing on the 

characteristics of the side chain, they can be classified as nonpolar (divided into alkyl or 

aromatic group), polar uncharged, acidic polar (negatively charged) or basic polar 

(positively charged) (Figure 3). Missense mutations that produce amino acid changes 

that result in small differences in properties between the amino acids are expected to 

affect less the protein function than those that result in more drastic changes, such as 

the appearance of an amino acid with a different charge on its side chain.  

 

Figure 3. Amino acid classification according to the charge of their side chain. Adapted from Karki (2018) 
[24]. 
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b) Evolutionary properties 

The evolutionary properties of the amino acid mutated are also important when 

predicting its effect. The conservation of amino acid in a specific protein is measured by 

carrying out a multiple sequence alignment with the sequences of the same protein in 

different species. This allows determining whether a specific amino acid has remained 

the same across the different species or if it is variable. Highly conserved positions in 

multiple sequence alignments can help to identify functional sites [25], since amino 

acids conserved across species during evolution of the protein tend to be critical for the 

function of the protein or in maintaining its structural integrity [21].  

 

c) Structural properties 

The localization of the altered amino acid in the protein structure provides insights into 

its potential effect on the protein. Residues involved in intramolecular interactions, such 

as cysteine bridges, hydrogen bonds or zinc fingers can affect the structure if when 

mutated the protein can no longer maintain an important interaction. Something similar 

can be said for residues forming catalytic and regulatory sites, a mutation could prevent 

the normal function of the protein. The interpretation of the effect of the mutation 

could also be different if we know if the mutated residue is buried or exposed. In 

addition, having structural information gives us the opportunity to study protein folding. 

Protein folding is the process by which the linear protein sequence is shaped to build 

the final 3-dimensional (3D) structure [26]. Mutations can change the free energy that a 

protein needs to fold and therefore affect protein stability. 

There are also other advantages of using 3D structures. Amino acids that are far apart 

in the linear sequence can be close in structure so there is possibility to find a 3D cluster 

of mutations. Interestingly, for example, less frequent mutations can be located close to 

a hotspot mutation and despite their rarity they could have the same effect as the 

hotspot. In this way, mutations clustered in the 3D structure may indicate relevant 

regions for protein function, reflecting sites that when mutated in the protein they 

would have a particular effect on protein performance and could be selected for in 

cancer. There are different softwares that aim to find 3D clusters of mutations in protein 

structures, such as HotSpot3D [27], HotMaps [28], CLUMPS [29] or Mutation3D [30]. 
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All these three categories combined have been very informative in delineating the 

effects of pathogenic mutations and understanding the underlying mechanisms of 

cancer [31]. For example, mutations in sites buried in the protein molecule or involved 

in macromolecular interactions are frequently pathogenic if the mutation results in a 

drastic change of the amino acid physicochemical properties, i.e. a change from negative 

to positive charge would prevent interactions from being established [31]. This is the 

case for the sodium iodide symporter (NIS) gene, which encodes an iodide transporter. 

It has been shown that different missense mutations that hit amino acids with charged 

side chains can affect the electrostatic interactions in the transmembrane domains of 

the NIS protein. These affected interactions have been proposed to affect the protein 

functionality and therefore associated with a iodide transport defect [32][33][34]. 

 

1.4.2. Protein structure availability 
 

A bottleneck in using the protein structure to predict the impact of missense mutations 

is the availability of reliable structures. Protein structures can be obtained 

experimentally mainly from X-ray crystallography, NMR spectroscopy and electron 

microscopy. An alternative to obtaining the actual protein structure is the computation 

of homology models from other structures which share a similar sequence, since it is 

postulated that when the sequence similarity is sufficiently high the protein structure 

would also be similar [35]. A 35% or higher sequence identity is thought to be enough 

for ensuring the structural similarity of two proteins, while with a sequence identity of 

20–35%, often referred to as ‘twilight zone’, structural similarity is less common [35]. 

Recently, a new source of protein structures has come available with AlphaFold, an 

artificial intelligence system developed by Deepmind that predicts the 3D protein 

structures from its amino acid sequence [36]. The AlphaFold Protein Structure Database 

(AlphaFold DB, https://alphafold.ebi.ac.uk) provides open access to their results, which 

account for over 200 million protein structure predictions. Despite that the number of 

proteins for which we have the actual protein structure available is limited, adding these 

predictions provides us with a good subset to work with on the characterization of 

mutations. 
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The availability of a complete structure containing from the first to last amino acid of 

the protein sequence is not common. Some exceptions are the cases of proteins that 

are frequently involved in cancer, such as p110α protein. The structure of p110α protein 

is almost complete allowing us to study the variety of mutations found in different 

regions of the protein. 

 

 

1.5. PIK3CA gene encodes p110α (PIK3CA) protein 
 

A gene that is frequently mutated in several cancer types is PIK3CA, which encodes the 

p110α protein. This protein corresponds to the catalytic subunit of a heterodimeric 

enzyme called phosphatidylinositol 3-kinase (PI3K). This enzyme belongs to the 

phosphoinositide 3-kinase (PI3K) family, a group of lipid kinases that act as signal 

transducers in various signalling pathways. They regulate a wide range of signalling, 

membrane trafficking and metabolic processes by phosphorylating the inositol ring of 

phosphoinositides in nearly all membranes in the cell [37]. Different isoforms of the 

catalytic and regulatory subunits combine and form different complexes that have their 

specific function or target. One ubiquitous complex is the p110α-p85α complex. Here, 

the catalytic subunit (p110α) is encoded by PIK3CA, a gene located in chromosome 3 

(3q26.3), while the regulatory subunit (p85α) is encoded by PIK3R1, a gene located in 

chromosome 5 (5q13.1). One of the key pathways in which this complex is involved is 

the PI3K/Akt/mTOR signalling pathway, which regulates diverse cellular processes 

including protein synthesis, cell proliferation and survival, glucose metabolism, 

apoptosis, DNA repair and genome stability (Figure 4) [38]. 
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Figure 4. The PI3K-AKT-mTOR pathway and drug targets. From Massacesi et al. (2016) [39]. 

 

When the catalytic and regulatory subunit are together in a complex, the protein 

remains in an inactive, cytosolic state. The enzyme is activated when the complex is 

recruited to the plasma membrane by the binding of the SH2 domains of p85 to tyrosine-

phosphorylated proteins, such as receptor tyrosine kinases, or other membrane-bound 

proteins, such as the insulin receptor substrate proteins [38]. This results in the 

disinhibition (by detachment) of the p85-p110 complex and the association of p110 with 

its lipid substrates in the membrane [40], the phosphatidylinositol 4,5-bisphosphate 

(PtdIns(4,5)P2 or PIP2). These lipids are phosphorylated into phosphatidylinositol-3,4,5-

triphosphate (PtdIns(3,4,5)P3; also known as PIP3), which acts as second messengers for 

the recruitment of many effector proteins with PIP3-binding domains, such as protein 

kinases (i.e. AKT, PDK1, BTK), Ras super-family guanine nucleotide exchange factors 

(GEFs), GTPase-activating proteins (GAP) and adaptor proteins [41]. 
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1.5.1. Structural insights of p110α (PIK3CA) protein 
 

There are five domains described in p110α: an adaptor-binding domain (ABD), a Ras-

binding domain (RBD), a C2 homology type (C2 PI3K-type) domain, a helical domain and 

a kinase domain (Figure 5). The parts of the protein that are not assigned to any domain 

we call the ‘linker’ regions between domains. For example, the sequence of amino acids 

between the ABD and RBD will be referred to as ‘linker ABD-RBD’. The regulatory subunit 

(p85α) that forms the complex with p110α contains six domains: a Src homology 3 (SH3) 

domain, a GAP domain, two Src homology 2 (SH2) domains, the N-terminal and C-

terminal SH2 domains (nSH2 and cSH2), which are separated by a coiled-coil domain 

known as the inter-SH2 linker (iSH2)[41]. 

 

 
Figure 5. Structure of p110α coloured by protein domains. Only two domains are shown for the 
regulatory subunit (p85α). Figure obtained from Chimera software visualization of the PDB structure 4L23. 
 
 

1.5.2. PIK3CA plays a central role in cancer 
 

The PI3K/Akt/mTOR signalling pathway (Figure 4) is one of the most frequently 

deregulated pathways in cancer. It can be aberrantly activated through multiple 

mechanisms, including genomic alterations in PIK3CA, which are common not only in 
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one but in several cancer types. PIK3CA somatic mutations are particularly frequent in 

breast, colorectal and endometrial cancer [42]. 

Point mutations in PIK3CA can increase the enzymatic activity of the protein and thereby 

contribute to tumourigenesis through increased cell proliferation, decreased apoptosis 

and autophagy, loss of contact inhibition, induction of angiogenesis, and increased 

tumour invasion [43]. These mutations mimic and enhance dynamic events that take 

place in the natural activation of PIK3CA, as described by Burke et al. [44], who examined 

the activation of the wild-type p110a-p85a complex and a spectrum of oncogenic 

mutants. Examples of these dynamic events are: (1) the movement of the ABD domain 

and linker with respect to the rest of the catalytic subunit, (2) breaking the C2-iSH2 

interface, (3) breaking the nSH2-helical domain contact caused by phosphotyrosine 

containing peptides binding to the enzyme and (4) interaction of the C lobe of the kinase 

domain with the membrane. Examples of mutations inducing each of these dynamic 

events are, respectively: (1) mutations in the linker between the ABD and RBD domain 

(G106V and G118D), (2) mutations in the C2 domain (N345K and C420R), (3) E545K 

mutation in the helical domain and (4) specific mutations in the kinase domain (e.g. 

H1047R) [44]. An increase in activity can also be achieved by, for example, mutations in 

the C2 domain, which are thought to facilitate p110α localizing to the plasma membrane 

by increasing the positive surface charge of this domain [45]. 

 

1.5.3. PIK3CA mutations association to clinicopathological parameters 
 

Alqahtani et al. [46] reviewed the relations between PIK3CA mutation and 

clinicopathological parameters in 2020 concluding that for some associations there was 

agreement in the literature, while there are discrepancies for others. Some associations 

for which we can find agreement are that PIK3CA mutations are positively associated to 

HR-positive breast tumours while negatively associated to triple-negative breast cancer 

tumours [47]. There is also agreement on that so far no associations have been found 

when considering the age at diagnosis, tumour grade or the presence of lymph node 

metastasis and PIK3CA mutations [47]. On the contrary, there is no agreement on the 

effect of PIK3CA mutations on prognosis and survival, some studies reported 

associations with poor survival [48], while others with better prognosis [48], and even 



 31 

no association at all has been reported [47]. There is also controversy regarding the 

response to therapy.  

 

 

1.5.4. Treatment to target p110α  over-activation: PI3K inhibitors (PI3Ki) 
 

PI3K has been recognized as an attractive molecular target [49] because of the frequent 

involvement of the PI3K pathway in many cancer types. Different inhibitors have been 

developed and tested in clinical trials over the past decades focused on both solid and 

haematological malignancies [50].  Some pan-PI3K inhibitors as well as isoform specific 

ones have already been approved for treatment [51], such as copanlisib or idelalisib. The 

first progress on isoform specific ones was made in haematological malignancies. PI3K 

d-specific inhibitor, idelalisib, was approved in 2014 as treatment for follicular B-cell 

non-Hodgkin lymphoma (FL) and small lymphocytic lymphoma (SLL) as monotherapy, as 

well as for chronic lymphocytic leukaemia in combination with rituximab[52]. Isoform 

specific inhibitors have also been developed for p110α (PIK3CA). The first and, for now, 

only α-specific PI3K inhibitor approved is alpelisib (BYL719), which is being used to treat 

advanced breast cancer. The USA Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) approved this drug in 2018. As these drugs are meant to target 

the over-activated p110α protein, establishing PIK3CA mutation status in cancer 

patients is informative for treatment choice. After the completion of the SOLAR-1 trial, 

the first phase 3 trial leading to an approval specifically for advanced breast cancer 

patients with PIK3CA mutation, a list of PIK3CA mutations was determined to select the 

patients that would likely benefit and have a progression-free survival after being 

treated with alpelisib [53].  

Several companies have successfully developed panels to test for PIK3CA mutations. The 

Therascreen® PIK3CA RGQ PCR Kit from Qiagen was the first one approved by the FDA 

to aid in the selection of breast cancer patients that could potentially benefit from 

treatment with alpelisib in combination with fulvestrant. The panel of this kit allows the 

identification of 11 somatic PIK3CA mutations (C420R, E542K, E545A, E545D 

(c.1635G>T), E545G, E545K, Q546E, Q546R, H1047L, H1047R, H1047Y). Other kits 

include higher number of mutations, such as the cobas® PIK3CA Mutation Test CE-IVD 
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from Roche, which tests for 17 different mutations in exons 2, 5, 8, 10 and 21. The 

mutations added are R88Q, N345K, Q546K, Q546L, G1049R and M1043I. The 

ClearSEEKTM PIK3CA Panel from Agena Bioscience® tests for 20 clinically actionable 

PIK3CA mutations in breast cancer and has the added advantage of lowering the variant 

allele frequency needed for mutation detection. The mutations included in this panel 

that are not in the Therascreen® are E542Q, E545D (c.1635G>C), E545Q, E545V, Q546K, 

Q546L, Q546P, H1047N and H1047P. However, the detection of the mutations listed 

until now might not be enough to ensure treatment efficacy in every patient. Results 

from various clinical studies have demonstrated that not all patients with a PIK3CA 

mutation benefitted from the treatment combining alpelisib and fulvestrant [53].  

In some cases, there is improvement and even cancer remission, while in other patients 

the disease gets worse. Due to the variable response to treatment across patients it is 

clear more investigation is needed regarding PIK3CA mutation contexts and precision 

medicine would be needed, to do a better selection of the group or individual patients 

that could be treated successfully with this strategy. For patients with PIK3CA mutated 

tumours that are not eligible for alpelisib treatment or that did not respond to the 

treatment, it is necessary to develop new strategies. An emerging therapy strategy with 

less side effects and that it is showing a high efficacy in some cancer types [54] is 

immunotherapy. 

 

1.5.5. Emerging therapy strategies: immunotherapy 

 

Cancer immunotherapies, treatments that harness the immune system’s natural ability 

to recognise and eliminate tumour cells [55], look promising. Knowledge about the 

tumour microenvironment of solid tumours is needed to be able to apply this kind of 

therapies. For example, the presence of tumour-infiltrating lymphocytes (TILs) is a 

biomarker for considering the use of immunotherapy [56]. Also, tumour-associated 

macrophages (TAMs) are often associated with poor prognosis and are recognized as 

important emerging targets for cancer immunotherapy [57]. 

The relationship between the mutations in the tumour and the response to 

immunotherapies are also being studied [58]. The same as normal cells, cancer cells also 

need to break and recycle their proteins. Since many proteins are mutated in cancer, 
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from their degradation novel peptides are released harbouring these mutations, called 

neoantigens [10]. These neoantigens are placed in the human leukocyte antigen (HLA), 

which could be perceived as foreign by the immune system. T cells can naturally 

recognize the neoantigens coming from the mutated proteins that are unique to cancer 

cells, with the advantage of targeting the tumour without affecting the healthy cells [59]. 

An important point to consider is that mutations in cancer are largely unique to each 

patient, except for mutations in driver genes that are recurrent across patients. These 

mutations are therefore a good target for immunotherapy since it would allow the same 

treatment to be applied to a high number of patients. Therefore, these treatments are 

being developed for the most mutated genes. In particular, Chandran et al. (2022) and 

colleagues focused on neoantigens derived from driver mutations in PIK3CA [59].  

 

 

 

1.6. PIK3CA: the most common genomic aberration in breast cancer 

 

Breast cancer is a very heterogeneous cancer type, both within the same tumour, due 

to the diversity in cell populations that can be found, and across tumours from different 

patients. Heterogeneity within a tumour increases its ability to adapt constantly 

changing constraints, which affects negatively a patient’s prognosis, therapy response 

and clinical outcome [60][55] due to the difficulties to correctly fight it. Breast cancer is 

not only characterized by this intra-tumoral heterogeneity, but also inter-tumoral 

heterogeneity, since tumours from different patients can highly differ at both 

morphological and molecular level [60]. Morphologically, breast cancer heterogeneity 

comes from differences in, for example, the size of the tumour, lymph node 

involvement, stage and grade [60]. Molecularly, the heterogeneity can be seen already 

starting from the different subtypes that are defined [60]. Genome sequencing as well 

as other omics like expression and methylation profiling have also provided insights into 

heterogeneity between tumours even from the same pathological subtype [60]. 

 
 
 



 34 

1.6.1. Morphological characteristics of breast tumours 
 
Morphologically, breast tumours can differ in their histological type, stage and grade, 

which are evaluated in clinical practice.  

 

Histological types 

There are more than 20 histological types described [61]. For example, a breast tumour 

can be ductal or lobular, depending on if it originated in the ducts or in the milk-

producing glands, respectively [62], or a mix of the two. Other less common 

morphological types are tubuloductal, comedo, medullary, mucinous and Paget types 

[62].  

 

Staging 

The most widely used system for staging breast carcinoma is the TNM classification, 

published by the American Joint Committee on Cancer (AJCC) and the Union for 

International Cancer Control (UICC) [63]. The stage is derived from the extent of cancer 

at the primary site (T), at the regional lymph nodes (N) and spread to distant metastatic 

sites (M) [63] [64]. These three measurements are combined to create five stages (stage 

0 to IV). Stage 0 indicates that the disease is only in the ducts of the breast tissue without 

having spread to the surrounding tissue, what it is known as non-invasive or in situ 

cancer [65]. The other extreme, stage IV, indicates that the cancer is metastatic. 

 

Grade 

The assessment of histological grade is based on three tumour features: the proportion 

of cancer cells that are in tubule formation, the variation of nuclear size and shape 

between the cells (anisokaryosis) and the number of cell divisions (mitotic counts) 

[64][63]. Each feature is scored with a three-tier system and summed up, resulting in a 

final grade (G1, G2 or G3) [63]. This grade represents the potential aggressiveness of the 

cancer and is therefore a strong prognostic factor [63]. 
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1.6.2. Molecular characteristics: breast cancer subtypes 
 
Breast cancer can be clinically classified into four main molecular subtypes based on 

gene expression profiling using the PAM50 gene signature and/or immunophenotypic 

characteristics [66][67]. These subtypes are luminal A, luminal B, human epidermal 

growth factor receptor 2 (HER2) enriched and Triple-Negative (TNBC, also known as 

Basal-like). A fifth subtype that sometimes is included is Normal-like (or unclassified). 

Finally, a sixth subtype that has been reported is called “claudin-low”[68]. Claudin-low 

subtype expresses specifically markers of epithelial-to-mesenchymal transition (EMT) 

and stemness, as well as stromal and other immune-related signatures [60]. The 

different subtypes vary in their biological properties, frequency, prognosis and outcome 

[66], as summarised in Figure 6. Luminal A and Luminal B which are both HER2-negative 

can be differentiated checking the expression of the nuclear antigen Ki-67, low or negative in 

luminal A (Ki67-), while positive in luminal B (Ki67+). The breast cancer subtype Normal-

like closely resembles luminal A, since it is also Oestrogen Receptor (ER)-positive, 

Progesterone receptor (PR)-positive, HER2-negative and Ki67-. It is reported with 

different grades (from 1 to 3) and an intermediate outcome. 

 

 
Figure 6. Summary of characteristics of each of the main breast cancer subtypes. From Burguin et al. 
(2021) [64]. ER: oestrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor 
receptor 2; TNBC: triple-negative breast cancer. a. Frequency derived from Al-thoubaity et al. [46] and 
Hergueta-Redondo et al. [69]. b. Grade derived from Engstrom et al. [70]. c. Prognosis derived from 
Hennigs et al. [71] and Fragomeni et al. [72]. d. The 5–year survival rate derived from the latest survival 
statistics of SEER [73]. 
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1.6.3. Prognosis and survival 
 
Depending on the characteristics previously described the survival rate is highly variable. 

Major prognostic factors are the lymph node metastasis, distant metastasis, tumour 

size, locally advanced disease, lymphovascular invasion and inflammatory carcinoma. 

For example, in the first case, if there are no nodes involved the ten years survival rate 

is 70-80%, if the number of nodes involved is between 1 and 3, the ten years survival 

goes down to 35-40% and if there are more than 10 nodes involved then the ten years 

survival is not expected to be more than 10-15%. Other minor prognostic factors are the 

histologic grade, the expression of the ER, PR and HER2, the proliferative rate and the 

response to neoadjuvant chemotherapy. TNBC is the cancer subtype with the worse 

prognosis followed by HER2-enriched subtype, while Luminal A is the least aggressive 

[63]. Also, Luminal A subtype is less common to metastasize [63]. The spread of breast 

carcinoma can be directly to skin, including the nipple and areola, or the chest wall; can 

be through lymphatics (axillary, internal mammary and supraclavicular) or through the 

blood to mainly the lungs, liver, brain and bone [74].  

 
 

1.6.4. Targeted therapies in breast cancer 
 

Due to the variety of morphologic, molecular and clinical manifestations of breast 

cancer, its therapy is still nowadays of high complexity [75] and is continuously evolving. 

Breast cancer heterogeneity also results in a range of responses to treatment [76]. 

Ideally, the treatment needs to be tailored to every tumour and every patient, with the 

main challenges of dealing with treatment resistance, recurrence and metastasis [64]. 

Therefore, the treatment strategy selected will vary depending on the tumour features, 

mainly  the molecular subtype, grade and stage of the tumour [63][64]. For example, 

different strategies are needed when targeting early stages of breast cancer compared 

to advanced stages. The management of the disease can be divided into localised 

strategies, such as surgery or radiotherapy, and systemic therapy approaches. Some 

examples of systemic treatments are: endocrine therapy (suggested for HR-positive 

cases), anti-HER2 therapy (suggested for HER2-positive cases), chemotherapy and bone 

stabilizing agents [64]. Most of the previously mentioned therapies can have severe 
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adverse effects and patients can develop resistance to the treatments [64]. Other 

therapies for specific cases of breast cancer have been developed, for example, PARP 

inhibitors (PARPi) such as olaparib, talazoparib, veliparib or rucaparib [64]. This 

treatment is directed to patients with BRCA1 or BRCA2 mutations, which are mainly 

found in cases of TNBC. BRCA1 and BRCA2 genes are translated into proteins that are 

involved in DNA repair. The PARP (poly-(ADP-ribose) polymerase) proteins are also 

involved in the DNA damage response. They recruit DNA repair proteins, such as these 

BRCA1 and BRCA2, to different damaged sites in the DNA to perform the repair [77]. 

PARPi inhibit PARP proteins and, consequently, cells defective in BRCA functions are not 

recruited to repair DNA damage [78]. Other therapies that are emerging can be divided 

according to the molecular subtype of breast cancer to which they are directed to[64]: 

 

§ Emerging therapies for HR-positive breast cancer 

For this subtype of breast cancer, there are inhibitors targeting the mTOR/PI3K/Akt 

signalling pathway, such as Pan-PI3K, isoform specific PI3K, mTORC1, Akt and CDK4/6 

inhibitors. 

 

§ Emerging therapies for HER2-positive breast cancer 

The previous therapies mentioned (mTOR/PI3K inhibitors and CDK4/6 inhibitors) can be 

also included here, as well as new antibodies, such as antibody drug conjugates (ADCs) 

(e.g. trastuzumab-emtansine or T-DM1), chimeric antibodies or bio-specific antibodies; 

HER2-derived peptide vaccines and new Tyrosine Kinase inhibitors (TKIs). 

 

§ Emerging therapies for Triple Negative breast cancer 

Antibody drug conjugates and targeted antibodies are also being explored for this breast 

cancer subtype, as well as vaccines and other forms of immunotherapy.  

 

The recent emergence of immunotherapy and the heterogeneity across breast cancer 

subtypes, makes it necessary to extend the analysis of the tumour immune 

microenvironment across subtypes to know if there are mechanisms that could allow to 

target patients and therefore make them eligible for this kind of therapy, which has not 

been the most common therapy for this cancer type until now. 
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1.6.5. Breast cancer and its Tumour Immune Microenvironment 
 
Breast cancer develops in a context where the most abundant cell type is the cancer-

associated fibroblast, but the tumour microenvironment (TME) also includes the 

surrounding blood vessels, either pre-existing or newly formed, immune cells and 

components of the extracellular matrix [63][61]. The immune part of the TME it is known 

as Tumour Immune Microenvironment (TIME) and refers to the different 

subpopulations of the immune system that are found in the tumour niche. In general, in 

the immune system we can differentiate a group of immune cells that derive from a 

common myeloid progenitor (monocytes, macrophages and dendritic cells), which are 

responsible of the innate immune response, and a group of immune cell that derive from 

a common lymphoid progenitor, which are responsible of the adaptive immune 

response (B cells, T cells and NK cells) (Figure 7) [79]. Natural Killer (NK) cells are an 

exception to this, they come from a lymphoid progenitor that also forms the T and B 

cells, but they share several similarities in function with the myeloid cells (Figure 7) [79]. 

The major players in the TIME of breast cancer can be divided into immunosuppressive 

(pro-tumoral: M2-like macrophages, myeloid-derived suppressor cells and regulatory T 

cells), and immunostimulating cells (anti-tumoral: dendritic cells, CD4/CD8 cytotoxic T 

cells and NK cells) (Figure 8) [80].  

 
Figure 7. Immune cell lineages involved in the two main immune responses. NK cells derive from a 
lymphoid progenitor but share functions with the cells derived from a common myeloid progenitor. 
Source: Charles D. Murin, Frontiers in Immunology (2020) [79]. 
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Figure 8. (a) Major immune populations in the tumour microenvironment of breast cancer. Adapted 
from Salemme et al. (2021) [80]. Populations are dividing depending on if they are involved in an 
immunosuppressive (pro-tumour) context or in an inflammatory (anti-tumour) context. PMN: 
PolyMorphoNuclear. Mo: monocytic. MDSC: Myeloid-Derived Suppressor Cell. MC: Mast Cell. ILC: Innate 
Lymphoid Cell. TIL: Tumour Infiltrating Lymphocytes. NK/ILC-1: Natural Killer/Innate Lymphoid Cell Type 
1. DC: Dendritic Cell. (b) Molecules involved in the crosstalk between cancer cells and the tumour 
immune microenvironment in breast cancer. Pro-tumour (left) and anti-tumour (right) context. From 
Harbeck et al. (2019) [63]. 
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The continuous and dynamic interaction between the tumour and its microenvironment 

can either promote or hinder cancer progression (Figure 8b) [80]. Tumour infiltrating 

immune cells protect from tumour progression by eliminating immunogenic neoplastic 

cells (Figure 9), while at the same time, once the tumour becomes invasive, they can 

contribute to tumour resistance to therapies, shaping tumour immunogenicity and 

selecting resistant tumour clones able to escape the immune response [81][80][63]. One 

example of a mechanism that induces resistance is the expression of PD-L1 on tumour 

cells, which can bind PD1 expressed in T cells CD8+ and trigger inhibitory effects on these 

cells [82]. With this or other mechanisms, TIME can influence the outcome of 

immunotherapy and of many other anti-cancer therapies [80][61].  

 
Figure 9. The cancer-immunity cycle. The cycle of immunity against the tumour starts with the 
presentation of cancer antigens that are liberated from dying cells (1). Tissue-resident Dendritic Cells (DCs) 
or DCs in draining lymph nodes sense and capture these cancer antigens (2) and initiate an immune 
response by presenting them to naïve T cells in lymphoid tissues (3). Naïve T cells CD8+ differentiate into 
cytotoxic T lymphocytes. T cells migrate through blood and lymphatic vessels (4) and can infiltrate through 
both to reach the tumour (5). Once inside the tumour, T cell can recognize the cancer cells and initiate 
the process to kill them. Killing of malignant cells can lead to the antigen release and DC activation 
(endogenous vaccination), thereby closing the cycle. Figure adapted from Demaria et al. (2019)[83] and 
image description (next) adapted from Palucka et al. (2016)[55]. 
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Previously, breast cancer was considered a poor immunogenic cancer with a low 

response to immunotherapies, but the introduction of these therapies in the clinic have 

been reported to improve the outcome for many breast cancer patients [80]. The 

immunogenicity of breast cancer depends on the molecular subtype. TNBC and HER2-

enriched are the highest immunogenic subtypes, while luminal A and B are the lowest 

[63]. It has been shown that the amount of tumour-infiltrating lymphocytes (TILs) 

influences positively the response to neoadjuvant treatment and the prognosis of breast 

cancer of TNBC or HER2-enriched subtypes [75][63], while the involvement of TILs in 

luminal subtypes is still not clear and there is still a lot of variability in response efficacy 

when it is applied [84]. This shows the need of further studies in this field.  
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2. HYPOTHESIS AND OBJECTIVE 

 
2.1. Hypothesis 

 
Exploring somatic mutations in a pan-cancer dataset at genome level could help to 

decipher consequences of mutational processes and cluster the cancer genomes into 

biologically relevant groups. Also, at protein level, the assessment of characteristics of 

protein coding changes underlying these somatic mutations could uncover relevant 

patterns within or across cancer types. All together would help to stratify patients in 

biologically relevant groups to personalise specific strategies of treatments. 

 
2.2. General objective 

 

To decipher consequences of mutational processes and cluster cancer genomes into 

biologically relevant groups exploring somatic mutation and their corresponding protein 

changes. 

 

2.3. Specific objectives 
 

Objective 1. To describe the landscape of somatic mutations of 25,499 cancer genomes. 

 

Objective 2. To provide insights into the consequences of mutational processes in cancer 

based on the recurrent mutations in a pan-cancer dataset and to cluster cancer genomes 

according to the characteristics measured using 42 different genomic features. 

 

Objective 3. To characterize the amino acid changes resulting from somatic mutations 

in a pan-cancer dataset considering different amino acid, evolutionary and structural 

properties.  

 

Objective 4. To describe the protein changes of a highly mutated gene across cancer 

types and to study the association of different mutations with clinical and immunological 

characteristics. 

 
The Methods (Section 4) and the Results (Section 5) are divided into four chapters that 

correspond to these four specific objectives (1-4) that were developed in this PhD thesis. 
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3. MATERIALS 

3.1. Mutational data 
 
We analysed a joint dataset of 25,499 cancer genomes covering >40 cancer types at the 

level of somatic mutations (substitutions and insertions/deletions) and their 

corresponding protein changes for the ones affecting coding. We combined the 

following four cohorts: (a) the Pan-Cancer Analysis of Whole Genomes (PCAWG) 

dataset, (b) The Cancer Genome Atlas (TCGA) dataset, (c) the Hartwig Medical 

Foundation (HMF) dataset and (d) the Breast CAncer STratification (B-CAST) dataset. 

Table 1 provides a basic description of these datasets with the type of specimen and 

sequencing, number of donors and number of different cancer types. The list of cancer 

types that are included in PCAWG and TCGA dataset are shown in Figure 10, together 

with their corresponding abbreviations and the number of donors. 

 
Table 1. Summary of the main characteristics of the four individual datasets. 

Dataset Specimen Type Sequencing Number of 
donors 

Number of different 
tumour types 

PCAWG Primary WGS 2,583 37 
TCGA Primary WES 9,104 32 

B-CAST Primary Panel (323 genes) 9,255 1 
HMF Metastatic1 WGS 4,557 38 

1 All donors have metastatic disease, but for 100 donors the biopsy was taken from the primary tumour. 
 
 

A description of the individual datasets at the level of genomic mutations is presented 

in Results - 5.1 (Chapter 1). For the HMF dataset we had initially 4,901 samples for 4,570 

donors. We excluded ten donors because according to the metadata they had multiple 

primary tumours in different organs (Table 2-A). It was not clear whether this was truly 

the case or that the primary location was revised throughout the treatment of the 

patient. An example of the latter is possibly a donor that was listed as having primary 

tumours in the stomach, oesophagus and gastroesophageal junction. Another three 

donors were excluded because they had primary tumours of different subtypes (Table 

2-B). For another 292 donors there was more than one sample available, in which case 

we selected one sample per donor to not have multiple measurements for the same 

donor in our data. To select a single sample per donor, we gave priority to the samples 

taken from the metastatic tumour and not the primary tumour. This reduced the 
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number of samples to one for just three donors. For one donor it reduced it to two 

samples. The next criterion we applied was that we selected the sample with the highest 

maximum tumour purity, under the condition that the range of the lowest estimated 

purity to the maximum did not overlap with any of the samples of the same donor. This 

was sufficient for 208 donors. For 28 donors we selected the sample that had the highest 

maximal purity and added the criterion of having RNA-Seq data available. For 35 donors 

we added the criterion of selecting the sample with the earliest biopsy date to reduce 

the number of treatments the donor had undergone. For 17 donors there was no RNA-

Seq data available and we therefore selected the sample with the earliest biopsy date. 

Finally, for one donor we selected the sample with the highest maximal purity, despite 

the range of the lowest estimated purity to the maximum purity overlapped with other 

samples, as for this donor no RNA-Seq data was available and the biopsy dates were 

missing. 

 

 

Table 2. HMF donors excluded. Donors excluded from the HMF dataset because of potentially 
conflicting metadata regarding the primary tumour location or primary tumour subtype. 

A 

Donor ID Primary tumour location 
HMF001168 Uterus and Bone/Soft tissue  
HMF001668 Urothelial tract and Uterus  
HMF000726 Gastroesophageal and Stomach and Esophagus  
HMF003321 Vagina and Uterus  
HMF000963 Gallbladder and Bile duct  
HMF001663 Esophagus and Stomach 
HMF003533 Colorectum and Breast  
HMF001184 Anus and Colorectum  
HMF002723 Lymphoid tissue and Skin 
HMF002243 Skin and Kidney 

  

B 

Donor ID Primary tumour subtype 
HMF002878 ER-positive/HER2-negative and Adenocarcinoma1 
HMF001187 Small cell carcinoma and Non-small cell carcinoma 
HMF002363 ER-positive/HER2-negative and Triple negative 

1 The sample with the adenocarcinoma annotation had a later biopsy date and thereby more precise 
information on the subtype seems to have been revised. 
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Figure 10. List of cancer type abbreviations and complete names in PCAWG and TCGA. Ordered from 
highest to lowest number of samples. 
 

 

 

 

 

 

 

 

 

 



 48 

Definition of mutations 
 
For SSMs there are 16 possible subtypes. However, we can neither detect substitutions 

with a base of the same type (e.g., A>A) nor do we usually know on which strand the 

(pre-)mutagenic event happened first (e.g., A>C is equivalent to T>G on the other 

strand). Therefore, we combined the substitutions that are each other’s reverse 

complement and refer to them by the pyrimidine of the mutated base pair: C>A, C>G, 

C>T, T>A, T>C and T>G. Analogously to SSMs, for 1 bp SIMs, these are the four subtypes 

A/T deletions, C/G deletions, A/T insertions and C/G insertions. 

 

The four datasets differ in how they deal with multiple substitutions close to each other 

in the sequence. In the case of PCAWG all were considered as single-base substitutions. 

A consensus of four mutation callers (see Methods: 4.2.2. PCAWG cohort – mutation 

calls) was used and in several cases the individual callers only supported one single-base 

event, and only the consensus resulted in a multiple base substitution call. We regarded 

substitutions directly next to each other (median number across samples: 25) as 

separate single-base events since, aside from the very limited numbers, in several cases 

the individual callers only supported one single-base event, and only the consensus 

resulted in a multiple base substitution call. For the other three data sets there are 

multiple base substitutions. In addition, only HMF also considers the following type of 

cases as a single event: ATA>CTC. We left all mutation calls as provided and we only used 

the mutations that were marked as ‘PASS’. 

 

Overlap between datasets 
 
For the analyses in which we combined the data from all datasets we had to consider 

the following in terms of overlap: 

• PCAWG includes a subset of the TCGA donors. When we worked with TCGA 

dataset alone, we worked with the complete set of donors, but for the analysis 

for which we used TCGA and PCAWG together, we excluded the donors they 

have in common with the TCGA dataset (653 donors). 
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• One cancer genome in HMF has a percentage of overlap on the level of mutations 

higher than expected with a cancer genome in PCAWG and was therefore 

excluded. 

 

 

3.2. RNA-Seq, methylation and clinical data 
 
RNA-Seq data was available for a subset of donors in PCAWG, TCGA and HMF. PCAWG 

and TCGA used STAR as aligner and to obtain the counting data. HMF used STAR as their 

aligner and provided the results of Isofox [85], a tool they developed for counting 

fragment support for identifying and counting gene and transcript features using 

genome aligned RNA-Seq data. We explored the option to combine the three datasets 

to work with all the RNA-Seq samples together. We performed a principal component 

analysis (PCA) and observed that the samples split according to the cohort they belong 

to, with less split between PCAWG and TCGA. One possible explanation for this is the 

use of different pipelines. However, as the HMF dataset contains mostly metastatic 

samples it was not to be excluded that this also may explain some of the differences. 

Therefore, I decided to work with the datasets separately across the different analyses.  

 

Methylation data was available in the PCAWG dataset and in TCGA dataset. For both 

datasets Sesame was used to compute the beta values. 

 

The clinical data available for the different datasets is summarised in Table 3, although 

in some cases it was not available for all the samples in that dataset. 

 

 

Table 3. Clinical data available across the different datasets. 
 PCAWG TCGA B-CAST HMF 
Tumour grade ü ü û - 
Tumour stage ü ü û - 
Cancer subtype ü ü ü ü 
Survival ü ü û ü 
Age of the patient ü ü û ü 
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3.3. Protein annotation and protein structures 
 

Protein structures were downloaded from the Protein Data Bank (PDB) [86] using the 

European Portal (Protein Data Bank in Europe or PDBe). For the proteins with a low-

quality structure or without any structure we downloaded the protein model (if any) 

from the Swiss-Model Repository [87]. For some specific analyses we needed to use 

structures of high quality and we selected those crystal structures with a resolution <2 

Å. For example, to compute the change in the free energy of protein folding upon 

mutation, we used FoldX, which requires accurate structures to be able to predict the 

potential changes successfully. 

 
 

3.4. Data availability 
 

PCAWG data was downloaded from the ICGC Data Portal at the section “DCC Data 

releases - PCAWG” that can be accessed at https://dcc.icgc.org/releases/PCAWG. The 

mutational, methylation and clinical data from TCGA included in this study is all public 

and was downloaded from https://gdc.cancer.gov/about-

data/publications/pancanatlas. The RNA-Seq data (counts format) per cancer type was 

downloaded through the ‘TCGABiolinks’ R package. The information related to the 

Immune Landscape of Cancer in TCGA dataset is available at: 

https://gdc.cancer.gov/about-data/publications/panimmune. HMF data was available 

upon request at https://www.hartwigmedicalfoundation.nl/en/data/data-acces-

request/. At the moment of the deposition of this PhD Thesis, B-CAST data was under 

embargo which will not be lifted until the main paper has been published, after which 

one will be able to apply for access through the European Genome-Phenome Archive 

(EGA). I had access for this data as partner in the B-CAST project. 
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4. METHODS 

 
Next, we describe the methods employed per chapter. 
 
 

4.1. CHAPTER 1. Genomics landscape of 25,499 cancer genomes 
 

4.1.1. Plots 
 
All plots were done with the ‘ggplot2’ R package [88] under R version 3.6.0. 
 

4.1.2.  Mutational signatures 
 
Mutational signatures were used as a proxy for the mutational processes that are 

predicted to be active in each sample. We were provided with the mutational signatures 

for PCAWG and TCGA. For HMF we generated the mutational signatures using 

SigProfiler-SingleSample [89] [90], which attributes a known set of mutational signatures 

to an individual sample. The inputs of the tool were the somatic mutations in the sample 

(VCF file) and the set of known signatures that we wanted to be assigned. We used as 

reference the COSMIC signatures v3.3. First, SigProfilerMatrixGenerator creates 

mutational matrices for all types of somatic mutations in the file. Next, the mutational 

matrices are fitted to the COSMIC matrices and the attribution of signatures is done. Per 

sample we obtain the relative percentage of the signatures that had been assigned to 

each sample. 

