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ABSTRACT

Cancer is one of the most common diseases worldwide. Despite that a lot of time and
resources have already been spent into resolving cancer, there is still a long way to go
to be able to cure every patient and improve their quality of life. To contribute to these
efforts, we integrate and study a joint dataset of whole genome, whole exome and panel
sequencing data from primary and metastatic tumours from 25,499 donors with
different cancer types. This dataset consists out of four cohorts: the Pan-Cancer Analysis
of Whole Genomes (PCAWG) dataset, the Hartwig Medical Foundation (HMF) dataset,
The Cancer Genomes Atlas (TCGA) dataset and the Breast-CAncer STratification study
(B-CAST) dataset. By describing mutations found in the individual cohorts and the joint
dataset, we provide an overview of the genomic landscape across various cancer types.
We also assess the landscape of mutational signatures in primary and metastatic
tumours focused on breast, colorectal and uterus cancer and identify groups based on
the dominant mutational signatures. We observe groups with the same dominant
signature across all three cancer types, as well as differences between primary and
metastatic tumours. To illustrate the importance of studying the genomic landscape we
take the PCAWG dataset as a use case and compute 42 genomic features based on either
all or only the recurrent mutations. Using these features, we are able to divide the
dataset into biologically relevant clusters. Studying recurrent mutations also reveals
susceptible sequence motifs, including TT[C>A]TTT and AAC[T>G]T for the Pol ¢ and
‘gastric-acid exposure’ clusters, respectively.

To go beyond the genomic landscape, we focus on the mutations that results in an amino
acid change in the protein and characterize these protein changes with a combination
of amino acid, evolutionary and structural properties. We provide an overview of the
amino acid changes observed within breast cancer specifically. In our joint dataset, one
of the most frequently mutated genes in breast cancer is PIK3CA, which is also
frequently mutated in colorectal and uterus cancer. The comparison of the protein
changes in p110a protein, encoded by PIK3CA, and their protein features across these
cancer types elucidates differences in the proportion of mutations across the different
protein domains. Deciphering the underlying causes of this could provide information

on the mechanisms playing a role in the three cancer types. Our results show that



mutational processes such as hypermutation activity of polymerase epsilon (Pol €) or
defective DNA damage repair in uterus cancer could be causing the mutations in the
ABD domain. For uterus cancer, patients with a PIK3CA mutation have a higher survival
rate than those without. In breast cancer we show that there is an association between
the ER-positive status of the tumour and having a PIK3CA mutation. Breast cancer is the
most diagnosed cancer and characterized by a high heterogeneity. Therefore, improving
the stratification of patients is key to tailoring the treatment strategy and to improve
the management of this disease. We assess the composition of the tumour
microenvironment and demonstrate that its composition is different in PIK3CA mutated
breast tumours compared to those without. We also find differences within the group
of PIK3CA mutated tumours. For example, tumours with a mutation in the linker ABD-
RBD region present an exhausted profile in T cells characterized by a significantly higher
expression of LAG3.

In conclusion, the analysis of somatic mutations and corresponding protein changes
combined with the evaluation of clinical data and the tumour immune
microenvironment (TIME) across and within cancer types is useful to stratify cancer
patients and identify groups for whom a specific treatment strategy, such as

immunotherapy, might be beneficial.
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1. INTRODUCTION

Cancer is one of the most common diseases worldwide, with an estimated 19.3 million
new cases and causing almost 10 million deaths in 2020, according to the statistics
recorded by the International Agency for Research on Cancer (IARC) [1]. Despite all the
effort put in by many researchers all over the world and for many years, there is still a
lot to study, find out and solve regarding this disease. Many cancers could be cured if
detected early and treated effectively. Making progress in any of these aspects by, for
example, discovering molecular causes of cancer initiation, progression and metastasis
or biomarkers that make the treatment selection easier, would help fight the disease

and improve the patient’s quality of life, therefore being of great importance.

1.1. Cancer origin: mutations in the genome and mutational processes

Cancer is caused by the accumulation of mutations in the genome. In the process of a
cell becoming a cancer cell, the cellular division speeds up and there is an accumulation
of mutations because of a combination of mistakes during the DNA replication and the
lack of repair. The mutations that are identified in the tumour but not in the normal
tissue are called “somatic mutations”. Somatic mutations are not inherited by offspring,
in contrast to germline mutations that occur in sperm, eggs and their progenitor cells,
and therefore are present in all tissues of the individual. Critical somatic mutations can
affect a wide variety of pathways and functions in the cell. This deregulation makes cells
grow without control, invading adjacent parts in the body or spreading further to other
organs through the blood and lymphatic system (metastasis). Every cell type in every
tissue and organ can undergo this malignant transformation, resulting in a large variety
of cancer types that can affect any part of the body, from a common lung cancer to rare
cancers such as the Kaposi sarcoma that originates in the cells lining lymph or blood
vessels. As each organ has a different function and is exposed to different mutagens, for
example skin is the most exposed to UV light [2] and lung to smoking [3], different
mutational processes and defective DNA repair processes can be involved in the
occurrence of mutations, which result in different mutational imprints left on the
genome [4]. In addition, the epigenetics, the regulation and the transcription of the

genome are different across tissues affecting the mutational patterns observed.
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1.2. Mutation rates and mutation subtypes across cancer types

Different cancer types can be clustered according to their different mutational patterns
as the result of the influence of the different mutational and/or defective repair
processes. Main differences can be the mutation rate and mutation type. The mutation
rate is influenced by replication time [5], is linked to epigenomic features (chromatin
accessibility) [6], shows a periodic pattern around nucleosomes [7] and can depend
strongly on the 5" and 3’ flanking base as shown in mutational signatures for several
mutational processes [8]. Considering Somatic Single-base Mutations (SSMs), the cancer
type with the highest mutation rate is skin cancer [9]. In contrast, haematological and
pediatric tumours have a low mutation rate [9]. Considering Somatic Insertion/deletion
Mutations (SIMs), they are high in certain cancer types such as renal cell carcinomas
[10]. Regarding mutation type, which type of mutation takes place is linked to the
mutational process behind it. Generally, the most frequent substitution is C>T, followed
by C>A [11], although this ranking can change depending on the cancer type. For
example, in lung cancers, C>A (or in particular here G>T) is the most frequent
substitution, since this transversion is a typical mutation as a consequence of tobacco

smoke carcinogens such as polycyclic aromatic hydrocarbons (PAH) [12].