 

 
Figure 11. Scheme of procedure followed by SigProfilerSingleSample. From an input of a file with the 
somatic mutations in the sample, the tool makes use of SigProfiler-MatrixGenerator, SigProfiler-
Attribution and Sigprofiler-Plotting to do a final attribution of the mutations in the sample to a known set 
of COSMIC mutational signatures. ‘Chromosomes’ and ‘signatures’ images have been taken from Ashiqul 
et al. (2022) [91]. 
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4.2. CHAPTER 2. Use case in PCAWG dataset. Recurrent somatic mutations reveal 
new insights into consequences of mutagenic processes in cancer 

 

4.2.1. PCAWG cohort – quality control 
 

We used the cohort of cancer genomes assembled by the PCAWG project [92] of the 

ICGC and TCGA. For every donor, whole-genome sequencing data was available for a 

normal-tumour pair and all samples were analysed uniformly. A detailed description of 

the quality control is provided in the PCAWG marker paper [92]. In short, 176 samples 

were excluded for various reasons as part of the quality control, most commonly 

because of contamination with RNA. Samples of another 75 donors were of borderline 

quality for various reasons, including a high percentage of paired reads mapping to 

different chromosomes [92] [93]. We decided not to include the samples of those 

donors, which left us with genomic data of 2,583 donors covering 37 tumour types 

(Appendix 1 - S1 Table). The distribution of the samples across the tumour types is also 

indicated in Appendix 1 - S1 Table. In case there were multiple tumour samples for the 

same donor, we selected a single sample following the decision made within the 

consortium. To make the decision five criteria were used as described by the PCAWG 

Drivers and Functional Interpretation Group [94]. In order of importance, they 

prioritized the sample: 1) of a primary tumour over metastatic and recurrent ones; 2) 

with a OxoG score over 40, which indicates low levels of oxidative damage artefacts [95]; 

3) with the highest quality according to the star rating system [93]; 4) with RNA-Seq data 

available; 5) with the lowest level of contamination with foreign DNA. If none of these 

criteria led to the selection of a single sample, a random selection was made. 

 

 

4.2.2. PCAWG cohort – mutation calls 
 
The description of the procedure for the mutation calls is provided in the marker paper 

of the PCAWG consortium [92]. In brief, the sequenced reads of the respective normal 

and tumour sample pairs were aligned with BWA-MEM to the GRCh37/h19 genome. 

Four mutation calling pipelines were run on the resulting BAM-files for each 

normal/tumour sample pair. The pipelines used for calling SSMs were MuSE [96] and 
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three in-house pipelines developed at the Deutsches Krebsforschungszentrum (DKFZ) in 

collaboration with the European Molecular Biology Laboratory (EMBL), Wellcome 

Sanger Institute and Broad Institute, respectively. A consensus set was built by keeping 

those calls on which two or more callers agreed. SIMs were called by SMuFIN [97] and 

three pipelines developed by the same institutes as mentioned for SSMs. The consensus 

was determined by stacked logistic regression instead, as the level of agreement 

between the callers was lower than for SSMs. Furthermore, the SIM calls were left-

aligned to make them comparable across samples. Several filters were applied to both 

the SSM and SIM calls to remove, among other things, calls due to oxidative damage 

artefacts [95] and germline variants. Great care was taken by the consortium to reduce 

the number of false positive mutation calls, resulting in a reliable dataset that is believed 

to be a conservative representation of the true set of mutations. 

 

4.2.3. Features describing each cancer genome 
 
We computed 29 general features and 13 related to recurrence (Table A in Appendix 1 

- S1 File) to characterize different aspects of the somatic mutations in a cancer genome. 

We used the vcfR package in R to read in the VCF files [98]. The general features 

comprised the number of SSMs and SIMs (two features), the percentage of SIMs with 

respect to the total number of mutations (one feature), the distribution of SSMs and 

SIMs across the different subtypes (six and four features, respectively), and the 

homopolymer context of 1 bp SIMs for each of the four subtypes (four times four 

features). We used the BCFtools (version 1.5) to compute recurrence using the VCF files 

as input. Recurrence was captured by the overall percentage of recurrent SSMs and SIMs 

(two features), percentage of recurrent mutations of type SIM (one feature) and 

recurrence per SSM and SIM subtype (six and four features, respectively). The 

homopolymer context is not included in the recurrence features, as the number of 

recurrent SIMs is too low to stratify into 16 additional features. Except for the number 

of SSMs and SIMs, all other 40 features were in percentages. 
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4.2.4. Principal Component Analysis and hierarchical clustering on Principal 
Components  

 
The R package FactoMineR (v1.41) was used for the PCA [99]. All input features for the 

PCA were scaled to zero mean and unit variance to account for the differences between 

the ranges of the features, especially with respect to the two features in absolute terms 

versus the ones in terms of percentages. The first 18 PCs explained together over 80% 

of the variance of the data. The remaining components were assumed to mostly 

represent noise in the data. The PCs were used as input to the ‘hierarchical clustering 

on principal components’ (HCPC) function from the FactoMineR package. The Euclidean 

distance was used as a measure of dissimilarity and the Ward criterion for linkage. We 

cut the hierarchical clustering tree at various heights to see a more global down to a 

more specific division of the samples. The HCPC function includes a consolidation step 

in the form of k-means clustering [100], which uses the centroids of the hierarchical 

clustering as a starting point. This consolidation step was repeated a maximum of 10 

times. The k-means clustering increased the variance between clusters from 17.5 to 

18.9. Other advantages of this hybrid approach are that it reduces the sensitivity of k-

means clustering to outliers and the initial centroids are selected in an informed way 

instead of at random. As a consequence of this step, some samples were finally assigned 

to a different cluster than after the hierarchical clustering. We decided a division into 16 

clusters that were named alphabetically (the details about this decision will be explained 

in Results - Section 5.3.4). A ‘v test’, included in the FactoMineR package, was used to 

determine which features were significantly associated with each cluster. This test 

compares the mean of a particular feature in a cluster to the overall mean in the dataset. 

We corrected the p-values of all ‘v tests’ for multiple testing using the Benjamini-

Yekutieli method. A feature is considered to be significantly associated to a cluster if the 

adjusted p-value < 0.05.  

 

4.2.5. Detection and enrichment of motifs 
 
We collected for clusters A, E, G, H, L and M all SSMs of the subtype that is the most 

characteristic. This is C>A for clusters A and H, C>G for cluster E and M, C>T for cluster 

G and T>G for cluster L. In addition, we looked at T>G SSMs in cluster H to compare them 
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to cluster L. Next, we extracted from the reference genome (GRCh37/h19) the ten 

adjacent bases in 5’ and 3’ direction of the mutation using the Rsamtools package in R. 

We used the extracted sequence context as input to construct two sequence logos per 

cluster: one for the mutations that are recurrent within the cluster and one for those 

that are not. We include each recurrent mutation only once to avoid giving extra weight 

to highly recurrent mutations. As a measure of information content, we used the relative 

entropy [101] [102], which is defined for position i by: 

REi = ∑ 𝑓(𝑏!)𝑙𝑜𝑔"
#(%!)
'(%)%∈{*,,,-,.}  

Here, f(bi) stands for the frequency of base b (A, C, G or T) in position i and P(b) stands 

for the prior probability of base b as determined by the frequency in the human genome 

(GRCh37/h19). The height of each base in the sequence plot is proportional to 

𝑓(𝑏!)𝑙𝑜𝑔"
#(%!)
'(%)

. A positive value corresponds to an enrichment of the base with 

respect to the prior probability and a negative value to a depletion. The relative entropy 

(REi) is zero, if all four bases are observed with the same frequency as the prior in 

position i. We set 0.25 as a threshold for REi to define the enriched motif. Furthermore, 

we computed per cluster the percentages of all, non-recurrent and recurrent SSMs that 

were in the sequence context that was found to be enriched in the recurrent SSMs. To 

estimate the percentage of the respective motifs in the human genome, we first slid a 

window of the same size (k) as the motif across the genome with a shift equal to the 

length of the motif and counted all possible k-mers. Next, we added to this the counts 

retrieved in the same way for the reverse complement of the reference sequence 

(corresponding to the opposing strand), since we also combined the reverse 

complements for each of the SSM subtypes. From this we computed the percentage of 

the enriched motif with respect to all k-mers and to the k-mer with the base that is 

mutated in the enriched motif at the same position. 
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4.2.6. Statistical tests 
 
The correlation between every possible pair of the 42 features was measured by the 

Spearman’s rank correlation coefficient using the R package Hmisc (v4.1–1). Multiple 

testing correction of the p-values of all correlation tests (including those in Appendix 1 - 

S2 Text) was done by the Benjamini-Yekutieli method. For the other correlations 

mentioned we also used the Spearman’s rank correlation coefficient. 

 

We used the Wilcoxon rank-sum test with continuity correction as the test of 

significance for differences in features observed between clusters. 

 

The different proportions of sequence motifs between recurrent and non-recurrent 

SSMs were assessed by using χ2 tests. 

 
 

4.2.7. Plots 
 
Figures 32, 34, 36 and 37, the pie charts in Figure 35 and the plots in Appendix 1, except 

for S1, were made using the R package ggplot2 (v3.0.0). Figure 37, S3 Fig (Appendix 1) 

and S4 Fig (Appendix 1) additionally required ggseqlogo (v0.1) [103] and Figure 33 was 

made with the use of the R package corrplot (v0.84). Figure 38 was made using Microsoft 

PowerPoint and we also included images from the Servier Medical Art website 

(http://smart.servier.com/). The ‘clustering tree’ in S1 Fig (Appendix 1) was made using 

the clustree R package [104]. We have manually replaced the nodes in the tree with the 

pie diagram showing the distribution of tumour types in each cluster. For the colours of 

the different tumour types, we have made use of the script provided by the PCAWG 

consortium, available at: https://github.com/ICGC-TCGA-PanCancer/pcawg-colour-

palette. 
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4.3. CHAPTER 3. Characterization of amino acid changes due to somatic mutations 
in protein coding genes 

 

4.3.1. Workflow for the automatic evaluation of missense mutations 
 
Missense mutations selection 
 

We focused on the analysis of all the missense mutations in our joint dataset, 

irrespective whether they were the result of a single-base substitution or a multiple base 

substitution. Starting for the genomic mutation, for the genes with more than one 

transcript we selected the mutation in the canonical transcript, since the same mutation 

in a different transcript could translate to a different amino acid. As TCGA mutation data 

already is given for a list of canonical transcripts, for the genes that were in common 

with PCAWG or HMF we used the one selected in TCGA. For the genes that were just 

mutated in PCAWG or HMF we selected the canonical according to UniProt annotation. 

For the cases without a canonical transcript, we followed the UniProt rule of selecting 

the longest one. 

 
 
Protein features defined 
 
Eight features were selected for the evaluation of the amino acid changes, which we 

considered to provide interesting information for elucidating their potential relevance. 

These eight features are described next.  

 

1) Chemical change 
 
The side chain properties such as volume, polarity, acidity, basicity, conformational 

flexibility and the ability to form, for example, a hydrogen bond or a salt bridge, vary 

across the different groups of amino acids [105]. These characteristics could play a 

crucial role in protein folding, stability, interaction of protein-protein complexes and 

protein function. Therefore, a mutation that results in a different amino acid with a 

different biochemical group usually involves a significant alteration. We considered the 

classification of the amino acids according to the charge of their side chain (polar, non-

polar, acidic polar and basic polar amino acids, Figure 3) and established nine categories 
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depending on which was the change (Figure 12). For example, “same category” indicates 

that the original amino acid and the amino acid resulting from the mutation belong to 

the same group (e.g., both acidic polar amino acids). The category “gain of polarity” 

indicates that the original amino acid was non-polar and the one after the mutation is 

polar.  

 

 
Figure 12. Categories among the cases of amino acid changes. 
 
 
We also annotated if the original amino acid was replaced with an amino acid of a similar 

or different size. We considered 4 categories depending of the weight of the residues 

(Table 4): ‘big’ (tryptophan (W), tyrosine (Y), arginine (R) and phenylalanine (F)), 

‘medium’ (histidine (H), methionine (M), glutamic acid (E), lysine (K) and glutamine (Q)), 

‘small’ (aspartic acid (D), asparagine (N), isoleucine (I), leucine (L), cysteine (C), threonine 

(T), valine (V), proline (P)) and, finally, ‘tiny’ (serine (S), alanine (A), glycine (G)). We gave 

a score from 0 to 3, ‘0’ if the two amino acids (before and after mutation) were in the 

same size category, ‘1’ if the two amino acids were one position away from each other 

(e.g., from a ‘small’ to a ‘medium’ amino acid), ‘2’ if the two amino acids were two 

positions away in the size category (e.g., from a ‘small’ to a ‘big’ amino acid) and ‘3’ if 

the two amino acids were three positions away in the size categories (e.g., ‘tiny’ amino 

acid mutated to a ‘big’ amino acid or vice versa). 

 
 
 
 
 
 
 
 
 
 



 59 

Table 4. Amino acid residues weights. Source: Bio-Synthesis Inc [106]. 

Amino acid (AA) name AA  
(3 letters code) 

AA  
(1 letter code) Residue weight (Da) 

Tryptophan Trp W 186.22 
Tyrosine Tyr Y 163.18 
Arginine Arg R 156.19 

Phenylalanine Phe F 147.18 
Histidine His H 137.14 

Methionine Met M 131.20 
Glutamic acid Glu E 129.12 

Lysine Lys K 128.18 
Glutamine Gln Q 128.13 

Aspartic Acid Asp D 115.09 
Asparagine Asn N 114.11 
Isoleucine Ile I 113.16 

Leucine Leu L 113.16 
Cysteine Cys C 103.15 

Threonine Thr T 101.11 
Valine Val V 99.13 

Proline Pro P 97.12 
Serine Ser S 87.08 

Alanine Ala A 71.08 
Glycine Gly G 57.05 

 
 
 

2) Solvent accessibility 
 
The solvent accessibility of an amino acid or Accessible Surface Area (ASA) of the amino 

acid in the protein structure refers to the degree to which the amino acid is exposed to 

the solvent in which the protein is contained or if it is facing the inner core of the protein 

[107]. Considering a threshold, it can be established if an amino acid is exposed to the 

solvent in which the protein is contained or if it is in the inner core. In the first case, the 

amino acids are more likely involved in interactions with other proteins or substrates, 

while in the second case the amino acids would be buried in the structure and more 

relevant for maintaining the core of the protein. Changes in the solvent accessibility 

after mutation has been suggested to provide hints about the maintenance or change 

of protein packaging [108]. It has been suggested that pathogenicity is more frequently 

associated to the buried residues than to the exposed ones [108]. 

We used ASAquick (http://mamiris.com/ASAquick/) to obtain the ASA of the amino acid 

that was being mutated and computed the relative ASA, to classify the amino acid as 

buried or exposed (>20% is considered exposed) [108]. 
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3) Secondary structure 
 

Protein secondary structures, which are considered as the linkages between primary and 

tertiary structures, are defined as local structures that form the backbone of the protein 

and are stabilized by hydrogen bonds [109]. The main four secondary structures are an 

α-helix, b-strand and turn/loop (Figure 13) [110]. We annotated in which of these 

secondary structures the mutated amino acid is located the amino acid mutated. We 

retrieved this information from the PDB file of the protein in question if there was a 

protein structure available, or we took the PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) 

predictions collected in DescribePROT [111] when there was no structure available.  

 
Figure 13. Protein secondary structures: (a) α-helix, (b) b-strand and (c) turn or loop. Adapted from 
Shafee, T. (2020). 
 
 

 

4) Domain 

 
Domains are functional or structural units defined in the proteins [112]. They are 

normally responsible for a particular function or interaction that contributes to the 

overall role of the protein [112]. For all the protein coding genes for which we had 

mutations, we did the crosslink from the Ensembl Transcript ID (the canonical 

transcripts) to the UniProt ID using the R package biomaRt [113]. With the UniProt ID, 

we downloaded the corresponding ‘xml files’ that contain all the information for each 

protein. Parsing the file with an ‘in-house’ script, we collected the domain information 

as defined by the InterPro [114] resources PROSITE [115], Pfam [116] and SMART [117]. 

We annotated for each amino acid mutated whether it is part of a protein domain, if any 

is defined for the protein in question.  
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5) Disruption of specific site (active, metal, protein-protein binding sites) 

 
We also retrieve from the UniProt annotation (‘xml file’) whether the amino acid 

mutated is in any relevant site, for example an active site, binding site, site, zinc finger 

or DNA binding site. In the case of PIK3CA, apart from the annotations available in the 

UniProt file, we annotated the amino acids involved in the interactions between p110α 

(PIK3CA) and p85α (PIK3R1) using the Chimera software [118]. 

 

 

6) Amino acid conservation 
 
The amino acid conservation is based on the estimation of evolutionary rate of the 

amino acid in the protein sequence or structure [119]. This indicates how well an amino 

acid is conserved across species. Extracting conservation scores from a multiple 

sequence alignment of homologous proteins can provide interesting information, since 

highly conserved residues are generally considered to be critical for protein function 

[119]. We obtained the pre-calculated evolutionary conservation scores from ConSurf-

DB (information obtained after for now their last update: November 4th, 2019). The 

conservation scores go from 1 to 9 (Figure 14), where ‘1’ is lowly conserved or a more 

variable amino acid and ‘9’ highly conserved or a not variable amino acid. ConSurf [119] 

obtains the score per amino acid by doing a multiple sequence alignment (Figure 14) 

with homolog sequences from different species and considers how variable  each amino 

acid position is. 

For the PIK3CA analysis, we obtained the results of amino acids conservation from the 

ConSurf server (https://consurfdb.tau.ac.il), to be able to download the different files 

that the tool provides such as the scripts to display the structure with the corresponding 

colours according to the conservation score computed per residue (Figure 14). 
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Figure 14. Amino acid conservation scores computed by ConSurf [119]. From the left, piece of a multiple 
sequence alignment of homologous proteins from different species, each amino acid position is coloured 
according to the conservation score computed. Next, protein structure with the conservation scores 
indicated and legend with the meaning of the different colours, towards blue less conserved.  
 
 

7) Amino acid mutated in a hotspot in the 3D structure 
 
Finding 3D clusters of amino acids that are mutated inside the protein structure can be 

indicative of relevant sites for the correct function of the protein [120]. Also, the 

identification of clusters in which there are mutations that are already considered 

hotspots in cancer may help us find less frequent mutations that could have the same 

implications as the hotspot and, therefore, are of interest to study. We used mutation3D 

[30] to look for potential clusters among the mutations in our data (Figure 15). We also 

included the annotation of amino acids, if any was described as involved in any particular 

function, to point out cluster including these amino acids since they could be relevant in 

terms of having an effect on protein function. 

The computation of the statistical significance of the clusters found by mutation3D, as 

explained by the authors, is done in the next way: “mutation3D performs an iterative 

bootstrapping method to calculate a background distribution of cluster sizes arising from 

a random placement of an equivalent number of substitutions in a given protein 

structure. By default, mutation3D will randomly rearrange all amino acid substitutions 

15,000 times in a given structure and calculate the minimum complete linkage (CL) 

distance at which a cluster of size n (where n is all cluster sizes found in the original data) 

is observed in the randomized data. For each cluster in the original data, P values are 

computed empirically as the percentile rank of its CL distance among all CL distances for 

randomized clusters containing the same number of amino acid substitutions” [30]. 
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Figure 15. Schematic example of the use of mutation3D to find clusters in the 3D structure of a protein 
in our workflow.  
 
 
 

8) Change in the free energy of protein folding 
 
Protein stability is a fundamental property affecting proteins function, activity, and 

regulation [121]. The final shape adopted by the protein is the most energetically 

favourable one. Computing the change in the free energy of protein folding upon 

mutation is indicative of how the protein structure has been affected. We made use of 

FoldX [122] to find mutations affecting the stability of the protein (destabilizing or 

stabilizing mutations) or not affecting. The thresholds used to determine if an amino 

acid change was destabilizing, stabilizing or not affecting the stability of the protein are 

shown in Figure 16. 

 

 
Figure 16. FoldX computation to obtain the change in free energy degrees for protein folding and the 
categories depending on threshold: destabilizing, stabilizing or not affecting stability. 
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4.3.2. Statistical methods 
 
 
Dimensionality reduction method: Factor Analysis of Mixed Data   

 
The Factor Analysis of Mixed Data (FAMD) is a principal component method that allows 

the analysis of a dataset containing both quantitative and qualitative variables. This 

method allows to analyse the similarity between individuals by taking into account the 

mixed types of variables [123]. We applied this method, available in the FactomineR 

package [99], to our set of mutations characterized by the eight protein features to 

visualize how similar or different the mutations are. 

 

 

Hierarchical Clustering of Principal Components (HCPC) 
 
As a next step to the FAMD, we performed a hierarchical clustering of principal 

components (HCPC) [124] with the aim of finding groups of mutations sharing features. 

This method is also available in the FactomineR package. 
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4.4. CHAPTER 4. Landscape of protein changes in p110α (PIK3CA) in cancer 
 

4.4.1. Data visualization 

 

All plots were done with ggplot2 R package under R version 3.6.0. 

 

4.4.2. Statistics: Chi-squared test / Fisher’s Exact Test  
 

We applied the independence test Chi-square Test or Fisher’s Exact Test (depending on 

sample size) to determine if there was a significant relationship between two categorical 

variables regarding different mutational signatures or conditions between (a) ‘tumours 

with PIK3CA mutated’ vs. ‘tumours without a mutation in PIK3CA’ and (b) ‘tumours with 

a protein domain mutated’ vs. ‘tumours without that particular protein domain 

mutated’. With previous tests we tested whether the odds ratio was equal to 1 

(alternative: two-sided). If the value of the odds ratio is 1 or close to 1 it means that 

there are no differences between the two conditions compared. These tests were done 

in R (v 3.6.0). 

 
4.4.3. Survival analysis and associations 

 

In breast, uterus and colorectal cancer cohorts, we investigated if there were differences 

in survival rate in tumours with PIK3CA mutated vs. not mutated, as well as considering 

the tumours mutated in the different PIK3CA protein domains. For the survival analysis, 

we added the parameters age, tumour grade and tumour stage as they may impact on 

survival. In the case of breast cancer, we also added the breast cancer subtype to the 

model for this reason. 

We carried out univariable and multivariable survival analyses using Cox proportional 

hazards model. We used Kaplan-Meier curves for the visualization of the results where 

applicable. For both methods we used the suvminer and survival R packages. All 

statistical tests were two-sided and we considered results to be statistically significant if 

the p-value is below 0.05. 
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4.4.4. RNA-Seq analyses: Differential expression analysis and Gene Set 
Enrichment Analysis  

 
We performed a differential expression (DE) analysis using the DESeq2 R package [125] 

in breast, uterus and colorectal cancer cohorts grouping the samples by PIK3CA 

mutational status. Next, we performed the DE analysis testing between different 

domains mutated. We considered a gene to be differentially expressed if the p-value 

was below 0.05. In addition to looking at the individual genes that were differentially 

expressed, we also performed a Gene Set Enrichment Analysis (GSEA) [126][127]. In this 

analysis you consider sets of genes together that individually might not be significantly 

differentially expressed. We performed the analysis using two different lists of gene sets 

downloaded from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb): HALLMARKS 

(‘‘h.all.v7.2.symbols’’) and KEGG PATHWAYS (“c2.cp.kegg.v7.5.1.symbols.gmt”).  

 

 
 
 
 

4.4.5. Deconvolution of bulk RNA-Seq samples using SPOTlight 
 

Using SPOTlight [85] and a single-cell RNA-Seq reference for breast cancer, we 

performed a deconvolution of the bulk RNA-Seq samples from primary breast tumours 

in TCGA to study the tumour microenvironment (TME). We obtained the cellular 

composition estimated inside of each sample. The reference allowed us to obtain the 

different distribution of cancer and normal cells from the breast, stromal cell 

populations and immune cell populations. 

 

Single-cell RNA-Seq reference  
 

The single-cell RNA-Seq (scRNA-Seq) reference for breast cancer was obtained from Wu 

et al. (2021) [56], which included 26 primary tumours from the three major clinical 

subtypes of breast cancer: 11 ER-positive, 5 HER2-negative and 10 TNBC.  
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Deconvolution steps 
 
As input for performing the deconvolution, SPOTlight computed the marker genes that 

characterize each of the populations in our reference in which we are going to 

deconvolute the bulk RNA-Seq samples. From these marker genes, we filtered out 

ribosomal and mitochondrial genes which correspond to bad quality and dead cells. We 

considered a log2-fold change cut off of 0.5 (absolute number). We kept a list of genes 

manually curated specifically related to T cells to be able to separate them, irrespective 

of the log2-fold change. The genes kept were: CCR7, CD274, CD3D, CD3E, CD4, CD40LG, 

CD8A, CD8B, CTLA4, EOMES, FOXP3, GZMA, GZMH, ICOS, IFNG, IL2RA, IL7R, ITGB1, 

KLRB1, LAG3, LEF1, NKG7, PASK, PDCD1, PDCD1LG2, PTPRC, RORA, SELL, TBX21, TCF7, 

TIGIT, TOX, TRAC, TRBC1 and TRBC2. In addition, SPOTlight selected the 3,000 highest 

variable genes in the whole data. The different cell populations that we considered in 

the different deconvolutions performed are shown in Table 5 and Table 6. 

 

 

Table 5. Populations in the first level of annotation of the single-cell RNA-Seq reference [56]. 
With the first deconvolution of the bulk RNA-Seq data we obtained the relative proportion of 
each of these populations in each sample. 

 Cell category Cell population type 

Deconvolution 1 

Cancer and 
normal cells from 

breast tissue 

Cancer SC 
Cancer Cycling 
Luminal Progenitors 
Mature Luminal 
Myoepithelial 

Stroma cells 

Endothelial 
Endothelial Lymphatic LYVE1 
CAFs MSC iCAF-like 
CAFs myCAF-like 

Immune cells 

DCs 
Macrophage 
Monocyte 
B cells 
Plasmablasts 
T cells + NK cells + NKT cells 
Cycling 
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Table 6.  Populations in the second level of annotation of the single-cell RNA-Seq reference 
[56]. In the second deconvolution of the bulk RNA-Seq data we focused on macrophages, in the 
third on CD4 T helper cells and, in the fourth, on CD8 and NK cytotoxic cells. The different 
subpopulations inside these groups are shown. 
 

 Cell population type Cell population subtype 

Deconvolution 2 Macrophages 

Macro_CXCL10 
Macro_EGR1 
Macro_LAM1_FABP5 
Macro_LAM2_APOE 
Macro_SIGLEC1 

Deconvolution 3 CD4 T Helper cells  

T_cells_CD4+_CCR7 
T_cells_CD4+_IL7R 
T_cells_CD4+_T-regs_FOXP3 
T_cells_CD4+_Tfh_CXCL13 

Deconvolution 4 CD8 and NK 
Cytotoxic cells 

T_cells_CD8+_ZFP36 
T_cells_CD8+_GZMK 
T_cells_CD8+_IFIT1 
T_cells_CD8+_IFNG 
T_cells_CD8+_LAG3 
T_cells_NK_cells_AREG 
T_cells_NKT_cells_FCGR3A 
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5. RESULTS 

 

5.1. CHAPTER 1. GENOMIC LANDSCAPE OF 25,499 CANCER GENOMES 
 

At the basis of studying protein changes are the genomic mutations that caused them. 

Here we describe the genomic landscape of the four cohorts, individually, and when 

combined. We will also zoom into breast, colorectal and uterus cancer because of their 

relevance in the context of studying the PIK3CA gene (Chapter 4). 

 

5.1.1. Genomic description of the individual datasets 
 

Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset 

 

The PCAWG dataset consists off whole genome sequencing of mostly primary tumours 

from 2,583 donors and 37 different cancer types (Figure 17). The largest cohort is liver 

cancer followed by pancreatic, prostate and breast adenocarcinoma. For breast 

adenocarcinoma we also have the subtype information available for 91 out of the 211 

samples (Figure 27a). The most mutated cancer type is skin melanoma considering 

Somatic Single-base Mutations (SSMs) and Somatic Insertion/deletion Mutations (SIMs) 

combined (Figure 18a). If we only consider SSMs then it is still the most mutated cancer 

type (Figure 18b). The cancer type with the highest median of SIMs is lung squamous 

cell carcinoma (Lung-SCC) (Figure 18c). The mutation subtypes distribute differently 

depending on the cancer type (Figure 19). For example, percentage wise, C>A mutations 

are the most prevalent in the two forms of lung cancer, C>T mutations in skin cancer 

and C>G mutations in bladder cancer. Further details on the genomic landscape of the 

PCAWG dataset are provided in Appendix 1. 
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Figure 17. Number of donors per cancer type in the PCAWG dataset. 
 

 
Figure 18. Distribution of (a) total number of mutations across cancer types, (b) number of SSMs and (c) 
number of SIMs across cancer types in the PCAWG dataset. 
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Figure 19. Distribution of mutation types across cancer types in the PCAWG dataset. Cancer types are 
ordered by the percentage of C>A mutations. 
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Hartwig Medical Foundation (HMF) dataset 
 
The HMF dataset consists off whole genome sequencing of 4,557 donors with metastatic 

disease from 38 different primary tumour locations. For 100 donors the biopsy was 

taken from the primary tumour (44 breast, 25 nervous system, 8 oesophagus, 3 ovary, 

3 pancreas, 13 prostate and 4 stomach cancer). For 122 tumours we do not know the 

primary location. Figure 20 shows the number of donors available per location of the 

primary tumour of the corresponding metastatic tumour. The biggest cohort is formed 

by donors with breast cancer as primary cancer type followed by colorectal, lung and 

prostate cancer. For 752 out of the 787 breast cancer samples we know the subtype 

(Figure 27b). The most mutated cancer type is skin cancer, considering SSMS and SIMs 

combined (Figure 21a), or only SSMs (Figure 21b). The metastatic cancer with the 

highest median of SIMs is oesophagus cancer (Figure 9c). The mutation subtypes 

distribute differently depending on the primary tumour location (Figure 22), but they 

follow a trend similar to what we see in primary tumours (Figure 19 and Figure 25). For 

example, the highest percentage of C>A mutations is in lung cancer, C>T mutations in 

skin cancer and C>G mutations in urothelial tract cancer.  

 

 

 
Figure 20. Number of donors per location of the primary tumour in the HMF dataset. 
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Figure 21. Distribution of (a) total number of mutations across the primary location of the metastatic 
tumours, (b) number of SSMs and (c) number of SIMs across the primary location of the metastatic 
tumours in the HMF dataset. 
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Figure 22. Distribution of mutation types across primary tumour locations in the HMF dataset. Cohorts 
are ordered by the percentage of C>A mutations. 
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The Cancer Genomes Atlas (TCGA) dataset 
 
The TCGA dataset consists off whole exome sequencing of mostly primary tumours from 

9,104 donors and 32 different cancer types (Figure 23). The biggest cohort is breast 

adenocarcinoma (BRCA), followed by lung adenocarcinoma (LUAD), Brain Lower Grade 

Glioma (LGG) and Head and Neck Squamous Cell carcinoma (HNSC). The most mutated 

cancer type is skin cancer (SKCM), when considering SSMs and SIMs (Figure 24a), or only 

SSMs (Figure 24b). The cancer type with the highest median of SIMs is lung squamous 

cell carcinoma (LUSC) (Figure 24c). The mutation subtypes distribute differently 

depending on the cancer type (Figure 25), but again we see the same cancer types at 

the top as in PCAWG. For example, the percentage of C>A mutations is the highest in 

the lung cancer cohorts, C>T in skin melanoma and C>G in bladder cancer. 

 

 

 
Figure 23. Number of donors per cancer type in the TCGA dataset. 
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Figure 24. Distribution of (a) total number of mutations across cancer types, (b) number of SSMs and (c) 
number of SIMs across cancer types in the TCGA dataset. 
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Figure 25. Distribution of mutation types across cancer types in the TCGA dataset. Cancer types are 
ordered by the percentage of C>A mutations. 
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Breast CAncer STratification (B-CAST) study dataset 
 
The B-CAST dataset consists of 9,255 donors with breast primary tumours for which a 

panel of 323 genes was sequenced. This subset of genes was selected because of their 

known relevance to breast cancer. From the total number of samples, 345 did not have 

a mutation in any of the genes in the panel. The highest percentage of tumours are 

Luminal A (59%), followed by 12% Triple-negative, 11% Luminal B and 5 % HER2 enriched 

(Figure 27d). For 13% of the tumours the molecular subtype is unknown.  

Considering only the mutations affecting coding, there are 33,142 somatic mutations 

across 8,520 donors, considering deletions, insertions, multi- and single-nucleotide 

substitutions (Figure 26). Per mutation type, Figure 26 includes the top mutated genes 

either in absolute counts (A.C.) or correcting the number of mutations by the length of 

the gene (C.C), to account for the fact that larger genes would have more chance of 

accumulating more mutations. PIK3CA is in the top 10 for single-base substitutions. I will 

focus on PIK3CA in Results - Chapter 4. 

 

 
Figure 26. Number of mutations per mutation type and top mutated genes in each case in the B-CAST 
dataset. n: number of genes with mutations of that mutation type. CDS: coding sequence. A.C: absolute 
count. C.C: count corrected by gene length (CDS). 
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5.1.2. Consensus of the joint dataset and largest cohort 

 
By joining the four datasets described in the previous section we have a total of 24,845 

donors, considering that we had to remove 653 patients from the TCGA dataset that 

overlap with the PCAWG dataset and also one donor from HMF overlapping also with 

PCAWG. The largest cohort in the joint dataset is breast cancer. For this cancer we have 

available information of the breast cancer subtype in some cases. In PCAWG dataset, 

the subtype is known for less than half of the tumours, but the most frequent among 

the ones known is basal or triple-negative breast cancer (Figure 27a). In TCGA, B-CAST 

and HMF breast cancer donors the most frequent subtype is Luminal A (Figure 27b-d). 

 

 
Figure 27. Breast cancer subtype distribution in the individual datasets.  
LumA: Luminal A. LumB: Luminal B. Her2: HER2-enriched. 
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5.1.3. Description of mutational signatures across cancer types 
 
Focusing on breast, colorectal and uterus cancer, there were a total of 64 known 

mutational signatures present across these tumours (Table 7). The dominating signature 

varied across the three cancer types and there was also stratification of tumour 

genomes within the same cancer type. We observed the different mutational signatures 

and their proportions in breast, colorectal and uterus tumours from primary (TCGA, 

PCAWG) and metastatic (HMF). Primary breast tumours showed a different profile with 

respect to uterus and colorectal primary tumours, while the metastatic breast cancer 

had a similar profile to metastatic uterus cancer. In primary breast cancer (Figure 28, 

TCGA and PCAWG) we differentiated three main patterns, a group of samples 

characterized by defective homologous recombination DNA damage repair (signature 

SBS3), a second group characterized by the activity of APOBEC family of cytidine 

deaminases (signatures SBS2 and SBS13) and, third, a group of tumours that has mainly 

signature SBS5, which is a clock-signature, normally related to the age of the patient. 

We observed a kind of mutual exclusivity between SBS3 and SBS2/13. When one of the 

previous mutational signatures is dominating in a sample, the other is practically 

inexistent. In primary colorectal cancer (Figure 29, TCGA and PCAWG) we also observed 

a mutual exclusivity but different than in breast. Donors with hypermutation activity of 

polymerase epsilon (Pol e) (SBS10a, SBS10b) did not present at the same time the 

mutational signature SBS40 nor damage by reactive oxygen species (SBS18). We noted 

that mutational signatures SBS10a and SBS10b that were associated with mutations in 

the exonuclease domain of Pol e were often present together with SBS28. SBS28 is a 

signature of unknown aetiology but has already been related to samples with SBS10a/b 

signatures [128]. It has been proposed that SBS28 could be the third minor component 

of the original SBS10 signature related to T>G transversions. The original SBS10 

signature would therefore be captured by these three signatures now: a highest 

prevalence of the C>A component captured by SBS10a, followed by C>T (SBS10b) and 

T>G (SBS28) [128]. APOBEC signature was largely absent in colorectal tumours, with only 

isolated cases in TCGA. Primary uterus cancer (Figure 30, TCGA and PCAWG) showed a 

group of samples with SBS40 as dominating signature, other group with defective DNA 

damage repair (SBS44, SBS15, SBS21), few cases of APOBEC signature (SBS2/13), 
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samples that had mainly the clock-signature SBS5 and, finally, a clear group dominated 

by the mutational signatures related to mutations in the exonuclease domain of Pol e 

(SBS10a, SBS10b). In the three metastatic tumours (Figure 28, 29 and 30, HMF) we had 

a high proportion of samples with SBS40 as dominating signature, for which the 

aetiology is unknown, but it has been correlated with patients’ age in some studies 

[129]. In the case of metastatic colorectal cancer (Figure 29), this SBS40 signature was 

the dominating signature across almost all donors. In the case of metastatic breast and 

uterus (Figure 28 and 30) we also had a group of tumours that showed the activity of 

APOBEC cytidine deaminases with SBS2 and SBS13 as dominating signatures. There were 

no differences in mutational signatures when divided the breast cancer donors 

according to their molecular subtypes (Figure 31). 

 
 
Table 7. Main SBS mutational signatures identified in primary and metastatic tumours from 
breast, colon and uterus and the mutational processes to which they are related to (if known). 
Descriptions were taken from COSMIC v3.3. 
 

 Signature Description 
 SBS 1 Spontaneous deamination of 5’-methylcytosine (clock-like signature) 
 SBS 2 

Activity of APOBEC family of cytidine deaminases 
 SBS 13 
 SBS 3 Defective homologous recombination DNA damage repair 
 SBS 5 Clock-like signature 
 SBS 9 Polymerase eta somatic hypermutation activity 
 SBS 10a 

Polymerase epsilon exonuclease domain mutations 
 SBS 10b 
 SBS 28 Unknown. Often found in samples with SBS10a/SBS10b signatures 

 SBS 14 Concurrent polymerase epsilon mutation and defective DNA mismatch repair 

 SBS 6 

Defective DNA mismatch repair 
 SBS 15 
 SBS 21 
 SBS 26 
 SBS 44 
 SBS 20 Concurrent POLD1 mutations and defective DNA mismatch repair 

 SBS 30 Defective DNA base excision repair due to NTHL1 mutations 

 SBS 36 Defective DNA base excision repair due to MUTYH mutations 

 SBS 40 Unknown. Correlated with patients’ ages for some types of cancer 

 SBS 17a/b Unknown, but SBS17b has been associated to fluorouracil chemotherapy 
treatment and to damage inflicted by reactive oxygen species (in some studies) 

 SBS 18 Damage by reactive oxygen species 

 SBS 31 
Platinum chemotherapy treatment 

 SBS 35 
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Figure 28. Percentage of SBS signatures found in breast tumours in the TCGA, PCAWG and HMF dataset. 
Each vertical bar in the plots refers to a tumour genome from a donor and the colours correspond to the 
SBS signatures found in their different proportions. 
 
 
 

 
Figure 29. Percentage of SBS signatures found in colorectal tumours in the TCGA, PCAWG and HMF 
dataset. Each vertical bar in the plots refers to a tumour genome from a donor and the colours correspond 
to the SBS signatures found in their different proportions. 
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Figure 30. Percentage of SBS signatures found in uterus tumours in the TCGA, PCAWG and HMF dataset. 
Each vertical bar in the plots refers to a tumour genome from a donor and the colours correspond to the 
SBS signatures found in their different proportions. 
 

 
Figure 31. Percentage of SBS signatures across the different breast cancer molecular subtypes in the 
PCAWG, TCGA and HMF dataset. Each vertical bar in the plots refers to a tumour genome from a donor 
and the colours correspond to the SBS signatures found in their different proportions. LumA: Luminal A. 
LumB: Luminal B. H: Her2-enriched. B: Basal or Triple-Negative. Normal: Normal-like. *: Luminal A/Luminal 
B. Unk: unknown. 
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Take-home messages Chapter 1 
 
• Skin cancer is the highest mutated cancer type in terms of SSMs. Considering 

SIMs, lung cancer is the highest mutated in primary tumours and oesophagus 

cancer in metastatic tumours. Among the different mutation subtypes, C>A 

mutations are the highest in lung cancer, C>G in bladder cancer and C>T in skin 

cancer. 

 

• After curation of our joint dataset, the largest cohort is breast cancer with 11,159 

breast tumour genomes.  

 
• We could classify cancer genomes according to the dominant mutational 

signatures. We identify in primary breast, colorectal and uterus cancer that these 

cancer types shared as a dominant mutational signature SBS5, a clock-like 

signature. Uterus and colorectal primary tumours show three groups 

characterized by the same dominant mutational signatures (SBS40, Pol e and 

defective DNA mismatch repair).   

 
• In primary breast cancer a mutual exclusivity is observed between SBS3 and 

APOBEC signatures. 

 

• In metastatic tumours from breast, uterus and colorectal cancer, we identify a 

group of donors that share SBS40 as the dominant mutational signature. SBS40 

is the most dominant signature in almost all colorectal cancer samples. Breast 

and uterus cancer also share a group of donors characterized by SBS2/13 

signatures (APOBEC activity). 
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5.2. CHAPTER 2. USE CASE IN PCAWG DATASET: RECURRENT SOMATIC 
MUTATIONS REVEAL NEW INSIGHTS INTO CONSEQUENCES OF MUTAGENIC 
PROCESSES IN CANCER 

 
To illustrate the importance of studying the genomic landscape (Results - Chapter 1) to 

gain insights into the mutational processes in cancer, we studied the somatic mutations 

in the PCAWG dataset. We divided these mutations in ‘recurrent’, identical somatic 

mutations happening at exactly the same genomic location in two or more tumour 

genomes from different donors, and ‘non-recurrent’, the remaining mutations. We 

computed 13 features based on the recurrent somatic mutations found in 2,583 cancer 

genomes across 37 cancer types included in this dataset together with 29 other, general 

genomic features. Based on the total of 42 features we were able to group the samples 

into 16 clusters that capture clinically relevant cancer phenotypes. 

 

This work has been published as: “Stobbe MD, Thun GA, Diéguez-Docampo A, Oliva M, 

Whalley JP, Raineri E and Gut IG (2019) Recurrent somatic mutations reveal new insights 

into consequences of mutagenic processes in cancer. PLoS Comput Biol 15(11): 

e1007496.” The complete article and its Supplementary Material are available in Annex 

1. 

 
 

5.2.1. Recurrence is higher than expected by chance 
 
There were 1,057,935 recurrent SSMs, which represent 2.44% of the total number of 

SSMs found in the PCAWG cohort. This were around five times higher (Fig A-I in 

Appendix 1 - S1 Text) than expected if only chance would drive recurrence (based on 

5,000 simulations, Appendix 1 - S1 Text). For the six SSM subtypes (see Materials) the 

observed recurrence was around three (C>G and T>C SSMs) to twelve times (T>G SSMs) 

higher than expected by chance (Fig A-II in Appendix 1 - S1 Text). On tumour type level, 

we can either determine recurrence by only considering the samples from the same 

tumour type (‘within tumour type’) or across all samples (‘pan-cancer’). In both cases, 

Kidney-RCC, Liver-HCC, Lung-AdenoCA and Lung-SCC stand out as the observed number 

of recurrent SSMs was only around three times (within tumour type) and around two 

times (pan-cancer) higher than expected by chance (Fig A-III+IV in Appendix 1 - S1 Text). 
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In contrast, the largest ratio was 86 times for recurrence ‘within tumour type’ (Prost-

AdenoCA) and 7 times for recurrence ‘pan-cancer’ (Eso-AdenoCA). 

 
 

5.2.2. Number of samples does not always correspond to the level of 
recurrence 

 
To see the effect of the number of samples on recurrence, we looked at the overall 

recurrence within each tumour type (Figure 32). Although tumour types with more 

samples generally had a higher total number of recurrent mutations (Figure 32A), there 

were notable exceptions. For example, Liver-HCC has the most samples of all tumour 

types (314), but less recurrent SSMs and SIMs than six and five other tumour types, 

respectively. If we look at the percentage of recurrent mutations, even more tumour 

types overtake Liver-HCC as in this respect it ranks 9th and 10th in terms of SSMs and 

SIMs, respectively (Figure 32B). The opposite is true for Eso-AdenoCA (97 samples), 

which has a higher absolute number and percentage of recurrent SSMs than eight other 

tumour types that have more samples. Stomach-AdenoCA has the highest absolute 

number and percentage of recurrent SIMs of all tumour types, but less samples than 13 

of them. One partial explanation for this is that a lower number of samples does not 

always translate to a lower total number of mutations (Figure 32C), even though the 

correlation is strong (Spearman's Rank correlation coefficient rS = 0.73, p = 2.8e-07). 

However, even if the number of samples and the number of mutations are in line, the 

level of recurrence may still give a different picture. Liver-HCC, for instance, has also a 

higher total mutational load than Eso-AdenoCA (1.2·106 and 7.9·104 more SSMs and 

SIMs, respectively), but still a lower level of recurrence. 
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Figure 32. Recurrence within each tumour type in absolute numbers and percentages. The tumour types 
are ordered from the lowest to the highest number of samples. We labelled the top 10 ranking tumour 
types in terms of the following three values: (A) Absolute number of recurrent mutations, where 
recurrence is defined by considering each tumour type separately (‘within tumour type’ recurrence). (B) 
Percentage of recurrent mutations ‘within tumour type’. (C) Total number of mutations, counting 
recurrent mutations only once. 
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5.2.3. General mutational characteristics versus recurrence 
 
For each cancer genome, we computed 29 basic mutational characteristics that capture 

the effects of mutagenesis (e.g., relative frequency of each SSM subtype) and 13 

features capturing recurrence at different levels (Table A in S1 File (Appendix 1), see 

Methods). Recurrence for these features was determined based on the entire cohort. A 

detailed description of each of these 42 measures is available in Appendix 1 - S1 File. 

Based on the comparison of the recurrence-related features with the general ones 

(Appendix 1 - S2 Text), the key findings were that across the entire cohort: 1) the 

correlation between mutational load and the absolute level of recurrence is stronger for 

SSMs (rS = 0.89) than for SIMs (rS = 0.76); 2) the same correlation, but instead taking the 

percentage of recurrent mutations, is weak and negative for SSMs (rS = -0.21) and non-

significant for SIMs; 3) relative recurrence for SIMs is higher than for SSMs; 4) a 

particularly high percentage of C>T SSMs and 1 bp A/T deletions are recurrent (4.19% 

and 15.27%, respectively); 5) there is a strong tendency for T>G SSMs to be recurrent 

despite their modest total number; 6) there is a strong correlation between the level of 

recurrence for SIMs and the percentage of 1 bp SIMs in a long homopolymer context. 

Looking into the different tumour types, there were clear contrasts in terms of the 

associations between general and recurrence-related characteristics. For example, 

there is a statistically significant positive correlation between the number of mutations 

and the percentage recurrent for only two tumour types in the case of SSMs (Eso-

AdenoCA: rS = 0.48 and Skin-Melanoma: rS = 0.58) and for seven types with respect to 

SIMs (most notably: Biliary-AdenoCA: rS = 0.71 and Eso-AdenoCA: rS = 0.67) (Fig D in 

Appendix 1 - S2 Text). 

 
 

5.2.4. Recurrence characteristics divide the cohort 
 
Next, we used the recurrence-based and general mutational features all together to see 

if we can uncover meaningful clusters of cancer genomes. As there were strong 

correlations between some of these features (Figure 33), we first performed a principal 

component analysis (PCA) to obtain independent features and reduce dimensionality 

(Figure 34). We took as many principal components (PCs) as needed to explain at least 

80% of the variance in the data and considered the remaining PCs to capture noise. We 
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used this subset of PCs as input for hierarchical clustering [99]. The resulting hierarchical 

tree was cut at the desired height to obtain clusters. The centroids were computed for 

each cluster and used as input to the k-means consolidation step, which further 

improved the initial clustering (see Methods) [100]. To get a pan-cancer perspective we 

analysed all samples together. 

The crude division into two clusters separated the cancer genomes with low relative 

levels of recurrent SIMs (e.g., Liver-HCC, Kidney-RCC and Lung-SCC) from those with high 

levels (e.g., ColoRect-AdenoCA, Eso-AdenoCA, Lymph-BNHL and Panc-AdenoCA) 

(Appendix 1 - S1 Fig). At three clusters, the relative level of recurrent SSMs split off a 

group of mainly Skin-Melanoma samples from the two other clusters. This cluster largely 

remained unchanged when increasing the number of clusters while the two other 

clusters continued to divide and became more specific to a tumour type or a particular 

mutational process. At the level of six clusters, for example, we saw a cluster split off 

that we can connect to microsatellite instability (MSI). We will discuss in further detail 

the division into 16 clusters (labelled from A to P), chosen as a trade-off between too 

many clusters, which would each be specific to just a handful of samples, and too few, 

which would result in loss of meaningful information (Figure 35). There are nine clusters 

(A, B, C, G, H, I, L, M and P) for which at least half of the samples are from the same 

tumour type. For another two clusters (O and N) samples from two tumour types 

constitute a majority. In the remaining five clusters (D, E, F, J and K) three or more 

tumour types are required for this. For each tumour type the percentage of samples in 

each of the 16 clusters is shown in Appendix 1 - S2 File. The association of each of the 

42 features with the clusters is shown in Figure 36. The key characteristics of each cluster 

are shown in Figure 35. To facilitate a tight linkage of the clusters to mutational 

processes, we considered, in addition to the mutational features of a cancer genome, 

also tumour type assignment, microsatellite instability (MSI) status, immunoglobulin 

heavy-chain variable region gene (IGHV) mutation status (Lymph-CLL only) and tobacco 

smoking history of the donor (where available) (Appendix 1 - S3 Text). To provide further 

details on each cluster we integrated annotation based on GENCODE [130] , Oncotator 

[131], driver predictions [132] [94], replication time [133] and mutational signatures 

[129]. A summary of this and further details are described in S3 Text in Appendix 1. In 

the following sections (5.2.5, 5.2.6, 5.2.7, 5.2.8, 5.2.9), we will show how the level of 
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recurrence can be indicative of the mutational processes, often in combination with the 

general features. Moreover, we show that our recurrence-based approach groups 

cancer genomes in a novel way that complements current classification approaches and 

captures clinically actionable cancer phenotypes. 

 

 
Figure 33. Spearman’s rank correlation between the 42 mutational features. The colour of the circles 
indicate positive (blue) and negative (red) correlations, colour intensity represents correlation strength as 
measured by the Spearman’s rank correlation coefficient. The size of the circle indicates the adjusted p-
value with larger circles corresponding to lower p-values. The p-values were corrected for multiple testing 
using the Benjamini-Yekutieli method. Crosses indicate that the correlation is not significant (adjusted p-
value > 0.05). 
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Figure 34. Workflow of the recurrence-based approach to group cancer genomes. The 42 features are 
described in detail in Appendix 1 - S1 File (Step 1). We scale all features to zero mean and unit variance to 
compensate for the differences between the ranges of the features (Step 2). The arrows in the PCA plot 
indicate the direction and level of contribution of the features that contribute above average to the first 
two PCs (Step 3). Seven of these features are related to recurrence. An interactive 3D version of the PCA 
plot is available here: https://plot.ly/~biomedicalGenomicsCNAG/1.embed. We take a subset of the PCs 
and consider the remaining PCs to capture noise (Step 4). For the hierarchical clustering we use the 
Euclidean distance as a dissimilarity measure and Ward’s method as the linkage criterion (Step 5). The 
results of the hierarchical clustering are used as a starting point for k-means clustering (Step 6). Some 
samples will in this step switch to a different cluster compared to the initial partition. This consolidation 
step is repeated a maximum of 10 times. Further details on the annotation of the clusters (Step 7) are 
described in Appendix 1 - S3 Text. 
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Figure 35. Key characteristics of the 16 clusters. Tumour types that form together ≥50% of the cluster are 
listed. The legend for colours for the pie chart is provided in Figure 36. The key characteristics are those 
features with the strongest significantly negative or positive association with the cluster. Only if the 
association with overall recurrence is significant, the respective direction is indicated. 1Cluster has a low 
median number of SSMs (<200) and SIMs (<20). 
 
 

5.2.5. High levels of recurrent SSMs and low levels of recurrent SIMs 
characterize exposure to UV light 

 
A positive association with overall recurrence of SSMs and more specifically with 

recurrence of C>T SSMs characterizes cluster G that mainly consists of Skin-Melanoma 

samples (Figure 36). The association is negative with the recurrence of SIMs. We link this 

cluster to mutagenesis induced by UV light (Appendix 1-S3 Text). The samples assigned 

to cluster G account by themselves for 60.7% of the total number of recurrent C>T SSMs. 

The combination of the high total number of SSMs per sample and the high percentage 

of C>T substitutions in this cluster is what contributes to the high level of recurrence. 

The mechanisms inherent to UV-light exposure further increase the probability of 

recurrence as it tends to result in C>T SSMs near energy sinks in the genome. The energy 

from UV-light-exposed DNA usually travels along the DNA strand until it arrives at the 

lowest energy point, a dT, particularly when it is next to a dC, which acts as energy 

barrier [134]. In agreement with this, for C>T mutations that are recurrent within this 

cluster there is a strong enrichment of a TTTCCT motif (the underlined C is mutated) (see 
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Methods). While the percentage of this motif in the genome is estimated to be only 0.4% 

of all 6-mers with a C at the central position, 4.5% and 19.5% of the non-recurrent and 

recurrent C>T SSMs, respectively, within this cluster are at this motif (Figure 37). An 

enrichment of a CTTCCG motif was found for frequently recurrent mutations in 

promoters in 38 melanoma samples [135]. In another set of 184 melanoma samples a 

CTTCCGG motif was found at the majority of ETS transcription factor binding sites 

(TFBSs) [136]. As the sequences are centred at the core consensus ETS binding motif 

TTCC, instead of at a mutation, the underlined nucleotide is the most frequently 

mutated base. In a subset of highly mutable ETS TFBSs the second C is the most mutated. 

These and our specific sequence motif help explain the observed high level of 

recurrence. Furthermore, a decreased activity level of the nucleotide excision repair 

pathway was detected in melanoma at active transcription factor binding sites and 

nucleosome embedded DNA compared to the flanking sites [18]. This increases local 

mutation rates and hence also increases the probability of recurrence. 
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Figure 36. Overview of the 42 features and their association with each cluster. Red and green squares 
indicate statistically significant negative and positive associations, respectively, where the gradient 
indicates the strength of the association. White coloured squares indicate no significant association 
(adjusted p-value > 0.05). For deletions a ‘no homopolymer context’ means that the base next to the 
deleted one is not of the same type. For insertions this refers to a base inserted 5’ to either a base of a 
different type or a single base of the same type. Note that we do not have to consider preceding bases as 
all SIM calls were left aligned. A short homopolymer context is defined as a 2–4 bp mononucleotide repeat 
of the same type of base as the 1 bp SIM, midsize is 5–7 bp in length and long ≥ 8 bp. 
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5.2.6. High levels of recurrent SSMs characterize deregulated activity of Pol e 
 
A high level of recurrent SSMs also characterizes cluster H, specifically C>T and C>A 

SSMs. This cluster captures samples that can be considered ultra-hypermutators and 

their mutations are mainly caused by deregulated activity of polymerase epsilon (Pol e) 

(Appendix 1 - S3 Text). These samples have a very high total number of C>A SSMs 

(median: 297,750) and the median percentage of recurrent C>A SSMs across the 

samples is 7.7%. Two thirds of all recurrent C>A SSMs in the entire cohort are also 

recurrent within only this cluster. The C>A mutations that are recurrent within this 

cluster are enriched for the motif TTCTTT, when considering only ungapped motifs 

(Figure 37, see Methods). Of the recurrent C>A SSMs 32.2% are at this motif, while for 

non-recurrent ones this is true for only 13.7% (χ2 test: p<2.2e-16). In the genome, the 

estimated percentage of this motif of all corresponding 6-mers (NNCNNN) is far smaller 

(0.6%), suggesting that effects of deregulated activity of Pol e are most likely dependent 

on a sequence context exceeding a single neighbouring base on each side as also 

observed for whole-exome data by Martincorena et al. [137]. 
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Figure 37. Enriched sequence motifs. The sequence logos represent the sequence context of ten bp 5’ 
and 3’ of the non-recurrent (left-side) or recurrent (right-side) mutations of the indicated cluster and SSM 
subtype. Here recurrence is defined as a mutation at the same genomic location in two or more samples 
from the same cluster. Each recurrent SSM is included only once to avoid giving extra weight to highly 
recurrent mutations. Relative entropy is used as a measure of information content (see Methods). Setting 
a threshold of 0.25 for the relative entropy results in the motifs highlighted in the rectangles. In the upper 
right corner of each sequence logo the number of mutations is indicated. To the right of the sequence 
logos are the percentages in which the enriched motif found for the recurrent SSMs is present in context 
of the mutations in the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The 
enrichment for the motif for recurrent SSMs is in all four cases significantly higher than for the non-
recurrent SSMs (χ2 test: p<2.2e-16). 
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5.2.7. High levels of recurrent SIMs characterize microsatellite instability 
 
The highest level of recurrent SIMs across all clusters is observed for cluster J, which 

could be linked to a defective mismatch repair (MMR) pathway resulting in MSI 

(Appendix 1 - S3 Text). Of the 179,691 recurrent 1 bp SIMs in the entire cohort, almost 

half of them are recurrent when only considering this cluster. The very high median 

number of SIMs (30,228) in this cluster may play a role in the high level of recurrence. 

The key factor, however, is most likely the mutational process behind MSI, which is 

slipping of the DNA polymerase during replication of repetitive sequences and the lack 

of repair by the MMR pathway [138]. This not only explains the elevated number of SIMs 

[139], but also the association of this cluster with all SIM subtypes in the context of 

midsize-to-long homopolymers. As such homopolymers are scarce in the genome, the 

shift towards specifically altering them increases the probability of recurrence (Table F 

in Appendix 1 - S2 Text). Especially striking in this cluster is the proportion of 1 bp C/G 

deletions that are in the context of a midsize homopolymer (median: 73.2% vs. 8.4% for 

the other clusters combined, p = 1.2e-12). This translates to 6.0% recurrent 1 bp C/G 

deletions within this cluster versus <0.7% for any other cluster (Appendix 1 - S3 Text). 

 
 

5.2.8. Positive association with recurrence of SSMs and SIMs: Gastric-acid 
exposure and hypermutation of immunoglobulin genes 

 
Clusters L, M and N all positively associate with recurrence of both SSMs and SIMs. 

Cluster L, which for >80% consists of Eso-AdenoCA and Stomach-AdenoCA samples, can 

potentially be linked to gastric-acid exposure (Appendix 1 - S3 Text). The T>G and T>C 

SSMs that are recurrent within this cluster cover 45% and ~20%, respectively, of the total 

observed in the whole cohort. The median percentage of SSMs falling in late-replicating 

regions (Table C and Fig A in Appendix 1 -  S3 Text) is significantly higher than in the rest 

of the clusters combined (75.2% vs. 61.0%, p<2.2e-16). In general, the mutational load 

is expected to be higher in late-replicating regions as the MMR pathway is said to be less 

efficient there [140]. However, the question is why the effect is so strong in cluster L 

compared to the others (Fig B in Appendix 1 - S3 Text). It could be that transient single 

strand-DNA at stalled replication forks, whose formation has been suggested to be more 

prevalent in late-replicating regions [141], is particularly vulnerable to the mutagenicity 
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of acid-exposure. Alternatively, if the oxidative stress induced by gastric-acid exposure 

leads to the oxidation of dG in the dNTP pool [142], the use of error-prone DNA 

polymerases that incorporate the oxidized dG into the DNA [143] may be more frequent 

in late-replicating regions [144]. The strong shift towards late-replicating regions favours 

higher levels of recurrence. The same holds for the enrichment of the specific sequence 

context ‘AACTT’ that we observe for T>G mutations that are recurrent within this cluster 

(Figure 37, see Methods). Nearly 39% of the recurrent T>G SSMs are confined to this 

motif and ~12% of the non-recurrent ones (χ2 test: p<2.2e-16), which is still far higher 

than the estimated percentage of this motif in the genome (0.5% of all NNNTN 5-mers). 

For SIMs, the cluster has a positive association with recurrence for three out of the four 

SIM subtypes as well as with the same subtypes in a midsize and/or long homopolymer 

context. This suggests similar mechanisms as for cluster J. Finally, as observed for SSMs 

in this cluster, SIMs also show a tendency to fall into late-replicating regions (67.2%, 

Table C and Fig C in Appendix 1 - S3 Text). This may further add to the high level of 

recurrence for SIMs. 

 

Cluster M, with mainly Lymph-BNHL and Lymph-CLL samples, is linked to the somatic 

hypermutation of the immunoglobulin genes (Appendix 1 - S3 Text). In the 

aforementioned tumour types, this process is indicative of memory B cells being the cell 

of origin as opposed to naïve B cells [145]. The cluster has positive associations with the 

level of recurrence for all six SSM subtypes. The association is particularly strong for C>G. 

Of all recurrent C>G SSMs, 10.7% can be found in this cluster alone. The high level of 

recurrence may partially be explained by the hypermutation observed in the limited 

area of the genome where the immunoglobulin genes are located. For SIMs, the cluster 

has positive associations with the level of recurrence for all four subtypes as well as with 

those subtypes in general when in a midsize and/or long homopolymer context. This 

cluster has the highest median percentage of SIMs in late-replicating regions (67.5% vs. 

57.8% for the other cluster combined, p<2.2e-16, Table C and Fig C in Appendix 1 - S3 

Text), which may contribute to the high level of recurrence. 

 

In cluster N, which consists of ~47% Panc-AdenoCA samples, the sources of mutagenesis 

are less clear, even after the inclusion of all annotation layers (Appendix 1 - S3 Text). 
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Except for C>G and T>C SSMs, the cluster has positive associations with the recurrence 

of all other subtypes of SSMs and every SIM subtype. This is especially noticeable as the 

median of the total number of mutations across samples is intermediate. A high 

percentage of the recurrent mutations are SIMs in this cluster with a median of 35.0%. 

This is far higher than for samples of the other clusters combined (median: 15.5%, 

p<2.2e-16). The positive associations with all SIM subtypes when in a midsize-to-long 

homopolymer context may point to a slippage-related mechanism (see also cluster J). 

 
 

5.2.9. Negative association with recurrence: Tobacco-smoke exposure, 
alcohol use and increased activity of cytidine deaminases 

 
There are also several mutagenic processes that are associated with low levels of 

recurrence (Figure 36) including those represented by clusters A, B, C and E. Cluster A, 

of which 84% are lung cancer samples, is linked to mutational processes induced by 

tobacco-smoke exposure (Appendix 1 - S3 Text). This cluster shows a positive association 

with the total number of SSMs and the percentage of C>A SSMs, the latter is a known 

consequence of tobacco-smoke exposure [146]. There are several factors that increase 

the probability of recurrence in this cluster, including the high total mutational load 

together with the high percentage of C>A SSMs and the enrichment of mutations in late-

replicating regions (Appendix 1 - S3 Text). Also, tobacco-smoke induced mutations have 

been shown to be enriched in linker DNA (i.e., DNA not wrapped around a nucleosome) 

[147], which constitute only between 10% and 25% of the genome in eukaryotes [148]. 

The key to explaining the lack of recurrence seems to be that there is little tendency to 

favour a specific sequence context for the C>A SSMs (Figure 37). This can also be 

observed in the ‘tobacco smoking signature’ [149] , which is present in nearly 90% of the 

samples in this cluster (Appendix 1 - S3 Text). Unlike for several clusters mentioned 

above, there is a positive association with SIMs in short homopolymer contexts, which 

are more frequent in the genome than longer homopolymers, and the resulting 

distribution is therefore also more random. Note that cluster A also has a strong 

association with the percentage of total 1 bp C/G deletions, which has not been 

described previously as a possible consequence of tobacco-smoke exposure (Appendix 

1 - S3 Text and S4 Text). 
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Cluster B, consisting of 85% Liver-HCC samples, is likely to be linked to mutational 

processes indirectly induced by excessive alcohol use (Appendix 1 - S3 Text). The level 

of recurrence is low despite the high number of samples of the same tumour type (277) 

and the consistent pattern of a high percentage of T>C SSMs (median: 31.7% vs. 14.6% 

in the other cluster combined, p<2.2e-16). With regard to 1 bp SIMs, there is a positive 

association with a short homopolymer context, as for cluster A, with the exception of 1 

bp A/T insertions. 

 

In cluster C, in which ~82% are Kidney-RCC and Kidney-ChRCC samples, the mutational 

processes remain largely obscure except for a few samples that can be connected to 

aristolochic-acid exposure (Appendix 1 - S3 Text). Unlike for clusters A and B, the median 

number of SSMs across samples is relatively low. Furthermore, mutations are nearly 

equally spread between early- and late-replicating regions as only 53.9% of the SSMs 

and 47.5% of SIMs are in late (Table C, Figs B and C in Appendix 1 - S3 Text). SIMs are 

preferentially located in no or short homopolymer context, similar to clusters A and B. 

 

In cluster E nearly one third are Breast-AdenoCA samples and key mutational 

characteristics point to the endogenous mutational process of increased activity of 

cytidine deaminases (Appendix 1 - S3 Text). There is a general paucity of associations 

with characteristics of recurrence. In line with this, the mutations in this cluster are 

nearly equally spread between early- and late-replicating regions of the genome (Table 

C, Figs B and C in Appendix 1 - S3 Text). The most outstanding feature of this cluster is 

the high percentage of C>G SSMs. This is the most rare substitution type, making the 

detection of recurrence unlikely, particularly if not confined to specific genomic regions. 

Interestingly though, the 655 C>G SSMs that are recurrent within this cluster are 

enriched for the motif CTCW (W = A or T) (Figure 37, see Methods). Very similar motifs 

have been described as being characteristic for deamination mediated by APOBEC3 

[150]. The number of recurrent mutations is much lower than for the other motifs 

discussed. The CTCW motif is also shorter, more general and therefore relatively 

frequent in the genome (5.4% of all NNCN 4-mers), all possible causes for the lacking 

trend towards recurrence. 
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5.2.10.  The added value of the recurrence-related features 
 
The PCA shows that seven of the sixteen features that contribute above average to the 

first two PCs are related to recurrence (Figure 34). In addition, all 16 clusters have a 

statistically significant association with two or more recurrence-related features (Figure 

35). The importance of the recurrence-related features is further demonstrated by the 

results of running the entire workflow (Figure 34) using only the general features. In this 

case we are no longer able to separate all ultra-hypermutator samples from the rest of 

the cohort (Appendix 1 - S2 Fig). Furthermore, the cluster linked to hypermutation of 

the immunoglobulin genes (cluster M) is dissolved, and the cluster possibly linked to 

gastric-acid exposure (cluster L) is less cancer-specific as it absorbs 90 samples of the 

dissolved cluster M and thereby nearly doubles in size. Another key difference is that 

only ~55% of the Lymph-CLL samples without hypermutation of the immunoglobulin 

genes are confined to a single cluster as opposed to ~86% when using all features. 

 
 
Take-home messages Chapter 2 (Figure 38) 
 

• Recurrence of somatic mutations was higher than expected by chance. 

 

•  The number of samples in the individual tumour types did not always 

correspond to the level of recurrence.  

 

• The level of recurrence could not be fully explained by any of the following 

factors individually: mutational load, sequence context and genomic region. 

 
• Level of recurrence can be indicative of the mutational processes in the sample: 

 

o UV light exposure is characterized by high levels of recurrent SSMs and 

low levels of recurrent SIMs. 

o Deregulated activity of Pol e is characterized by high levels of recurrent 

SSMs. 

o Microsatellite instability is characterized by high levels of recurrent SIMs. 
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o Gastric-acid exposure and hypermutation of immunoglobulin genes have 

a positive association with recurrence of SSMs and SIMs. 

o Tobacco-smoke exposure, alcohol use and increased activity of cytidine 

deaminases have a negative association with recurrence. 

 

• The PCAWG dataset could be divided into 16 biologically relevant clusters using 

a combination of recurrence-based and general mutational characteristics.  

 

 
 
Figure 38. Summary of take-home messages: Factors impacting on recurrence in the context of the 
clusters. None of the three key factors (middle panel) that impact on recurrence individually explain the 
observed level of recurrence in the clusters. Whether a cluster has a relatively high or a comparatively 
lower mutational load is based on the median number of SSMs/SIMs across its samples (Figure 35). The 
actual specific sequence contexts for SSMs are shown in Figure 37. For cluster M there is enrichment for 
a specific sequence context as well, which is AGCT for C>G SSMs that are recurrent within this cluster (n 
= 949) (Appendix 1 - S3 Fig). For SIMs a homopolymer of A/T’s is used to represent any type of 
homopolymer. Clusters A and C have a positive association to no and/or short homopolymer context for 
all types of 1 bp SIMs (red), while for clusters J, L and M this is the case for midsize and/or long 
homopolymer context (green) (Figure 36). For the replication time region, we compute the percentage of 
SSMs/SIMs that are in late-replicating regions (Appendix 1 - S3 Text). If this percentage is between 45–
55%, then we consider the mutations to be nearly equally spread between early- and late-replicating 
regions of the genome. The specific region that is enriched in cluster M refers to the immunoglobulin 
genes. The recurrence in clusters A and G is also likely to be positively impacted by an increased mutation 
rate in a specific region as most of their samples are from a particular tumour type for which this has been 
reported. For lung cancer (cluster A) the mutation rate is increased in linker DNA [147] and for Skin-
Melanoma (cluster G) at active transcription factor binding sites [18]. 
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5.3. CHAPTER 3. CHARACTERIZATION OF AMINO ACID CHANGES RESULTING FROM 
SOMATIC MUTATIONS IN PROTEIN CODING GENES 

 
For the amino acid changes that were translated from the missense mutations in our 

joint dataset we attributed eight features combining amino acid, evolutionary and 

structural properties. These protein features were selected because of being helpful to 

elucidate the effect that a mutation could have in the protein. The features were (1) the 

characteristic of the amino acid change (chemical and size change), (2) the solvent 

accessibility of the amino acid that was mutated, (3) the secondary structure in which 

the amino acid mutated was located, (4) the protein domain in which the amino acid 

mutated was located (if any), (5) specific site in which the amino acid mutated was 

involved in (if any), (6) the conservation of the amino acid that was mutated, (7) if the 

amino acid change belonged to a 3D-hotspot and (8) the change in the free energy of 

protein folding between the wild-type and mutated protein structure. 

 

All features were collected taking advantage from UniProt annotation, The Protein Data 

Bank (PDB) [86] and Swiss-Model Repository [87], as well as from several tools such as 

FoldX [122], ConSurf [119] or mutation3D [30]. Using UniProt we indirectly collected 

information from other databases such as Pfam and Interpro regarding protein domains, 

or other proteomic databases in the case of functional sites. The pdb files obtained from 

the Protein Data Bank and Swiss-Model Repository, were not always identically 

formatted and manual curation was needed to extract the data correctly. The amino 

acid conservation was collected from ConSurfDB or computed with Consurf 

(https://consurfdb.tau.ac.il) [119] when needed. The energy change on protein folding 

was computed using FoldX [122] and 3D hotspots were computed using mutation3D 

[30]. 

 

We focused on breast cancer as use case because it was the tumour type with the largest 

number of donors with missense mutations in the combined dataset, with exactly 9,306 

donors with missense mutations. Across these donors there were 173,226 missense 

mutations or, considering unique mutations, a total of 159,430 unique missense 

mutations (Figure 39). These missense mutations were translated into 159,294 different 

amino acid changes that hit 18,523 different genes. We defined each amino acid change 
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with the eight protein features. The protein structure was available for less than 50% of 

the proteins affected by amino acid changes in this tumour type (48% of proteins in 

PCAWG dataset had a structure available, 47% in HMF, 48% in TCGA and 81% in B-CAST). 

However, despite the structures that were available, not all the amino acid changes 

could be mapped to a structure. Only 17% of amino acid changes in PCAWG and HMF, 

19% in TCGA and 67% in B-CAST were the amino acids mapped to a structure and 

therefore, we only have the complete measurements of the eight features for them. For 

the amino acid changes that could not be mapped to a structure we have only the 

features that were not structural. 

 

With all, first, we described the landscape of amino acid changes found in breast cancer 

and their characteristics based on eight protein features. Next, we performed a 

dimensionality reduction and clustering to look for groups of mutations that may share 

characteristics (Figure 39). Finally, we annotated whether mutations were drivers or not 

to look whether there was a difference in the features describing each group of 

mutations (considering ‘driver mutations’ one group and ‘not a driver’ the other group 

of mutations).  
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Figure 39. Workflow of the analysis of amino acid changes in breast cancer. Across 9,306 breast cancer 
donors (211 donors from PCAWG dataset, 761 from HMF, 972 from TCGA and 7,362 from B-CAST), we 
found 173,226 missense mutations in total, which were 159,430 considering unique mutations. These 
unique mutations were translated into 159,294 amino acid changes that were characterized by eight 
protein features (chemical change, secondary structure, solvent accessibility, amino acid conservation, 
domain, disruption of functional sites, change of the free energy of protein folding and belonging to a 3D 
hotspot). This data was used as input for a Factor Analysis of Mixed Data (FAMD) followed by hierarchical 
clustering to look for groups of mutations with the similar behaviour and a potential association to driver 
mutations.  
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5.3.1. Distribution of the amino acid changes found in breast tumours across 
the categories established for eight protein features  

 
The twenty amino acids can be classified in four different groups depending on the 

charge of its side chain. As we described for the feature that we named as ‘chemical 

change’, depending on which is the original amino acid and which is the amino acid that 

arises from the mutation, we can determine different chemical changes (Figure 40a). 

The most frequent chemical change in breast cancer was a change between amino acids 

from the same category, followed by a loss of charge and a loss of polarity (Figure 40b). 

However, when we selected only the recurrent mutations (mutations that were found 

in more than one patient in the same dataset) and plotted the distribution of the 

chemical changes again, we could see that the ‘change of charge’ increased (Figure 40c). 

Under the assumption that recurrent mutations might be relevant for the cancer 

because they are coinciding across several patients, this may indicate that these ‘change 

of charge’ mutations might be more related to relevant mutation  for the disease. 

The most common amino acid mutation across all datasets was E>K (Figure 41). The 

second and third most common mutations (E>Q and D>N) in the overall dataset 

corresponded to what we observed for PCAWG, TCGA and HMF  individually (Figure 41), 

but not for B-CAST. In the latter, the second most common amino acid mutation was 

H>R and the third, R>Q (Figure 41d). The fact that B-CAST is a panel of genes explains 

this difference in behaviour compared to the other datasets, since its composition is 

biased to the genes that are included in the panel. We could see that most of mutations 

in breast cancer happen in the secondary structure that is a loop (Figure 42a), next in an 

a-helix and the lowest number in a b-strand (Figure 42a). Regarding the solvent 

accessibility of the amino acid, mutations are more frequent in exposed amino acids 

(Figure 42b), except in B-CAST for which we saw a more equal distribution between 

exposed and buried amino acids. The percentage of mutations annotated as being part 

of a relevant site in the protein is consistent across PCAWG, HMF and TCGA, with around 

33% of the mutations. From all amino acid changes in B-CAST, less than a 13% are 

affecting a functional site (Figure 42c). We had a total of 17,604 proteins that were 

mutated in breast cancer. Only 7,767 proteins had domains defined in its structure. A 

domain is a region that it is self-stabilizing and therefore can fold independently from 

the rest in the protein and be functional [151], for the proteins that there is no domain 
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annotation can be that it does not contain specific domains or that the structure is still 

unknown and the potential domains in the protein were not predicted nor elucidated 

yet. The protein domains more mutated in breast cancer were protein kinases followed 

by cadherin and Ig-Fibronectin Type III, in all datasets (Figure 43). This is expected since 

these are some of the more well-known domains and can be identified in different 

proteins and therefore more chances of being mutated. The conservation of the amino 

acids mutated in this tumour also tended to be high, considering the amino acids with a 

score of 7 or higher (in a range from 1 less conserved to 9 highly conserved).  
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Figure 40. Distribution of amino acid changes found in breast tumours across the categories of ‘Chemical 
change’. (a) Categories established depending on the amino acid change that is happening. (b) 
Distribution of the non-recurrent amino acid changes (amino acid mutations only found in one tumour 
genome in the cohort) across the different categories of ‘chemical change’ per dataset. (c) Distribution of 
the recurrent amino acid changes (amino acid mutations found in two or more tumour genomes in the 
cohort) across the different categories of ‘chemical change’ across datasets. 
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Figure 41. Percentage of the different amino acid changes found in breast cancer tumours. The ‘x axis’ 
indicates the top amino acid changes found in each dataset a) PCAWG, b) HMF, c) TCGA and d) B-CAST, 
e.g. glutamic acid to lysine is indicated as E_K. Each amino acid change is coloured by the chemical change, 
as defined in Figure 40a. The ‘y axis’ indicates the percentage of amino acid changes that involve that case 
of amino acids in each dataset.  
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Figure 42. Distribution of the amino acid changes found in breast cancer tumours across (a) location in 
secondary structure, (b) solvent accessibility and (c) location in a functional site.  
The number of amino acid changes classified in each category is indicated together with the corresponding 
percentage per dataset (PCAWG, HMF, TCGA and B-CAST). (a) Location in secondary structure. The amino 
acid changes were classified depending on the secondary structure in which they were located. Three 
different types of secondary structure were considered: α-helix, b-strand and loop. (b) Solvent 
accessibility. The amino acid mutated was classified in buried, exposed or ‘NA’, the latter in the case of 
amino acids that could not be assigned to any category. (c) Location in a functional site. The number of 
mutations that were happening in an amino acid that is assigned to a functional site, such as protein 
binding site, DNA binding site or active site, is indicated from the total number of amino acid changes 
together with the percentage to which it corresponds. 
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Figure 43. Distribution of the amino acid changes found in breast cancer tumours across protein 
domains. The number of amino acid changes that were assigned to a known domain is indicated together 
with the corresponding percentage among the amino acid changes found in each dataset (PCAWG, HMF, 
TCGA and B-CAST). The pie diagrams show the distribution of the amino acid changes across the different 
domains per dataset, indicating the legend for the top mutated domains in each dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 112 

5.3.2. Proof of concept. Reduction method and clustering to find groups of 
relevant mutations 

 
Using as input the amino acid changes with the eight different protein features by which 

we characterized these amino acid changes, we performed a Factor Analysis of Mixed 

Data (FAMD) followed by hierarchical clustering of the principal components obtained 

from the FAMD. We investigated whether we were obtaining different groups of 

mutations that were sharing the same characteristics across the different protein 

features or not. Furthermore, we annotated the mutations that were known or 

predicted as being a driver mutation. Groups of driver mutations could share 

characteristics and form clusters in which other less known mutations would be included 

and therefore, these less frequent mutations could be interesting targets for further 

investigation about their potential involvement in the disease. 

 

Unfortunately, no coherent patterns were observed and no meaningful clusters could 

be identified. The difficulty of using categorical data in a dimensionality reduction 

method, since there are no intermediate values to go from one category to another, and 

the potential lack of more accurate features to characterize amino acid changes could 

be the reason of not being able to find different groups. We tried other dimensionality 

reduction methods such as Multiple Correspondence Analysis (MCA) or Multiple Factor 

Analysis (MFA), but all results were not conclusive. The variety of mutations and the 

variation in their categorization using these protein features might be responsible of the 

inability to find different clusters as we were expecting. 

 

 

Take-home messages Chapter 3 
 

• From the characterization of 159,294 amino acid changes across 9,306 breast 

cancer donors by eight protein features we can highlight that it was observed 

that most of the amino acid changes in breast cancer happen between amino 

acids of the same category. Most of the mutated amino acids are in the 

secondary structure that is a loop and the amino acid is exposed. Around 33% of 

the mutations are affecting a functional site in the datasets containing all 
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proteins, while only around 13% in the dataset that only contains a panel of 323 

genes. 

 

• The most frequent amino acid change in breast cancer is E>K (in each of the 

individual four datasets) followed by E>Q in PCAWG, TCGA and HMF and H>R in 

B-CAST. Different tendencies are also seen in B-CAST regarding other protein 

features. This might be explained by that its composition is biased to the genes 

that are included in the panel. 

 
• Considering only the recurrent amino acid changes (mutations that were found 

in more than one patient in the same dataset) the proportion of ‘change of 

charge’ cases increase. These mutations might be more relevant for the disease. 

 

• The protein features collected did not stratify mutations in relevant groups nor 

resulted in the characterization of driver mutations. 
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5.4. CHAPTER 4. LANDSCAPE OF PROTEIN CHANGES IN p110α (PIK3CA) IN CANCER 
 
Finding mutations in the same gene across and within cancer types could imply 

similarities in the origin and characteristics of a tumour and therefore, the possibility 

that the same treatment could be used for these patients [152]. However, not all 

mutations in the same gene have the same effect and therefore may imply different 

treatments are required [153]. For example, SF3B1 gene, which encodes a complex of 

the spliceosome, a macromolecular complex that splices the pre-mRNA, is differently 

mutated in different tumour types. Across the different tumour types the effect of the 

mutations on the patient’s prognosis differs, while in uveal melanoma it is associated 

with a more favourable prognosis [154], in chronic lymphocytic leukaemia (CLL) it is 

linked to a more aggressive disease and shorter survival [155]. Also, studies have linked 

the genomic landscape of tumours with tumour immunity, identifying somatic 

mutations associated with immune infiltrates [156][157][158]. Therefore, combining the 

study of the mutations in the genome with other measurements such as the tumour 

microenvironment and other phenotypes associated to the tumours seems very 

informative. This could help to characterize the tumours, elucidate the right biological 

mechanism and improve the selection of treatment to fight the tumour successfully.  