1.3. Mutational signatures: a general overview

Mutational signatures are the result of the endogenous and exogenous mutational
processes affecting the DNA, which provides the individual history of the tumour. The
mutational signatures differ in the number, type and distribution of SSMs along the 96
different trinucleotide contexts considering the six conventional mutations in the centre
of the trinucleotide. We consider as “conventional mutations” the one indicating the
mutation happening in the pyrimidine base (C or T) first. In the version v3.3 of COSMIC
(June 2022 - https://cancer.sanger.ac.uk/signatures/), signatures are described at four
levels: single-base substitutions (SBS), small insertions and deletions (ID), double-base
substitutions (DBS) and copy number variation (CN) signatures. There are 94 different
SBS signatures and 18 ID signatures described, however the aetiology for many of them

is not known. Examples of well-known signatures are shown in Figure 1.
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Figure 1. Examples of mutational processes and their corresponding SBS mutational signatures. All
signature plots were obtained from COSMIC v3.3 - June 2022 (https://cancer.sanger.ac.uk/signatures/).
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1.4. From somatic mutations in the genome to protein changes

The vast majority of somatic mutations happen in the non-coding sequence of the
genome, since it is 99% of the whole genome against the 1% that corresponds to the
coding sequence. Despite the limited size of coding sequence, driver mutations are
commonly found in this region. We refer to ‘driver’ as somatic mutations with the ability
to drive tumourigenesis after conferring to the cell certain advantages that are positively
selected with respect to its neighbouring cells [13]. Although the impact of non-coding
mutations is more difficult to establish, it is known that a small proportion of them are
also potential cancer drivers involved in the initiation of the tumour, or can contribute
to cancer progression once initiated, such as those affecting regulatory elements (e.g.
mutations in the TERT promoter [14][15]). Recurrence plays an important role to find
these cases since it is difficult to detect the functional effect of mutations in non-coding
regions. Sequencing and mapping artefacts, incomplete annotation of regulatory
regions, inaccurate estimation of the background mutation rate and poorly understood
localized hypermutations processes [16][17][18] are some aspects that add to the
challenge of non-coding driver identification [19]. In the case of mutations affecting the
coding region of the genome, their impact can be studied when translating them into
the changes that they make in the corresponding protein. Proteins are structural and
motor elements, serving as catalysts in virtually every biochemical reaction in our cells.
Their folded conformation depends directly on their linear amino acid sequence [20].
Changes in this sequence caused by mutations in the gene encoding the protein could
affect their structure and, consequently, its function. Point changes, i.e., substitutions
of a single nucleotide, in the protein-coding region of the genome can be divided into
synonymous, which do not change the amino acid sequence of the protein, and non-
synonymous, which do cause a change (Figure 2). The latter change can be missense,
non-sense or non-stop mutations if the consequence is an amino acid change, the
appearance of an early stop codon or the deletion of the expected stop codon,
respectively. Aside from point changes, there are also insertions or deletions (indels) of
nucleotides, which in coding regions can be divided into frameshift and in-frame
mutations, if they cause a shift in the reading frame of the original protein or not,

respectively.
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Wild type Synonymous mutation  Missense mutation Non-sense mutation

DNA CcGATCTCGEGC CGATYCGglcaC CGAT|Y|YCGC CGalalcTCGC
RNA GCUAGAGCS G6CUAGICIGC G GCUAIAIAGCG GCUUGAGCG

Amino acid A @: @:} s @ @sror

Faily functional Fully functiona! Less funchional protes or Sharter proten
proteln protein d\fferent conformation (truncated)

Figure 2. Main consequences of single-base somatic substitutions at protein level. Adapted from
Martinez & Quifiones (2018) Chapter in book “ADME Processes in Pharmaceutical Sciences”.

1.4.1. Evaluation of the effect of protein changes

Understanding the effect of the coding mutations that the tumours harbour is extremely
important to be able to find targets to develop new cancer treatments. All coding
mutations are potential contributors to cancer development and progression. There are
drastic mutations that can produce a big change in the protein and therefore have a
clear deleterious effect, such as large insertions or deletions, as well as nonsense
mutation at the beginning of the protein. In contrast, other mutations that produce just
a subtle change in the protein, such as missense mutations, are more uncertain with
respect to their pathogenicity and more in-depth study is required to clarify their
possible involvement in cancer in the absence of more drastic changes to the protein
structure. In addition, understanding the effect of these subtle mutations at molecular
level is interesting for the study of drug treatment responses across individuals [21].
Current efforts in this field are, therefore, aimed at predicting how much they affect the
protein and whether or not these mutations are deleterious [22]. The features used to
make such predictions are many, but can be classified in three main categories according
to what they are taking into account: a) amino acid properties, b) evolutionary

properties and c) structural properties [22].
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a) Amino acid properties

Although there are over 500 amino acids found in nature, the human genetic code only
directly encodes 20 amino acids [23]. These 20 amino acids differ in size, shape, solubility
and ionization properties of its side chain [24]. Amino acids can be classified in different
ways according to the different characteristics mentioned. Focusing on the
characteristics of the side chain, they can be classified as nonpolar (divided into alkyl or
aromatic group), polar uncharged, acidic polar (negatively charged) or basic polar
(positively charged) (Figure 3). Missense mutations that produce amino acid changes
that result in small differences in properties between the amino acids are expected to
affect less the protein function than those that result in more drastic changes, such as

the appearance of an amino acid with a different charge on its side chain.
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Figure 3. Amino acid classification according to the charge of their side chain. Adapted from Karki (2018)
[24].

24



b) Evolutionary properties

The evolutionary properties of the amino acid mutated are also important when
predicting its effect. The conservation of amino acid in a specific protein is measured by
carrying out a multiple sequence alignment with the sequences of the same protein in
different species. This allows determining whether a specific amino acid has remained
the same across the different species or if it is variable. Highly conserved positions in
multiple sequence alignments can help to identify functional sites [25], since amino
acids conserved across species during evolution of the protein tend to be critical for the

function of the protein or in maintaining its structural integrity [21].

c) Structural properties

The localization of the altered amino acid in the protein structure provides insights into
its potential effect on the protein. Residues involved in intramolecular interactions, such
as cysteine bridges, hydrogen bonds or zinc fingers can affect the structure if when
mutated the protein can no longer maintain an important interaction. Something similar
can be said for residues forming catalytic and regulatory sites, a mutation could prevent
the normal function of the protein. The interpretation of the effect of the mutation
could also be different if we know if the mutated residue is buried or exposed. In
addition, having structural information gives us the opportunity to study protein folding.
Protein folding is the process by which the linear protein sequence is shaped to build
the final 3-dimensional (3D) structure [26]. Mutations can change the free energy that a
protein needs to fold and therefore affect protein stability.

There are also other advantages of using 3D structures. Amino acids that are far apart
in the linear sequence can be close in structure so there is possibility to find a 3D cluster
of mutations. Interestingly, for example, less frequent mutations can be located close to
a hotspot mutation and despite their rarity they could have the same effect as the
hotspot. In this way, mutations clustered in the 3D structure may indicate relevant
regions for protein function, reflecting sites that when mutated in the protein they
would have a particular effect on protein performance and could be selected for in
cancer. There are different softwares that aim to find 3D clusters of mutations in protein

structures, such as HotSpot3D [27], HotMaps [28], CLUMPS [29] or Mutation3D [30].
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All these three categories combined have been very informative in delineating the
effects of pathogenic mutations and understanding the underlying mechanisms of
cancer [31]. For example, mutations in sites buried in the protein molecule or involved
in macromolecular interactions are frequently pathogenic if the mutation results in a
drastic change of the amino acid physicochemical properties, i.e. a change from negative
to positive charge would prevent interactions from being established [31]. This is the
case for the sodium iodide symporter (NIS) gene, which encodes an iodide transporter.
It has been shown that different missense mutations that hit amino acids with charged
side chains can affect the electrostatic interactions in the transmembrane domains of
the NIS protein. These affected interactions have been proposed to affect the protein

functionality and therefore associated with a iodide transport defect [32][33][34].

1.4.2. Protein structure availability

A bottleneck in using the protein structure to predict the impact of missense mutations
is the availability of reliable structures. Protein structures can be obtained
experimentally mainly from X-ray crystallography, NMR spectroscopy and electron
microscopy. An alternative to obtaining the actual protein structure is the computation
of homology models from other structures which share a similar sequence, since it is
postulated that when the sequence similarity is sufficiently high the protein structure
would also be similar [35]. A 35% or higher sequence identity is thought to be enough
for ensuring the structural similarity of two proteins, while with a sequence identity of
20-35%, often referred to as ‘twilight zone’, structural similarity is less common [35].
Recently, a new source of protein structures has come available with AlphaFold, an
artificial intelligence system developed by Deepmind that predicts the 3D protein
structures from its amino acid sequence [36]. The AlphaFold Protein Structure Database
(AlphaFold DB, https://alphafold.ebi.ac.uk) provides open access to their results, which
account for over 200 million protein structure predictions. Despite that the number of
proteins for which we have the actual protein structure available is limited, adding these
predictions provides us with a good subset to work with on the characterization of

mutations.
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The availability of a complete structure containing from the first to last amino acid of
the protein sequence is not common. Some exceptions are the cases of proteins that
are frequently involved in cancer, such as p110a protein. The structure of p110a protein
is almost complete allowing us to study the variety of mutations found in different

regions of the protein.

1.5. PIK3CA gene encodes p110a (PIK3CA) protein

A gene that is frequently mutated in several cancer types is PIK3CA, which encodes the
pl10a protein. This protein corresponds to the catalytic subunit of a heterodimeric
enzyme called phosphatidylinositol 3-kinase (PI3K). This enzyme belongs to the
phosphoinositide 3-kinase (PI3K) family, a group of lipid kinases that act as signal
transducers in various signalling pathways. They regulate a wide range of signalling,
membrane trafficking and metabolic processes by phosphorylating the inositol ring of
phosphoinositides in nearly all membranes in the cell [37]. Different isoforms of the
catalytic and regulatory subunits combine and form different complexes that have their
specific function or target. One ubiquitous complex is the p110a-p85a complex. Here,
the catalytic subunit (p110a) is encoded by PIK3CA, a gene located in chromosome 3
(3926.3), while the regulatory subunit (p85a) is encoded by PIK3R1, a gene located in
chromosome 5 (5g13.1). One of the key pathways in which this complex is involved is
the PI3K/Akt/mTOR signalling pathway, which regulates diverse cellular processes
including protein synthesis, cell proliferation and survival, glucose metabolism,

apoptosis, DNA repair and genome stability (Figure 4) [38].
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Figure 4. The PI3K-AKT-mTOR pathway and drug targets. From Massacesi et al. (2016) [39].

When the catalytic and regulatory subunit are together in a complex, the protein
remains in an inactive, cytosolic state. The enzyme is activated when the complex is
recruited to the plasma membrane by the binding of the SH2 domains of p85 to tyrosine-
phosphorylated proteins, such as receptor tyrosine kinases, or other membrane-bound
proteins, such as the insulin receptor substrate proteins [38]. This results in the
disinhibition (by detachment) of the p85-p110 complex and the association of p110 with
its lipid substrates in the membrane [40], the phosphatidylinositol 4,5-bisphosphate
(PtdIns(4,5)P; or PIP,). These lipids are phosphorylated into phosphatidylinositol-3,4,5-
triphosphate (PtdIns(3,4,5)Ps; also known as PIPs3), which acts as second messengers for
the recruitment of many effector proteins with PIPs-binding domains, such as protein
kinases (i.e. AKT, PDK1, BTK), Ras super-family guanine nucleotide exchange factors

(GEFs), GTPase-activating proteins (GAP) and adaptor proteins [41].
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1.5.1. Structural insights of p110a (PIK3CA) protein

There are five domains described in p110a: an adaptor-binding domain (ABD), a Ras-
binding domain (RBD), a C2 homology type (C2 PI3K-type) domain, a helical domain and
a kinase domain (Figure 5). The parts of the protein that are not assigned to any domain
we call the ‘linker’ regions between domains. For example, the sequence of amino acids
between the ABD and RBD will be referred to as ‘linker ABD-RBD’. The regulatory subunit
(p85a) that forms the complex with p110a contains six domains: a Src homology 3 (SH3)
domain, a GAP domain, two Src homology 2 (SH2) domains, the N-terminal and C-
terminal SH2 domains (nSH2 and cSH2), which are separated by a coiled-coil domain

known as the inter-SH2 linker (iSH2)[41].
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Figure 5. Structure of p110a coloured by protein domains. Only two domains are shown for the
regulatory subunit (p85a). Figure obtained from Chimera software visualization of the PDB structure 4L23.