 

We investigated these aspects for PIK3CA. PIK3CA is a well-known gene involved in 

several cancers that encodes the p110α protein. We looked at the landscape of protein 

changes found in this protein across all cancer types and focused further analyses on the 

tumours for which we had the highest number of donors with this gene mutated, which 

were breast, colorectal and uterus cancer. In addition, we focused in more detail on 

breast cancer and studied the association of PIK3CA mutations with the tumour immune 

microenvironment and clinical parameters of the tumour, such as grade, stage, hormone 

status or survival. We focused on breast cancer for this last part because it was the 

tumour type for which we had the highest number of donors and therefore we had more 

power to test our hypothesis. 
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5.4.1. Pan-cancer description of PIK3CA mutations 
 

From the genomic mutations that were found in the PIK3CA gene in our dataset, we 

focused on the subset of coding mutations and excluded the silent mutations, since they 

do not result in a protein change.  

 

5.4.1.1. Frequency of PIK3CA mutations across cancer types 
 
PIK3CA was mutated in several cancer types and the proportion of mutated donors was 

different per dataset (Figure 44). In the PCAWG dataset (Figure 44a) the top 3 mutated 

cancer types were uterus, colorectal and breast, while in TCGA (Figure 44b) the ranking 

changed to uterus, breast and colorectal cancer. In HMF (Figure 44c), breast and uterus 

were the top mutated cancer types, while colorectal was in the 9th position. Considering 

all datasets, including B-CAST that had ~30% of breast cancer donors with PIK3CA 

mutation, and taking the mean per cancer type across the four datasets, the top 

mutated cancer types were uterus (~42%), followed by breast (~34%) and colorectal 

cancer (~29% of mutated donors). 

  

The most frequent mutation type in PIK3CA gene was by far missense mutations (~95% 

in the joint dataset), followed by deletions (Figure 45). Only 0.17% of the mutations 

overall were nonsense mutations. Uterus cancer had with 1.41% the highest percentage 

of the three cancer types highlighted (Figure 45).  Colorectal cancer had the highest 

percentage of deletions compared to breast and uterus cancer (Figure 45).  
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Figure 44. PIK3CA mutations in different datasets. Total number of donors (lollipop plot, above) and 
percentage of donors with PIK3CA mutation (barplot, below) per cancer type and per dataset: (a) PCAWG, 
(b) TCGA and (c) HMF dataset. 
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Figure 45. Mutation types in PIK3CA gene. Distribution of PIK3CA coding mutations (excluding silent 
mutations) across the different mutation types in the joint dataset (all cancer types included) and in the 
most frequently mutated cancer types inside the joint dataset (breast, colorectal and uterus cancer). 
‘delins’: deletion followed by an insertion. ‘nonstop’: mutation that occur within the stop codon, changing 
the stop codon for a new amino acid, which leads to the continued and inappropriate translation of the 
mRNA making a protein longer than expected. 
 
 

5.4.1.2. Description of protein changes in p110α (PIK3CA) 
 
From all coding mutations (excluding silent) in PIK3CA gene, 5,040 were missense 

mutations and were translated into 385 unique amino acid changes in the p110α 

protein. Since the number of samples available for each cancer type was highly variable 

(Figure 44), we focused on the cancer types with the higher percentage of PIK3CA-

mutated donors that we pointed out previously: breast, colorectal and uterus cancer.  

 

Analysing the different protein features per amino acid change across breast, uterus and 

colorectal cancer, we saw that the highest proportion of amino acid changes were 

happening between amino acids classified in the same category (Figure 46), followed by 

the case of change of charge, in most of cases from an acidic to a basic amino acid in 

breast cancer. In colorectal and uterus cancer we also saw a proportion of mutations 

that involved a loss of charge, while this proportion was small in breast cancer. We saw 

that the mutations in the three cancer types were mainly happened between amino 

acids of the same or similar size (Figure 47). In breast cancer, a higher percentage of 

mutations affected a loop than an α-helix or b-strand, which was to a large degree due 

to the most frequent mutation in this gene in this cancer (H1047R). The histidine amino 

acid number 1047 is located in a loop. In colorectal and uterus cancer, a higher 
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percentage of mutations affected an α-helix (Figure 48). Across datasets, the highest 

percentage of mutations in PIK3CA affected residues that were considered conserved or 

with an intermediate level of conservation. Most of the amino acid changes affected 

exposed residues in all cancer types across the different datasets (Figure 49), what was 

expected since most amino acids in p110α (PIK3CA) protein are classified as exposed. 

When we explored the conservation across cancer types, we saw more conserved 

residues affected in breast than in the other two cancer types. We explore this in other 

datasets, such as lung and bladder cancer and saw that the amino acids affected were 

also less conserved (Figure 50).  

 

 
Figure 46. Proportion of the different categories of amino acid changes in p110α (PIK3CA) protein in 
breast, colorectal and uterus cancer cohorts in the PCAWG, HMF, TCGA and B-CAST dataset. The number 
of samples per cohort is indicated above each bar. 
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Figure 47. Proportion of the different categories of amino acid size change for the amino acid changes 
found in p110α (PIK3CA) protein in breast, colorectal and uterus cancer cohorts in the PCAWG, HMF, 
TCGA and B-CAST dataset. The 20 amino acids are classified in big, medium, small or tiny and a score from 
0 to 4 is defined depending on how big the change is. 
 

 
Figure 48. Proportion of type of secondary structure hit by amino acid changes found in p110α (PIK3CA) 
protein in breast, colorectal and uterus cancer cohorts in the PCAWG, HMF, TCGA and B-CAST dataset.  
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Figure 49. Proportion of amino acid changes found in p110α (PIK3CA) protein happening in an exposed 
or buried amino acid in breast, colorectal and uterus cancer cohorts in the PCAWG, HMF, TCGA and B-
CAST dataset.  

 
Figure 50. Proportion of amino acid conservation categories for the amino acid changes found in p110α 
(PIK3CA) protein in different cohorts in the PCAWG, HMF, TCGA dataset.  
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In addition, mutation3D software was able to find several 3D-hotspots of mutations in 

the p110α protein structure across the different datasets (Figure 51). Several of them 

had previously been reported in the literature [29][120]. The main 3D-hotspots 

identified were around the amino acids in position 1047, 545 and 345, respectively. 

These positions by their own have been identified as a hotspot mutation. A 3D-hotspot 

that included the residues 106, 107, 108 and 111 was also identified (Figure 52), which 

to our knowledge, has not yet been described in the literature. Amino acids G106 and 

K111 are already known to be frequently mutated in endometrial carcinomas [159]. The 

3D-hotspots were located in regions of the p110α protein structure that are known to 

be relevant to its protein function [120].  

 
Figure 51. 3D-Hotspots of mutations on p110α protein structure found by mutation3D per dataset 
(PCAWG, HMF, TCGA and B-CAST). ‘Cluster’: amino acids in p110α protein included in the 3D-hotspot 
cluster. ‘Max. distance’: maximum distance between the amino acids that are belonging to the 3D-hotspot 
cluster. ‘P-value’: p-value computed empirically. The clusters with a p-value lower than 5% are highlighted 
because they would have a chance of 0.05 or lower of being wrong. 
 

 
Figure 52. 3D-Cluster in the linker ABD-RBD including the amino acids 106, 107, 108 and 111. 
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Finally, a highlighted observation was at domain level. We observed that the distribution 

of amino acid changes across the protein domains across cancer types differed (Figure 

53). For example, the kinase domain was the most frequent mutated domain in breast 

cancer in all datasets. We will focus on this different distribution across cancer types in 

depth in the next section (5.4.1.3) 

 
Figure 53. Proportion of mutations in each of the main domains of p110α (PIK3CA) in breast, colorectal 
and uterus cancer in the PCAWG, HMF and TCGA dataset. 
 

In addition, the evaluation of the change in the free energy of protein folding using FoldX 

[122] combined with the conservation of the amino acid that is mutated indicated that 

amino acid changes happening in residues more conserved or more variable were 

predicted to be destabilizing (Figure 54). There were no cases of stabilizing mutations 

(Figure 54). Some highly destabilizing mutations at the C2 PI3K-type domain, such as 

C378R/F/W/Y, were happening at residues very low conserved and still be potentially 

damaging, what indicates that conservation would have not been enough to elucidate 

the relevance of these mutations. 
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Figure 54. Change in the free energy of protein folding (DDG in kcal/mol) upon amino acid changes in 
p110α (PIK3CA) protein in C2 PI3K-type, helical and kinase domain. Red dotted line indicates the 
threshold by which the mutation is considered stabilizing or destabilizing (< -2 kcal/mol or >2 kcal/mol, 
respectively). Values between -2 and 2 kcal/mol are considered not affecting protein stability. Bars are 
coloured by the score of conservation of the amino acid that is mutated. 
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5.4.1.3. The distribution of mutations along p110α (PIK3CA) protein 
domains differs between breast, uterus and colorectal cancer 

 
The distribution of mutations across the domains of p110α was different among the 

most PIK3CA-mutated cancer types: breast, uterus and colorectal cancer. We can 

distinguish five main domains in the 1,068 amino acids long p110α protein: ABD, RBD, 

C2 PI3K-type, helical and kinase domain (see Introduction 1.5.1 and legend in Figure 53). 

Figure 55 shows all PIK3CA coding in our joint dataset in the three cancer types: breast 

(Figure 55a), colorectal (Figure 55b) and uterus (Figure 55c) cancer. The distribution of 

mutations differs across these cancer types, except for the fact that we find the well-

known hotspots mutated in all of them (residues 1047, 542 and 545). Breast cancer has 

the highest peak of mutations in the hotspot of the kinase domain (H1047), colorectal 

cancer has its highest peak at the hotspot at the helical domain (E545) and uterus cancer 

seems to be mutated with more equal frequency across the different hotspots. In 

addition, uterus had an increase in the proportion of mutations in the ABD compared to 

breast and colorectal cancer, with the amino acid 88 being the most mutated (Figure 

55a). The stacked bars at the right of each ‘lolliplot’ (Figure 55a-c, right) indicate the 

percentages of mutations in each region, where there were clear differences among the 

three cancer types. In breast cancer, there is a higher proportion of mutations in the 

kinase domain (pink). Mutations in the ABD domain were hardly present in breast cancer 

while they were higher in proportion in uterus cancer (Figure 55c) compared to breast 

and colorectal cancer (Figure 55a and 55b). Uterus cancer had a higher proportion of 

mutations in the ABD domain and ABD-RBD linker. In colorectal cancer, helical mutations 

were the most abundant, due to the hotspot mutations for which they are enriched 

(E545K, E542K).  

Aside from missense mutations, for which their effect on the protein is normally more 

uncertain, there were other mutation types that hit the p110α protein (Figure 56). 

Deletions and insertions are clustered in the same positions across cancer types: end of 

ABD, linker ABD-RBD or C2 PI3K-type domain (Figure 56). Deletions clustered in the C2 

PI3K-type domain have been suggested to be associated to sensitivity to PI3K inhibitors 

[160]. The proportion of mutations per domain with respect to the total mutations in 

each tumour type is represented in bars at the right of the lolliplots (Figure 56). 

Deletions and deletions followed by an insertion mainly affected the ABD, linker ABD-
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RBD and the C2 PI3K-type domain in the three cancer types. These domains are not 

involved in the catalytic activity of the protein, but they are involved in the attachment 

to the regulator and membrane. Insertions and deletions can have a higher impact on 

protein compared to other mutations, and in this case it is suggested that these 

mutations have an effect on the interaction of p110α protein with the regulator, leading 

to a constitutive activation because of the regulator not being able to bind and inhibit 

the activity [160]. In uterus cancer, a proportion of mutations, which were nonsense 

mutations, affected exclusively the kinase domain. These cases are expected to result in 

a non-active protein since the region where the catalytic activity occurs, the 

phosphorylation of PIP2 to PIP3 [41]. Frame-shift mutations after the kinase domain as 

well as non-stop mutations were only found in breast cancer (Figure 56a), which are 

expected to continue the translation of the protein sequence and result in a protein 

longer than the original. 
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Figure 55. Number of missense mutations per position in the p110α protein in three different cancer 
types: (a) breast, (b) colorectal and (c) uterus cancer. Colours indicate the region of the protein where 
the mutations are located. Note that the y axis scales are not the same, they are adapted to the values 
found in each cancer type. The vertical bar to the right of each cancer type name summarises the 
proportion of mutations that fall in each region. The number of samples included is 3,120, 201 and 244 
for breast, colorectal and uterus cancer respectively.  
N_ter: first residues of the protein from the N-terminal side; ABD: adaptor binding domain; RBD: Ras 
binding domain; Helical: helical domain, Kinase: kinase domain; link_ABD_RBD: linker residues between 
the ABD and RBD; link_RBD_C2: linker between the RBD and C2 PI3K type domain; link_C2_H: linker 
between the C2 PI3K type domain and the helical domain; link_H_K: link between the helical and kinase 
domain; C_ter: last residues of the protein until the C-terminal side. 
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Figure 56. Number of non-missense coding mutations per position in the p110α protein in three 
different cancer types: breast, colorectal and uterus cancer. Point colours indicate the type of mutation. 
Deletion, insertion and delins (deletion followed by an insertion) are in-frame; the same mutation types 
causing a frame-shift in the reading frame are annotated as “frameshift” and are changing the protein 
sequence afterwards. The vertical bar on the right of each cancer type name summarises the proportion 
of mutations falling in the different protein regions, indicated by different colours. The number of donors 
included is 180, 11 and 13 for breast, colorectal and uterus cancer respectively. 
N_ter: first residues of the protein from the N-terminal side; ABD: adaptor binding domain; RBD: Ras 
binding domain; Helical: helical domain, Kinase: kinase domain; link_ABD_RBD: linker residues between 
the ABD and RBD; link_RBD_C2: linker between the RBD and C2 PI3K type domain; link_C2_H: linker 
between the C2 PI3K type domain and the helical domain; link_H_K: link between the helical and kinase 
domain; C_ter: last residues of the protein until the C-terminal side. 
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5.4.2. Underlying causes of PIK3CA mutations 
 
We hypothesized that one possible explanation underlying the different distributions of 

mutations in PIK3CA across breast, uterus and colorectal cancer could be due to the 

different mutational processes that were active in each cancer type. We divide the 

samples into groups depending on the domain mutated (ABD, linker ABD-RBD, C2, 

helical and kinase domain), multiple domains mutated or no mutation in PIK3CA. We 

also look at other possible causes behind these observations such as differences in 

epigenomics, such as chromatin accessibility. 

 
5.4.2.1. Mutational signatures can explain the different distribution of 

mutations across p110α (PIK3CA) protein domains in uterus and 
colorectal cancer 

 
We used mutational signatures as a proxy for the mutational processes that could be 

active in the tumours. Table 7 shows the main mutational processes identified in the 

different cancer types. The activity of the APOBEC family of cytidine deaminases (SBS2 

and SBS13) was the main mutational process in breast cancer together with the 

defective homologous recombination (HR) DNA damage repair pathway (SBS3, ID6). 

APOBEC signatures were also seen in some of the uterus cancer. Polymerase epsilon (Pol 

e) exonuclease domain mutations (SBS10a/b, SBS28) that lead to a defective 

performance of this polymerase were present in uterus and colorectal cancer donors 

together with signature ID1, which is related to slippage during DNA replication of the 

replicated DNA strand. Defective Mismatch Repair (MMR) signatures (SBS26, SBS44, 

ID7) are mainly present in colorectal cancer and in some cases of uterus cancer. 

Signatures with unknown aetiology but that were suggested to relate to age in some 

studies [129], like SBS5 and SBS40, were present in all cancer types. 

 

Principal Component Analysis (PCA) followed by hierarchical clustering on the principal 

components of the mutational signatures in the different tumour types showed in breast 

cancer an association between a group of donors with multiple mutations in PIK3CA and 

the presence of APOBEC mutational processes, while in uterus and colorectal cancer this 

association was to a mutational process related to Pol e or defective DNA mismatch 

repair. The signature profile of the PIK3CA-mutated tumours split by single or multiple 
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mutations in p110α (PIK3CA) protein is shown in  Figure 57, Figure 58 and Figure 59. The 

proportion of breast cancer donors that harbour multiple mutations in PIK3CA did not 

present a different mutational signature profile than those with a single mutation 

(Figure 57). We also observed clusters characterized by specific mutational processes 

enriched for a particular domain mutated (Figure 60). For the donors with PIK3CA 

mutations, the APOBEC signatures are related to the mutations in the helical domain 

(Figure 60 – Cluster 2) while defective DNA mismatch repair and deregulated activity of 

Pol e are more enriched for ABD mutations (Figure 60 – Cluster 1 and 3). Mutational 

processes such as a defective DNA mismatch repair pathway and the 

ultrahypermutation due to the deregulated activity of Pol e are uncommon in breast 

cancer, which might explain why there are so few ABD domain mutations in this type of 

cancer. Since both processes have a high number of mutations as consequence, the ABD 

mutations could be because of this. To confirm it, we tested for enrichment of PIK3CA 

mutations or specific PIK3CA domain mutations across groups of samples affected by 

different mutational processes that lead to a high number of somatic mutations. Figure 

61 shows these results with its corresponding odds ratio. No significant positive 

association was found between ABD mutations and other mutational processes that 

were involving a higher number of mutations, such as UV-light exposure, or an older age 

of the donor (Figure 61), so a high number of mutations seemed to not be always the 

explanation of the presence of ABD mutations.  
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Figure 57. Mutational signatures PIK3CA-mutated breast tumours divided in single mutation vs. 
multiple mutations in p110α (PIK3CA) protein. Each vertical bar in the plots refers to a tumour genome 
from a donor and the colours correspond to the SBS signatures found in their different proportions. 
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Figure 58. Mutational signatures PIK3CA-mutated uterus tumours divided in single mutation vs. 
multiple mutations in p110α (PIK3CA) protein. Each vertical bar in the plots refers to a tumour genome 
from a donor and the colours correspond to the SBS signatures found in their different proportions. 
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Figure 59. Mutational signatures PIK3CA-mutated colorectal tumours divided in single mutation vs. 
multiple mutations in p110α (PIK3CA) protein. Each vertical bar in the plots refers to a tumour genome 
from a donor and the colours correspond to the SBS signatures found in their different proportions. 
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Figure 60. Principal Component Analysis (PCA) followed by hierarchical clustering of principal 
components of the mutational signatures describing breast and uterus cancer genomes from the 
PCAWG, TCGA and HMF dataset. a) PCA showing first vs. second dimension and main clusters found after 
hierarchical clustering of the principal components. Below, the mutational signatures that were 
associated to each of the four clusters are listed. ‘clock’: clock-like signature. ‘MMR def’: DNA mismatch 
repair deficiency. ‘HR def.’: homologous recombination DNA damage repair deficiency. ‘slippage’: 
signature related to a potential slippage during DNA replication of the replicated DNA strand; substantial 
number of mutations of this signature are found in cancers with DNA mismatch repair deficiency [161]. 
‘POLE’: Polymerase epsilon exonuclease domain mutations. ‘repair double strand breaks NHEJ’: signature 
that may involve repair of DNA double strand breaks by non-homologous DNA end-joining mechanisms 
[161]. b) For each of the four clusters, the proportion of cancer genomes harbouring a mutation in each 
of the different protein domains is indicated. 
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Figure 61. Fisher’s Exact test to test for associations of PIK3CA mutations with different mutational 
processes or conditions across cancer genomes from all cancer types in PCAWG and TCGA datasets. a) 
Associations of the different conditions with PIK3CA mutated or not mutated. b) Associations of the 
different conditions with the different PIK3CA domains mutated. The contingency tables used in the test 
are included together for significant results (✔ = significant). The non-significant comparisons are 
indicated with ‘✖’ and the contingency table is not included). OR: Odds Ratio. OR equal or close to 1 
indicates that there are no differences between the two conditions compared, the higher the OR the 
stronger is the association. The strongest associations are indicated with the OR in bold. 
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5.4.2.2. Potential cause of the different distribution of  mutations 

 

A possible factor that could drive differences, in terms of which domains are mutated in 

the different cancer types is epigenetics. We hypothesised that differences in 

epigenetics in the different tissues could result in differences in accessibility of the 

protein domains and, therefore, making mutations more likely in certain domains in one 

tissue than in the other. 

 

First, we considered two epigenetic features, chromatin accessibility and methylation in 

healthy tissues. We searched for public data on chromatin accessibility such us ATACdb 

[162], CATlas [163] or EN-TEx data portal (https://www.encodeproject.org) [164], but 

there was not sufficient data to have enough power to test our hypothesis in the tissues 

we were interested in. For methylation there was data available in the EN-TEx project. 

We observed two positions differently methylated in breast (3 samples) and uterus (2 

samples) (Figure 62). The positions that showed different values are 179,175,515 and 

179,181,381 in chromosome 3 (GRCh38), which are located in the intron 1-2 (between 

the first and second exon) of the PIK3CA gene. However, based on this we cannot 

conclude if this could have an effect on the accessibility of any domain. Second, instead 

of normal tissue, we looked for differentially methylated probes in the samples of the 

PCAWG and TCGA datasets, for which we only had HM450K methylation arrays available 

(Appendix 2). The only probes related to PIK3CA in the HM450K methylation arrays were 

5’ upstream or in the intron between Exon1 and Exon2 of PIK3CA, so not in the gene 

body. Anyways, we did not find any of these probes differentially methylated in the 

different tissues depending on the protein domain mutated.  
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Figure 62. Methylation values of 19 positions in the PIK3CA gene in breast and uterus tissue. Annotation 
of the PIK3CA gene intron or exon in which these positions are located is indicated at the top of the plot. 
The red box indicates the two positions that seem to be less methylated in uterus compared to breast 
samples. Methylation data to do this plot was acquired from EN-TEx data portal.  
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5.4.3. Relationship between p110α (PIK3CA) mutation and survival or other 
clinical parameters in cancer 

 

The association of p110α (PIK3CA) mutations with survival or other clinical features is 

controversial. Different associations can be found across different studies described in 

the literature. To our knowledge, most of studies evaluated differences between cancer 

genomes mutated vs. non-mutated in p110α (PIK3CA). Only a few studies focused on 

differences depending on which p110α (PIK3CA) domain is mutated, among them, most 

of the studies only consider the helical and kinase domain [165][166][167] and very few 

cases consider all domains [168]. We hypothesised that the disagreement in terms of 

associations might be due to the different mutations in the p110α (PIK3CA) mutated 

tumour. First, we checked whether there were differences in survival depending on the 

p110α (PIK3CA) mutation status, and also for mutations in specific domains in breast, 

uterus and colorectal cancer. Next, we tested for associations of clinical parameters, 

such as breast cancer subtype in breast cancer, tumour grade and stage of the tumour, 

with p110α (PIK3CA) mutational status in general or with a specific domain mutated.  

 

Survival analyses 
 
Survival analysis was done in the TCGA, PCAWG and HMF dataset. In the TCGA dataset, 

we did see differences in uterus cancer (Figure 63). Censoring at both 5 and 15 years, 

survival in PIK3CA-mutated tumours in uterus cancer was significantly higher compared 

to non-mutated tumours (Cox proportional hazards (PH) regression at 5 years survival, 

HR<1, p-value=0.034 and Cox PH regression at 15 years survival, HR<1, p-value=0.04, 

respectively) (Figure 63). In breast and colorectal cancer, we did not find differences in 

survival between PIK3CA-mutated and non-mutated tumours. We also added age, ER 

and PR status (in the case of breast cancer) and sex (in the case of colon cancer) as 

variables to the different Cox regression models for testing survival in PIK3CA-mutated 

versus non-mutated tumours, to see if these variables could have an influence on the 

results, but still non-significant results were obtained in any of the cases. The same 

survival analyses in the PCAWG and HMF datasets did not show statistically significant 

results in any cancer type when comparing mutated and non-mutated tumours. 
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To evaluate survival depending on which p110α (PIK3CA) domain was mutated, we 

performed a Cox PH regression including all mutated samples and as variable which 

domain was mutated and we also did independent regressions including two groups of 

tumours each time, e.g., helical domain mutated versus kinase domain mutated 

tumours, kinase domain versus ABD mutated, etc. We did not see statistically significant 

differences in survival in any case in any dataset.  

 

 
Figure 63. Kaplan-Meier curves for survival in PIK3CA-mutated versus non-mutated tumours in uterus 
cancer. (a) Survival analysis censored at 15 years and (b) censored at 5 years. The ‘p’ in each plot 
corresponds to the result of the long-rank test which coincides with the Cox regression results. 
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Associations of p110α (PIK3CA) mutation with clinical parameters 
 
The clinical parameters that were tested for relationship with p110α (PIK3CA) mutation 

status were tumour grade, tumour stage and, in the case of breast cancer, ER, PR and 

HER2 status of the tumour. We also tested for relationships with the age of the patient 

or, in the case of colon cancer, the sex of the patient. In breast cancer, there were 

significantly more PIK3CA mutations in ER-positive tumours as well as HER2-negative, 

while no significant associations were found between PIK3CA mutations and tumour 

grade, tumour stage nor age of the patient. Association of p110α (PIK3CA) mutation with 

the stage and grade of the tumour were also not significant in the case of uterus and 

colorectal cancer. No association with age was found neither in uterus nor in colorectal, 

and no association with sex was found in colorectal cancer. 

 

We tested the same clinical parameters in the subset of PIK3CA-mutated tumours 

considering the p110α (PIK3CA) domain mutated and we did not find significant 

associations. 

 

5.4.4. Gene set enrichment analysis (GSEA) of p110α mutated domains 
 

We performed a differential expression analysis using DESeq2 (See Methods) between 

PIK3CA mutated and non-mutated tumours in breast and uterus cancer from the TCGA 

dataset. We identified 11,413 significantly differentially expressed (DE) genes (adjusted 

p-value<0.05) between breast tumours with PIK3CA mutated and non-mutated. From 

the total of DE genes, 3,049 genes (~27%) showed a higher expression in the PIK3CA 

mutated tumours with respect to the non-mutated. In the case of uterus cancer, 1,590 

genes were significantly differentially expressed (adjusted p-value<0.05) between 

PIK3CA mutated and non-mutated tumours. From the total, 295 genes (~19%) showed 

higher expression in PIK3CA mutated tumours. For both breast and uterus tumours we 

also computed the differential expression between the different domains mutated as 

well as between tumours with a single mutation in PIK3CA and tumours with multiple 

mutations in this gene. We also used the same RNA-Seq data as input for GSEA tool with 

which the gene set enrichment analysis was performed. In breast cancer, samples with 

a kinase mutation showed significant enrichment of the ‘PROTEIN SECRETION’ gene set 
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compared to helical domain mutated samples. The protein secretion pathway is an 

essential molecular machinery for preparing and exporting proteins to the extracellular 

environment [169]. The kinase domain mutated breast cancer tumours could have an 

increase in this pathway and therefore be related to higher secretion of proteins. In 

uterus cancer, samples with C2 PI3K-type domain mutated, were enriched in ‘DNA 

REPAIR’ gene set compared to ABD, helical and kinase domain mutated samples. ‘DNA 

REPAIR’ gene set includes genes involved in DNA damage repair. The fact that it is 

enriched in C2 PI3K-type may mean there are more mistakes in these samples and the 

machinery is more expressed to get everything repaired. Deletions and insertions are 

frequent in this domain that might also increase the activation of the DNA repair 

pathways. Donors with multiple mutations in PIK3CA resulted in different gene sets 

enriched in breast and uterus cancer, except for three gene sets that were enriched in 

both cancer types: ‘DNA REPAIR’, ‘MTORC1 SIGNALING’ and ‘UNFOLDED PROTEIN 

RESPONSE’. In the case of breast cancer seven gene sets in total were enriched in 

samples with multiple mutations in PIK3CA. ‘FATTY ACID METABOLISM’, ‘CHOLESTEROL 

HOMEOSTASIS’, ‘PEROXISOME’ and ‘GLYCOLYSIS’ were the gene sets only enriched in 

the case of breast cancer multiple mutated samples. In the case of uterus cancer, nine 

gene sets in total were enriched in samples with multiple mutations in PIK3CA. ‘MYC 

TARGETS V1’, ‘OXIDATIVE PHOSPHORYLATION’, ‘PI3K AKT MTOR SIGNALING’, ‘MYC 

TARGETS V2’, ‘E2F TARGETS’ and ‘G2M CHECKPOINT’ were the gene sets different to 

breast cancer. 

 
 

5.4.5. Assessment of the tumour immune microenvironment in p110α 
mutated and non-mutated tumours in breast cancer 

 

Using the breast cancer cohort of the TCGA dataset, we aimed to determine the intra-

tumoral immune landscape of primary breast tumours harbouring PIK3CA mutations 

and without mutations in this gene. Furthermore, in the subset of PIK3CA-mutated 

tumours, we analysed the differences of the tumour immune landscape depending on 

which of the domains of p110α (PIK3CA) was mutated.  
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Exploiting a single-cell RNA-Seq data set of primary breast cancer [56], we performed a 

deconvolution of the TCGA bulk RNA-Seq data of 1,043 breast cancer donors using 

SPOTlight [85] (Figure 64a). We assessed the proportions of normal breast cells, tumour 

cells, stromal cells and immune cell populations inside the tumour samples. We 

excluded from this analysis samples that had multiple p110α (PIK3CA) domains mutated, 

since they cannot be classified in just one group. Across all the bulk RNA-Seq samples, 

we were able to extract 16 different tumour, stromal and immune cell populations 

(Figure 64b) that were classified in three compartments: ‘cancer and normal breast cells’ 

(5 populations), ‘tumour stroma cells’ (4 populations) and ‘tumour immune cells’ (7 

populations) (Figure 64b-c).  

 

In the analysis of the stromal cell compartment, we observed that donors with mutated 

PIK3CA had a higher proportion of endothelial (p=0.0013) and endothelial lymphatic 

LYVE1 (Lymphatic vessel endothelial hyaluronan receptor 1) (p=1.15·10-6) populations 

than the non-mutated ones. The two populations of Cancer Associated Fibroblasts 

(CAFs) assessed showed the same trend, being significantly higher in the PIK3CA 

mutated tumours (‘CAFs MSC iCAF-like’ p=0.0025; ‘CAF myCAF-like’ p=3.49·10-7). Next, 

we assessed the main immune cell linages divided into the innate immune cells 

(Dendritic Cells (DCs), macrophage and monocytes) and the adaptive immune cells (B 

cells, plasmablasts, T cells and NK, and cycling immune cells) in PIK3CA mutated and 

PIK3CA non-mutated tumours. We observed significant differences in proportions of 

three different immune cell populations: macrophages (p=1.01·10-10), T cells & NK cells 

(p=1.35·10-3) and cycling immune cells (p=1.65·10-5) (Figure 64c).  

 

Based on the significant differences observed in the proportion of immune cells, we 

investigated whether also immune gene signatures (Table 8) representing the molecular 

changes in different immune linages could be altered depending on mutational status. 

We did the differential expression analyses of the genes contained in immune signatures 

related to several immune functions comparing PIK3CA-mutated and non-mutated 

tumours. The set of genes up-regulated in each immune signature in PIK3CA-mutated 

and non-mutated tumours were summarized in Table 9 and the log2(foldchange) value 

and significance of all genes in all signatures are shown in Figure 64d. Global analyses of 
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genes sets up-regulated in PIK3CA-mutated revealed a distinctive immune gene profile 

related to innate immune responses, in particular, macrophages (SPP1) secreting 

cytokines (IL4, IL25, TGFB3, TGFB1, CXCL12) which are well known to induce 

immunosuppression in TME in breast cancer [57]. Also, genes linked with T helper (Th) 

17 T cells  (IKZF2, RORC, and CCR6) were significantly up-regulated. Higher infiltration of 

Th17 T cells was associated with breast cancer progression [170]  (Figure 64d). In 

contrast, non-mutated tumours showed a gene profile highly related to intra-tumoral T 

cell cytotoxicity (GZMB, GNLY, IFNG and TNF), T cell infiltration (CXCL9, CXCL10, CXCL16 

and CCL20) and T cell exhaustion (LAG3 and TOX). 

 
 
 
Table 8. Gene signatures related to immune function: signature name, list of genes included 
in the signature and general description of the function in which they are involved in. 

SIGNATURE NAME List of genes Description 
Inhibitory 
receptors 

C10orf54 (VISR), CD101, CD160, CD244, CTLA4, HAVCR2, 
LAG3, LAYN, PDCD1, TIGIT 

Immune checkpoints that control 
T cell activation. 

Transcription 
Factors (TFs) 

BCL6, BTLA, CD200, EOMES, FOXP3, HIF1A, ID2, ID3, IKZF2, 
JAK1, JAK2, JAK3, NFKB1, PRDM1, RORC, SATB1, STAT3, 
TBX21, TCF7, TOX, TOX2, TYK2 

TFs involved in differentiation 
processes of T cells and T cell 
exhaustion. 

Effector/memory 
molecules 

CD38, CD44, CD93, ENTPD1, FASLG, GNLY, GZMA, GZMB, 
GZMH, GZMK, ISG15, KLRB1, KLRG1, NKG7, PRF1, TNFSF10 

Gene markers of effector and 
memory states in T cells. 

Cytokines/Innate 
molecules 

CEBPD, FCER1A, ICAM1, IFNG, IL10, IL1B, IL2, IL23A, IL25, 
IL4, IL6, IL6R, IL6ST, LIF, MAP3K8, MRC1, SEPP1, SIK1, SPP1, 
TGFB1, TGFB3, TLR2, TLR3, TNF 

Cytokines and markers produced 
and expressed by innate cells 
(monocytes, macrophages and 
DCs). 

Co-stimulatory 
molecules CD27, CD28, ICOS, IL2RB, TNFRSF4, TNFRSF9, TNFSF14 

Surface receptors that induce T 
cell activation. 

Chemokines 
CCL11, CCL19, CCL2, CCL20, CCL21, CCL22, CCL28, CCL5, 
CXCL10, CXCL12, CXCL13, CXCL16, CXCL2, CXCL9, IL8, XCL1, 
XCL2 

Chemotactic cytokines (cell 
migration). 

Chemokine 
receptors 

CCR1, CCR2, CCR4, CCR5, CCR6, CCR7, CX3CR1, CXCR3, 
CXCR4, CXCR5, CXCR6 Chemotactic cytokines receptors. 

 
 
Table 9. Significantly differentially expressed genes in each of the immune gene signatures 
between PIK3CA mutated and PIK3CA non-mutated tumours.  

SIGNATURE NAME Up-regulated in PIK3CA-mutated   
(MUT) 

Up-regulated in PIK3CA non-mutated 
(WT) 

Inhibitory receptors LAYN (p<0.05) LAG3 (p<0.05) 
TFs IKZF2, RORC, JAK2, NKFB1 (p<0.05) TOX and SATB1 (p<0.05) 

Effector/memory  TNFSF10, CD93 and ENTPD1 (p<0.05) GZMB, CD38 and GNLY (p<0.05) 

Cytokines/Innate  FCER1A, IL4, IL25, IL6ST, TLR3, SEPP1, 
CEBPD, TGFB3, TGFB1 (p<0.05) 

IFNG, TNF, ICAM1 and MAP3K8 (p<0.05) 

Co-stimulatory  No-up regulated genes IL2RB and ICOS (p<0.05) 

Chemokines CXCL12, CCL11 and CCL22 (p<0.05) CXCL9, CXCL10, CXCL16 and CCL20, 
(p<0.05). 

Chemokine receptors CX3CR1 and CCR6 (p<0.05) CCR1 (p<0.05) 
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We did not find significant differences in the 11 different stromal and immune cell 

populations (Endothelial, Endothelial lymphatic LIVE1, CAFs MSC iCAF-like, CAFs myCAF-

like, DC, Macrophage, Monocyte, B cell, Plasmablast, T & NK cells and Cycling) when we 

considered only the subset of PIK3CA mutated tumours and compared the groups of 

samples defined by which domain is mutated to each other (Figure 65a). One possible 

explanation is the heterogeneity inside of the immune populations, which may make it 

difficult to find differences. Therefore, in the two populations that we found significant 

differences between PIK3CA-mutated and non-mutated tumours (macrophages and, T 

cells and NK cells), we deconvoluted the PIK3CA-mutated tumours with the next level of 

annotation capturing the heterogeneity of macrophages, T cells and NK cells. We were 

able to identify five subpopulations of macrophages (Table 6 Methods – Deconvolution 

2 contains the name of the different subpopulations) (Figure 65b). In the case of T cells 

and NK cells, we split the population into CD8 and NK cytotoxic cells and CD4 T helper 

cells and did the deconvolution for each group. We were able to identify seven different 

subpopulations within the CD8 and NK cytotoxic cells and four subpopulations within 

the CD4 T helper cells (Table 6 Methods – Deconvolutions 3 and 4 contains the names 

of the subpopulations) (Figure 65c-d). We observed differences in the proportion of 

different subpopulations of immune cells across the different p110α (PIK3CA) domains 

mutated (Figure 65e). However, after multiple testing correction using Benjamini-

Hochberg (BH), none of the differences were statistically significant. Due to this, to 

confirm the observed tendencies, we assessed the differentially expressed genes from 

the seven immune gene signatures previously described across the tumour with 

different domains mutated (Figure 66, Figure 67, Figure 68) to support the tendencies 

observed. Focusing on macrophages, we observed a tendency of a higher proportion of 

a subpopulation called macrophages APOE+ (Lipid associated macrophages 2 or LAM2 

or LAM2:APOE+) in the linker ABD-RBD mutated tumours with respect to tumours 

mutated in the C2, helical and kinase domain. On the contrary, for the macrophages 

EGR1+ and macrophages FABP5+ (Lipid associated macrophages 1 or LAM1:FABP5+), we 

found a  higher proportion in the C2, helical and kinase domain mutated tumours. The 

differential expression analysis showed an up-regulation of CEBPD (p=0.09) in linker 

ABD-RBD mutated tumours with respect to helical domain mutated ones. SPP1 

(p=0.003) and CCL28 (p=0.06) were up-regulated in the helical domain mutated tumours 
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compared to the linker ABD-RBD mutated tumours. These genes defined the presence 

of a different profile of tumour associated macrophages in the linker ABD-RBD and the 

helical domain mutated tumours. Intriguingly, helical domain mutated tumours had a 

significantly higher expression of TNF compared to kinase domain mutated tumours 

(p=0.02). Also, the expression of IL6 was higher in helical compared to C2 domain 

mutated tumours (p=0.075). These results demonstrated a different profile in the 

subpopulations of macrophages depending on the domain that is mutated in the 

tumour. Within the CD8 and NK cytotoxic cell populations, we observed a tendency of a 

higher proportion of T cells CD8+ LAG3+ in the linker ABD-RBD mutated tumours with 

respect to the C2, helical and kinase domain mutated tumours. Other tendencies we 

observed are: 

- Lower proportion of NK cell AREG+ population in the linker ABD-RBD mutated 

tumours with respect to helical domain mutated tumours. 

- Higher proportion of T cell CD8+ GZMK+ population in the linker ABD-RBD 

mutated tumours with respect to the helical and kinase domain mutated ones, 

as well as a higher proportion in the helical mutated with respect to kinase 

mutated. 

- Higher proportion of T cell CD8+ IFIT1 population in the C2 domain mutated with 

respect to linker ABD-RBD, helical and kinase domain mutated tumours.  

 

We also assessed the differentially expressed immune gene signatures in the different 

protein domains. We identified LAG3 as a top marker with higher expression in the linker 

ABD-RBD mutated tumours compared to helical and kinase domain mutated ones 

(p=0.09) (Figure 66). These results showed that linker ABD-RBD mutated tumours have 

a higher degree of CD8+ T cell infiltration of exhausted cells, specifically, a population of 

T cells CD8+ expressing LAG3.  

 

Finally, for T helper cell populations we saw a tendency of a higher proportion of T 

regulatory cells (T-regs_FOXP3 or Tregs) in the linker ABD-RBD domain mutated tumours 

with respect to tumours with a mutation in the C2, helical or kinase domain. We 

assessed the differential expression of the genes in our immune gene signatures. We 

observed a significantly higher expression of FOXP3 in the Transcription Factors (TFs) 



 146 

signature in the linker ABD-RBD when compared to helical domain mutated tumours 

(p=0.08). Another gene supporting this higher proportion of Tregs in the linker ABD-RBD 

mutated tumours is a higher expression of IL23A (p=0.0005) compared to kinase 

mutated tumours. Although not significant, we also see a high log2-fold change for the 

expression of TIGIT and CTLA4 in the linker ABD-RBD against both helical and kinase 

domain mutated tumours. 
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Figure 64. Deconvolution of TME in PIK3CA mutated and non-mutated breast cancer. a. Topic profiles 
from SPOTlight. b. Deconvolution of primary breast cancer tumours split by the mutational status of 
PIK3CA. Each line indicates the relative proportion of the different cell types found in each tumour. c. 
Comparison of the relative proportion of each cell type in mutated versus non-mutated tumours. 
Significance of the comparisons are indicated: ns (p-value>0.05), * (p-value<=0.05), ** (p-value<=0.01), 
*** (p-value<=0.001) and **** (p-value<=0.0001). d. Differential expression of genes included in the 
immune gene signatures. PIK3CA mutated tumours versus non-mutated.  
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Figure 65. Deconvolution of TME in PIK3CA mutated tumours depending on the domain mutated.  
a. Proportions of tumour stroma and immune cells obtained after the deconvolution.  
b. Proportions of the different subtypes of Macrophages obtained after the deconvolution.  
c. Proportions of the different subtypes of CD8 and NK cytotoxic cells obtained after the deconvolution.  
d. Proportions of the different subtypes of CD4 T helper cells obtained after the deconvolution.  
e. Statistical results for the pairwise comparisons across the different domains within cell subtype. P-
values lower than 0.1 before multiple testing correction are indicated with crosses (black cross indicates 
a p-value<0.05, grey cross indicates  0.05 < p-value < 0.1). 
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Figure 66. Differential expression of immune gene signatures linker ABD against all other domains. The 
immune gene signatures are indicated at the top of the figure and are seven: ‘inhibitory receptors’, 
‘transcription factors’ (TFs), ‘chemokines’, ‘chemokine receptors’, ‘co-stimulatory molecules’, 
‘cytokines/innate molecules’ and ‘effector/memory molecules’. To the left of each box are the groups 
included in the differential expression analysis,  group 1 at the top and group 2 below. Colour from red 
(higher expressed in group1) to blue (higher expressed in group 2) shows the log2-foldchange resulting 
from the differential expression analysis of each comparison. Asterisk (*) indicates a p-value <0.05. Dot (·) 
indicates a p-value<0.1. 
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Figure 67. Differential expression of immune gene signatures: all possible pairwise comparisons of C2, 
helical and kinase domain mutated tumours. The immune gene signatures are indicated at the top of the 
figure and are seven: ‘inhibitory receptors’, ‘transcription factors’ (TFs), ‘chemokines’, ‘chemokine 
receptors’, ‘co-stimulatory molecules’, ‘cytokines/innate molecules’ and ‘effector/memory molecules’. To 
the left of each box are the groups included in the differential expression analysis,  group 1 at the top and 
group 2 below. Colour from red (higher expressed in group1) to blue (higher expressed in group 2) shows 
the log2-foldchange resulting from the differential expression analysis of each comparison. Asterisk (*) 
indicates a p-value <0.05. Dot (·) indicates a p-value<0.1. 
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Figure 68. Differential expression of immune gene signatures: ABD domain mutated tumours against all 
other domains. The immune gene signatures are indicated at the top of the figure and are seven: 
‘inhibitory receptors’, ‘transcription factors’ (TFs), ‘chemokines’, ‘chemokine receptors’, ‘co-stimulatory 
molecules’, ‘cytokines/innate molecules’ and ‘effector/memory molecules’. To the left of each box are 
the groups included in the differential expression analysis,  group 1 at the top and group 2 below. Colour 
from red (higher expressed in group1) to blue (higher expressed in group 2) shows the log2-foldchange 
resulting from the differential expression analysis of each comparison. Asterisk (*) indicates a p-value 
<0.05. Dot (·) indicates a p-value<0.1. 
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Take-home messages  Chapter 4 
 

• The most frequent mutation type in PIK3CA gene was missense mutation (>95%). 

There were 385 unique amino acid changes resulting from these missense 

mutations. 

 

• Uterus, breast and colorectal cancer were the most frequently PIK3CA-mutated 

cancer types. 

 

• There was a different distribution of mutations along the p110α (PIK3CA) protein 

domains in these three mutated cancer types. Breast cancer had a higher 

proportion of mutations in the kinase domain, colorectal cancer in the helical 

domain and uterus in the ABD domain and linker ABD-RBD. 

 

• PIK3CA mutations in the ABD domain in uterus could be related to mutational 

processes such as defective DNA damage repair or hypermutation activity of Pol 

e. The hotspot mutation in the helical domain could be associated with the 

activity of APOBEC family of cytidine deaminases. 

 
• No significant positive association was found between ABD mutations and other 

mutational processes that were involving a higher number of mutations, such as 

UV-light exposure, or an older age of the donor. 

 

• In uterus cancer from the TCGA dataset, there was a significantly higher survival 

in the PIK3CA-mutated compared with non-mutated tumours. There were no 

differences in survival in breast and colorectal cancer. In the PCAWG and HMF 

datasets no differences were observed in any of the cancer types analysed. At 

protein domain level in all datasets, no differences in survival were observed in 

any cancer type. 

 

• In breast cancer there were significantly more PIK3CA mutations were in ER-

positive tumours in breast cancer. No associations were found between the 
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PIK3CA mutational status and tumour grade, tumour stage nor age of the 

patient. 

 

• The tumour microenvironment of breast cancer between PIK3CA mutated and 

non-mutated tumours showed different stromal composition as well as 

differences in the immune populations analysed. 

 

• The tumour microenvironment of breast PIK3CA-mutated tumours showed a 

significantly higher proportion of stromal cells and macrophages, and lower 

proportion of T and NK cells compared with breast tumours without PIK3CA 

mutation. 

 

• The analysis of the proportion of subpopulations of macrophages, T and NK cells 

in breast PIK3CA-mutated tumours showed different tendencies depending on 

which protein domain was mutated.  

 

• In the breast tumours with the linker ABD-RBD mutated, we identified an 

exhausted profile in T cells,  characterized by a significantly higher expression of 

LAG3. 
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6. DISCUSSION 

 

A joint dataset of whole genome, whole exome and panel sequencing data from primary 

and metastatic tumours that summed up a total of 25,499 cancer genomes across over 

40 cancer types was studied. This dataset consists of four cohorts: the Pan-Cancer 

Analysis of Whole Genomes (PCAWG) dataset, the Hartwig Medical Foundation (HMF) 

dataset, The Cancer Genome Atlas (TCGA) dataset and the Breast-CAncer STratification 

study (B-CAST) dataset. The massive increase of sequencing data and its public 

availability enables the extensive study of the variation in cancer to expand our 

understanding [171][172]. One caveat, however, is that there is currently no gold 

standard for calling mutations and different mutation calling pipelines are being used. 

This makes joining different datasets a challenge [173]. However, it goes beyond the 

scope of our project to recall the mutations for 25,499 cancer genomes, which would 

include downloading massive amounts of data. As our focus has largely been on 

substitutions, the differences between pipelines are much smaller compared to indels 

[174][171]. The vocabulary used by the different datasets also poses a challenge. 

Especially when within a cohort there is no standard used either. This can lead to 

typographical errors, different words used to refer to the same concept, or the same 

word used for different concepts. Adhering to standards like the one proposed by 

Musen et al. [175] will therefore be essential to reduce the overhead needed to 

homogenize the metadata. Another challenge is that the more datasets are combined 

and the more donors that participate the probability increases that the same donor is 

part of multiple cohorts. As it goes against privacy standards to explicitly look for this 

overlap, a mechanism will need to be put in place to be able to identify these cases.   

 

The pan-cancer landscape of somatic mutations at the level of substitutions, insertions 

and deletions was described with a view to identifying pertinent features. This shows 

that in PCAWG, TCGA and HMF the most mutated cancer type considering SSMs is skin 

cancer. Considering SIMs, lung cancer is the highest mutated in primary tumours and 

oesophagus cancer in metastatic tumours. The distribution of the six SSM subtypes 

characterizes individual cancer types and is consistent between primary and metastatic 

tumours. For example, C>A mutations are the highest in lung, C>G in bladder and C>T in 
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skin cancer, which is consistent across the individual datasets. Based on the somatic 

mutations, an assessment of the landscape of mutational signatures in primary and 

metastatic tumours was also done. Within a specific tumour type these signatures can 

be used to stratify donors into distinct groups, which could be highly informative for 

selecting the best treatment. Focused on breast, colorectal and uterus cancer, that 

summed up to 3,601 donors with WGS or WES data, interesting results arose. Across 

these three cancer types, there are groups of cancer genomes showing mutational 

signature profiles in common, as well as different ones between primary and metastatic 

tumours. For example, in breast cancer, using the dominant signature, three groups are 

identified across 1,903 cancer genomes: SBS3 or defective homologous recombination 

DNA damage repair; SBS2/13 or APOBEC activity and SBS5 clock-like signature. This 

division of breast cancer tumours according to the different mutational signatures has 

already been reported by Denkert et al. [176] in their study of 405 patients. The same 

finding in our analysis across four times this number of patients can confirm this 

observation. In metastatic breast tumours, the group of SBS3 or defective homologous 

recombination DNA damage repair was not seen. Primary tumours from uterus and 

colorectal cancer also showed a group of donors with the SBS5 clock-like signature as 

dominating, like it was found in breast cancer, while they had other groups characterized 

by SBS10 or Pol e hypermutation activity, SBS44 or defective DNA mismatch repair and, 

a last group characterized by SBS40 clock-like signature. The hypermutation activity of 

Pol e has been reported in uterus and colorectal cancer and has been related to a good 

prognosis and favourable responses to immunotherapies [177]. 

 

To show the relevance of studying the genomic landscape of tumours, the PCAWG 

dataset was used as use case. Mutations found in the DNA of a tumour are expected to 

be largely unique to each tumour as there are three billion places in the DNA that can 

be mutated. However, despite these odds, across the cancer genomes of 2,583 

participants available in PCAWG covering 37 tumour types, a total of over a million non-

unique mutations were observed. The analysis of the genomic landscape of the PCAWG 

dataset, based on 42 features either based on all or only the recurrent mutations, shows 

how this can be used to stratify cancer genomes into clinically relevant groups. The 

division into 16 clusters and their characteristics could be valuable for complementing 
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current classification schemes, which are mainly based on histology and organ of origin. 

We can assign a new sample to one of our 16 clusters by first projecting it onto the PCA 

space based on the PCAWG cohort. Next, we use the first 18 principal components to 

compute the Euclidean distance to the centroid of each of the 16 clusters and assign the 

sample to the nearest one. If there are multiple clusters with a minimum difference in 

distance to the new sample, then to select one cluster we use the sequence motifs 

(Figure 37) and various layers of annotation (Appendix 1 - S3 Text) like replication time. 

Ultimately, whole-genome sequencing should be able to replace multiple diagnostic 

tests currently in use and make diagnoses more accurate. One example illustrating the 

value of the clusters found towards this goal is the MSI phenotype linked to one of the 

clusters. For these patients, immunotherapy may be beneficial [178] while adjuvant 

chemotherapy may not be needed [179]. A second example of an actionable phenotype 

that we capture with one of our clusters is ultra-hypermutation (cluster H), which has 

also been related to beneficial results from immunotherapy [180][181]. A third example 

is the somatic hypermutation of the immunoglobulin genes, which identifies memory B-

cells as the cell of origin in the case of lymphomas. This has been linked to a less 

aggressive form of Lymph-CLL and more favourable prognosis [144], which may in turn 

influence treatment selection. Without explicitly analysing the immunoglobulin genes 

[182], we were largely able to separate the Lymph-CLL samples with somatic 

hypermutation (cluster M) from those without (cluster D). The characteristics of the 

former group include a high percentage of recurrent C>G SSMs and 1 bp A/T deletions. 

A final example relates to those Eso-AdenoCA samples that are assigned to cluster L, 

which have a high percentage of T>C as well as T>G SSMs and a higher total mutational 

load than Eso-AdenoCA samples not assigned to this cluster. Eso-AdenoCA samples with 

the characteristics of cluster L have also been suggested to benefit from immunotherapy 

[183]. The same treatment option may therefore be prioritized for the 22 Stomach-

AdenoCA samples that are also in cluster L. Similarly, a refined investigation of tumour 

samples that do not cluster with the vast majority of its own kind may ideally point to 

differences in disease prognosis or treatment response and even has the potential to 

define novel subtypes or reveal misclassification. Such an analysis would be especially 

worthwhile for the ~20% or less samples from Kidney-RCC, Liver-HCC, Lung-SCC or 

Lymph-BNHL that are not assigned to the main cluster. Another possible application of 
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this classification scheme is to assign a metastatic sample with unknown primary site to 

a cluster to shed light on the possible tissue of origin or pan-cancer characteristics like 

MSI. 

 

To go beyond the genomic landscape, the amino acid changes resulting from the somatic 

mutations were assessed by computing eight protein features, obtained from a 

combination of amino acid, evolutionary and structural properties. This was used to 

have an overview of the profiles observed within breast cancer. The most frequent 

amino acid change in this tumour type in each of the four datasets is glutamic acid to 

lysine (E>K), followed by glutamic acid to glutamine (E>Q) in PCAWG, HMF and TCGA 

dataset, but not in B-CAST. In B-CAST the second most frequent amino acid change is 

histidine to arginine (H>R). The difference is due to the fact that a subset of 323 genes 

was sequenced in contrast to all genes in the other three datasets. The high frequency 

of the H>R amino acid change is largely explained by a frequent hotspot mutation in the 

luminal A subtype, which constitutes nearly 60% of the B-CAST dataset. B-CAST behaves 

also different to the other datasets in that around 50% percent of the amino acids 

mutated are exposed and the other 50% buried in the structure, while in PCAWG, HMF 

and TCGA almost 60% of the amino acids mutated are exposed.  Coinciding across the 

four datasets, over 50% of the amino acid changes are happening to an amino acid 

located in a loop in the protein structure and the protein domains more mutated in were 

protein kinases followed by cadherin and Ig-Fibronectin Type III. After dimensionality 

reduction followed by clustering based on the eight protein features no well-defined 

clusters were found. Also, after the annotation of the mutations that are known as 

drivers in the original data, there was not any clear pattern or association of the different 

drivers with specific features. Therefore, these protein features did not help to uncover 

groups of mutations sharing characteristics that could be associated to known drivers. 

As a limitation, some amino acid changes could not be analysed because the limited 

availability of protein structures. Even if a protein structure is available for a protein, it 

is often not complete and therefore the exact amino acid of interest is missing in the 

structure. Moreover, depending on the feature that is measured, there is the need of a 

protein structure of high quality, which further limits the number of amino acid changes 

that can be analysed. This is the case for the input of FoldX, which requires a resolution 
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of less than 2Å to ensure that the software models the amino acid change and does the 

computation of the change of the free energy of folding correctly. The recent availability 

of AlphaFold [36] predicted structures could increase the number of amino acid changes 

that could be evaluated at structure level. Therefore, the incorporation of these 

predicted structures might increase substantially the data to get insights from this type 

of analysis. 

 

One of the most mutated genes with missense mutations across 11,159 breast cancer 

patients is PIK3CA. Investigating if this gene is also frequently mutated in other tumour 

types than breast cancer across the 25,499 cancer genomes, uncovered its presence 

mutated in several  tumour types, in particular in colorectal and uterus cancer, as it has 

been previously observed [184][185]. Focus on the assessment of the eight protein 

features for the protein changes in the p110α protein, encoded by PIK3CA, elucidated 

differences in the proportion of mutations across the different protein domains in 

breast, colorectal and uterus cancer. Deciphering the underlying causes of the different 

distribution of mutations across protein domains could provide information on the 

different mechanisms affected in different cancer types. We investigate potential 

underlying causes of the different mutations and relate mutational processes such as 

hypermutation activity of Pol e or defective DNA damage repair in uterus cancer to 

mutations in the ABD domain. The lack of available data to investigate other potential 

causes, such as epigenetics, did not allow us to establish a mechanism leading to 

differentially mutated domains.  

 

The survival analysis in uterus cancer in the TCGA dataset shows a higher survival rate 

in patients with PIK3CA mutated tumour compared with patients with tumours without 

a PIK3CA mutation, in line with previous reports [186]. This result could help to predict 

the prognosis of this group of patients and the likely course of the disease [186].  When 

this analysis is extended to the different mutated domains, there is no significant 

differences in survival in any of the cancer types. The same survival analyses on PCAWG 

and HMF datasets did not show statistically significant results in any cancer type when 

comparing mutated and non-mutated tumours nor the comparisons between the 

different domains mutated. Our data was not sufficient powered to demonstrate other 
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associations. In the case of PCAWG dataset, this is likely due to the small sample size, 

which has an even bigger impact when splitting according to the p110α domain 

mutated. In the case of HMF dataset, there were few samples with survival data in the 

case of uterus cancer. Partly this might be because the HMF is a relative new dataset as 

the foundation behind it started in 2015 (https://www.hartwigmedicalfoundation.nl). 

The data they provide regarding survival comes from trials or studies that are still 

running, such as CPCT (ClinicalTrials.gov Identifier: NCT01855477) with an estimated end 

date next year (2023) or DRUP (ClinicalTrials.gov Identifier: NCT02925234) with an 

estimated end date in 2027. This means that a follow up of 5 or more years is not 

available yet for all donors. Moreover, not all studies within the HMF dataset gave 

permission for survival data to be shared. 

 

Breast cancer is the most diagnosed cancer type in the world [1], and it is characterized 

by high heterogeneity [60], which makes stratifying patients even more essential. A 

better stratification of patients is important to customize the treatment strategy and to 

improve the management of this disease [187]. In the attempt to associate PIK3CA 

mutations to different clinical features, such as hormone receptor status, tumour grade, 

tumour stage and age, a clear association was found between the ER-positive status and 

having a PIK3CA mutation, as has been previously reported [188]. No other significant 

results were found between PIK3CA mutation and the rest of clinical parameter analysed 

in the different cancer types. Knowledge of the intra-tumoral heterogeneity in breast 

cancer is also important since it facilitates immune evasion, clonal survival and therapy 

resistance [55]. Immunotherapy is an emerging therapy with promising results, lower 

toxicity than other strategies and high accuracy [189][190] that can be applied in some 

cases depending on the cellular composition of the tumour. For the TNBC subtype it is 

known that there is immune cell infiltration and the use of immunotherapy has already 

been incorporated in the clinic in metastatic cases of this breast cancer subtype [191]. 

For other breast cancer subtypes such as HER2-positive or HR-positive the knowledge of 

the immune component of the tumour microenvironment is limited [192]. The presence 

of tumour-infiltrating lymphocytes (TILs) in HER2-positive has been suggested to be 

linked to a favourable prognosis, while its significance in breast ER-positive tumours 

remains uncertain [84]. Tumour-infiltrating lymphocyte composition, organization and 
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PD-1/ PD-L1 expression are linked in breast cancer [193]. PD-1/PD-L1 axis is one of the 

mechanisms by which tumour cells evade the cytotoxic immune response [194]. PIK3CA 

mutations has been already associated with PD-L1 expression in other cancer types such 

as cervical cancer, suggesting the potential use of PD-L1 inhibitors to fight these tumours 

[195]. With a focus on finding the potential association of PIK3CA mutations and the 

tumour microenvironment (TME), the intra-tumoral heterogeneity across breast cancer 

donors from the TCGA dataset was analysed. The cellular composition of the TME in 

breast cancer is significantly different in breast tumours with a PIK3CA mutation 

compared to those without. PIK3CA mutated tumours with a significantly higher 

proportion of stromal cells and macrophages, and lower proportion of T and NK cells 

compared to non-mutated breast tumours suggests that different immunotherapy 

strategies could be applied [58][196][197].  

 

All stroma cell populations, endothelial cells and CAFs, are in a significantly higher 

proportion in PIK3CA mutated tumours compared to not mutated. It has been suggested 

that signals from the microenvironment control CAF differentiation or migration [198]. 

CAFs are critical for cancer occurrence and progression because of their versatile roles 

in extracellular matrix remodelling, blood vessel formation, immune response, and, in 

turn, promotion of cancer cell proliferation, migration and invasion [198]. Indeed, it has 

been reported that CAFs lead to reprogramming of blood monocytes towards immune 

suppressive lipid associated macrophages (LAMs), which inhibit T-cell activation and 

proliferation [199]. 

 

PIK3CA mutated tumours showed a significantly higher proportion of macrophages and 

lower proportion of T and NK cell. These populations were investigated at a more 

detailed level of annotation to be more precise in the changes observed in 

subpopulations, also considering the stratification of tumours according to the p110α 

(PIK3CA) domain that was mutated. For the analysis of the tumour immune 

microenvironment (TIME) in PIK3CA-mutated breast tumours at the level of which 

p110α (PIK3CA) domain was mutated, some tendencies are observed but no significant 

results are seen after multiple testing correction using Benjamini-Hochberg. This could 

be due to the small sample size, so the expression of different immune signature was 
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used to investigate the tendencies observed. Tumours mutated in the linker ABD-RBD 

seemed to have a different profile compared with tumours with mutations in the C2 

PI3K-type, helical and kinase domain, which show a more similar profile among them.  

 

In the TIME of tumours mutated in C2, helical and kinase domain, the macrophages 

EGR1+ and macrophages FABP5+ (Lipid associated macrophages 1 or LAM1:FABP5+) are 

the ones in higher proportion. FABP is reported as a functional marker of pro-tumour 

macrophages [200]. Tumour associated macrophages (TAMs) are increasingly 

recognized as major contributors to the metastatic progression of breast cancer and 

enriched levels of TAMs often correlate with poor prognosis [57]. Survival analysis using 

the METABRIC40 cohort showed that the LAM1:FABP5 signature correlates with worse 

survival [56].  

 

The TIME of tumours mutated in the link ABD-RBD is characterized by three main 

aspects. First, a higher proportion of the subtype of macrophages APOE+ (Lipid 

associated macrophages 2 or LAM2 or LAM2:APOE+), which is characterized by the 

expression of APOE. This subpopulation has been associated with immunosuppression 

in breast cancer as well as in other cancer types [201][199]. Second, a higher proportion 

of a subpopulation of exhausted T cells characterized by a significantly higher expression 

of lymphocyte-activation gene 3 (LAG3). This has been described as sign of exhaustion 

together with the expression of T-cell immunoglobulin and mucin-domain containing 3 

(TIM3) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) [82]. Exhausted CD8+ T 

cells express these inhibitory receptors contributing to resistance in anti-PD1 treatment 

[82]. The identification of this kind of profile is interesting because there are therapies 

under development to avoid the exhaustion of T cells expressing this marker [202][203]. 

A third aspect that characterizes these link ABD-RBD mutated tumours is a higher 

proportion of T regulatory cells (T-regs_FOXP3 or Tregs), which enhances the 

suppression of the anti-tumour immunity. In summary, this shows an environment 

where tumour cells block successfully the immune system that has been related to a 

poor prognosis [204][82]. 
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The integration of 25,499 cancer genomes from four datasets enabled us to create a 

pan-cancer landscape of somatic mutations that gave insights into the mutational 

burden, i.e. substitutions and insertions/deletions, as well as the distribution of 

mutation types across cancer genomes from different cancer types. This joint dataset 

allowed us to have a large sample size to study mutational processes, using mutational 

signatures as a proxy, and find groups of patients defined by different mutational 

signatures. Using PCAWG as a use case we showed the relevance of studying the 

genomic landscape of tumours. The study of 42 genomic features computed based on 

all somatic mutations and only the recurrent ones, divided 2,583 patients covering 37 

cancer types into 16 clusters that can be linked to several actionable clinical phenotypes. 

New samples could be assigned to one of the defined clusters and the accuracy of the 

diagnosis could be increased in some cases such as with the identification of MSI or ultra-

hypermutation, in which case patients might benefit from immunotherapy. This could 

also help to the development of a generic and personalized cancer diagnostic test that 

only uses the mutations found in the tumour. At protein level, when studying eight 

protein features for each of the 159,294 amino acid changes resulting from the somatic 

mutations, we could not uncover well-defined groups within breast cancer nor did these 

features characterize drivers. However, when we focused on the p110α protein encoded 

by PIK3CA, we could show that breast cancer had a higher proportion of mutations in 

the kinase domain of this protein, colorectal cancer in the helical domain and uterus in 

the ABD domain and linker ABD-RBD. The enrichment of ABD domain and linker ABD-

RBD mutations in uterus and colorectal cancer could be related to defective DNA 

damage repair or hypermutation activity of Pol e. Focused on breast cancer, our results 

showed different tumour immune microenvironments in tumours with different PIK3CA 

mutated domains. Particularly, we uncovered that tumours mutated in the linker ABD-

RBD have an exhausted T cell population characterized by the expression of LAG3. 

Tumours with mutations in the C2 PI3K-type, helical and kinase domain we found to be 

enriched in myeloid populations with a gene profile similar to immunosuppressive 

macrophages [56]. It is known that PIK3CA, as a oncogene, can promote tumourigenesis 

by providing tumour cells the advantage to avoid the antitumoral response by the 

immune system [205]. Our analysis suggests that different p110α (PIK3CA) domains 

mutated might be related to promote tumourigenesis by different immune escape 
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mechanisms. Identification of these mechanisms can improve the selection of the 

optimal combination strategy to increase the efficacy of immunotherapy. In conclusion, 

our analysis shows that knowledge at genomic level, such as number of mutations, 

recurrence and mutational processes, as well as at protein level, such as differences in 

amino acid mutations, together with the study of the tumour microenvironment, 

provide new insights into cancer mechanisms. Our results contribute to stratifying 

patients in biologically relevant groups and thereby help personalise treatment 

strategies. 

 

 

 
7. CONCLUSIONS 

 
• The integration of 25,499 cancer genomes from four datasets enable us to create a 

pan-cancer landscape of somatic mutations that gave insights into the total number 

of mutations, i.e. substitutions and insertions/deletions, as well as mutation types 

across cancer genomes. 

 

• Using PCAWG as a use case of our joint dataset, the study of different features 

computed based on all mutations and only the recurrent ones, enable to delineate 

various mutational processes, uncover new mutational manifestations and 

characterize several actionable clinical phenotypes in a novel way. 

 
• From our joint dataset, we translate somatic mutations into their corresponding 

amino acid changes and characterize them by eight protein features. Focused on 

breast cancer we identify that most of the amino acid changes happen between 

amino acids of the same category. However, considering only the recurrent amino 

acid changes (mutations that were found in more than one patient in the same 

dataset) the proportion of ‘change of charge’ cases increase. Most of the mutated 

amino acids are in the secondary structure that is a loop and the amino acid is 

exposed. Around 33% of the mutations are affecting a functional site in the PCAWG, 

TCGA and HMF datasets, while only around 13% in B-CAST. 
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• The dimensionality reduction followed by clustering of amino acid mutations in 

breast cancer characterized by eight protein features did not group mutations that 

could be associated with being a driver. 

 

• The exploration of amino acid changes in PIK3CA shows a different distribution of 

disease relevant mutated domains across cancer types.  

 

• Underlying causes of the different distribution of mutations across domains can be 

different mutational processes. The case of a higher proportion of mutations in ABD 

domain in uterus cancer seems to be linked to the deregulated activated of Pol e or 

deficiency of DNA mismatch repair pathways. 

 

• Tumours with different PIK3CA mutated domains show differences in the tumour 

immune microenvironments in breast cancer. 

 

• Tumours mutated in the linker ABD-RBD have an exhausted T cell population 

characterized by the expression of LAG3.  

 
• Tumours with mutations in the C2 PI3K-type, helical and kinase domain have an 

enrichment of myeloid populations with a gene profile similar to 

immunosuppressive macrophages. 
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Abstract

The sheer size of the human genome makes it improbable that identical somatic mutations

at the exact same position are observed in multiple tumours solely by chance. The scarcity

of cancer driver mutations also precludes positive selection as the sole explanation. There-

fore, recurrent mutations may be highly informative of characteristics of mutational pro-

cesses. To explore the potential, we use recurrence as a starting point to cluster >2,500

whole genomes of a pan-cancer cohort. We describe each genome with 13 recurrence-

based and 29 general mutational features. Using principal component analysis we reduce

the dimensionality and create independent features. We apply hierarchical clustering to the

first 18 principal components followed by k-means clustering. We show that the resulting 16

clusters capture clinically relevant cancer phenotypes. High levels of recurrent substitutions

separate the clusters that we link to UV-light exposure and deregulated activity of POLE

from the one representing defective mismatch repair, which shows high levels of recurrent

insertions/deletions. Recurrence of both mutation types characterizes cancer genomes with

somatic hypermutation of immunoglobulin genes and the cluster of genomes exposed to

gastric acid. Low levels of recurrence are observed for the cluster where tobacco-smoke

exposure induces mutagenesis and the one linked to increased activity of cytidine deami-

nases. Notably, the majority of substitutions are recurrent in a single tumour type, while

recurrent insertions/deletions point to shared processes between tumour types. Recurrence

also reveals susceptible sequence motifs, including TT[C>A]TTT and AAC[T>G]T for the

POLE and ‘gastric-acid exposure’ clusters, respectively. Moreover, we refine knowledge of

mutagenesis, including increased C/G deletion levels in general for lung tumours and specif-

ically in midsize homopolymer sequence contexts for microsatellite instable tumours. Our

findings are an important step towards the development of a generic cancer diagnostic test

for clinical practice based on whole-genome sequencing that could replace multiple diag-

nostics currently in use.
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Author summary

Mutations found in the DNA of a tumour are expected to be largely unique to each

tumour as there are three billion places in the DNA that can be mutated. However, despite

these odds, in a cancer study with 2,583 participants covering 37 tumour types we observe

in total over a million non-unique mutations. Based on this observation, we hypothesize

that these mutations can be highly informative of the biological processes that caused

them. Using characteristics of these non-unique mutations and general statistics like the

total number of mutations, we classify the tumours into 16 groups. These groups not only

delineate various mutational processes, but also characterize them in more detail. More-

over, we can link the groups to several clinically actionable phenotypes. Our work is a cru-

cial step towards the development of a generic and personalized cancer diagnostic test

that only uses the mutations found in the tumour.

Introduction

Mutational processes induced by exogenous sources and/or endogenous mechanisms deter-

mine the mutational burden of a cell. They each leave their own genomic fingerprint that dif-

fers in terms of the number, types and distribution of mutations. Cancer cells usually show

higher mutation rates than normal cells due to elevated cell proliferation and lack of proper

DNA repair. The mutations accumulated before, during and after the oncogenic transforma-

tion may result in a mutational load exceeding several thousand per cancer genome [1]. Even

with such a high burden, the sheer size of the human genome with over three billion bp still

makes it improbable that by chance alone identical somatic mutations are found at exactly the

same genomic location in two or more cancer patients. Such mutations we will henceforth

refer to as being ‘recurrent’. Positive selection is one possible explanation for the recurrence of

mutations. Recurrent mutations or often more general, recurrently mutated genes and regula-

tory elements, are used in the prediction of cancer drivers that provide a growth advantage to

the cell [2]. However, the number of mutations per cancer genome that so far has been identi-

fied as being under positive selection is very small [3, 4] and the discussion on what are suffi-

cient conditions for driver mutations to cause cancer is on-going [5, 6]. Instead of focusing on

driver mutations, we hypothesize that recurrent mutations may be highly informative of the

non-randomness of mutagenesis and provide a different way to group cancer genomes. In sup-

port of this, at both megabase as well as local scale cancer-specific patterns of the non-random

distribution of mutations have been well described [7]. For instance, mutation rate is influ-

enced by replication time [8], is linked to epigenomic features [9], shows a periodic pattern

around nucleosomes [10], and can depend strongly on the 5’ and 3’ flanking base as shown in

mutational signatures for several mutational processes [11]. This enrichment of mutations in

specific genomic regions or sequence contexts increases the probability of recurrence as does

the number of mutations per sample, which also varies across mutagenic processes.

We use recurrence as a starting point for a systematic analysis of cancer genomes from the

Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium [12]. This cohort study,

brought together by an initiative of the International Cancer Genome Consortium (ICGC)

and The Cancer Genome Atlas (TCGA), covers 37 tumour types from 2,583 donors (S1 Table)

and is the largest publicly available dataset of its kind. It allows a comprehensive pan-cancer

analysis of recurrence in particular since the somatic mutation calling pipeline was identical

across all genomes. Moreover, the whole-genome sequencing data that is available for all

Recurrent somatic mutations characterize mutagenesis in cancer
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donors provides a more complete view than whole-exome sequencing data that so far has been

used for large-scale pan-cancer analyses [13]. To make full use of the whole-genome sequenc-

ing data and analyse recurrence in an unbiased way, we take here a purely data driven

approach that is independent of the completeness and correctness of current genome annota-

tions. Hereby we will focus on Somatic Single-base Mutations (SSMs) and Somatic Insertion/

deletion Mutations (SIMs). We first confirm that the number of recurrent mutations is far

higher than expected by chance alone and shed light on the relationship between recurrence

and the number of samples. Next, we analyse recurrence in the context of general mutational

characteristics that capture the effect of mutational processes on the genome. Finally, these

general features together with recurrence-related features form the base for clustering cancer

genomes in a novel way and determine what recurrence can tell us about mutagenesis. To help

interpret the recurrence observed in the 16 identified clusters, link clusters to potential muta-

tional processes and provide further details of each cluster, we use various types of metadata,

including tumour type information, driver predictions, and replication time. As a result, we

are not only able to refine the mutational consequences of many exposure-specific processes,

but also capture clinically relevant phenotypes by using hitherto unused, but easily obtainable

mutational features from whole-genome sequences.

Results

Recurrence is higher than expected by chance

There are 1,057,935 recurrent SSMs, which represent 2.44% of the total number of SSMs

found in the PCAWG cohort. This is around five times higher (Fig A-I in S1 Text) than

expected if only chance would drive recurrence (based on 5,000 simulations, S1 Text). For the

six SSM subtypes (see Methods) the observed recurrence is around three (C>G and T>C

SSMs) to twelve times (T>G SSMs) higher than expected by chance (Fig A-II in S1 Text). On

tumour type level, we can either determine recurrence by only considering the samples from

the same tumour type (‘within tumour type’) or across all samples (‘pan-cancer’). In both

cases, Kidney-RCC, Liver-HCC, Lung-AdenoCA and Lung-SCC stand out as the observed

number of recurrent SSMs is only around three times (within tumour type) and around two

times (pan-cancer) higher than expected by chance (Fig A-III+IV in S1 Text). In contrast, the

largest ratio is 86 times for recurrence ‘within tumour type’ (Prost-AdenoCA) and 7 times for

recurrence ‘pan-cancer’ (Eso-AdenoCA).

Number of samples does not always correspond to the level of recurrence

To see the effect of the number of samples on recurrence, we look at the overall recurrence

within each tumour type (Fig 1). Although tumour types with more samples generally have a

higher total number of recurrent mutations (Fig 1A), there are notable exceptions. For exam-

ple, Liver-HCC has the most samples of all tumour types (314), but less recurrent SSMs and

SIMs than six and five other tumour types, respectively. If we look at the percentage of recur-

rent mutations, even more tumour types overtake Liver-HCC as in this respect it ranks 9th and

10th in terms of SSMs and SIMs, respectively (Fig 1B). The opposite is true for Eso-AdenoCA

(97 samples), which has a higher absolute number and percentage of recurrent SSMs than

eight other tumour types that have more samples. Stomach-AdenoCA has the highest absolute

number and percentage of recurrent SIMs of all tumour types, but less samples than 13 of

them. One partial explanation for this is that a lower number of samples does not always trans-

late to a lower total number of mutations (Fig 1C), even though the correlation is strong

(Spearman’s Rank correlation coefficient rS = 0.73, p = 2.8e-07). However, even if the number

of samples and the number of mutations are in line, the level of recurrence may still give a
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different picture. Liver-HCC, for instance, has also a higher total mutational load than Eso-

AdenoCA (1.2�106 and 7.9�104 more SSMs and SIMs, respectively), but still a lower level of

recurrence.

General mutational characteristics versus recurrence

For each cancer genome, we compute 29 basic mutational characteristics that capture the

effects of mutagenesis (e.g. relative frequency of each SSM subtype) and 13 features capturing

recurrence at different levels (Table A in S1 File, see Methods). Recurrence for these features is

determined based on the entire cohort. A detailed description of each of these 42 measures is

available in S1 File. Based on the comparison of the recurrence-related features with the gen-

eral ones (S2 Text), the key findings are that across the entire cohort: 1) the correlation

between mutational load and the absolute level of recurrence is stronger for SSMs (rS = 0.89)

than for SIMs (rS = 0.76); 2) the same correlation, but instead taking the percentage of recur-

rent mutations, is weak and negative for SSMs (rS = -0.21) and non-significant for SIMs; 3) rel-

ative recurrence for SIMs is higher than for SSMs; 4) a particularly high percentage of C>T

SSMs and 1 bp A/T deletions are recurrent (4.19% and 15.27%, respectively); 5) there is a

strong tendency for T>G SSMs to be recurrent despite its modest total number; 6) there is a

strong correlation between the level of recurrence for SIMs and the percentage of 1 bp SIMs in

a long homopolymer context. Looking into the different tumour types, there are clear contrasts

in terms of the associations between general and recurrence-related characteristics. For exam-

ple, there is a statistically significant positive correlation between the number of mutations and

the percentage recurrent for only two tumour types in the case of SSMs (Eso-AdenoCA: rS =

0.48 and Skin-Melanoma: rS = 0.58) and for seven types with respect to SIMs (most notably:

Biliary-AdenoCA: rS = 0.71 and Eso-AdenoCA: rS = 0.67) (Fig D in S2 Text).

Recurrence characteristics divide the cohort

Next, we use the recurrence-based and general mutational features all together to see if we can

uncover meaningful clusters of cancer genomes. As there are strong correlations between

some of these features (Fig 2), we first perform a principal component analysis (PCA) to obtain

independent features and reduce dimensionality (Fig 3). We take as many principal compo-

nents (PCs) as needed to explain at least 80% of the variance in the data and consider the

remaining PCs to capture noise. We use this subset of PCs as input for hierarchical clustering

[14]. The resulting hierarchical tree is cut at the desired height to obtain clusters. The centroids

are computed for each cluster and used as input to the k-means consolidation step, which fur-

ther improves the initial clustering (see Methods) [15]. To get a pan-cancer perspective we

analyse all samples together.

The crude division into two clusters separates the cancer genomes with low relative levels of

recurrent SIMs (e.g. Liver-HCC, Kidney-RCC and Lung-SCC) from those with high levels (e.g.

ColoRect-AdenoCA, Eso-AdenoCA, Lymph-BNHL and Panc-AdenoCA) (S1 Fig). At three

clusters, the relative level of recurrent SSMs splits off a group of mainly Skin-Melanoma sam-

ples from the two other clusters. This cluster largely remains unchanged when increasing the

number of clusters while the two other clusters continue to divide and become more specific

to a tumour type or a particular mutational process. At the level of six clusters, for example, we

Fig 1. Recurrence within each tumour type in absolute numbers and percentages. The tumour types are ordered from the lowest to

the highest number of samples. We labelled the top 10 ranking tumour types in terms of the following three values: (A) Absolute number

of recurrent mutations, where recurrence is defined by considering each tumour type separately (‘within tumour type’ recurrence). (B)

Percentage of recurrent mutations ‘within tumour type’. (C) Total number of mutations, counting recurrent mutations only once.

https://doi.org/10.1371/journal.pcbi.1007496.g001
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see a cluster split off that we can connect to microsatellite instability (MSI). We will discuss in

further detail the division into 16 clusters, chosen as a trade-off between too many clusters,

which would each be specific to just a handful of samples, and too few, which would result in

loss of meaningful information (Fig 4). There are nine clusters (A, B, C, G, H, I, L, M and P)

Fig 2. Spearman’s rank correlation between the 42 mutational features. The colour of the circles indicate positive (blue) and negative (red) correlations, colour intensity

represents correlation strength as measured by the Spearman’s rank correlation coefficient. The size of the circle indicates the adjusted p-value with larger circles

corresponding to lower p-values. The p-values were corrected for multiple testing using the Benjamini-Yekutieli method. Crosses indicate that the correlation is not

significant (adjusted p-value> 0.05).

https://doi.org/10.1371/journal.pcbi.1007496.g002
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for which at least half of the samples are from the same tumour type. For another two clusters

(O and N) samples from two tumour types constitute a majority. In the remaining five clusters

(D, E, F, J and K) three or more tumour types are required for this. For each tumour type the

percentage of samples in each of the 16 clusters is shown in S2 File. The association of each of

the 42 features with the clusters is shown in Fig 5. The key characteristics of each cluster are

shown in Fig 4. To facilitate a tight linkage of the clusters to mutational processes, we consider,

in addition to the mutational features of a cancer genome, also tumour type assignment,

microsatellite instability (MSI) status, immunoglobulin heavy-chain variable region gene

(IGHV) mutation status (Lymph-CLL only) and tobacco smoking history of the donor (where

available) (S3 Text). To provide further details on each cluster we integrate annotation based

on GENCODE [16], Oncotator [17], driver predictions [3, 18], replication time [19] and muta-

tional signatures [20]. A summary of this and further details are described in S3 Text. In the

Fig 3. Workflow of the recurrence-based approach to group cancer genomes. The 42 features are described in detail in S1 File (Step 1). We scale all features to zero

mean and unit variance to compensate for the differences between the ranges of the features (Step 2). The arrows in the PCA plot indicate the direction and level of

contribution of the features that contribute above average to the first two PCs (Step 3). Seven of these features are related to recurrence. An interactive 3D version of the

PCA plot is available here: https://plot.ly/~biomedicalGenomicsCNAG/1.embed. We take a subset of the PCs and consider the remaining PCs to capture noise (Step 4).