1.5.2. PIK3CA plays a central role in cancer

The PI3K/Akt/mTOR signalling pathway (Figure 4) is one of the most frequently
deregulated pathways in cancer. It can be aberrantly activated through multiple

mechanisms, including genomic alterations in PIK3CA, which are common not only in
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one but in several cancer types. PIK3CA somatic mutations are particularly frequent in
breast, colorectal and endometrial cancer [42].

Point mutations in PIK3CA can increase the enzymatic activity of the protein and thereby
contribute to tumourigenesis through increased cell proliferation, decreased apoptosis
and autophagy, loss of contact inhibition, induction of angiogenesis, and increased
tumour invasion [43]. These mutations mimic and enhance dynamic events that take
place in the natural activation of PIK3CA, as described by Burke et al. [44], who examined
the activation of the wild-type p110a-p85c complex and a spectrum of oncogenic
mutants. Examples of these dynamic events are: (1) the movement of the ABD domain
and linker with respect to the rest of the catalytic subunit, (2) breaking the C2-iSH2
interface, (3) breaking the nSH2-helical domain contact caused by phosphotyrosine
containing peptides binding to the enzyme and (4) interaction of the C lobe of the kinase
domain with the membrane. Examples of mutations inducing each of these dynamic
events are, respectively: (1) mutations in the linker between the ABD and RBD domain
(G106V and G118D), (2) mutations in the C2 domain (N345K and C420R), (3) E545K
mutation in the helical domain and (4) specific mutations in the kinase domain (e.g.
H1047R) [44]. An increase in activity can also be achieved by, for example, mutations in
the C2 domain, which are thought to facilitate p110a localizing to the plasma membrane

by increasing the positive surface charge of this domain [45].

1.5.3. PIK3CA mutations association to clinicopathological parameters

Algahtani et al. [46] reviewed the relations between PIK3CA mutation and
clinicopathological parameters in 2020 concluding that for some associations there was
agreement in the literature, while there are discrepancies for others. Some associations
for which we can find agreement are that PIK3CA mutations are positively associated to
HR-positive breast tumours while negatively associated to triple-negative breast cancer
tumours [47]. There is also agreement on that so far no associations have been found
when considering the age at diagnosis, tumour grade or the presence of lymph node
metastasis and PIK3CA mutations [47]. On the contrary, there is no agreement on the
effect of PIK3CA mutations on prognosis and survival, some studies reported

associations with poor survival [48], while others with better prognosis [48], and even
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no association at all has been reported [47]. There is also controversy regarding the

response to therapy.

1.5.4. Treatment to target p110a over-activation: PI3K inhibitors (PI3Ki)

PI3K has been recognized as an attractive molecular target [49] because of the frequent
involvement of the PI3K pathway in many cancer types. Different inhibitors have been
developed and tested in clinical trials over the past decades focused on both solid and
haematological malignancies [50]. Some pan-PI3K inhibitors as well as isoform specific
ones have already been approved for treatment [51], such as copanlisib or idelalisib. The
first progress on isoform specific ones was made in haematological malignancies. PI3K
d-specific inhibitor, idelalisib, was approved in 2014 as treatment for follicular B-cell
non-Hodgkin lymphoma (FL) and small lymphocytic lymphoma (SLL) as monotherapy, as
well as for chronic lymphocytic leukaemia in combination with rituximab[52]. Isoform
specific inhibitors have also been developed for p110a (PIK3CA). The first and, for now,
only a-specific PI3K inhibitor approved is alpelisib (BYL719), which is being used to treat
advanced breast cancer. The USA Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) approved this drug in 2018. As these drugs are meant to target
the over-activated pl10a protein, establishing PIK3CA mutation status in cancer
patients is informative for treatment choice. After the completion of the SOLAR-1 trial,
the first phase 3 trial leading to an approval specifically for advanced breast cancer
patients with PIK3CA mutation, a list of PIK3CA mutations was determined to select the
patients that would likely benefit and have a progression-free survival after being
treated with alpelisib [53].

Several companies have successfully developed panels to test for PIK3CA mutations. The
Therascreen® PIK3CA RGQ PCR Kit from Qiagen was the first one approved by the FDA
to aid in the selection of breast cancer patients that could potentially benefit from
treatment with alpelisib in combination with fulvestrant. The panel of this kit allows the
identification of 11 somatic PIK3CA mutations (C420R, E542K, E545A, E545D
(c.1635G>T), E545G, E545K, Q546E, Q546R, H1047L, H1047R, H1047Y). Other kits

include higher number of mutations, such as the cobas® PIK3CA Mutation Test CE-IVD
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from Roche, which tests for 17 different mutations in exons 2, 5, 8, 10 and 21. The
mutations added are R88Q, N345K, Q546K, Q546L, G1049R and M1043l. The
ClearSEEK™ PIK3CA Panel from Agena Bioscience® tests for 20 clinically actionable
PIK3CA mutations in breast cancer and has the added advantage of lowering the variant
allele frequency needed for mutation detection. The mutations included in this panel
that are not in the Therascreen® are E542Q, E545D (c.1635G>C), E545Q, E545V, Q546K,
Q546L, Q546P, H1047N and H1047P. However, the detection of the mutations listed
until now might not be enough to ensure treatment efficacy in every patient. Results
from various clinical studies have demonstrated that not all patients with a PIK3CA
mutation benefitted from the treatment combining alpelisib and fulvestrant [53].

In some cases, there is improvement and even cancer remission, while in other patients
the disease gets worse. Due to the variable response to treatment across patients it is
clear more investigation is needed regarding PIK3CA mutation contexts and precision
medicine would be needed, to do a better selection of the group or individual patients
that could be treated successfully with this strategy. For patients with PIK3CA mutated
tumours that are not eligible for alpelisib treatment or that did not respond to the
treatment, it is necessary to develop new strategies. An emerging therapy strategy with
less side effects and that it is showing a high efficacy in some cancer types [54] is

immunotherapy.

1.5.5. Emerging therapy strategies: immunotherapy

Cancer immunotherapies, treatments that harness the immune system’s natural ability
to recognise and eliminate tumour cells [55], look promising. Knowledge about the
tumour microenvironment of solid tumours is needed to be able to apply this kind of
therapies. For example, the presence of tumour-infiltrating lymphocytes (TILs) is a
biomarker for considering the use of immunotherapy [56]. Also, tumour-associated
macrophages (TAMs) are often associated with poor prognosis and are recognized as
important emerging targets for cancer immunotherapy [57].

The relationship between the mutations in the tumour and the response to
immunotherapies are also being studied [58]. The same as normal cells, cancer cells also

need to break and recycle their proteins. Since many proteins are mutated in cancer,
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from their degradation novel peptides are released harbouring these mutations, called
neoantigens [10]. These neoantigens are placed in the human leukocyte antigen (HLA),
which could be perceived as foreign by the immune system. T cells can naturally
recognize the neoantigens coming from the mutated proteins that are unique to cancer
cells, with the advantage of targeting the tumour without affecting the healthy cells [59].
An important point to consider is that mutations in cancer are largely unique to each
patient, except for mutations in driver genes that are recurrent across patients. These
mutations are therefore a good target forimmunotherapy since it would allow the same
treatment to be applied to a high number of patients. Therefore, these treatments are
being developed for the most mutated genes. In particular, Chandran et al. (2022) and

colleagues focused on neoantigens derived from driver mutations in PIK3CA [59].

1.6. PIK3CA: the most common genomic aberration in breast cancer

Breast cancer is a very heterogeneous cancer type, both within the same tumour, due
to the diversity in cell populations that can be found, and across tumours from different
patients. Heterogeneity within a tumour increases its ability to adapt constantly
changing constraints, which affects negatively a patient’s prognosis, therapy response
and clinical outcome [60][55] due to the difficulties to correctly fight it. Breast cancer is
not only characterized by this intra-tumoral heterogeneity, but also inter-tumoral
heterogeneity, since tumours from different patients can highly differ at both
morphological and molecular level [60]. Morphologically, breast cancer heterogeneity
comes from differences in, for example, the size of the tumour, lymph node
involvement, stage and grade [60]. Molecularly, the heterogeneity can be seen already
starting from the different subtypes that are defined [60]. Genome sequencing as well
as other omics like expression and methylation profiling have also provided insights into

heterogeneity between tumours even from the same pathological subtype [60].
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1.6.1. Morphological characteristics of breast tumours

Morphologically, breast tumours can differ in their histological type, stage and grade,

which are evaluated in clinical practice.

Histological types

There are more than 20 histological types described [61]. For example, a breast tumour
can be ductal or lobular, depending on if it originated in the ducts or in the milk-
producing glands, respectively [62], or a mix of the two. Other less common
morphological types are tubuloductal, comedo, medullary, mucinous and Paget types

[62].

Staging

The most widely used system for staging breast carcinoma is the TNM classification,
published by the American Joint Committee on Cancer (AJCC) and the Union for
International Cancer Control (UICC) [63]. The stage is derived from the extent of cancer
at the primary site (T), at the regional lymph nodes (N) and spread to distant metastatic
sites (M) [63] [64]. These three measurements are combined to create five stages (stage
0to IV). Stage Oindicates that the disease is only in the ducts of the breast tissue without
having spread to the surrounding tissue, what it is known as non-invasive or in situ

cancer [65]. The other extreme, stage IV, indicates that the cancer is metastatic.

Grade

The assessment of histological grade is based on three tumour features: the proportion
of cancer cells that are in tubule formation, the variation of nuclear size and shape
between the cells (anisokaryosis) and the number of cell divisions (mitotic counts)
[64][63]. Each feature is scored with a three-tier system and summed up, resulting in a
final grade (G1, G2 or G3) [63]. This grade represents the potential aggressiveness of the

cancer and is therefore a strong prognostic factor [63].
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1.6.2. Molecular characteristics: breast cancer subtypes

Breast cancer can be clinically classified into four main molecular subtypes based on
gene expression profiling using the PAM50 gene signature and/or immunophenotypic
characteristics [66][67]. These subtypes are luminal A, luminal B, human epidermal
growth factor receptor 2 (HER2) enriched and Triple-Negative (TNBC, also known as
Basal-like). A fifth subtype that sometimes is included is Normal-like (or unclassified).
Finally, a sixth subtype that has been reported is called “claudin-low”[68]. Claudin-low
subtype expresses specifically markers of epithelial-to-mesenchymal transition (EMT)
and stemness, as well as stromal and other immune-related signatures [60]. The
different subtypes vary in their biological properties, frequency, prognosis and outcome
[66], as summarised in Figure 6. Luminal A and Luminal B which are both HER2-negative
can be differentiated checking the expression of the nuclear antigen Ki-67, low or negative in
luminal A (Ki67-), while positive in luminal B (Ki67+). The breast cancer subtype Normal-
like closely resembles luminal A, since it is also Oestrogen Receptor (ER)-positive,
Progesterone receptor (PR)-positive, HER2-negative and Ki67-. It is reported with

different grades (from 1 to 3) and an intermediate outcome.
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Figure 6. Summary of characteristics of each of the main breast cancer subtypes. From Burguin et al.
(2021) [64]. ER: oestrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor
receptor 2; TNBC: triple-negative breast cancer. a. Frequency derived from Al-thoubaity et al. [46] and
Hergueta-Redondo et al. [69]. b. Grade derived from Engstrom et al. [70]. c. Prognosis derived from
Hennigs et al. [71] and Fragomeni et al. [72]. d. The 5—year survival rate derived from the latest survival
statistics of SEER [73].
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1.6.3. Prognosis and survival

Depending on the characteristics previously described the survival rate is highly variable.
Major prognostic factors are the lymph node metastasis, distant metastasis, tumour
size, locally advanced disease, lymphovascular invasion and inflammatory carcinoma.
For example, in the first case, if there are no nodes involved the ten years survival rate
is 70-80%, if the number of nodes involved is between 1 and 3, the ten years survival
goes down to 35-40% and if there are more than 10 nodes involved then the ten years
survival is not expected to be more than 10-15%. Other minor prognostic factors are the
histologic grade, the expression of the ER, PR and HER2, the proliferative rate and the
response to neoadjuvant chemotherapy. TNBC is the cancer subtype with the worse
prognosis followed by HER2-enriched subtype, while Luminal A is the least aggressive
[63]. Also, Luminal A subtype is less common to metastasize [63]. The spread of breast
carcinoma can be directly to skin, including the nipple and areola, or the chest wall; can
be through lymphatics (axillary, internal mammary and supraclavicular) or through the

blood to mainly the lungs, liver, brain and bone [74].