For the hierarchical clustering we use the Euclidean distance as a dissimilarity measure and Ward’s method as the linkage criterion (Step 5). The results of the hierarchical

clustering are used as a starting point for k-means clustering (Step 6). Some samples will in this step switch to a different cluster compared to the initial partition. This

consolidation step is repeated a maximum of 10 times. Further details on the annotation of the clusters (Step 7) are described in S3 Text.

https://doi.org/10.1371/journal.pcbi.1007496.g003
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following sections we will show how the level of recurrence can be indicative of the mutational

processes, often in combination with the general features. Moreover, we show that our recur-

rence-based approach groups cancer genomes in a novel way that complements current classi-

fication approaches and captures clinically actionable cancer phenotypes.

High levels of recurrent SSMs and low levels of recurrent SIMs characterize

exposure to UV light

A positive association with overall recurrence of SSMs and more specifically with recurrence

of C>T SSMs characterizes cluster G that mainly consists of Skin-Melanoma samples (Fig 5).

The association is negative with the recurrence of SIMs. We link this cluster to mutagenesis

induced by UV light (S3 Text). The samples assigned to cluster G account by themselves for

60.7% of the total number of recurrent C>T SSMs. The combination of the high total number

of SSMs per sample and the high percentage of C>T substitutions in this cluster is what con-

tributes to the high level of recurrence. The mechanisms inherent to UV-light exposure further

increase the probability of recurrence as it tends to result in C>T SSMs near energy sinks in

the genome. The energy from UV-light-exposed DNA usually travels along the DNA strand

Fig 4. Key characteristics of the 16 clusters. Tumour types that form together�50% of the cluster are listed. The legend for colours for the pie chart is provided in Fig 3.

The key characteristics are those features with the strongest significantly negative or positive association with the cluster. Only if the association with overall recurrence is

significant, the respective direction is indicated. 1Cluster has a low median number of SSMs (<200) and SIMs (<20).

https://doi.org/10.1371/journal.pcbi.1007496.g004
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until it arrives at the lowest energy point, a dT, particularly when it is next to a dC, which acts

as energy barrier [21]. In agreement with this, for C>T mutations that are recurrent within

this cluster there is a strong enrichment of a TTTCCT motif (the underlined C is mutated)

Fig 5. Overview of the 42 features and their association with each cluster. Red and green squares indicate statistically significant negative and positive associations,

respectively, where the gradient indicates the strength of the association. White coloured squares indicate no significant association (adjusted p-value> 0.05). For

deletions a ‘no homopolymer context’ means that the base next to the deleted one is not of the same type. For insertions this refers to a base inserted 5’ to either a base of a

different type or a single base of the same type. Note that we do not have to consider preceding bases as all SIM calls were left aligned. A short homopolymer context is

defined as a 2–4 bp mononucleotide repeat of the same type of base as the 1 bp SIM, midsize is 5–7 bp in length and long� 8 bp.

https://doi.org/10.1371/journal.pcbi.1007496.g005
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(see Methods). While the percentage of this motif in the genome is estimated to be only 0.4%

of all 6-mers with a C at the central position, 4.5% and 19.5% of the non-recurrent and recur-

rent C>T SSMs, respectively, within this cluster are at this motif (Fig 6). An enrichment of a

CTTCCG motif was found for frequently recurrent mutations in promoters in 38 melanoma

samples [22]. In another set of 184 melanoma samples a CTTCCGG motif was found at the

majority of ETS transcription factor binding sites (TFBSs) [23]. As the sequences are centred

at the core consensus ETS binding motif TTCC, instead of at a mutation, the underlined nucle-

otide is the most frequently mutated base. In a subset of highly mutable ETS TFBSs the second

C is the most mutated. These and our specific sequence motif help explain the observed high

level of recurrence. Furthermore, a decreased activity level of the nucleotide excision repair

pathway was detected in melanoma at active transcription factor binding sites and nucleosome

embedded DNA compared to the flanking sites [24]. This increases local mutation rates and

hence also increases the probability of recurrence.

High levels of recurrent SSMs characterize deregulated activity of POLE

A high level of recurrent SSMs also characterizes cluster H, specifically C>T and C>A SSMs.

This cluster captures samples that can be considered ultra-hypermutators and their mutations

are mainly caused by deregulated activity of POLE (S3 Text). These samples have a very high

total number of C>A SSMs (median: 297,750) and the median percentage of recurrent C>A

SSMs across the samples is 7.7%. Two thirds of all recurrent C>A SSMs in the entire cohort are

also recurrent within only this cluster. The C>A mutations that are recurrent within this cluster

are enriched for the motif TTCTTT, when considering only ungapped motifs (Fig 6, see Meth-

ods). Of the recurrent C>A SSMs 32.2% are at this motif, while for non-recurrent ones this is

true for only 13.7% (χ2 test: p<2.2e-16). In the genome, the estimated percentage of this motif of

all corresponding 6-mers (NNCNNN) is far smaller (0.6%), suggesting that effects of deregulated

activity of POLE are most likely dependent on a sequence context exceeding a single neighbour-

ing base on each side as also observed for whole-exome data by Martincorena et al. [25].

High levels of recurrent SIMs characterize microsatellite instability

The highest level of recurrent SIMs across all clusters is observed for cluster J, which could be

linked to a defective mismatch repair (MMR) pathway resulting in MSI (S3 Text). Of the

179,691 recurrent 1 bp SIMs in the entire cohort, almost half of them are recurrent when only

considering this cluster. The very high median number of SIMs (30,228) in this cluster may

play a role in the high level of recurrence. The key factor, however, is most likely the muta-

tional process behind MSI, which is slipping of the DNA polymerase during replication of

repetitive sequences and the lack of repair by the MMR pathway [26]. This not only explains

the elevated number of SIMs [27], but also the association of this cluster with all SIM subtypes

in the context of midsize-to-long homopolymers. As such homopolymers are scarce in the

genome, the shift towards specifically altering them increases the probability of recurrence

(Table F in S2 Text). Especially striking in this cluster is the proportion of 1 bp C/G deletions

that are in the context of a midsize homopolymer (median: 73.2% vs. 8.4% for the other clus-

ters combined, p = 1.2e-12). This translates to 6.0% recurrent 1 bp C/G deletions within this

cluster versus <0.7% for any other cluster (S3 Text).

Positive association with recurrence of SSMs and SIMs: Gastric-acid

exposure and hypermutation of immunoglobulin genes

Clusters L, M and N all positively associate with recurrence of both SSMs and SIMs. Cluster L,

which for >80% consists of Eso-AdenoCA and Stomach-AdenoCA samples, can potentially be
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linked to gastric-acid exposure (S3 Text). The T>G and T>C SSMs that are recurrent within

this cluster cover 45% and ~20%, respectively, of the total observed in the whole cohort. The

median percentage of SSMs falling in late-replicating regions (Table C and Fig A in S3 Text) is

significantly higher than in the rest of the clusters combined (75.2% vs. 61.0%, p<2.2e-16). In

general, the mutational load is expected to be higher in late-replicating regions as the MMR

pathway is said to be less efficient there [28]. However, the question is why the effect is so

strong in cluster L compared to the others (Fig B in S3 Text). It could be that transient single

strand-DNA at stalled replication forks, whose formation has been suggested to be more prev-

alent in late-replicating regions [29], is particularly vulnerable to the mutagenicity of acid-

exposure. Alternatively, if the oxidative stress induced by gastric-acid exposure leads to the

oxidation of dG in the dNTP pool [30], the use of error-prone DNA polymerases that incorpo-

rate the oxidized dG into the DNA [31] may be more frequent in late-replicating regions [32].

The strong shift towards late-replicating regions favours higher levels of recurrence. The same

holds for the enrichment of the specific sequence context ‘AACTT’ that we observe for T>G

mutations that are recurrent within this cluster (Fig 6, see Methods). Nearly 39% of the recur-

rent T>G SSMs are confined to this motif and ~12% of the non-recurrent ones (χ2 test:

p<2.2e-16), which is still far higher than the estimated percentage of this motif in the genome

(0.5% of all NNNTN 5-mers). For SIMs, the cluster has a positive association with recurrence

for three out of the four SIM subtypes as well as with the same subtypes in a midsize and/or

long homopolymer context. This suggests similar mechanisms as for cluster J. Finally, as

observed for SSMs in this cluster, SIMs also show a tendency to fall into late-replicating

regions (67.2%, Table C and Fig C in S3 Text). This may further add to the high level of recur-

rence for SIMs.

Cluster M, with mainly Lymph-BNHL and Lymph-CLL samples, is linked to the somatic

hypermutation of the immunoglobulin genes (S3 Text). In the aforementioned tumour types,

this process is indicative of memory B cells being the cell of origin as opposed to naïve B cells

[33]. The cluster has positive associations with the level of recurrence for all six SSM subtypes.

The association is particularly strong for C>G. Of all recurrent C>G SSMs, 10.7% can be

found in this cluster alone. The high level of recurrence may partially be explained by the

hypermutation observed in the limited area of the genome where the immunoglobulin genes

are located. For SIMs, the cluster has positive associations with the level of recurrence for all

four subtypes as well as with those subtypes in general when in a midsize and/or long homo-

polymer context. This cluster has the highest median percentage of SIMs in late-replicating

regions (67.5% vs. 57.8% for the other cluster combined, p<2.2e-16, Table C and Fig C in S3

Text), which may contribute to the high level of recurrence.

In cluster N, which consists of ~47% Panc-AdenoCA samples, the sources of mutagenesis

are less clear, even after the inclusion of all annotation layers (S3 Text). Except for C>G and

T>C SSMs, the cluster has positive associations with the recurrence of all other subtypes of

SSMs and every SIM subtype. This is especially noticeable as the median of the total number of

mutations across samples is intermediate. A high percentage of the recurrent mutations are

SIMs in this cluster with a median of 35.0%. This is far higher than for samples of the other

Fig 6. Enriched sequence motifs. The sequence logos represent the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent

(right-side) mutations of the indicated cluster and SSM subtype. Here recurrence is defined as a mutation at the same genomic location in two or

more samples from the same cluster. Each recurrent SSM is included only once to avoid giving extra weight to highly recurrent mutations. Relative

entropy is used as a measure of information content (see Methods). Setting a threshold of 0.25 for the relative entropy results in the motifs highlighted

in the rectangles. In the upper right corner of each sequence logo the number of mutations is indicated. To the right of the sequence logos are the

percentages in which the enriched motif found for the recurrent SSMs is present in context of the mutations in the cluster and the corresponding

k-mers in the genome (N = A, C, G or T). The enrichment for the motif for recurrent SSMs is in all four cases significantly higher than for the non-

recurrent SSMs (χ2 test: p<2.2e-16).

https://doi.org/10.1371/journal.pcbi.1007496.g006
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clusters combined (median: 15.5%, p<2.2e-16). The positive associations with all SIM sub-

types when in a midsize-to-long homopolymer context may point to a slippage-related mecha-

nism (see also cluster J).

Negative association with recurrence: Tobacco-smoke exposure, alcohol use

and increased activity of cytidine deaminases

There are also several mutagenic processes that are associated with low levels of recurrence

(Fig 5) including those represented by clusters A, B, C and E. Cluster A, of which 84% are lung

cancer samples, is linked to mutational processes induced by tobacco-smoke exposure (S3

Text). This cluster shows a positive association with the total number of SSMs and the percent-

age of C>A SSMs, the latter is a known consequence of tobacco-smoke exposure [34]. There

are several factors that increase the probability of recurrence in this cluster, including the high

total mutational load together with the high percentage of C>A SSMs and the enrichment of

mutations in late-replicating regions (S3 Text). Also, tobacco-smoke induced mutations have

been shown to be enriched in linker DNA (i.e. DNA not wrapped around a nucleosome) [10],

which constitute only between 10% and 25% of the genome in eukaryotes [35]. The key to

explaining the lack of recurrence seems to be that there is little tendency to favour a specific

sequence context for the C>A SSMs (Fig 6). This can also be observed in the ‘tobacco smoking

signature’ [11], which is present in nearly 90% of the samples in this cluster (S3 Text). Unlike

for several clusters mentioned above, there is a positive association with SIMs in short homo-

polymer contexts, which are more frequent in the genome than longer homopolymers, and the

resulting distribution is therefore also more random. Note that cluster A also has a strong asso-

ciation with the percentage of total 1 bp C/G deletions, which has not been described previ-

ously as a possible consequence of tobacco-smoke exposure (S3 Text and S4 Text).

Cluster B, consisting of 85% Liver-HCC samples, is likely to be linked to mutational pro-

cesses indirectly induced by excessive alcohol use (S3 Text). The level of recurrence is low

despite the high number of samples of the same tumour type (277) and the consistent pattern

of a high percentage of T>C SSMs (median: 31.7% vs. 14.6% in the other cluster combined,

p<2.2e-16). With regard to 1 bp SIMs, there is a positive association with a short homopoly-

mer context, as for cluster A, with the exception of 1 bp A/T insertions.

In cluster C, in which ~82% are Kidney-RCC and Kidney-ChRCC samples, the mutational

processes remain largely obscure except for a few samples that can be connected to aristo-

lochic-acid exposure (S3 Text). Unlike for clusters A and B, the median number of SSMs

across samples is relatively low. Furthermore, mutations are nearly equally spread between

early- and late-replicating regions as only 53.9% of the SSMs and 47.5% of SIMs are in late

(Table C, Figs B and C in S3 Text). SIMs are preferentially located in no or short homopolymer

context, similar to clusters A and B.

In cluster E nearly one third are Breast-AdenoCA samples and key mutational characteris-

tics point to the endogenous mutational process of increased activity of cytidine deaminases

(S3 Text). There is a general paucity of associations with characteristics of recurrence. In line

with this, the mutations in this cluster are nearly equally spread between early- and late-repli-

cating regions of the genome (Table C, Figs B and C in S3 Text). The most outstanding feature

of this cluster is the high percentage of C>G SSMs. This is the rarest substitution type, making

the detection of recurrence unlikely, particularly if not confined to specific genomic regions.

Interestingly though, the 655 C>G SSMs that are recurrent within this cluster are enriched for

the motif CTCW (W = A or T) (Fig 6, see Methods). Very similar motifs have been described

as being characteristic for deamination mediated by APOBEC3 [36]. The number of recurrent

mutations is much lower than for the other motifs discussed. The CTCW motif is also shorter,
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more general and therefore relatively frequent in the genome (5.4% of all NNCN 4-mers), all

possible causes for the lacking trend towards recurrence.

The added value of the recurrence-related features

The PCA shows that seven of the sixteen features that contribute above average to the first two

PCs are related to recurrence (Fig 3). In addition, all 16 clusters have a statistically significant

association with two or more recurrence-related features (Fig 5). The importance of the recur-

rence-related features is further demonstrated by the results of running the entire workflow

(Fig 3) using only the general features. In this case we are no longer able to separate all ultra-

hypermutator samples from the rest of the cohort (S2 Fig). Furthermore, the cluster linked to

hypermutation of the immunoglobulin genes (cluster M) is dissolved, and the cluster possibly

linked to gastric-acid exposure (cluster L) is less cancer-specific as it absorbs 90 samples of the

dissolved cluster M and thereby nearly doubles in size. Another key difference is that only

~55% of the Lymph-CLL samples without hypermutation of the immunoglobulin genes are

confined to a single cluster as opposed to ~86% when using all features.

Discussion

Only a very small percentage of the 1,057,935 recurrent SSMs and 186,576 recurrent SIMs in

the PCAWG cohort are expected to be purely by chance. We estimate based on simulations

that only around 0.47% of the SSMs would be recurrent if no biological factors would play a

role, which is less than one fifth of the observed 2.44%. Technical artefacts could contribute to

the level of recurrence, but although they can never be fully excluded, the PCAWG consortium

has made a great effort to minimise false positive calls. A consensus was taken of the individual

results from multiple somatic mutation callers, followed by the application of various filters to

remove, e.g., germline variants [12] (see Methods). This resulted in a conservative, but reliable

dataset of somatic mutations. Increasing the size of the cohort may change the percentage of

recurrent mutations, but in which direction depends on the tumour type of the additional

samples, their mutational burden and importantly the mutational processes underlying the

observed mutations.

Recurrence is considered an important indication that a mutation might be under selective

pressure in protein-coding regions [37, 38]. Hence, by focusing on recurrence we are inher-

ently not only looking at the mutational consequences of mutational and repair processes, but

also at positively selected mutations. One way that has been used to reduce the influence of the

latter is to count all recurrent mutations only once [39]. However, in our approach, as we

describe each individual cancer genome with the 42 features, this is not an option as we would

not know to which samples to add this single count for each recurrent mutation. Instead, we

would need to leave out all recurrent mutations, but this would even be more rigorous. In

either case, it also implies that over a million mutations are assumed to be under positive selec-

tion. Besides the fact that recurrence is not a sufficient condition for positive selection [37], it

may not even be a necessary one in a dataset of the size of our cohort [3, 38]. Another option is

to remove all predicted driver mutations. In total there are only 4,223 predicted driver muta-

tions that are either SSMs or SIMs, which constitutes just 0.009% of the total amount of muta-

tions. It is, therefore, unlikely that leaving them out will affect the general features. Their effect

on the percentage of overall recurrence is also negligible (-0.001% for SSMs and +0.002% for

SIMs), partly because only ~12% of the predicted driver mutations are recurrent within the

PCAWG cohort. Based on the overall statistics, removing the predicted driver mutations will

also hardly affect the recurrence-related features of individual cancer genomes and conse-

quently not result in any noticeable change in the uncovered clusters. As identifying the driver
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mutations is, in addition, far from unambiguous and a dynamic area of research [3, 18], it is of

limited practicality to our workflow to remove them. Of note, the impact of positive selection

might be greater when analyzing only the exome [39] as there are less mutations in total and

the large majority of drivers is found in protein-coding loci [3, 18].

Mutational load, enrichment of mutations in a specific sequence context or in specific parts

of the genome all impact on recurrence. However, none of these factors provide individually a

universal explanation for the observed levels of recurrence per cluster (Fig 7). For example, the

cluster linked to tobacco-smoke exposure has a very low percentage of recurrence, despite the

high mutational load, the enrichment of mutations in late-replicating regions and increased

mutation rate in linker DNA. The absence of a preferred sequence context likely plays a role in

Fig 7. Factors impacting on recurrence in the context of the clusters. None of the three key factors (middle panel) that impact on recurrence individually explain the

observed level of recurrence in the clusters. Whether a cluster has a relatively high or a comparatively lower mutational load is based on the median number of SSMs/SIMs

across its samples (Fig 4). The actual specific sequence contexts for SSMs are shown in Fig 6. For cluster M there is enrichment for a specific sequence context as well,

which is AGCT for C>G SSMs that are recurrent within this cluster (n = 949) (S3 Fig). For SIMs a homopolymer of A/T’s is used to represent any type of homopolymer.

Clusters A and C have a positive association to no and/or short homopolymer context for all types of 1 bp SIMs (red), while for clusters J, L and M this is the case for

midsize and/or long homopolymer context (green) (Fig 5). For the replication time region we compute the percentage of SSMs/SIMs that are in late-replicating regions (S3

Text). If this percentage is between 45–55%, then we consider the mutations to be nearly equally spread between early- and late-replicating regions of the genome. The

specific region that is enriched in cluster M refers to the immunoglobulin genes. The recurrence in clusters A and G is also likely to be positively impacted by an increased

mutation rate in a specific region as the majority of their samples are from a particular tumour type for which this has been reported. For lung cancer (cluster A) the

mutation rate is increased in linker DNA [10] and for Skin-Melanoma (cluster G) at active transcription factor binding sites [24].

https://doi.org/10.1371/journal.pcbi.1007496.g007
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this. The short and non-specific motif found in samples with increased activity of cytidine

deaminases (CTCW) is also not sufficient by itself to result in high levels of recurrence. For

causative agents like UV light and deregulated activity of POLE, however, the high total num-

ber of mutations combined with the observed 6 bp specific sequence context does lead to high

levels of recurrent SSMs. For the cluster linked to gastric-acid exposure, the number of SSMs is

much lower than for the clusters linked to those two agents or tobacco-smoke exposure. Nev-

ertheless, it has a high level of recurrence, likely because of the 5 bp sequence motif for T>G

SSMs and the three times higher occurrence of SSMs in late-replicating regions than in early.

One possible caveat here is that replication timing is a process with very high plasticity across

cell types [19], and taking the median timing across the available five cancer cell lines (S3 Text)

may individually lead to non-adequate interpretations. A typical example for the potential

impact of an elevated local mutation rate on the proportion of recurrence is the hypermutation

of the immunoglobulin genes in memory B cells. As mutations detected in several lymphoma

samples are largely confined to those genes, their modest total number of mutations still results

in a high relative level of recurrence. Finally, in the case of the MSI samples, the slippage of the

DNA polymerase during replication of repetitive sequences, combined with a lack of repair

capacity results in a high percentage of SIMs in a midsize-to-long homopolymer context. This

coincides with a high level of recurrence for SIMs, despite the relatively equal distribution of

SIMs between early- and late-replicating regions that we observe and that has been reported

before [28]. Associations with the much more frequent short homopolymers do not translate

into high level of SIM recurrence, not even in the case of a high number of total SIMs (e.g. as

observed in the ‘tobacco-smoke exposure’ cluster). The effect of the sequence context may be

stronger for SIMs than for SSMs. This would explain the ~3.6 fold higher percentage of recur-

rent SIMs (8.69%) versus SSMs (2.44%), despite the fact that there are 20 times more SSMs.

Unlike for SSMs, the actual position of an insertion/deletion in a homopolymer cannot be

determined, contributing to loss in resolution and a higher likelihood of recurrence. In sum-

mary, we infer that the non-randomness in the distribution of mutations strongly depends on

the causative agent. Consequently, recurrence is generally able to cluster the genomes in a way

that shows clear associations with tumour type assignments and mutational processes. For

SSMs 60.0% is only recurrent in one particular tumour type, while for SIMs this percentage is

10.7% (S2 Table). This suggests a higher resemblance of mutational patterns within tumour

types for SSMs than for SIMs. In contrast, 79.8% of the recurrent SIMs (versus 37.1% for

SSMs) can only be detected in a pan-cancer approach, pointing to shared mutational processes

which allow us to group samples in a more tumour type independent way. The recurrence-

related features based on these recurrent SSMs and SIMs are key to our ability to cluster the

cancer genomes into biologically relevant clusters. If we only use the general features we lose

important information about mutational processes (S2 Fig).

The simple general mutational features, the different types of annotation and the uncovered

sequence motifs do provide a deeper understanding of several mutational processes (S3 Text).

For instance, MSI samples (cluster J) have a particularly high percentage of 1 bp C/G deletions

in the context of midsize homopolymers. We also see a strong shift towards the presence of

SIMs compared to SSMs resulting in a high absolute and relative number of SIMs. Ultra-

hypermutators (cluster H) form a mirror image in this respect as we observe a shift in the

opposite direction, resulting instead in a high absolute and relative number of SSMs. Another

difference is that in cluster H there is a significantly higher percentage of mutations in late-rep-

licating regions than for cluster J (SSMs: 60.2% vs. 52.8%, p = 0.0011, SIMs: 66.7% vs. 51.3%,

p = 1.8e-06). The mutational processes induced by tobacco-smoke exposure (cluster A), whose

link to an increased percentage of C>A SSMs is well-known, are also associated with a high

percentage of 1 bp C/G deletions (S4 Text). A third example is the high percentage of 1 bp A/T
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insertions in context of a short homopolymer observed for cluster C that mainly consists of

Kidney-RCC and Kidney-ChRCC samples. For this cluster there is also a nearly equal distribu-

tion of mutations between early and late-replicating regions, which is in contrast to what is

generally observed for cancer genomes [8] with the exception of MSI samples [28]. However,

unlike for MSI genomes, for cluster C a deficient MMR pathway can most likely not explain it.

Deficient translesion synthesis has been shown in yeast to also lead to a more equal distribu-

tion [40]. In the opposite direction, the cluster possibly linked to gastric-acid exposure (cluster

L) has an unexpectedly strong tendency of both SSMs and SIMs to be in late-replicating

regions compared to all other clusters, which could point to the extensive usage of error-prone

polymerases. The sequence motif (AACTT) found for the T>G SSMs recurrent within this

cluster (n = 38,399, 38.9% with the motif) provides another interesting characteristic (Fig 6).

Only 8.9% of the T>G SSMs recurrent in the 2,479 samples not in cluster L (n = 25,318) are

confined to this motif. An important contributor to the recurrent T>G SSMs not in cluster

L is the cluster linked to the deregulated activity of POLE (cluster H). The T>G SSMs that

are recurrent within cluster H (n = 11,553) are instead enriched for the sequence motif

AAATTTAT (S4 Fig). There are some interesting parallels between cluster H and L. First, for

both holds that the Eso-AdenoCA and ColoRect-AdenoCA samples that form the majority of

cluster L and H, respectively, have a higher median number of SSMs than samples from the

same tumour types not assigned to the respective clusters (Eso-AdenoCA: 29,302.5 vs. 11,404,

p = 1.3e-09, ColoRect-AdenoCA: 850,298 vs. 15,045, p = 1.5e-08). Second, changes to the

dNTP pool are in both cases likely linked to the observed mutations together with the more

frequent usage of alternative (error-prone) polymerases (cluster L) or a polymerase with a

deregulated activity (cluster H). Third, the sequence motifs found for both clusters exceed the

single neighbouring base. The latter is the case for all sequence motifs that we found (Fig 6)

and also none of them have the same number of bases on both sides of the mutated position.

These two observations and the motifs themselves are also important to take into account

when estimating the background mutation rate used in e.g. driver prediction [25, 37]. The

motifs point to an increased mutational probability of individual bases [22] that is context-spe-

cific and characteristic for certain mutational processes. This has primarily been shown and

taken into account for a sequence context of a single neighbouring base [37] or, less frequently,

for an equal number of several bases at both sides of the mutation [25]. As we extract these

motifs based on recurrent mutations there is a possibility that positive selection plays a role.

However, this is likely negligible as the number of recurrent, predicted driver mutations is

only 427 when considering all six SSM subtypes together.

Several of our clusters are linked to cancer phenotypes that are relevant for treatment and/

or have prognostic value. Our division into 16 clusters and their characteristics could, there-

fore, be valuable for complementing current classification schemes, which are mainly based on

histology and organ of origin. We can assign a new sample to one of our 16 clusters by first

projecting it onto the PCA space based on the PCAWG cohort. Next, we use the first 18 princi-

pal components to compute the Euclidean distance to the centroid of each of the 16 clusters

and assign the sample to the nearest one. If there are multiple clusters with a minimum differ-

ence in distance to the new sample, then to select one cluster we use the sequence motifs (Fig

6) and various layers of annotation (S3 Text) like replication time. Ideally, we would use only

the samples in the ‘reference set’, which currently is the PCAWG cohort, to compute the recur-

rence-related features for a new sample. However, ~90% and ~72% of the recurrent SSMs and

SIMs, respectively, in this set are only recurrent in two samples (Fig F in S2 Text). Therefore,

the recurrence-based features of the new sample might be underestimated in which case the

sample is also less likely to be assigned to clusters that have a positive association with recur-

rence. Instead we would need to include the new sample for computing recurrence, which
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could also affect the recurrence-related features for some samples in the reference set. This

might result in changes in the clustering, but the impact of a single sample is most likely mini-

mal. Of note, the interdependence of samples in terms of the recurrence-related features also

makes cross-validation difficult. The level of recurrence is not high enough to compute recur-

rence for the training and test set separately, and even a leave-one-out strategy would create

dependence between the two sets. We hypothesize that, by increasing the size of the reference

set, we will reach at a certain point a plateau in terms of recurrence. This would enable us to

compute the recurrence-based features for a new sample using only the reference set. A larger

dataset would also allow further insights into the non-randomness of mutational processes,

especially of those that are not active across a large set of samples or that are only observed in

specific tumour types for which the number of samples is currently limited. Efforts are, in fact,

already on their way to expand the PCAWG dataset with more whole-genome sequences from

ICGC and other consortia.

Given that incorporating whole-genome sequencing in a clinical setting is gaining traction

as evidenced by projects like Genomics England (www.genomicsengland.co.uk) and the Hart-

wig Medical Foundation (www.hartwigmedicalfoundation.nl), analyses making full use of this

kind of data are urgently needed. Ultimately, whole-genome sequencing can then replace mul-

tiple diagnostic tests currently in use and make diagnoses more accurate. One example illus-

trating the value of our clusters towards this goal is the MSI phenotype linked to cluster J. For

these patients, immunotherapy may be beneficial [41] while adjuvant chemotherapy may not

be needed [42]. To classify a cancer genome as MSI, we can use our 42 features to determine

whether or not a sample belongs to cluster J, as detailed above. A high percentage of 1 bp C/G

deletions in a midsize homopolymer is, however, even by itself already a strong indication for

MSI. The MSI phenotype cluster J captures, forms a possible alternative to either explicitly

identifying all microsatellite alterations between tumour and normal tissue [43] or using spe-

cific markers to detect alterations in five or seven of them like the Bethesda markers [44].

There are also 10 mutational signatures linked to a deficient MMR pathway of which seven are

based on single base substitutions, two on doublet base substitutions and one on small indels

[20]. Two more indel-based signatures (ID1 and ID2) that are found in nearly all cancer

genomes, are linked to a deficient MMR pathway if they contribute >10,000 indels. Signatures

look at mutational processes at mutation level rather than sample level. A non-zero contribu-

tion of an individual MSI-linked signature or a high contribution (>10,000) of ID1 and ID2 is

not sufficient to classify a sample as MSI given that this naïve approach would results in 368

possible candidates. Instead it requires a combination of signatures and/or thresholds on the

amount of mutations contributed to the sample to be able to use the signatures for MSI classifi-

cation. A second example of an actionable phenotype that we capture with one of our clusters

is ultra-hypermutation (cluster H), which has also been related to beneficial results from

immunotherapy [45, 46]. A third example is the somatic hypermutation of the immunoglobu-

lin genes, which identifies memory B-cells as the cell of origin in the case of lymphomas. This

has been linked to a less aggressive form of Lymph-CLL and more favourable prognosis [33],

which may in turn influence treatment selection. Without explicitly analysing the immuno-

globulin genes [47], we were largely able to separate the Lymph-CLL samples with somatic

hypermutation (cluster M) from those without (cluster D). The characteristics of the former

group include a high percentage of recurrent C>G SSMs and 1 bp A/T deletions. A final exam-

ple relates to those Eso-AdenoCA samples that are assigned to cluster L, which have a high per-

centage of T>C as well as T>G SSMs and a higher total mutational load than Eso-AdenoCA

samples not assigned to this cluster. Eso-AdenoCA samples with the characteristics of cluster L

have also been suggested to benefit from immunotherapy [48]. The same treatment option

may therefore be prioritized for the 22 Stomach-AdenoCA samples that are also in cluster L.
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Similarly, a refined investigation of tumour samples that do not cluster with the vast majority

of its own kind may ideally point to differences in disease prognosis or treatment response and

even has the potential to define novel subtypes or reveal misclassification. Such an analysis

would be especially worthwhile for the ~20% or less samples from Kidney-RCC, Liver-HCC,

Lung-SCC or Lymph-BNHL that are not assigned to the main cluster. Another possible appli-

cation of our classification scheme is to assign a metastatic sample with unknown primary site

to a cluster to shed light on the possible tissue of origin or pan-cancer characteristics like MSI.

In conclusion, we provide here a comprehensive analysis of somatic mutations in cancer

genomes irrespective of tumour type using 42 features with a truly pan-cancer focus. This

allows us to include tumour types with very few samples for which individual analysis is little

informative. Moreover, information can be borrowed across the entire data set enabling the

detection of processes present in multiple tumour types. We let the genome prioritize what is

important by using position-specific recurrence and by considering features that do not

depend on the completeness and correctness of current genome annotations. This has enabled

us to delineate various mutational processes, uncover new mutational manifestations and

characterize several actionable clinical phenotypes in a novel way. Findings from this and simi-

lar analyses in the future will be of utmost importance for the goal to tailor treatment to the

individual patient.

Methods

PCAWG cohort – quality control

We used the cohort of cancer genomes assembled by the PCAWG project [12] of the ICGC

and TCGA. For every donor, whole-genome sequencing data was available for a normal-

tumour pair and all samples were analysed uniformly. A detailed description of the quality

control is provided in the PCAWG marker paper [12]. In short, 176 samples were excluded for

various reasons as part of the quality control, most commonly because of contamination with

RNA. Samples of another 75 donors were of borderline quality for various reasons, including a

high percentage of paired reads mapping to different chromosomes [12, 49]. We decided not

to include the samples of those donors, which left us with genomic data of 2,583 donors cover-

ing 37 tumour types (S1 Table). The distribution of the samples across the tumour types is also

indicated in S1 Table. In case there were multiple tumour samples for the same donor, we

selected a single sample following the decision made within the consortium. To make the deci-

sion five criteria were used as described by the PCAWG Drivers and Functional Interpretation

Group [18]. In order of importance, they prioritized the sample: 1) of a primary tumour over

metastatic and recurrent ones; 2) with a OxoG score over 40, which indicates low levels of oxi-

dative damage artefacts [50]; 3) with the highest quality according to the star rating system

[49]; 4) with RNA-Seq data available; 5) with the lowest level of contamination with foreign

DNA. If none of these criteria led to the selection of a single sample, a random selection was

made.

PCAWG cohort – mutation calls

The description of the procedure for the mutation calls is provided in the marker paper of the

PCAWG consortium [12]. In brief, the sequenced reads of the respective normal and tumour

sample pairs were aligned with BWA-MEM to the GRCh37/h19 genome. Four mutation call-

ing pipelines were run on the resulting BAM-files for each normal/tumour sample pair. The

pipelines used for calling SSMs were MuSE [51] and three in-house pipelines developed at the

Deutsches Krebsforschungszentrum (DKFZ) in collaboration with the European Molecular

Biology Laboratory (EMBL), Wellcome Sanger Institute and Broad Institute, respectively. A
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consensus set was built by keeping those calls on which two or more callers agreed. SIMs were

called by SMuFIN [52] and three pipelines developed by the same institutes as mentioned for

SSMs. The consensus was determined by stacked logistic regression instead, as the level of

agreement between the callers was lower than for SSMs. Furthermore, the SIM calls were left

aligned to make them comparable across samples. Several filters were applied to both the SSM

and SIM calls to remove, among other things, calls due to oxidative damage artefacts [50] and

germline variants. Great care was taken by the consortium to reduce the number of false posi-

tive mutation calls, resulting in a reliable dataset that is believed to be a conservative represen-

tation of the true set of mutations.

Definition of mutations

For SSMs there are 16 possible subtypes. However, we can neither detect substitutions with a

base of the same type (e.g. A>A) nor do we usually know on which strand the (pre-)mutagenic

event happened first (e.g. A>C is equivalent to T>G on the other strand). Therefore, we com-

bined the substitutions that are each other’s reverse complement and refer to them by the

pyrimidine of the mutated base pair: C>A, C>G, C>T, T>A, T>C and T>G. We regarded

substitutions directly next to each other (median number across samples: 25) as separate single

base events since, aside from the very limited numbers, in several cases the individual callers

only supported one single base event, and only the consensus resulted in a multiple base substi-

tution call. For 1 bp SIMs, these are the four subtypes A/T deletions, C/G deletions, A/T inser-

tions and C/G insertions, as analogously to SSMs, we cannot determine on which strand the

(pre-) mutagenic event happened first.

Features describing each cancer genome

We computed 29 general features and 13 related to recurrence (Table A in S1 File) to charac-

terize different aspects of the somatic mutations in a cancer genome. We used the vcfR package

in R to read in the VCF files [53]. The general features comprised the number of SSMs and

SIMs (two features), the percentage of SIMs with respect to the total number of mutations

(one feature), the distribution of SSMs and SIMs across the different subtypes (six and four

features, respectively), and the homopolymer context of 1 bp SIMs for each of the four sub-

types (four times four features). We used the BCFtools (version 1.5) to compute recurrence

using the VCF files as input. Recurrence was captured by the overall percentage of recurrent

SSMs and SIMs (two features), percentage of recurrent mutations of type SIM (one feature)

and recurrence per SSM and SIM subtype (six and four features, respectively). The homopoly-

mer context is not included in the recurrence features, as the number of recurrent SIMs is too

low to stratify into 16 additional features. Except for the number of SSMs and SIMs, all other

40 features were in percentages.

Principal Component Analysis and hierarchical clustering on Principal

Components

The R package FactoMineR (v1.41) was used for the PCA [14]. All input features for the PCA

were scaled to zero mean and unit variance to account for the differences between the ranges

of the features, especially with respect to the two features in absolute terms versus the ones in

terms of percentages. The first 18 PCs explained together over 80% of the variance of the data.

The remaining components were assumed to mostly represent noise in the data. The PCs were

used as input to the ‘hierarchical clustering on principal components’ (HCPC) function from

the FactoMineR package. The Euclidean distance was used as a measure of dissimilarity and

the Ward criterion for linkage. We cut the hierarchical clustering tree at various heights to see
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a more global down to a more specific division of the samples. The HCPC function includes a

consolidation step in the form of k-means clustering [15], which uses the centroids of the hier-

archical clustering as a starting point. This consolidation step was repeated a maximum of 10

times. The k-means clustering increased the variance between clusters from 17.5 to 18.9. Other

advantages of this hybrid approach are that it reduces the sensitivity of k-means clustering to

outliers and the initial centroids are selected in an informed way instead of at random. As a

consequence of this step, some samples were finally assigned to a different cluster than after

the hierarchical clustering. A ‘v test’, included in the FactoMineR package, was used to deter-

mine which features were significantly associated with each cluster. This test compares the

mean of a particular feature in a cluster to the overall mean in the dataset. We corrected the p-

values of all ‘v tests’ for multiple testing using the Benjamini-Yekutieli method. A feature is

considered to be significantly associated to a cluster if the adjusted p-value < 0.05.

Detection and enrichment of motifs

We collected for clusters A, E, G, H, L and M all SSMs of the subtype that is the most charac-

teristic. This is C>A for clusters A and H, C>G for cluster E and M, C>T for cluster G and

T>G for cluster L. In addition, we looked at T>G SSMs in cluster H to compare them to clus-

ter L. Next, we extracted from the reference genome (GRCh37/h19) the ten adjacent bases in

5’ and 3’ direction of the mutation using the Rsamtools package in R. We used the extracted

sequence context as input to construct two sequence logos per cluster: one for the mutations

that are recurrent within the cluster and one for those that are not. We include each recurrent

mutation only once to avoid giving extra weight to highly recurrent mutations. As a measure

of information content we used the relative entropy [54, 55], which is defined for position i by:

REi ¼
X

b2fA;C;G;Tg

f ðbiÞlog2

f ðbiÞ
PðbÞ

Here, f(bi) stands for the frequency of base b (A, C, G or T) in position i and P(b) stands for the

prior probability of base b as determined by the frequency in the human genome (GRCh37/

h19). The height of each base in the sequence plot is proportional to f bið Þlog2

f ðbiÞ
PðbÞ. A positive

value corresponds to an enrichment of the base with respect to the prior probability and a neg-

ative value to a depletion. The relative entropy (REi) is zero, if all four bases are observed with

the same frequency as the prior in position i. We set 0.25 as a threshold for REi to define the

enriched motif. Furthermore, we computed per cluster the percentages of all, non-recurrent

and recurrent SSMs that were in the sequence context that was found to be enriched in the

recurrent SSMs. To estimate the percentage of the respective motifs in the human genome, we

first slid a window of the same size (k) as the motif across the genome with a shift equal to the

length of the motif and counted all possible k-mers. Next, we added to this the counts retrieved

in the same way for the reverse complement of the reference sequence (corresponding to the

opposing strand), since we also combined the reverse complements for each of the SSM sub-

types. From this we computed the percentage of the enriched motif with respect to all k-mers

and to the k-mer with the base that is mutated in the enriched motif at the same position.