1.6.4. Targeted therapies in breast cancer

Due to the variety of morphologic, molecular and clinical manifestations of breast
cancer, its therapy is still nowadays of high complexity [75] and is continuously evolving.
Breast cancer heterogeneity also results in a range of responses to treatment [76].
Ideally, the treatment needs to be tailored to every tumour and every patient, with the
main challenges of dealing with treatment resistance, recurrence and metastasis [64].
Therefore, the treatment strategy selected will vary depending on the tumour features,
mainly the molecular subtype, grade and stage of the tumour [63][64]. For example,
different strategies are needed when targeting early stages of breast cancer compared
to advanced stages. The management of the disease can be divided into localised
strategies, such as surgery or radiotherapy, and systemic therapy approaches. Some
examples of systemic treatments are: endocrine therapy (suggested for HR-positive
cases), anti-HER2 therapy (suggested for HER2-positive cases), chemotherapy and bone

stabilizing agents [64]. Most of the previously mentioned therapies can have severe
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adverse effects and patients can develop resistance to the treatments [64]. Other
therapies for specific cases of breast cancer have been developed, for example, PARP
inhibitors (PARPi) such as olaparib, talazoparib, veliparib or rucaparib [64]. This
treatment is directed to patients with BRCA1 or BRCA2 mutations, which are mainly
found in cases of TNBC. BRCA1 and BRCA2 genes are translated into proteins that are
involved in DNA repair. The PARP (poly-(ADP-ribose) polymerase) proteins are also
involved in the DNA damage response. They recruit DNA repair proteins, such as these
BRCA1 and BRCA2, to different damaged sites in the DNA to perform the repair [77].
PARPi inhibit PARP proteins and, consequently, cells defective in BRCA functions are not
recruited to repair DNA damage [78]. Other therapies that are emerging can be divided

according to the molecular subtype of breast cancer to which they are directed to[64]:

= Emerging therapies for HR-positive breast cancer
For this subtype of breast cancer, there are inhibitors targeting the mTOR/PI3K/Akt
signalling pathway, such as Pan-PI3K, isoform specific PI3K, mTORC1, Akt and CDK4/6

inhibitors.

= Emerging therapies for HER2-positive breast cancer
The previous therapies mentioned (mTOR/PI3K inhibitors and CDK4/6 inhibitors) can be
also included here, as well as new antibodies, such as antibody drug conjugates (ADCs)
(e.g. trastuzumab-emtansine or T-DM1), chimeric antibodies or bio-specific antibodies;

HER2-derived peptide vaccines and new Tyrosine Kinase inhibitors (TKIs).

= Emerging therapies for Triple Negative breast cancer
Antibody drug conjugates and targeted antibodies are also being explored for this breast

cancer subtype, as well as vaccines and other forms of immunotherapy.

The recent emergence of immunotherapy and the heterogeneity across breast cancer
subtypes, makes it necessary to extend the analysis of the tumour immune
microenvironment across subtypes to know if there are mechanisms that could allow to
target patients and therefore make them eligible for this kind of therapy, which has not

been the most common therapy for this cancer type until now.
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1.6.5. Breast cancer and its Tumour Immune Microenvironment

Breast cancer develops in a context where the most abundant cell type is the cancer-
associated fibroblast, but the tumour microenvironment (TME) also includes the
surrounding blood vessels, either pre-existing or newly formed, immune cells and
components of the extracellular matrix [63][61]. The immune part of the TME it is known
as Tumour Immune Microenvironment (TIME) and refers to the different
subpopulations of the immune system that are found in the tumour niche. In general, in
the immune system we can differentiate a group of immune cells that derive from a
common myeloid progenitor (monocytes, macrophages and dendritic cells), which are
responsible of the innate immune response, and a group of immune cell that derive from
a common lymphoid progenitor, which are responsible of the adaptive immune
response (B cells, T cells and NK cells) (Figure 7) [79]. Natural Killer (NK) cells are an
exception to this, they come from a lymphoid progenitor that also forms the T and B
cells, but they share several similarities in function with the myeloid cells (Figure 7) [79].
The major players in the TIME of breast cancer can be divided into immunosuppressive
(pro-tumoral: M2-like macrophages, myeloid-derived suppressor cells and regulatory T
cells), and immunostimulating cells (anti-tumoral: dendritic cells, CD4/CD8 cytotoxic T

cells and NK cells) (Figure 8) [80].
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Figure 7. Immune cell lineages involved in the two main immune responses. NK cells derive from a
lymphoid progenitor but share functions with the cells derived from a common myeloid progenitor.
Source: Charles D. Murin, Frontiers in Immunology (2020) [79].
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Figure 8. (a) Major immune populations in the tumour microenvironment of breast cancer. Adapted

from Salemme et al. (2021) [80]. Populations are dividing depending on if they are involved in an

immunosuppressive (pro-tumour) context or in an inflammatory (anti-tumour) context.

PMN:

PolyMorphoNuclear. Mo: monocytic. MDSC: Myeloid-Derived Suppressor Cell. MC: Mast Cell. ILC: Innate
Lymphoid Cell. TIL: Tumour Infiltrating Lymphocytes. NK/ILC-1: Natural Killer/Innate Lymphoid Cell Type
1. DC: Dendritic Cell. (b) Molecules involved in the crosstalk between cancer cells and the tumour
immune microenvironment in breast cancer. Pro-tumour (left) and anti-tumour (right) context. From

Harbeck et al. (2019) [63].
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The continuous and dynamic interaction between the tumour and its microenvironment
can either promote or hinder cancer progression (Figure 8b) [80]. Tumour infiltrating
immune cells protect from tumour progression by eliminating immunogenic neoplastic
cells (Figure 9), while at the same time, once the tumour becomes invasive, they can
contribute to tumour resistance to therapies, shaping tumour immunogenicity and
selecting resistant tumour clones able to escape the immune response [81][80][63]. One
example of a mechanism that induces resistance is the expression of PD-L1 on tumour
cells, which can bind PD1 expressed in T cells CD8+ and trigger inhibitory effects on these
cells [82]. With this or other mechanisms, TIME can influence the outcome of

immunotherapy and of many other anti-cancer therapies [80][61].
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Figure 9. The cancer-immunity cycle. The cycle of immunity against the tumour starts with the
presentation of cancer antigens that are liberated from dying cells (1). Tissue-resident Dendritic Cells (DCs)
or DCs in draining lymph nodes sense and capture these cancer antigens (2) and initiate an immune
response by presenting them to naive T cells in lymphoid tissues (3). Naive T cells CD8+ differentiate into
cytotoxic T lymphocytes. T cells migrate through blood and lymphatic vessels (4) and can infiltrate through
both to reach the tumour (5). Once inside the tumour, T cell can recognize the cancer cells and initiate
the process to kill them. Killing of malignant cells can lead to the antigen release and DC activation
(endogenous vaccination), thereby closing the cycle. Figure adapted from Demaria et al. (2019)[83] and
image description (next) adapted from Palucka et al. (2016)[55].
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Previously, breast cancer was considered a poor immunogenic cancer with a low
response to immunotherapies, but the introduction of these therapies in the clinic have
been reported to improve the outcome for many breast cancer patients [80]. The
immunogenicity of breast cancer depends on the molecular subtype. TNBC and HER2-
enriched are the highest immunogenic subtypes, while luminal A and B are the lowest
[63]. It has been shown that the amount of tumour-infiltrating lymphocytes (TILs)
influences positively the response to neoadjuvant treatment and the prognosis of breast
cancer of TNBC or HER2-enriched subtypes [75][63], while the involvement of TILs in
luminal subtypes is still not clear and there is still a lot of variability in response efficacy

when it is applied [84]. This shows the need of further studies in this field.
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2. HYPOTHESIS AND OBJECTIVE

2.1. Hypothesis

Exploring somatic mutations in a pan-cancer dataset at genome level could help to
decipher consequences of mutational processes and cluster the cancer genomes into
biologically relevant groups. Also, at protein level, the assessment of characteristics of
protein coding changes underlying these somatic mutations could uncover relevant
patterns within or across cancer types. All together would help to stratify patients in

biologically relevant groups to personalise specific strategies of treatments.

2.2. General objective

To decipher consequences of mutational processes and cluster cancer genomes into
biologically relevant groups exploring somatic mutation and their corresponding protein

changes.

2.3. Specific objectives

Objective 1. To describe the landscape of somatic mutations of 25,499 cancer genomes.

Objective 2. To provide insights into the consequences of mutational processes in cancer
based on the recurrent mutations in a pan-cancer dataset and to cluster cancer genomes

according to the characteristics measured using 42 different genomic features.

Objective 3. To characterize the amino acid changes resulting from somatic mutations
in a pan-cancer dataset considering different amino acid, evolutionary and structural

properties.

Objective 4. To describe the protein changes of a highly mutated gene across cancer
types and to study the association of different mutations with clinical and immunological

characteristics.

The Methods (Section 4) and the Results (Section 5) are divided into four chapters that

correspond to these four specific objectives (1-4) that were developed in this PhD thesis.
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3. MATERIALS

3.1. Mutational data

We analysed a joint dataset of 25,499 cancer genomes covering >40 cancer types at the
level of somatic mutations (substitutions and insertions/deletions) and their
corresponding protein changes for the ones affecting coding. We combined the
following four cohorts: (a) the Pan-Cancer Analysis of Whole Genomes (PCAWG)
dataset, (b) The Cancer Genome Atlas (TCGA) dataset, (c) the Hartwig Medical
Foundation (HMF) dataset and (d) the Breast CAncer STratification (B-CAST) dataset.
Table 1 provides a basic description of these datasets with the type of specimen and
sequencing, number of donors and number of different cancer types. The list of cancer
types that are included in PCAWG and TCGA dataset are shown in Figure 10, together

with their corresponding abbreviations and the number of donors.

Table 1. Summary of the main characteristics of the four individual datasets.

Dataset AT T e el Number of Number of different
donors tumour types
PCAWG Primary WGS 2,583 37
TCGA Primary WES 9,104 32
B-CAST Primary Panel (323 genes) 9,255 1
HMF Metastatic! WGS 4,557 38

L All donors have metastatic disease, but for 100 donors the biopsy was taken from the primary tumour.

A description of the individual datasets at the level of genomic mutations is presented
in Results - 5.1 (Chapter 1). For the HMF dataset we had initially 4,901 samples for 4,570
donors. We excluded ten donors because according to the metadata they had multiple
primary tumours in different organs (Table 2-A). It was not clear whether this was truly
the case or that the primary location was revised throughout the treatment of the
patient. An example of the latter is possibly a donor that was listed as having primary
tumours in the stomach, oesophagus and gastroesophageal junction. Another three
donors were excluded because they had primary tumours of different subtypes (Table
2-B). For another 292 donors there was more than one sample available, in which case
we selected one sample per donor to not have multiple measurements for the same
donor in our data. To select a single sample per donor, we gave priority to the samples

taken from the metastatic tumour and not the primary tumour. This reduced the
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number of samples to one for just three donors. For one donor it reduced it to two
samples. The next criterion we applied was that we selected the sample with the highest
maximum tumour purity, under the condition that the range of the lowest estimated
purity to the maximum did not overlap with any of the samples of the same donor. This
was sufficient for 208 donors. For 28 donors we selected the sample that had the highest
maximal purity and added the criterion of having RNA-Seq data available. For 35 donors
we added the criterion of selecting the sample with the earliest biopsy date to reduce
the number of treatments the donor had undergone. For 17 donors there was no RNA-
Seq data available and we therefore selected the sample with the earliest biopsy date.
Finally, for one donor we selected the sample with the highest maximal purity, despite
the range of the lowest estimated purity to the maximum purity overlapped with other
samples, as for this donor no RNA-Seq data was available and the biopsy dates were

missing.