Statistical tests

The correlation between every possible pair of the 42 features was measured by the Spearman’s

rank correlation coefficient using the R package Hmisc (v4.1–1). Multiple testing correction of

the p-values of all correlation tests (including those in S2 Text) was done by the Benjamini-

Yekutieli method. For the other correlations mentioned we also used the Spearman’s rank cor-

relation coefficient.
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We used the Wilcoxon rank-sum test with continuity correction as the test of significance

for differences in features observed between clusters.

The different proportions of sequence motifs between recurrent and non-recurrent SSMs

were assessed by using χ2 tests.

Plots

Figs 1, 3, 5 and 6, the pie charts in Fig 4 and the plots in Supporting Information, except for S1,

were made using the R package ggplot2 (v3.0.0). Fig 6, S3 Fig and S4 Fig additionally required

ggseqlogo (v0.1) [56] and Fig 2 was made with the use of the R package corrplot (v0.84). Fig 7

was made using Microsoft PowerPoint and we also included images from the Servier Medical

Art website (http://smart.servier.com/). The ‘clustering tree’ in S1 Fig was made using the clus-

tree R package [57]. We have manually replaced the nodes in the tree with the pie diagram

showing the distribution of tumour types in each cluster. For the colours of the different

tumour types we have made use of the script provided by the PCAWG consortium, available

at: https://github.com/ICGC-TCGA-PanCancer/pcawg-colour-palette.

Supporting information

S1 Fig. Clustering tree showing tumour type distribution for 2 to 20 clusters. The clustering

tree shows how clusters evolve across different clustering resolutions ranging from 2 to 20

clusters. For example, cluster G splits off from the rest of the cohort at a resolution of three

clusters and remains largely unchanged in higher resolutions. We have marked for each of our

16 clusters the clustering resolutions across which they remain largely stable, i.e. the Jaccard

similarity index between a cluster at resolution 16 and one at a higher or lower resolution is at

least 0.85. The number under each cluster indicates the number of samples in that particular

cluster. The colour of an arrow indicates the number of samples the two connected clusters

have in common. The transparency of the arrow indicates the proportion of samples the two

connected clusters have in common with respect to the cluster at the higher resolution. Only

arrows representing a proportion of more than 0.1 are shown. Consequently, the number of

samples in a cluster at a certain clustering resolution may not match with the connected clus-

ter(s) at a higher resolution. Note that the clustering shown is the result after the k-means clus-

tering step.

(PDF)

S2 Fig. PCA and clustering with and without the recurrence-related features. When using

only the 29 general features for the PCA (A), the first two PCs explain less variance than when

using all 42 features for the PCA (B) (27.5% vs. 29.1%). The features indicated in the two PCA

plots are those that contribute above average to the first two PCs. The subsequent clustering

also differs as shown in (C) and (D). Without using the recurrence-related features, only five

of the eight samples linked to ultra-hypermutation (D – cluster H) are in a separate cluster

(C – cluster VIII). Also the cluster linked to hypermutation of the immunoglobulin genes

(D – cluster M) is dissolved as evidenced by the fact that the samples are spread across eight

clusters (C – clusters III, IV, VI, XI, XII, XIII, XIV and XV). One consequence of this is that

only 19 of the 40 the Lymph-CLL samples with hypermutation are in the same cluster as

opposed to 36 when using all features (E). In addition, the largest fraction of cluster M ends up

in a cluster with Eso-AdenoCA and Stomach-AdenoCA samples (C – cluster XII), making that

cluster less cancer-specific than when using all features (D – cluster L). The Lymph-CLL sam-

ples without hypermutation of the immunoglobulin genes are also no longer largely confined

to a single cluster (E). Moreover, the samples with and without hypermutation end up more
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often in the same cluster than when recurrence-related features are also used.

(PDF)

S3 Fig. Enriched sequence motifs for C>G SSMs in cluster M. The sequence logos represent

the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent (right-

side) C>G mutations of cluster M. Here recurrence is defined as a mutation at the same geno-

mic location in two or more samples from cluster M. Relative entropy is used as a measure of

information content (see Methods). Setting a threshold of 0.25 for the relative entropy results

in the motifs highlighted in the rectangles. In the upper right corner of both sequence logos

the number of mutations is indicated. To the right of the sequence logos are the percentages in

which the enriched motif found for the recurrent C>G SSMs is present in context of the muta-

tions in the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The

enrichment for the motif for recurrent C>G SSMs is significantly higher than for the non-

recurrent C>G SSMs (χ2 test: p<2.2e-16).

(TIF)

S4 Fig. Enriched sequence motifs for T>G SSMs in cluster H. The sequence logos represent

the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent (right-

side) T>G mutations of cluster H. Here recurrence is defined as a mutation at the same geno-

mic location in two or more samples from cluster H. Relative entropy is used as a measure of

information content (see Methods). Setting a threshold of 0.25 for the relative entropy results

in the motifs highlighted in the rectangles. In the upper right corner of both sequence logos

the number of mutations is indicated. To the right of the sequence logos are the percentages in

which the enriched motif found for the recurrent T>G SSMs is present in context of the muta-

tions in the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The

enrichment for the motif for recurrent T>G SSMs is significantly higher than for the non-

recurrent T>G SSMs (χ2 test: p<2.2e-16).

(TIF)
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SUPPLEMENTARY FIGURES: S1, S2, S3, S4 
 
 

 
S1 Fig. Clustering tree showing tumour type distribution for 2 to 20 clusters. (Continue in next page) 
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Stomach−AdenoCA

Lung−AdenoCA

Panc−AdenoCA

Bone−Benign

Head−SCC

SoftTissue−Leiomyo

Bladder−TCC

Kidney−ChRCC

Myeloid−MPN

Uterus−AdenoCA

SoftTissue−Liposarc

Thy−AdenoCA

Bone−Osteosarc

CNS−PiloAstro

CNS−GBM

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Ovary−AdenoCA

Breast−AdenoCA
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CNS−GBM

Prost−AdenoCA

Stomach−AdenoCA

ColoRect−AdenoCA

CNS−PiloAstro

Skin−Melanoma
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Bone−Benign

Cervix−AdenoCA

Myeloid−MDS

SoftTissue−Liposarc

Bone−Epith

Breast−DCIS

Myeloid−MPN

Kidney−RCC

SoftTissue−Leiomyo

Lung−SCC

Myeloid−AML

Bone−Osteosarc

Thy−AdenoCA

ColoRect−AdenoCA

Eso−AdenoCA

Lymph−CLL

Stomach−AdenoCA

Bladder−TCC

Lung−AdenoCA

Breast−LobularCA

Lymph−BNHL

Biliary−AdenoCA

Cervix−SCC

CNS−GBM

CNS−Oligo

Panc−Endocrine

Ovary−AdenoCA

Uterus−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Liver−HCC

Head−SCC

Breast−AdenoCA

Panc−AdenoCA

CNS−Medullo

Prost−AdenoCA
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Breast−AdenoCA

Kidney−ChRCC

Myeloid−AML

Skin−Melanoma

Thy−AdenoCA

Bone−Osteosarc

Bone−Benign

Uterus−AdenoCA

Panc−AdenoCA

ColoRect−AdenoCA

Lymph−CLL

Prost−AdenoCA

CNS−PiloAstro

Lymph−BNHL

Stomach−AdenoCA

Eso−AdenoCA
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Cervix−AdenoCA

CNS−Oligo

Myeloid−MPN

Ovary−AdenoCA

Panc−Endocrine

Skin−Melanoma

Thy−AdenoCA

Bladder−TCC

Bone−Osteosarc

Prost−AdenoCA

CNS−PiloAstro

Head−SCC

Biliary−AdenoCA

Breast−AdenoCA

Cervix−SCC

Uterus−AdenoCA

Eso−AdenoCA

Stomach−AdenoCA

Lymph−CLL

ColoRect−AdenoCA

CNS−Medullo

Lymph−BNHL

Panc−AdenoCA
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CNS−Medullo

Prost−AdenoCA

Thy−AdenoCA

CNS−PiloAstro
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Biliary−AdenoCA

Kidney−RCC

Ovary−AdenoCA

Panc−AdenoCA

Liver−HCC

ColoRect−AdenoCA

Stomach−AdenoCA

Uterus−AdenoCA
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Breast−DCIS

CNS−Medullo

SoftTissue−Leiomyo

SoftTissue−Liposarc

Stomach−AdenoCA

Bone−Benign

Prost−AdenoCA

Biliary−AdenoCA

Bone−Osteosarc

Breast−AdenoCA

CNS−PiloAstro

Head−SCC

Lymph−CLL

Myeloid−AML

Myeloid−MPN

Liver−HCC

Ovary−AdenoCA

Thy−AdenoCA

Panc−Endocrine

Lung−AdenoCA

Lung−SCC

Kidney−ChRCC

Kidney−RCC
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Bone−Epith

Breast−AdenoCA

CNS−GBM

CNS−Medullo

Eso−AdenoCA

Kidney−ChRCC

Lung−AdenoCA

Bone−Osteosarc

Lymph−CLL

Myeloid−MPN

Bladder−TCC

Head−SCC

CNS−PiloAstro

Biliary−AdenoCA

Panc−Endocrine

Thy−AdenoCA

Prost−AdenoCA

Lung−SCC

Liver−HCC

tumor_type

ColoRect−AdenoCA

Eso−AdenoCA

Biliary−AdenoCA

Kidney−RCC

Lung−SCC

Lymph−BNHL

Breast−LobularCA

Liver−HCC

CNS−Medullo

Myeloid−AML

Bone−Epith

CNS−Oligo

Skin−Melanoma

Lung−AdenoCA

Stomach−AdenoCA

Head−SCC

Panc−AdenoCA

Bone−Benign

Bladder−TCC

SoftTissue−Leiomyo

Myeloid−MPN

Uterus−AdenoCA

Kidney−ChRCC

SoftTissue−Liposarc

Bone−Osteosarc

Thy−AdenoCA

CNS−PiloAstro

CNS−GBM

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Ovary−AdenoCA

Breast−AdenoCA
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CNS−GBM

Prost−AdenoCA

Stomach−AdenoCA

CNS−PiloAstro

Skin−Melanoma
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Bone−Benign

Cervix−AdenoCA

SoftTissue−Liposarc

Breast−DCIS

Myeloid−MDS

Bone−Epith

Kidney−RCC

Myeloid−MPN

SoftTissue−Leiomyo

ColoRect−AdenoCA

Lung−SCC

Myeloid−AML

Thy−AdenoCA

Bone−Osteosarc

Eso−AdenoCA

Stomach−AdenoCA

Bladder−TCC

Lymph−CLL

Lung−AdenoCA

Breast−LobularCA

Biliary−AdenoCA

Cervix−SCC

CNS−Oligo

Lymph−BNHL

Panc−Endocrine

Ovary−AdenoCA

CNS−GBM

Uterus−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Liver−HCC

Head−SCC

Panc−AdenoCA

Breast−AdenoCA

CNS−Medullo

Prost−AdenoCA

tumor_type

Bone−Osteosarc

Eso−AdenoCA

Lymph−CLL

Myeloid−AML

Myeloid−MPN
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Stomach−AdenoCA

Thy−AdenoCA

Uterus−AdenoCA

Bone−Benign

CNS−PiloAstro

Prost−AdenoCA
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Bone−Benign

Bone−Osteosarc

Kidney−ChRCC

Lung−AdenoCA

Prost−AdenoCA

Skin−Melanoma

Uterus−AdenoCA

Breast−AdenoCA

Lymph−CLL

Panc−AdenoCA

CNS−PiloAstro

ColoRect−AdenoCA

Lymph−BNHL

Stomach−AdenoCA

Eso−AdenoCA
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Cervix−AdenoCA

CNS−Oligo

Ovary−AdenoCA

Panc−Endocrine

Skin−Melanoma

Thy−AdenoCA

Bladder−TCC

Bone−Osteosarc

Prost−AdenoCA

CNS−PiloAstro

Head−SCC

Biliary−AdenoCA

Breast−AdenoCA

Cervix−SCC

Uterus−AdenoCA

Eso−AdenoCA

Stomach−AdenoCA

Lymph−CLL
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CNS−Medullo

Lymph−BNHL

Panc−AdenoCA
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CNS−Medullo

Prost−AdenoCA

Thy−AdenoCA

CNS−PiloAstro

tumor_type

Biliary−AdenoCA

Kidney−RCC
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Panc−AdenoCA

Liver−HCC

ColoRect−AdenoCA

Stomach−AdenoCA

Uterus−AdenoCA
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Breast−DCIS

CNS−Medullo

SoftTissue−Leiomyo

SoftTissue−Liposarc

Stomach−AdenoCA

Bone−Benign

Prost−AdenoCA

Biliary−AdenoCA

Bone−Osteosarc

Breast−AdenoCA

CNS−PiloAstro

Head−SCC

Lymph−CLL

Myeloid−AML

Myeloid−MPN

Liver−HCC

Ovary−AdenoCA

Thy−AdenoCA

Panc−Endocrine

Lung−AdenoCA

Lung−SCC

Kidney−ChRCC

Kidney−RCC

tumor_type

Bone−Epith

Breast−AdenoCA

CNS−GBM

CNS−Medullo

Kidney−ChRCC

Lung−AdenoCA

Bone−Osteosarc

Lymph−CLL

Myeloid−MPN

Bladder−TCC

Head−SCC

CNS−PiloAstro

Biliary−AdenoCA

Thy−AdenoCA

Panc−Endocrine

Prost−AdenoCA

Lung−SCC

Liver−HCC

tumor_type

ColoRect−AdenoCA

Myeloid−MDS

Biliary−AdenoCA

Eso−AdenoCA

Kidney−RCC

Lung−SCC

Lymph−BNHL

Breast−LobularCA

Liver−HCC

CNS−Medullo

Myeloid−AML

Bone−Epith

CNS−Oligo

Skin−Melanoma

Lung−AdenoCA

Panc−AdenoCA

Stomach−AdenoCA

Head−SCC

Bone−Benign

Bladder−TCC

SoftTissue−Leiomyo

Uterus−AdenoCA

Kidney−ChRCC

Myeloid−MPN

SoftTissue−Liposarc

Bone−Osteosarc

CNS−PiloAstro

Thy−AdenoCA

CNS−GBM

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Ovary−AdenoCA

Breast−AdenoCA
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CNS−GBM

Prost−AdenoCA

Stomach−AdenoCA

CNS−PiloAstro

Skin−Melanoma

tumor_type

Bone−Benign

Cervix−AdenoCA

Myeloid−MDS

SoftTissue−Liposarc

Breast−DCIS

Myeloid−MPN

Bone−Epith

Kidney−RCC

SoftTissue−Leiomyo

ColoRect−AdenoCA

Lung−SCC

Myeloid−AML

Thy−AdenoCA

Bone−Osteosarc

Eso−AdenoCA

Stomach−AdenoCA

Bladder−TCC

Lymph−CLL

Lung−AdenoCA

Breast−LobularCA

Biliary−AdenoCA

Cervix−SCC

CNS−Oligo

Lymph−BNHL

Panc−Endocrine

Ovary−AdenoCA

CNS−GBM

Uterus−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Liver−HCC

Head−SCC

Panc−AdenoCA

Breast−AdenoCA

CNS−Medullo

Prost−AdenoCA
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Bone−Osteosarc

Eso−AdenoCA

Lymph−CLL

Myeloid−AML

Myeloid−MPN

Panc−AdenoCA

Stomach−AdenoCA

Thy−AdenoCA

Uterus−AdenoCA

Bone−Benign

CNS−PiloAstro

Prost−AdenoCA
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Bone−Benign

Kidney−ChRCC

Lung−AdenoCA

Prost−AdenoCA

Skin−Melanoma

Bone−Osteosarc

Breast−AdenoCA

Lymph−CLL

CNS−PiloAstro

Panc−AdenoCA

ColoRect−AdenoCA

Lymph−BNHL

Stomach−AdenoCA

Eso−AdenoCA
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Uterus−AdenoCA

ColoRect−AdenoCA
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Cervix−AdenoCA

CNS−Oligo

Ovary−AdenoCA

Panc−Endocrine

Skin−Melanoma

Thy−AdenoCA

Bladder−TCC

Bone−Osteosarc

Prost−AdenoCA

CNS−PiloAstro

Head−SCC

Biliary−AdenoCA

Breast−AdenoCA

Cervix−SCC

Uterus−AdenoCA

Eso−AdenoCA

Stomach−AdenoCA

Lymph−CLL

ColoRect−AdenoCA

CNS−Medullo

Lymph−BNHL

Panc−AdenoCA

tumor_type

CNS−Medullo

Prost−AdenoCA

Thy−AdenoCA

CNS−PiloAstro
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Biliary−AdenoCA

Kidney−RCC

Ovary−AdenoCA

Panc−AdenoCA

Liver−HCC

ColoRect−AdenoCA

Stomach−AdenoCA

Uterus−AdenoCA
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Breast−DCIS

CNS−Medullo

SoftTissue−Leiomyo

SoftTissue−Liposarc

Stomach−AdenoCA

Bone−Benign

Lymph−CLL

Prost−AdenoCA

Biliary−AdenoCA

Bone−Osteosarc

CNS−PiloAstro

Head−SCC

Myeloid−AML

Myeloid−MPN

Breast−AdenoCA

Liver−HCC

Ovary−AdenoCA

Thy−AdenoCA

Panc−Endocrine

Lung−AdenoCA

Lung−SCC

Kidney−ChRCC

Kidney−RCC
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Bone−Epith

Bone−Osteosarc

Breast−AdenoCA

CNS−GBM

CNS−Medullo

Kidney−ChRCC

Lung−AdenoCA

SoftTissue−Leiomyo

Lymph−CLL

Myeloid−MPN

Ovary−AdenoCA

Bladder−TCC

Head−SCC

CNS−PiloAstro

Biliary−AdenoCA

Panc−Endocrine

Thy−AdenoCA

Prost−AdenoCA

Lung−SCC

Liver−HCC
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Myeloid−MDS

Biliary−AdenoCA

Bladder−TCC

Breast−LobularCA

ColoRect−AdenoCA

Kidney−RCC

Eso−AdenoCA

Liver−HCC

Myeloid−AML

CNS−Medullo

Lung−AdenoCA

Skin−Melanoma

Bone−Epith

CNS−Oligo

Head−SCC

Lymph−BNHL

Stomach−AdenoCA

Panc−AdenoCA

Bone−Benign

SoftTissue−Leiomyo

Uterus−AdenoCA

Kidney−ChRCC

Myeloid−MPN

Thy−AdenoCA

SoftTissue−Liposarc

Bone−Osteosarc

CNS−PiloAstro

CNS−GBM

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Breast−AdenoCA

Ovary−AdenoCA
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CNS−GBM

Prost−AdenoCA

Stomach−AdenoCA

CNS−PiloAstro

Skin−Melanoma

tumor_type

Biliary−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Lung−AdenoCA

Ovary−AdenoCA

Panc−AdenoCA

Panc−Endocrine

Breast−LobularCA

Thy−AdenoCA

Lung−SCC

Uterus−AdenoCA

Cervix−SCC

Bladder−TCC

Head−SCC

Breast−AdenoCA

tumor_type

Bone−Benign

Cervix−AdenoCA

Myeloid−MDS

Bladder−TCC

Bone−Epith

Breast−DCIS

Lung−SCC

Lymph−CLL

Myeloid−MPN

ColoRect−AdenoCA

Kidney−RCC

SoftTissue−Leiomyo

Eso−AdenoCA

Myeloid−AML

Bone−Osteosarc

Lymph−BNHL

Thy−AdenoCA

Stomach−AdenoCA

Breast−LobularCA

CNS−GBM

Lung−AdenoCA

Biliary−AdenoCA

CNS−Oligo

Uterus−AdenoCA

Panc−Endocrine

Ovary−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Head−SCC

Liver−HCC

Breast−AdenoCA

Panc−AdenoCA

CNS−Medullo

Prost−AdenoCA
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Bone−Osteosarc

Eso−AdenoCA

Lymph−CLL

Myeloid−AML

Myeloid−MPN

Panc−AdenoCA

Stomach−AdenoCA

Thy−AdenoCA

Uterus−AdenoCA

Bone−Benign

CNS−PiloAstro

Prost−AdenoCA
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Bone−Benign

Bone−Osteosarc

Kidney−ChRCC

Lung−AdenoCA

Prost−AdenoCA

Skin−Melanoma

Breast−AdenoCA

Lymph−CLL

Panc−AdenoCA

CNS−PiloAstro

ColoRect−AdenoCA

Lymph−BNHL

Stomach−AdenoCA

Eso−AdenoCA
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Uterus−AdenoCA

ColoRect−AdenoCA
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Cervix−AdenoCA

CNS−Oligo

Ovary−AdenoCA

Panc−Endocrine

Skin−Melanoma

Thy−AdenoCA

Bone−Osteosarc

Bladder−TCC

Prost−AdenoCA

CNS−PiloAstro

Cervix−SCC

Head−SCC

Biliary−AdenoCA

Breast−AdenoCA

Uterus−AdenoCA

Eso−AdenoCA

Stomach−AdenoCA

ColoRect−AdenoCA

Lymph−CLL

CNS−Medullo

Lymph−BNHL

Panc−AdenoCA
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CNS−Medullo

Prost−AdenoCA

Thy−AdenoCA

CNS−PiloAstro
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Biliary−AdenoCA

Kidney−RCC

Ovary−AdenoCA

Panc−AdenoCA

Liver−HCC

ColoRect−AdenoCA

Stomach−AdenoCA

Uterus−AdenoCA
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Bone−Benign

CNS−Medullo

Myeloid−AML

Ovary−AdenoCA

Panc−AdenoCA

SoftTissue−Leiomyo

Stomach−AdenoCA

Biliary−AdenoCA

Bone−Osteosarc

Breast−AdenoCA

CNS−PiloAstro

Lymph−CLL

Myeloid−MPN

Prost−AdenoCA

Liver−HCC

Thy−AdenoCA

Panc−Endocrine

Kidney−ChRCC

Kidney−RCC
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CNS−PiloAstro

Liver−HCC

Head−SCC

Panc−Endocrine

Lung−AdenoCA

Lung−SCC
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Bone−Benign

Bone−Epith

Bone−Osteosarc

CNS−GBM

CNS−Medullo

Head−SCC

Kidney−ChRCC

Lung−AdenoCA

Myeloid−MPN

Lymph−CLL

Bladder−TCC

Lung−SCC

CNS−PiloAstro

Biliary−AdenoCA

Thy−AdenoCA

Panc−Endocrine

Prost−AdenoCA

Liver−HCC
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Breast−DCIS

Breast−LobularCA

ColoRect−AdenoCA

Bladder−TCC

Eso−AdenoCA

Kidney−RCC

Myeloid−MDS

Biliary−AdenoCA

Liver−HCC

Lymph−BNHL

CNS−Medullo

Bone−Epith

Lung−AdenoCA

Panc−AdenoCA

Skin−Melanoma

CNS−Oligo

Head−SCC

Myeloid−AML

Stomach−AdenoCA

Uterus−AdenoCA

Bone−Benign

SoftTissue−Leiomyo

Kidney−ChRCC

Myeloid−MPN

SoftTissue−Liposarc

Thy−AdenoCA

Bone−Osteosarc

CNS−PiloAstro

CNS−GBM

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Breast−AdenoCA

Ovary−AdenoCA
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CNS−GBM

Prost−AdenoCA

Stomach−AdenoCA

CNS−PiloAstro

Skin−Melanoma
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Biliary−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Lung−AdenoCA

Ovary−AdenoCA

Panc−AdenoCA

Panc−Endocrine

Breast−LobularCA

Thy−AdenoCA

Lung−SCC

Uterus−AdenoCA

Cervix−SCC

Bladder−TCC

Head−SCC

Breast−AdenoCA
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Bone−Benign

Cervix−AdenoCA

SoftTissue−Liposarc

Bladder−TCC

Breast−DCIS

Lung−SCC

Bone−Epith

Kidney−RCC

Myeloid−MPN

SoftTissue−Leiomyo

ColoRect−AdenoCA

Myeloid−AML

Eso−AdenoCA

Thy−AdenoCA

Stomach−AdenoCA

Bone−Osteosarc

Lymph−CLL

Lung−AdenoCA

Biliary−AdenoCA

Breast−LobularCA

CNS−Oligo

Lymph−BNHL

Uterus−AdenoCA

Panc−Endocrine

CNS−GBM

Ovary−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Liver−HCC

Head−SCC

Breast−AdenoCA

Panc−AdenoCA

CNS−Medullo

Prost−AdenoCA
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Bone−Osteosarc

Eso−AdenoCA

Lymph−CLL

Myeloid−AML

Myeloid−MPN

Panc−AdenoCA

Stomach−AdenoCA

Thy−AdenoCA

Uterus−AdenoCA

Bone−Benign

CNS−PiloAstro

Prost−AdenoCA
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Bone−Benign

Bone−Osteosarc

Kidney−ChRCC

Lung−AdenoCA

Prost−AdenoCA

Skin−Melanoma

Breast−AdenoCA

Lymph−CLL

Panc−AdenoCA

CNS−PiloAstro

ColoRect−AdenoCA

Lymph−BNHL

Stomach−AdenoCA

Eso−AdenoCA
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Uterus−AdenoCA

ColoRect−AdenoCA
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Cervix−AdenoCA

CNS−Oligo

Ovary−AdenoCA

Panc−Endocrine

Skin−Melanoma

Thy−AdenoCA

Bone−Osteosarc

Bladder−TCC

Prost−AdenoCA

CNS−PiloAstro

Cervix−SCC

Head−SCC

Biliary−AdenoCA

Breast−AdenoCA

Uterus−AdenoCA

Eso−AdenoCA

Stomach−AdenoCA

Lymph−CLL

ColoRect−AdenoCA

CNS−Medullo

Lymph−BNHL

Panc−AdenoCA
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CNS−Medullo

Prost−AdenoCA

Thy−AdenoCA

CNS−PiloAstro
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Biliary−AdenoCA

Kidney−RCC

Ovary−AdenoCA

Panc−AdenoCA

Liver−HCC

ColoRect−AdenoCA

Stomach−AdenoCA

Uterus−AdenoCA
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Bone−Benign

CNS−PiloAstro

Lymph−CLL

Myeloid−AML

Myeloid−MPN

Ovary−AdenoCA

SoftTissue−Leiomyo

Stomach−AdenoCA

Biliary−AdenoCA

Bone−Osteosarc

Breast−AdenoCA

Prost−AdenoCA

Liver−HCC

Thy−AdenoCA

Panc−Endocrine

Kidney−ChRCC

Kidney−RCC
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CNS−PiloAstro

Liver−HCC

Head−SCC

Panc−Endocrine

Lung−AdenoCA

Lung−SCC
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Bone−Epith

CNS−GBM

CNS−Medullo

Head−SCC

Kidney−ChRCC

Lung−AdenoCA

Bone−Osteosarc

CNS−PiloAstro

Lymph−CLL

Bladder−TCC

Lung−SCC

Thy−AdenoCA

Biliary−AdenoCA

Panc−Endocrine

Prost−AdenoCA

Liver−HCC
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Breast−DCIS

Breast−LobularCA

ColoRect−AdenoCA

Myeloid−MDS

Bladder−TCC

Eso−AdenoCA

Kidney−RCC

Biliary−AdenoCA

CNS−Medullo

Lymph−BNHL

Liver−HCC

Lung−AdenoCA

Bone−Epith

CNS−Oligo

Panc−AdenoCA

Skin−Melanoma

Head−SCC

Myeloid−AML

Uterus−AdenoCA

Stomach−AdenoCA

Bone−Benign

SoftTissue−Leiomyo

Kidney−ChRCC

Myeloid−MPN

SoftTissue−Liposarc

Bone−Osteosarc

CNS−GBM

CNS−PiloAstro

Thy−AdenoCA

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Breast−AdenoCA

Ovary−AdenoCA
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CNS−GBM
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Panc−Endocrine

Breast−LobularCA
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Lung−SCC

Uterus−AdenoCA

Cervix−SCC

Bladder−TCC

Head−SCC

Breast−AdenoCA
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CNS−Medullo

Lung−AdenoCA

Stomach−AdenoCA

Panc−AdenoCA

ColoRect−AdenoCA

CNS−PiloAstro
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Cervix−AdenoCA

Myeloid−MDS

SoftTissue−Liposarc

Bladder−TCC

Bone−Benign

Breast−DCIS

Lung−SCC

Bone−Epith

Kidney−RCC

Myeloid−MPN

ColoRect−AdenoCA

Myeloid−AML

SoftTissue−Leiomyo

Eso−AdenoCA

Thy−AdenoCA

Stomach−AdenoCA

Bone−Osteosarc

Lymph−CLL

Lung−AdenoCA
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Breast−LobularCA

CNS−Oligo

Lymph−BNHL

Panc−Endocrine

Uterus−AdenoCA

CNS−GBM
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CNS−PiloAstro

Skin−Melanoma

Liver−HCC

Head−SCC

Panc−AdenoCA

Breast−AdenoCA

CNS−Medullo
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Bone−Osteosarc
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Bone−Benign
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Bone−Benign

Bone−Osteosarc

Kidney−ChRCC

Lung−AdenoCA

Prost−AdenoCA

Skin−Melanoma

Breast−AdenoCA

CNS−PiloAstro

ColoRect−AdenoCA

Lymph−CLL

Panc−AdenoCA

Lymph−BNHL
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Ovary−AdenoCA

Panc−Endocrine

Skin−Melanoma

Thy−AdenoCA

Bone−Osteosarc

Bladder−TCC
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Prost−AdenoCA

Cervix−SCC

Head−SCC

Biliary−AdenoCA

Breast−AdenoCA
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Lymph−CLL

ColoRect−AdenoCA
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Thy−AdenoCA

CNS−PiloAstro
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Biliary−AdenoCA
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Liver−HCC
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Stomach−AdenoCA

Uterus−AdenoCA
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Bone−Benign

Bone−Osteosarc

CNS−PiloAstro
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Myeloid−AML

Myeloid−MPN
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SoftTissue−Leiomyo

Stomach−AdenoCA

Biliary−AdenoCA

Breast−AdenoCA
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Liver−HCC
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Panc−Endocrine

Kidney−ChRCC
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Liver−HCC

Head−SCC

Panc−Endocrine

Lung−AdenoCA
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Bone−Epith

Bone−Osteosarc

CNS−GBM

CNS−Medullo

CNS−PiloAstro

Head−SCC

Kidney−ChRCC

Lung−AdenoCA
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Lung−SCC
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Panc−Endocrine
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Liver−HCC
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Breast−DCIS

Breast−LobularCA
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Lymph−BNHL

Bladder−TCC

Kidney−RCC

Biliary−AdenoCA

CNS−Medullo

Liver−HCC

Lung−AdenoCA

Bone−Epith

CNS−Oligo

Head−SCC

Myeloid−AML

Panc−AdenoCA

Skin−Melanoma

Uterus−AdenoCA

Stomach−AdenoCA

SoftTissue−Leiomyo

Bone−Benign

SoftTissue−Liposarc

Bone−Osteosarc

Myeloid−MPN

Kidney−ChRCC
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CNS−GBM

Thy−AdenoCA

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Breast−AdenoCA
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CNS−GBM
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Lung−AdenoCA

Ovary−AdenoCA
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Breast−LobularCA
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Lung−SCC
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Bladder−TCC

Head−SCC
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Myeloid−MPN
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Stomach−AdenoCA
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SoftTissue−Liposarc
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Breast−LobularCA
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Liver−HCC

Head−SCC

Bone−Osteosarc

Lymph−CLL

Thy−AdenoCA

CNS−Medullo

Panc−Endocrine

Breast−AdenoCA

Prost−AdenoCA
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Bone−Benign
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Myeloid−MDS

Bladder−TCC

Bone−Epith
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Kidney−RCC

Myeloid−MPN

Lung−SCC

Myeloid−AML
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Bone−Osteosarc
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SoftTissue−Leiomyo
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Lymph−BNHL

Lymph−CLL

Lung−AdenoCA
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CNS−GBM
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Skin−Melanoma
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Head−SCC

Liver−HCC
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Breast−AdenoCA

CNS−Medullo
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Bone−Osteosarc
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Bone−Benign
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Kidney−ChRCC
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Bone−Osteosarc

Breast−AdenoCA
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Bone−Osteosarc
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Bladder−TCC

Lymph−CLL

Prost−AdenoCA

Cervix−SCC

Head−SCC
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Kidney−RCC
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Liver−HCC
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Uterus−AdenoCA
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Bone−Osteosarc

CNS−PiloAstro
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Myeloid−AML

Myeloid−MPN

Ovary−AdenoCA

SoftTissue−Leiomyo

Stomach−AdenoCA

Biliary−AdenoCA

Breast−AdenoCA

Prost−AdenoCA

Liver−HCC

Thy−AdenoCA

Panc−Endocrine

Kidney−ChRCC

Kidney−RCC
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CNS−PiloAstro

Liver−HCC

Head−SCC

Panc−Endocrine

Lung−AdenoCA

Lung−SCC
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Bone−Epith

Bone−Osteosarc

CNS−GBM

CNS−Medullo

CNS−PiloAstro

Head−SCC

Kidney−ChRCC

Lung−AdenoCA

Lymph−CLL

Lung−SCC

Bladder−TCC

Panc−Endocrine

Thy−AdenoCA

Biliary−AdenoCA

Prost−AdenoCA

Liver−HCC
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Breast−DCIS

Breast−LobularCA

Bladder−TCC

Eso−AdenoCA

Kidney−RCC

Liver−HCC

Biliary−AdenoCA

CNS−Medullo

Lung−AdenoCA

Bone−Epith

CNS−Oligo

Myeloid−AML

Skin−Melanoma

Uterus−AdenoCA

Head−SCC

Panc−AdenoCA

Stomach−AdenoCA

Bone−Benign

SoftTissue−Leiomyo

SoftTissue−Liposarc

Myeloid−MPN

Bone−Osteosarc

Kidney−ChRCC

CNS−PiloAstro

CNS−GBM

Thy−AdenoCA

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Breast−AdenoCA

Ovary−AdenoCA
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CNS−GBM

Prost−AdenoCA

CNS−PiloAstro

Skin−Melanoma
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Biliary−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Lung−AdenoCA

Ovary−AdenoCA

Panc−AdenoCA

Panc−Endocrine

Breast−LobularCA

Thy−AdenoCA

Lung−SCC

Uterus−AdenoCA

Cervix−SCC

Bladder−TCC

Head−SCC

Breast−AdenoCA
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Biliary−AdenoCA

Bone−Benign

Bone−Epith

Kidney−RCC

Lung−AdenoCA

Lymph−BNHL

Myeloid−MDS

Myeloid−MPN

Skin−Melanoma

SoftTissue−Leiomyo

Myeloid−AML

Ovary−AdenoCA

Panc−AdenoCA

SoftTissue−Liposarc

Breast−LobularCA

Liver−HCC

Lymph−CLL

CNS−Oligo

CNS−PiloAstro

Head−SCC

Bone−Osteosarc

Thy−AdenoCA

Breast−AdenoCA

Panc−Endocrine

CNS−Medullo

Prost−AdenoCA
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CNS−Medullo

Lung−AdenoCA

Stomach−AdenoCA

Panc−AdenoCA

ColoRect−AdenoCA

CNS−PiloAstro
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Bone−Benign

Myeloid−MDS

Bladder−TCC

Bone−Epith

Breast−DCIS

Kidney−RCC

Lymph−BNHL

Myeloid−MPN

Lung−SCC

Myeloid−AML

Thy−AdenoCA

ColoRect−AdenoCA

Lymph−CLL

SoftTissue−Leiomyo

Bone−Osteosarc

Eso−AdenoCA

Stomach−AdenoCA

Breast−LobularCA

Lung−AdenoCA

Biliary−AdenoCA

CNS−Oligo

Panc−Endocrine

Uterus−AdenoCA

Ovary−AdenoCA

CNS−GBM

CNS−PiloAstro

Skin−Melanoma

Head−SCC

Liver−HCC

Panc−AdenoCA

Breast−AdenoCA

CNS−Medullo

Prost−AdenoCA
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Bone−Osteosarc

Eso−AdenoCA

Myeloid−MPN

Panc−AdenoCA

Stomach−AdenoCA

Thy−AdenoCA

Uterus−AdenoCA

Bone−Benign

CNS−PiloAstro

Prost−AdenoCA
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Bone−Benign

Bone−Osteosarc

Breast−AdenoCA

Kidney−ChRCC

Lung−AdenoCA

Myeloid−AML

Skin−Melanoma

CNS−PiloAstro

Lymph−BNHL

Panc−AdenoCA

ColoRect−AdenoCA

Stomach−AdenoCA

Eso−AdenoCA
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Bone−Benign

Bone−Osteosarc

Biliary−AdenoCA

Breast−AdenoCA

ColoRect−AdenoCA

Prost−AdenoCA

CNS−PiloAstro

Panc−AdenoCA

Eso−AdenoCA

Stomach−AdenoCA

Lymph−CLL

Lymph−BNHL
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Uterus−AdenoCA

ColoRect−AdenoCA
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Bone−Osteosarc

Panc−Endocrine

Skin−Melanoma

Thy−AdenoCA

Cervix−AdenoCA

Bladder−TCC

CNS−PiloAstro

Biliary−AdenoCA

Cervix−SCC

Head−SCC

Lymph−BNHL

Prost−AdenoCA

Breast−AdenoCA

Eso−AdenoCA

Uterus−AdenoCA

Stomach−AdenoCA

ColoRect−AdenoCA

CNS−Medullo

Panc−AdenoCA
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CNS−Medullo

Prost−AdenoCA

Thy−AdenoCA

CNS−PiloAstro
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Biliary−AdenoCA

Kidney−RCC

Ovary−AdenoCA

Panc−AdenoCA

Liver−HCC

ColoRect−AdenoCA

Stomach−AdenoCA

Uterus−AdenoCA
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Bone−Benign

Bone−Osteosarc

CNS−PiloAstro

Lymph−CLL

Myeloid−AML

Myeloid−MPN

Ovary−AdenoCA

SoftTissue−Leiomyo

Stomach−AdenoCA

Biliary−AdenoCA

Breast−AdenoCA

Prost−AdenoCA

Liver−HCC

Thy−AdenoCA

Panc−Endocrine

Kidney−ChRCC

Kidney−RCC
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CNS−PiloAstro

Liver−HCC

Head−SCC

Panc−Endocrine

Lung−AdenoCA

Lung−SCC

tumor_type

Bone−Epith

Bone−Osteosarc

CNS−GBM

CNS−Medullo

CNS−PiloAstro

Head−SCC

Kidney−ChRCC

Lung−AdenoCA

Lymph−CLL

Lung−SCC

Bladder−TCC

Panc−Endocrine

Thy−AdenoCA

Biliary−AdenoCA

Prost−AdenoCA

Liver−HCC
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Breast−DCIS

Breast−LobularCA

Bladder−TCC

Eso−AdenoCA

Kidney−RCC

Liver−HCC

Biliary−AdenoCA

CNS−Medullo

Lung−AdenoCA

Bone−Epith

CNS−Oligo

Myeloid−AML

Skin−Melanoma

Stomach−AdenoCA

Uterus−AdenoCA

Head−SCC

Panc−AdenoCA

Bone−Benign

SoftTissue−Leiomyo

SoftTissue−Liposarc

Myeloid−MPN

Bone−Osteosarc

CNS−PiloAstro

Kidney−ChRCC

CNS−GBM

Thy−AdenoCA

Prost−AdenoCA

Panc−Endocrine

Lymph−CLL

Breast−AdenoCA

Ovary−AdenoCA
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CNS−GBM

Prost−AdenoCA

CNS−PiloAstro

Skin−Melanoma
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Biliary−AdenoCA

CNS−PiloAstro

Skin−Melanoma

Lung−AdenoCA

Ovary−AdenoCA

Panc−AdenoCA

Panc−Endocrine

Breast−LobularCA

Thy−AdenoCA

Lung−SCC

Uterus−AdenoCA

Cervix−SCC

Bladder−TCC

Head−SCC

Breast−AdenoCA
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Biliary−AdenoCA

Bone−Benign

Bone−Epith

Lung−AdenoCA

Lymph−BNHL

Myeloid−MDS

Myeloid−MPN

Panc−AdenoCA

Skin−Melanoma

SoftTissue−Leiomyo

Myeloid−AML

Ovary−AdenoCA

SoftTissue−Liposarc

Breast−LobularCA

Head−SCC

Liver−HCC

Lymph−CLL

CNS−Oligo

CNS−PiloAstro

Bone−Osteosarc

Thy−AdenoCA

Breast−AdenoCA

Panc−Endocrine

CNS−Medullo

Prost−AdenoCA
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CNS−Medullo

Lung−AdenoCA

Stomach−AdenoCA

Panc−AdenoCA

ColoRect−AdenoCA

CNS−PiloAstro
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Bone−Benign

Myeloid−MDS

Bladder−TCC

Bone−Epith

Breast−DCIS

Lymph−BNHL

Myeloid−MPN

Kidney−RCC

Lung−SCC

Myeloid−AML

Thy−AdenoCA

ColoRect−AdenoCA

Lymph−CLL

SoftTissue−Leiomyo

Bone−Osteosarc

Eso−AdenoCA

Stomach−AdenoCA

Breast−LobularCA

Lung−AdenoCA

Biliary−AdenoCA

CNS−Oligo

Panc−Endocrine

Uterus−AdenoCA

Ovary−AdenoCA

CNS−GBM

CNS−PiloAstro

Skin−Melanoma

Head−SCC

Liver−HCC

Panc−AdenoCA

Breast−AdenoCA

CNS−Medullo

Prost−AdenoCA
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Bone−Osteosarc

CNS−Medullo

Myeloid−AML

Myeloid−MPN

Panc−AdenoCA

Stomach−AdenoCA

Thy−AdenoCA

Bone−Benign

Uterus−AdenoCA

CNS−PiloAstro

Prost−AdenoCA
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Eso−AdenoCA

Stomach−AdenoCA

Prost−AdenoCA

CNS−PiloAstro
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Bone−Benign

Bone−Osteosarc

Breast−AdenoCA

Kidney−ChRCC

Lung−AdenoCA

Skin−Melanoma

CNS−PiloAstro

Lymph−BNHL

Panc−AdenoCA

ColoRect−AdenoCA

Stomach−AdenoCA

Eso−AdenoCA
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Bone−Benign

Bone−Osteosarc

Biliary−AdenoCA

Breast−AdenoCA

ColoRect−AdenoCA

Prost−AdenoCA

CNS−PiloAstro

Panc−AdenoCA

Eso−AdenoCA

Stomach−AdenoCA

Lymph−CLL

Lymph−BNHL

tumor_type

Uterus−AdenoCA

ColoRect−AdenoCA

tumor_type

Bone−Osteosarc

Panc−Endocrine

Skin−Melanoma

Thy−AdenoCA

Cervix−AdenoCA

Bladder−TCC

CNS−PiloAstro

Biliary−AdenoCA

Cervix−SCC

Head−SCC

Lymph−BNHL

Prost−AdenoCA

Breast−AdenoCA

Uterus−AdenoCA

Eso−AdenoCA

Stomach−AdenoCA
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CNS−Medullo
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Thy−AdenoCA

CNS−PiloAstro
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Biliary−AdenoCA

Kidney−RCC
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Liver−HCC

ColoRect−AdenoCA

Stomach−AdenoCA

Uterus−AdenoCA
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Bone−Benign

Bone−Osteosarc

CNS−PiloAstro

Myeloid−AML

Ovary−AdenoCA

SoftTissue−Leiomyo

Stomach−AdenoCA

Biliary−AdenoCA

Breast−AdenoCA

Lymph−CLL

Myeloid−MPN

Prost−AdenoCA

Liver−HCC

Thy−AdenoCA

Panc−Endocrine

Kidney−ChRCC

Kidney−RCC

tumor_type

CNS−PiloAstro

Myeloid−AML

Liver−HCC

Head−SCC

Panc−Endocrine

Lung−AdenoCA

Lung−SCC
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Bone−Benign

Bone−Osteosarc

CNS−GBM

CNS−Medullo

CNS−PiloAstro

Kidney−ChRCC

Lung−AdenoCA

Lymph−CLL

Ovary−AdenoCA

Lung−SCC

Bladder−TCC

Panc−Endocrine

Thy−AdenoCA
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Biliary−AdenoCA

Liver−HCC
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Bone−Benign

Breast−LobularCA

CNS−Oligo

ColoRect−AdenoCA

Eso−AdenoCA

Myeloid−MPN

Bladder−TCC

CNS−PiloAstro

Biliary−AdenoCA

CNS−Medullo

Kidney−RCC

Lung−AdenoCA

Bone−Epith

Liver−HCC
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Stomach−AdenoCA

Skin−Melanoma

Uterus−AdenoCA

Head−SCC

Kidney−ChRCC

Prost−AdenoCA

SoftTissue−Leiomyo

Thy−AdenoCA

Bone−Osteosarc

SoftTissue−Liposarc

Lymph−CLL

Panc−Endocrine

Breast−AdenoCA

Ovary−AdenoCA
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CNS−GBM

Prost−AdenoCA

CNS−PiloAstro

Skin−Melanoma
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Breast−DCIS

Liver−HCC

Myeloid−MDS

Skin−Melanoma

SoftTissue−Leiomyo

Breast−LobularCA

Eso−AdenoCA

Lung−AdenoCA

Stomach−AdenoCA

CNS−Medullo

Lymph−BNHL

Bone−Epith

SoftTissue−Liposarc

CNS−Oligo

Myeloid−AML

Ovary−AdenoCA

Panc−AdenoCA

Bone−Osteosarc

Bone−Benign

Panc−Endocrine

Kidney−ChRCC

Breast−AdenoCA

Thy−AdenoCA

Myeloid−MPN

CNS−PiloAstro

Lymph−CLL

CNS−GBM

Prost−AdenoCA
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Biliary−AdenoCA
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Lung−AdenoCA
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Panc−AdenoCA
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Breast−LobularCA

Lung−SCC
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Bladder−TCC
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Breast−AdenoCA
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Biliary−AdenoCA
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The clustering tree shows how clusters evolve across different clustering resolutions ranging from 2 to 20 
clusters. For example, cluster G splits off from the rest of the cohort at a resolution of three clusters and 
remains largely unchanged in higher resolutions. We have marked for each of our 16 clusters the 
clustering resolutions across which they remain largely stable, i.e. the Jaccard similarity index between a 
cluster at resolution 16 and one at a higher or lower resolution is at least 0.85. The number under each 
cluster indicates the number of samples in that particular cluster. The colour of an arrow indicates the 
number of samples the two connected clusters have in common. The transparency of the arrow indicates 
the proportion of samples the two connected clusters have in common with respect to the cluster at the 
higher resolution. Only arrows representing a proportion of more than 0.1 are shown. Consequently, the 
number of samples in a cluster at a certain clustering resolution may not match with the connected 
cluster(s) at a higher resolution. Note that the clustering shown is the result after the k-means clustering 
step. 
 
 



 

 
S2 Fig. PCA and clustering with and without the recurrence-related features. 
When using only the 29 general features for the PCA (A), the first two PCs explain less variance than when using all 
42 features for the PCA (B) (27.5% vs. 29.1%). The features indicated in the two PCA plots are those that contribute 
above average to the first two PCs. The subsequent clustering also differs as shown in (C) and (D). Without using the 
recurrence-related features, only five of the eight samples linked to ultra-hypermutation (D – cluster H) are in a 
separate cluster (C – cluster VIII). Also the cluster linked to hypermutation of the immunoglobulin genes (D–cluster 
M) is dissolved as evidenced by the fact that the samples are spread across eight clusters (C – clusters III, IV, VI, XI, 
XII, XIII, XIV and XV). One consequence of this is that only 19 of the 40 the Lymph-CLL samples with hypermutation 
are in the same cluster as opposed to 36 when using all features (E). In addition, the largest fraction of cluster M ends 
up in a cluster with Eso-AdenoCA and Stomach-AdenoCA samples (C – cluster XII), making that cluster less cancer-
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specific than when using all features (D – cluster L). The Lymph-CLL samples without hypermutation of the 
immunoglobulin genes are also no longer largely confined to a single cluster (E). Moreover, the samples with and 
without hypermutation end up more often in the same cluster than when recurrence-related features are also used. 

 

 
S3 Fig. Enriched sequence motifs for C>G SSMs in cluster M. 
The sequence logos represent the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent 
(right-side) C>G mutations of cluster M. Here recurrence is defined as a mutation at the same genomic location in 
two or more samples from cluster M. Relative entropy is used as a measure of information content (see Methods). 
Setting a threshold of 0.25 for the relative entropy results in the motifs highlighted in the rectangles. In the upper 
right corner of both sequence logos the number of mutations is indicated. To the right of the sequence logos are the 
percentages in which the enriched motif found for the recurrent C>G SSMs is present in context of the mutations in 
the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The enrichment for the motif for recurrent 
C>G SSMs is significantly higher than for the non-recurrent C>G SSMs (χ2 test: p<2.2e-16). 

 

 
S4 Fig. Enriched sequence motifs for T>G SSMs in cluster H. 
The sequence logos represent the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent 
(right-side) T>G mutations of cluster H. Here recurrence is defined as a mutation at the same genomic location in two 
or more samples from cluster H. Relative entropy is used as a measure of information content (see Methods). Setting 
a threshold of 0.25 for the relative entropy results in the motifs highlighted in the rectangles. In the upper right corner 
of both sequence logos the number of mutations is indicated. To the right of the sequence logos are the percentages 
in which the enriched motif found for the recurrent T>G SSMs is present in context of the mutations in the cluster 
and the corresponding k-mers in the genome (N = A, C, G or T). The enrichment for the motif for recurrent T>G SSMs 
is significantly higher than for the non-recurrent T>G SSMs (χ2 test: p<2.2e-16). 



 

SUPPLEMENTARY TABLE: S1, S2 
 
S1 Table. Tumour type abbreviation, full name and number of samples. 

 
 
S2 Table. Recurrence in pan-cancer context and within tumour type(s). 

 
 
 

! 1!

Table&S1.&Tumour&type&abbreviation,&full&name&and&number&of&samples.&

Abbreviation& Full&name& Number&of&samples&
Biliary)AdenoCA! biliary!adenocarcinoma! ! 34! !
Bladder)TCC! bladder!transitional!cell!carcinoma! ! 23! !
Bone)Benign! benign!neoplasm!of!the!bone! ! 16! !
Bone)Epith! epithelial!neoplasm!of!bone! ! 10! !
Bone)Osteosarc! bone!osteosarcoma! ! 35! !
Breast)AdenoCA! breast!adenocarcinoma! ! 195! !
Breast)DCIS! breast!ductal!carcinoma!in!situ! ! 3! !
Breast)LobularCA! breast!lobular!carcinoma! ! 13! !
Cervix)AdenoCA! cervical!adenocarcinoma! ! 2! !
Cervix)SCC! cervical!squamous!cell!carcinoma! ! 18! !
CNS)GBM! central!nervous!system!)!glioblastoma!multiforme! ! 39! !
CNS)Medullo!! central!nervous!system!)!medulloblastoma! ! 141! !
CNS)Oligo! central!nervous!system!)!oligodendroglioma! ! 18! !
CNS)PiloAstro! central!nervous!system!)!pilocytic!astrocytoma! ! 89! !
ColoRect)AdenoCA! colorectal!adenocarcinoma! ! 52! !
Eso)AdenoCA! oesophageal!adenocarcinoma! ! 97! !
Head)SCC! head/neck!squamous!cell!carcinoma! ! 56! !
Kidney)ChRCC! chromophobe!renal!cell!carcinoma! ! 43! !
Kidney)RCC! renal!cell!carcinoma! ! 143! !
Liver)HCC! hepatocellular!carcinoma! ! 314! !
Lung)AdenoCA! lung!adenocarcinoma! ! 37! !
Lung)SCC! lung!squamous!cell!carcinoma! ! 47! !
Lymph)BNHL! B)cell!non)Hodgkin!lymphoma! ! 107! !
Lymph)CLL! chronic!lymphocytic!leukaemia! ! 90! !
Myeloid)AML! acute!myeloid!leukaemia! ! 13! !
Myeloid)MDS! myelodysplastic!syndromes! ! 2! !
Myeloid)MPN! myeloproliferative!neoplasm! ! 23! !
Ovary)AdenoCA! ovarian!adenocarcinoma! ! 110! !
Panc)AdenoCA! pancreatic!adenocarcinoma! ! 232! !
Panc)Endocrine! pancreatic!endocrine!neoplasm! ! 81! !
Prost)AdenoCA! prostate!adenocarcinoma! ! 199! !
Skin)Melanoma! skin!melanoma! ! 107! !
SoftTissue)Leiomyo! soft!tissue!leiomyosarcoma! ! 15! !
SoftTissue)Liposarc! soft!tissue!liposarcoma! ! 19! !
Stomach)AdenoCA! stomach!adenocarcinoma! ! 68! !
Thy)AdenoCA! thyroid!adenocarcinoma! ! 48! !
Uterus)AdenoCA! uterus!adenocarcinoma! ! 44! !

&

Table&S2.&Recurrence&in&pan1cancer&context&and&within&tumour&type(s).&

Recurrent(in(
Unique(to(tumour(
type(s)(in(which(it(is(

recurrent(

Percentage(of(
recurrent(

SSMs( SIMs(
pan$cancer(context(only( ( 37.1%( 79.8%(
single(tumour(type( Yes( 60.0%( 10.7%(
( No( 2.8%( 8.2%(
multiple(tumour(types( Yes( 0.1%( 0.3%(
( No( 0.05%( 1.0%(

Overview(of(the(percentages(of(SSMs(and(SIMs(that(are(recurrent(in(a(pan$cancer(setting(only,(
within(a(single(tumour(type(and(in(multiple(tumour(types.(



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

SUPPLEMENTARY TEXT: S1, S2, S3, S4 
 

S1 Text. Estimation of the levels of recurrence when purely driven by 
chance. (Next section in this document) 
 
 
S2 Text. Recurrence versus general mutational characteristics. 
Available at: https://doi.org/10.1371/journal.pcbi.1007496.s008 
 
 
S3 Text. Detailed cluster-specific descriptions.  
Available at: https://doi.org/10.1371/journal.pcbi.1007496.s009 
 
 
S4 Text. Smoking history and related mutational subtypes.  
Available at: https://doi.org/10.1371/journal.pcbi.1007496.s010 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

S1 Text. Estimation of the levels of recurrence when 
purely driven by chance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Estimation of the levels of recurrence when purely driven by chance  

For the estimation of the levels of recurrence if only chance was the driving force we 

performed the following simulation in which we only take C+G content into account. All 

other factors that may influence the probability of recurrence (e.g. replication time) did 

not match our definition of chance. For each cancer genome we randomly sampled the 

same number of SSMs as had been observed in the sample and also kept the counts for 

each of the six SSM subtypes the same. To take into account the C+G content of the 

human genome, random numbers were sampled for the C>A/G/T SSMs within the range 

of 1 to 1,144,530,852, which corresponds to the number of C/G bases in the 

GRCh37/h19 genome. Once a number had been selected it could not be selected again 

for the same cancer genome. The same was done for the T>A/C/G mutations, where we 

sampled numbers within the range of 1 to 1,716,796,279. Simulations were repeated 

5,000 times and for each simulation we computed the recurrence overall, recurrence 

per SSM subtype and for each tumour type the recurrence ‘within tumour type’ and 

‘pan-cancer’ (Fig A). Only for the recurrence within tumour type there were cases for 

which there were simulations with an equal or higher number of recurrent SSMs than 

observed. For three tumour types (Breast-DCIS, Cervix-AdenoCA and Myeloid-MDS) the 

observed number of recurrent SSMs was zero and nearly all simulated values were also 

zero (<0.5% were higher). For another five tumour types (Bone-Epith, Breast- LobularCA, 

Kidney-ChRCC, Myeloid-AML and SoftTissue-Leiomyo) between 2 and 186 of the 5,000 

simulated values were equal or higher.  

 

 
 
 
 
 
 



 

 
 
 	 2	

	
	
Fig	A.	Observed	recurrence	of	SSMs	versus	what	is	expected	by	chance.	
Each	boxplot	 shows	 the	 ratio	 of	 the	 observed	number	 of	 recurrent	 SSMs	 and	 the	number	 of	 recurrent	
SSMs	 calculated	 in	 the	 simulation	 (N=5,000)	 in	 the	 following	 settings:	 (I)	 overall	 recurrence;	 (II)	
recurrence	for	each	of	 the	six	SSM	subtypes;	 (III)	recurrence	per	tumour	type	using	the	 ‘within	tumour	
type’	definition;	(IV)	recurrence	per	tumour	type	using	the	‘pan-cancer’	definition.	The	dark	green	stars	at	
the	top	of	plots	III	and	IV	indicate	the	tumour	types	with	the	highest	median	and	the	light	green	stars	the	
second	highest.	The	dark	red	ones	indicate	the	lowest	median	and	the	light	red	ones	the	second	lowest.	
For	visualization	purposes	we	 left	out	 in	plot	 III	 the	 results	of	14	 tumour	 types	 for	which	>40%	of	 the	
simulations	resulted	in	zero	recurrent	SSMs,	which	led	to	a	ratio	that	is	infinite.	For	the	boxplots	of	Bone-
Osteosarc,	 Cervix-SCC,	 CNS-Medullo,	 Lymph-CLL	 and	 Panc-Endocrine	 we	 left	 out	 between	 0.4%	 and	
21.7%	of	the	simulations	in	which	no	recurrent	SSMs	were	found.	In	plot	IV	we	left	out	for	visualization	
purposes	the	results	of	77	simulations	for	Myeloid-MDS	that	were	all	between	8.5	and	17.	

	
	
	
I	 			II	 III	

					overall	recurrence	 													recurrence	per	SSM	subtype	 		recurrence	per	tumour	type	–	‘within	tumour	type’	definition	

						 	 	
	 	 	

	

IV																																																																																				recurrence	per	tumour	type	–	‘pan-cancer’	definition			
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SUPPLEMENTARY FILE: S1, S2 
 
S1 File. Characteristic plots summarising each of the 42 features. 
 
 
S2 File. Sample distribution per tumour type across the 16 clusters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

S1 File. Characteristic plots summarising each of the 
42 features. 
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Characteristic	plots	summarising	each	of	the	42	features	
Each	 cancer	 genome	 is	 described	 by	 42	 features	 (Table	 A).	 We	 display	 graphical	
representations	for	each	feature	(Fig	A	to	I)	and	show	absolute	numbers	in	most	cases	
on	the	y-axis	(where	applicable).	We	refer	to	a	value	as	being	an	outlier	if	it	is	above	the	
third	 quartile	 plus	 1.5	 times	 the	 interquartile	 range	 (Q3+1.5xIQR).	 We	 describe	 the	
main	observations	below	the	individual	plots.	

Table	A.	Overview	of	the	42	mutational	features	describing	each	cancer	genome.	

G
en

er
al
	fe

at
ur
es
	

mutational	burden	 number	of		 SSMs	
SIMs	

SIM	vs.	SSM	ratio	 %	of	mutations	of	type	SIM	

distribution	of	SSMs	across	
the	6	subtypes	 percentage	of	

C>A	SSMs	
C>G	SSMs	
C>T	SSMs	
T>A	SSMs	
T>C	SSMs	
T>G	SSMs	

distribution	of	1	bp	SIMs	
across	the	4	subtypes	 percentage	of	

A/T	deletions	
C/G	deletions	
A/T	insertions	
C/G	insertions	

homopolymer	context	of		
1	bp	SIMs	

%	of	A/T	deletions	

no	
short	

midsize	
long	

%	of	C/G	deletions	

no	
short	

midsize	
long	

%	of	A/T	insertions	

no	
short	

midsize	
long	

%	of	C/G	insertions	

no	
short	

midsize	
long	

Re
cu
rr
en

ce
	fe

at
ur
es
	

overall	level	of	recurrence	 %	of	recurrent	 SSMs	
SIMs	

recurrent	SIM	vs.	SSM	ratio	 %	of	recurrent	mutations	of	type	SIM	

level	of	recurrence	per	SSM	
subtype	 %	of	recurrent	

C>A	SSMs	
C>G	SSMs	
C>T	SSMs	
T>A	SSMs	
T>C	SSMs	
T>G	SSMs	

level	of	recurrence	per	SIM	
subtype	(1	bp)	 %	of	recurrent	

A/T	deletions	
C/G	deletions	
A/T	insertions	
C/G	insertions	

Overview	of	the	29	general	features	and	the	13	features	related	to	recurrence	that	are	used	as	input	for	
the	PCA.	For	deletions	a	‘no	homopolymer	context’	means	that	the	base	next	to	the	one	that	is	deleted	is	
not	of	the	same	type.	For	 insertions	a	 ‘no	homopolymer	context’	refers	to	a	base	that	 is	 inserted	5’	 to	a	
base	 of	 a	 different	 type	 or	 a	 single	 base	 of	 the	 same	 type.	 Note	 that	 we	 do	 not	 have	 to	 consider	 the	
preceding	bases	as	 all	 SIM	calls	were	 left	 aligned.	A	 short	homopolymer	 context	 is	defined	as	 a	2-4	bp	
mononucleotide	repeat	of	the	same	base	as	the	1	bp	SIM,	midsize	is	5-7	bp	in	length	and	long	≥	8	bp.	
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Fig	A.	Overall	mutational	burden	in	terms	of	SIMs	and	SSMs	per	sample.	
The	two	grey	lines	indicate	the	median	number	of	SIMs	and	SSMs,	respectively,	across	the	entire	cohort.	
The	black	lines	indicate	the	Q3+1.5xIQR.	For	SIMs	there	are	184	outliers,	the	highest	number	of	samples	
are	from	Eso-AdenoCA	(22.3%),	followed	by	ColoRect-AdenoCA	(13.6%)	and	Lung-SCC	(13.0%).	For	Eso-
AdenoCA	 this	 corresponds	 to	 42.3%	 of	 the	 samples,	 48.1%	 for	 ColoRect-AdenoCA	 and	 51.1%	 for	 the	
Lung-SCC.	Highlighted	in	the	plot	(I)	are	samples	with	a	high	mutational	load,	which	have	a	particularly	
high	 proportion	 of	 SIMs.	 For	 SSMs	 there	 are	 255	 outliers	 of	which	 the	 highest	 number	 of	 samples	 are	
from	 Skin-Melanoma	 (29.8%),	 followed	 by	 Eso-AdenoCA	 (16.1%)	 and	 Lung-SCC	 (14.9%).	 This	
corresponds	 for	Skin-Melanoma	to	71.0%	of	 the	samples,	42.3%	for	Eso-AdenoCA	and	80.9%	for	Lung-
SCC.	The	outliers	of	Skin-Melanoma	(II)	are	above	the	bulk	of	the	samples	by	having	a	higher	proportion	
of	SSMs.	There	are	122	samples	that	are	outliers	in	terms	of	SIMs	and	SSMs	of	which	the	highest	number	
of	samples	are	from	Eso-AdenoCA	(23.0%),	followed	by	Lung-SCC	(19.7%)	and	Skin-Melanoma	(11.5%).	
The	eight	samples	highlighted	in	the	plot	(III)	have	a	very	high	number	of	SSMs,	but	a	lower	proportion	of	
SIMs	compared	to	the	samples	highlighted	in	I.	
	

I	

II
B	

III	
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Fig	B.	The	percentage	of	mutations	of	type	SIM	per	sample.	
(I)	The	percentage	of	mutations	of	type	SIM	is,	with	the	exception	of	one	Uterus-AdenoCA	sample,	below	50%.	The	yellow	line	indicates	the	median	percentage	of	
mutations	of	type	SIM	across	the	dataset	(6.0%).	To	the	right	of	the	vertical	yellow	line	the	samples	have	a	percentage	above	the	median.	The	orange	(4.3%)	and	
green	 (8.5%)	 lines	 indicate	 the	 first	 and	 third	 quartile,	 respectively.	 The	Q1-1.5xIQR	 is	 equal	 to	 0%	 and	 is	 not	 shown.	 The	 blue	 line	 indicates	 the	Q3+1.5xIQR	
(14.9%)	to	the	right	of	which	samples	are	outliers.	(II)	The	percentage	of	mutations	of	type	SIM	versus	the	number	of	SIMs	per	sample.	The	grey	lines	indicate	the	
medians	and	the	black	lines	indicate	the	Q3+1.5xIQR.	There	are	32	samples	from	11	different	tumour	types	that	are	outliers	in	terms	of	percentage	and	absolute	
number.	 This	 includes	 6	 samples	 of	 ColoRect-AdenoCA	 and	 5	 samples	 each	 of	 Uterus-AdenoCA	 and	 Kidney-RCC.	 (III)	 Boxplots	 representing	 the	 percentage	 of	
mutations	of	type	SIM	show	considerable	variability	among	tumour	types.	They	are	ordered	according	to	the	median.	
	
	

I	 II	 III	
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Fig	C.	Absolute	and	relative	number	of	SSMs	across	the	six	subtypes.	
Shown	 for	 each	 sample	 are	 the	 percentage	 of	 SSMs	 of	 the	 indicated	 subtype	 and	 the	 corresponding	
absolute	number.	Per	sample	the	six	percentages	sum	up	to	100%.	The	grey	 lines	 indicate	the	medians	
and	 the	 black	 lines	 the	 Q3+1.5xIQR	 based	 on,	 for	 the	 vertical	 lines,	 the	 percentage	 of	 SSMs	 of	 the	
particular	subtype,	and	for	the	horizontal	lines,	the	absolute	numbers.	The	median	percentage	across	the	
entire	 dataset	 is	 highest	 for	 C>T	 (34.2%),	 followed	 by	 C>A	 and	 T>C	 (both	 17.0%),	 T>A	 (11.5%),	 C>G	
(7.7%)	and	T>G	(6.6%).	For	each	of	the	six	subtypes	there	are	a	number	of	samples	that	are	outliers	 in	
terms	of	percentage	and	absolute	number.	For	 the	C>A	SSMs	 there	are	78	outliers	 from	eight	different	
tumour	 types	 of	which	 the	 highest	 number	 of	 samples	 are	 from	Lung-SCC	 (46.2%),	 followed	 by	 Lung-
AdenoCA	 (24.4%)	 and	 ColoRect-AdenoCA	 (16.7%).	 This	 corresponds	 for	 Lung-SCC	 to	 76.6%	 of	 the	
samples,	51.4%	for	Lung-AdenoCA	and	25%	for	ColoRect-AdenoCA.	There	are	84	outliers	 for	C>G	SSMs	
from	 11	 different	 tumour	 types	 of	 which	 the	 highest	 number	 of	 samples	 are	 from	 Breast-AdenoCA	
(32.1%),	followed	by	Bladder-SCC	and	Head-SCC	(17.9%	for	both).	This	corresponds	for	Breast-AdenoCA	
to	13.8%	of	the	samples,	65.2%	for	Bladder-SCC	and	26.8%	for	Head-SCC.	For	the	C>T	SSMs	there	are	80	
outliers	of	which	79	are	from	Skin-Melanoma	and	1	from	CNS-GBM.	For	Skin-Melanoma	this	corresponds	
to	73.8%	of	the	samples.	For	T>A	SSMs	there	are	only	11	outliers	of	which	6	are	from	Liver-HCC	and	5	
from	Kidney-RCC.	For	the	T>C	SSMs	there	are	85	outliers	from	7	different	tumour	types	of	which	87.1%	
are	from	Liver-HCC.	This	corresponds	to	23.6%	of	the	total	number	of	Liver-HCC	samples.	Finally,	for	T>G	
SSMs	there	are	146	outliers	from	13	different	tumour	types	of	which	the	highest	number	of	samples	are	
from	 Eso-AdenoCA	 (48.6%),	 followed	 by	 Lymph-BNHL	 (19.9%)	 and	 Stomach-AdenoCA	 (13.7%).	 This	
corresponds	for	Eso-AdenoCA	to	73.2%	of	the	samples,	27.1%	for	Lymph-BNHL	and	29.4%	for	Stomach-
AdenoCA.	
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Fig	D.	Absolute	and	relative	number	of	1	bp	SIMs	across	the	four	subtypes.	
Shown	 for	 each	 sample	 are	 the	 percentage	 of	 SIMs	 of	 the	 indicated	 subtype	 and	 the	 corresponding	
absolute	number.	Per	sample	the	four	percentages	sum	up	to	100%.	The	grey	lines	indicate	the	medians	
and	 the	 black	 lines	 the	 Q3+1.5xIQR	 based	 on,	 for	 the	 vertical	 lines,	 the	 percentage	 of	 SIMs	 of	 the	
particular	subtype,	and	for	the	horizontal	lines,	the	absolute	numbers.	The	median	percentage	across	the	
entire	cohort	 is	highest	 for	1	bp	A/T	 insertions	(38.8%),	 followed	by	1	bp	A/T	deletions	(35.2%),	1	bp	
C/G	deletions	(18.2%),	and	1	bp	C/G	insertions	(3.7%).	Due	to	the	large	range	of	percentages	for	the	1	bp	
A/T	 deletions	 and	 insertions	 there	 are	 only	 7	 and	 2	 outliers,	 respectively,	 in	 terms	 of	 percentage	 and	
absolute	number.	There	are	405	samples	for	which	at	least	50%	of	the	1	bp	SIMs	are	A/T	deletions.	For	
three	 tumour	 types	 this	 holds	 for	 half	 or	more	 of	 their	 samples:	 Kidney-RCC	 (71.3%),	 Skin-Melanoma	
(51.4%)	and	Lymph-CLL	(50.0%).	For	1	bp	A/T	insertions	there	are	630	samples	for	which	this	subtype	
makes	 up	 at	 least	 50%	 of	 their	 1	 bp	 SIMs.	 For	 four	 tumour	 types	 this	 holds	 for	 half	 or	more	 of	 their	
samples:	 Cervix-AdenoCA	 (100%,	 2	 samples),	 CNS-Medullo	 (87.2%),	 Cervix-SCC	 (72.2%)	 and	 Panc-
AdenoCA	(69.0%).	For	the	1	bp	C/G	deletions	there	are	23	outliers	in	terms	of	percentage	and	absolute	
number	of	which	11	are	from	Lung-AdenoCA,	10	from	Lung-SCC,	1	each	from	Blader-TCC	and	Head-SCC.	
Interestingly,	 for	 these	 outliers	 1	 bp	 C/G	 deletions	 are	 the	majority	 of	 their	 1	 bp	 SIMs.	 For	 1	 bp	 C/G	
insertions	there	are	39	outliers	of	which	16	are	from	Eso-AdenoCA,	10	from	ColoRect-AdenoCA,	6	from	
Stomach-AdenoCA,	4	from	Panc-AdenoCA	and	3	from	Skin-Melanoma.		
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Fig	E.	Homopolymer	context	of	1	bp	SIMs.	
For	 each	 of	 the	 four	 SIM	 subtypes	 we	 computed	 per	 sample	 the	 percentage	 of	 1	 bp	 SIMs	 in	 the	 four	
homopolymer	 contexts	 (see	Main	 Text).	 The	 grey	 lines	 indicate	 the	 medians	 and	 the	 black	 lines	 the	
Q3+1.5xIQR	 based	 on,	 for	 the	 vertical	 lines,	 the	 percentage	 of	 SIMs	 in	 the	 particular	 homopolymer	
context,	and	for	the	horizontal	lines,	the	absolute	numbers.	For	most	contexts,	there	are	few	outliers	(12	
or	less)	in	terms	of	percentage	and	absolute	number.	Exceptions	are	the	midsize	and	long	homopolymer	
context	for	1	bp	C/G	deletions	(33	and	161	cases,	respectively),	short	homopolymer	context	for	1	bp	A/T	
insertions	(102	cases)	and	long	homopolymer	context	for	1	bp	C/G	insertions	(40	cases).	For	a	number	of	
samples	more	than	50%	of	a	particular	SIM	subtype	is	 in	one	of	the	four	homopolymer	contexts.	These	
are	for	(I)	1	bp	A/T	deletions:	13	samples	in	no,	487	samples	in	a	short,	77	samples	in	a	midsize,	and	174	
samples	in	a	long	homopolymer	context;	(II)	1	bp	C/G	deletions:	 507	samples	in	no,	1,013	samples	in	a	
short,	22	samples	in	a	midsize	and	3	samples	in	a	long	homopolymer	context;	(III)	1	bp	A/T	insertions:	18	
samples	in	no,	66	samples	in	a	short,	852	samples	in	a	midsize	and	100	samples	in	a	long	homopolymer	
context;	(IV)	1	bp	C/G	insertions:	608	samples	in	no,	165	samples	in	a	short,	321	samples	in	a	midsize	and	
9	samples	in	a	long	homopolymer	context.	
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Fig	F.	Overall	level	of	recurrence	in	terms	of	SSMs	and	SIMs	per	sample.	
(I)	The	percentage	versus	the	absolute	number	of	recurrent	SSMs.	The	grey	lines	indicate	the	medians	and	the	black	lines	the	Q3+1.5xIQR	based	on,	for	the	vertical	
lines,	 the	percentage	of	recurrent	SSMs	and,	 for	 the	horizontal	 lines,	 the	absolute	numbers.	There	are	89	samples	 that	are	outliers	 in	both	relative	and	absolute	
terms	of	which	77	are	Skin-Melanoma	samples.	Only	based	on	absolute	number,	there	are	333	outliers	of	which	24.6%	are	Skin-Melanoma	samples,	followed	by	
22.2%	Eso-AdenoCA	samples.	Lung-SCC	samples	have	a	high	absolute	number	of	recurrent	SSMs,	but	the	percentage	that	is	recurrent	is	below	the	median.	(II)	The	
percentage	versus	the	absolute	number	of	recurrent	SIMs.	The	grey	lines	indicate	the	medians	and	the	black	lines	the	Q3+1.5xIQR	based	on,	for	the	vertical	lines,	
the	percentage	of	recurrent	SIMs	and,	for	the	horizontal	lines,	the	absolute	numbers.	There	are	only	4	outliers	for	both	measurements	and	295	if	we	instead	base	it	
only	on	absolute	number	of	recurrent	SIMs	of	which	the	largest	percentage	are	Eso-AdenoCA	samples	(25.4%),	followed	by	Panc-AdenoCA	(19.0%)	and	ColoRect-
AdenoCA	(15.9%).	Noticeable	is	the	group	of	eight	samples	from	four	different	tumour	types,	each	of	which	has	over	19,000	recurrent	SIMs	and	at	least	28.7%	of	
the	SIMs	are	recurrent.		
(continues	below)		

I	 II	
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	 (continued	from	above)	
(III)	Percentage	of	recurrent	SIMs	versus	recurrent	SSMs.	The	red	boxplot	corresponds	to	the	
recurrent	SIMs	and	the	blue	boxplot	 to	 the	recurrent	SSMs.	There	are	344	samples	 from	21	
different	tumour	types	for	which	the	percentage	of	recurrent	SSMs	and	SIMs	are	both	above	
the	third	quartile.	The	four	tumour	types	for	which	half	or	more	of	their	samples	are	in	this	
set:	Eso-AdenoCA	(54	out	of	97),	ColoRect-AdenoCA	(28	out	of	52),	Panc-AdenoCA	(116	out	of	
232)	and	Cervix-AdenoCA	(1	out	of	2).	There	are	381	samples	from	18	different	tumour	types	
for	which	both	percentages	are	below	the	first	quartile.	For	Kidney-RCC	88.8%	of	the	samples	
are	 in	 this	 set.	 This	 is	 followed	 by	 Lung-AdenoCA	with	 48.6%,	Ovary-AdenoCA	with	 45.5%	
and	Lung-SCC	with	44.7%.		
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Fig	G.	The	percentage	of	recurrent	mutations	of	type	SIM.	
(I)	Recurrent	mutations	show	a	higher	percentage	of	type	SIM	than	mutations	overall.	The	yellow	line	indicates	the	median	percentage	of	mutations	of	type	SIM	
across	the	dataset	(17%).	To	the	right	of	the	vertical	yellow	line	the	samples	have	a	percentage	above	the	median.	The	orange	(10.2%)	and	green	(26.3%)	lines	
indicate	the	first	and	third	quartile,	respectively.	The	Q1-1.5xIQR	is	equal	to	0%	and	is	not	shown.	The	blue	line	(50%)	indicates	the	Q3+1.5xIQR,	to	the	right	of	
which	samples	are	outliers.	There	are	45	samples	with	more	recurrent	SIMs	than	SSMs.	(II)	The	percentage	of	recurrent	mutations	of	type	SIM	versus	the	number	
of	recurrent	SIMs	per	sample.	The	grey	 lines	 indicate	 the	medians	and	the	black	 lines	 indicate	 the	Q3+1.5xIQR.	There	are	30	samples	 from	12	different	 tumour	
types	that	are	outliers	in	terms	of	percentage	and	absolute	number.	This	includes	7	samples	from	ColoRect-AdenoCA,	5	samples	from	Uterus-AdenoCA	and	4	each	
from	Panc-AdenoCA	and	Stomach-AdenoCA.	 (III)	The	boxplots	per	 tumour	 type	 representing	 the	percentage	of	 recurrent	mutations	of	 type	SIM,	which	 show	a	
considerable	variability	within	and	between	tumour	types.	They	are	ordered	according	to	the	median	percentage.	
	
	

I	

samples%

50.0%%

26.3%%

17.0%%

10.2%%

II	 III	



	 10	

	
Fig	H.	Absolute	and	relative	numbers	of	recurrent	SSMs	across	the	six	subtypes.	
For	each	sample	the	percentage	and	absolute	number	of	recurrent	SSMs	per	subtype	is	shown.	The	grey	
lines	 indicate	 the	 medians	 and	 the	 black	 lines	 the	 Q3+1.5xIQR	 based	 on,	 for	 the	 vertical	 lines,	 the	
percentage	of	SSMs	of	the	particular	subtype	that	is	recurrent	and,	for	the	horizontal	lines,	the	absolute	
numbers.	 For	 C>A	 SSMs	 there	 are	 12	 samples	 that	 are	 outliers	 in	 terms	 of	 percentage	 and	 number	 of	
recurrent	SSMs.	Of	these	12	there	are	seven	ColoRect-AdenoCA	samples	and	one	Uterus-AdenoCa	sample	
that	particularly	stand	out.	Each	has	over	10,000	recurrent	C>A	SSMs	and	at	least	5.6%	are	recurrent.	For	
C>G	 SSMs	 there	 are	 82	 outliers	 of	which	 62	 are	 from	Lymph-BNHL.	 There	 are	 37	 outliers	 for	 the	 C>T	
SSMs	of	which	33	are	Skin-Melanoma	samples.	For	T>A	SSMs	there	are	17	outliers	of	which	7	are	from	
ColoRect-AdenoCA	and	5	from	Prost_AdenoCA.	For	T>C	SSMs	there	are	99	outliers	of	which	58	are	from	
Eso-AdenoCA	and	17	from	Stomach-AdenoCA.	Finally,	for	T>G	SSMs	there	are	187	outliers	of	which	again	
Eso-AdenoCA	and	Stomach-AdenoCA	form	the	majority	with	83	and	42	samples,	respectively.	
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Fig	I.	Absolute	and	relative	numbers	of	recurrent	1	bp	SIMs	across	the	four	subtypes.	
For	each	sample	the	percentage	and	absolute	number	of	recurrent	1	bp	SIMs	per	subtype	is	shown.	The	
grey	 lines	 indicate	 the	medians	and	 the	black	 lines	 the	Q3+1.5xIQR	based	on,	 for	 the	vertical	 lines,	 the	
percentage	of	SIMs	of	the	particular	subtype	that	 is	recurrent	and,	 for	the	horizontal	 lines,	 the	absolute	
numbers.	There	is	a	large	spread	of	the	percentages	for	1	bp	A/T	deletions	and	insertions	and	therefore	
there	 are	 no	 outliers	 in	 terms	 of	 percentage	 and	 absolute	 number.	 There	 are	 352	 outliers	 in	 terms	 of	
absolute	 number	 of	 recurrent	 1	 bp	 A/T	 deletions	 of	 which	 Eso-AdenoCA	 constitutes	 the	 largest	
percentage	(22.4%),	 followed	by	Panc-AdenoCA	(20.2%)	and	Lymph-BNHL	(18.8%).	For	the	number	of	
recurrent	1	bp	A/T	insertions	there	are	236	outliers	of	which	again	Eso-AdenoCA	contributes	the	highest	
percentage	of	samples	(26.7%),	followed	by	ColoRect-AdenoCA	(19.5%)	and	Panc-AdenoCA	(16.1%).	For	
recurrent	1	bp	C/G	deletions	there	are	58	outliers	in	terms	of	percentage	and	absolute	number	of	which	
29.3%	 are	 from	 Eso-AdenoCA	 and	 19.0%	 from	 ColoRect-AdenoCA.	 For	 recurrent	 1	 bp	 C/G	 insertions	
there	are	9	outliers	in	terms	of	percentages	and	absolute	numbers	of	which	7	are	from	Panc-AdenoCA	and	
1	each	from	Eso-AdenoCA	and	Liver-HCC.	
	



 



 

S2 File. Sample distribution per tumour type across 
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APPENDIX 2.  
 
 
(A) Methylation (450K array) across breast and uterus cancer samples in PCAWG 
dataset. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

(B) Methylation (450K array) across breast cancer samples in TCGA dataset. 

 



 

 
(C) Methylation (450K array) across uterus cancer samples in TCGA dataset. 
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