Table 2. HMF donors excluded. Donors excluded from the HMF dataset because of potentially
conflicting metadata regarding the primary tumour location or primary tumour subtype.

Donor ID Primary tumour location
HMF001168 Uterus and Bone/Soft tissue
HMF001668 Urothelial tract and Uterus
HMF000726 Gastroesophageal and Stomach and Esophagus
HMF003321 Vagina and Uterus
A HMF000963 Gallbladder and Bile duct
HMF001663 Esophagus and Stomach
HMF003533 Colorectum and Breast
HMF001184 Anus and Colorectum
HMF002723 Lymphoid tissue and Skin
HMF002243 Skin and Kidney
Donor ID Primary tumour subtype
B HMF002878 ER-positive/HER2-negative and Adenocarcinoma'
HMF001187 Small cell carcinoma and Non-small cell carcinoma
HMF002363 ER-positive/HER2-negative and Triple negative

! The sample with the adenocarcinoma annotation had a later biopsy date and thereby more precise
information on the subtype seems to have been revised.
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H PasCancer Analysls of Whole Genomes

Uver-HCC hepatocelular caranoma
Panc-AdenoCA: pancraatic adenocarcinoma
Prost-AdencCA: prostate adenocaccinoma
Breast-AdenoCA: breast adenocarcinoma
Kidney-RCC: ranal <all carcinema
CNS-Medullo: central nervous system - meddioblastome
Ovary-AdenoCA: cviry adenocarcnama
Lyrph-BNHL: B-cell nan-Hodgkin lymahoma
Skin-Melanoma: kin melancena
Eso-AdenoCA: esophagus adenocercinoma
Lyrmph-CLL: chronic ymphocytic keukzemia

CNS-PiloAstro: central nervous systerm — pilocytic astrocytoma

Panc-Endocrine: pancreatic endocrine neoplasm
Stomach-AdenoCA: stomach adenscarcinoma
Head-5CC head/neck squamous c2ll carcinoma
ColoRect-AdenoCA: tolorectal adenocarcinomy
Thy-AdenoCA: thyroid adenccarcinoma
Lung-SCC: lung tquamaous cell carcnoma
Uterus-AdenoCA: uterus adenocarciroma
Kidney-ChRCC: chromophobe renal cell carcinoma
CNS-GBM: central nervous system — glicbfastoma multilorme
Lung-AdenoCA: lung adenocarcinama
Bone-Osteosarc: bone ostecsarcoma
Biliary-AdenoCA: bilary adenocaronoma
Bladder-TCC: biadder transitional cefl carcinoma
Myeloid-MPN: ryeloproliferative neoplasm
SoftTissue-Liposarc: soft tissue kposarcoma
Cervin-S0C: cervix squamaus cell carcimoma
CNS~Olige: contral nervous systens - oligedendroglioma
Bone-8enign: benign ncaplasm of the bane
SoftTissue-Lelomyo: soft tissue lelmyosarcoma
Breast-LobularCA: breast lcbular Garonoma
Myalold-AML: acite myeloid leukaemia
Bone-Epith: cpithelial neoplasm of the bone
Breast-OCIS: breast ductal carcinoma in sity
Corvix-AdencCA: cenvix adenccardnoma
Myelold-MDS: myelodysplastic syndromes

N THE CANCER CEANCME ATLAR
N'H ) Astocel Cancet Mit®ale

Halsmmi Horms Covamsne Bmrsaci tnisins

BRCA: Breas: Invasive carcnoma

LUAD: Lung adenocarcinoma

LGG: Bran Lower Grade Ghoma

HNSC: Hoad and Neck squamous cell carcinema
PRAD: Prostate adenotarcnoma

THCA; Thyroid carcinoma

LUSC Lung squameus coll cardnoma

SKCM: Skin Cutaneous Meanoma

UCEC: Uterine Corpus Endometrial Carcnomma
STAD: Stormach adenocaranoma

BLCA: Bladder Urothelial Carcnama

KIRC: Kicney resal clear cell carcinomsa

LINC: Liver hepatocsllular cardinoma

GBM: Globlastoma multiforme

COAD: Colon adenccardnoma

CESC: Cervical sauamous cell cardnoma and
endocervicsl asdenccarconoma

KIRP: Kicney renal papillary cell carcinoma
SARC: Sarcoma

ESCA: Esophageal carcinoma

PCPG: Pheochromocytoma and Paraganglioma
PAAD: Pancreatic aderocarcinoma

TGCT: Testicular Germ Cell Tumours

THYM: Thymoma

ALC: Adrenocortical carcinoma

READ: Rectum adenocarcinema

MESQO: Mesothelioma

UVM. Uveal Mielanoma

KICH: Kidney Chromophobe

QV: Ovanan serous cystadenocarcinema

UCS: Uterine Carcinossrcoma

DLBC: Lymphold Neoplasm Diffuse Large B-cell
Lymphoma

CHOL: Chalanglocarcinoma

Figure 10. List of cancer type abbreviations and complete names in PCAWG and TCGA. Ordered from

highest to lowest number of samples.
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Definition of mutations

For SSMs there are 16 possible subtypes. However, we can neither detect substitutions
with a base of the same type (e.g., A>A) nor do we usually know on which strand the
(pre-)mutagenic event happened first (e.g., A>C is equivalent to T>G on the other
strand). Therefore, we combined the substitutions that are each other’s reverse
complement and refer to them by the pyrimidine of the mutated base pair: C>A, C>G,
C>T, T>A, T>C and T>G. Analogously to SSMs, for 1 bp SIMs, these are the four subtypes

A/T deletions, C/G deletions, A/T insertions and C/G insertions.

The four datasets differ in how they deal with multiple substitutions close to each other
in the sequence. In the case of PCAWG all were considered as single-base substitutions.
A consensus of four mutation callers (see Methods: 4.2.2. PCAWG cohort — mutation
calls) was used and in several cases the individual callers only supported one single-base
event, and only the consensus resulted in a multiple base substitution call. We regarded
substitutions directly next to each other (median number across samples: 25) as
separate single-base events since, aside from the very limited numbers, in several cases
the individual callers only supported one single-base event, and only the consensus
resulted in a multiple base substitution call. For the other three data sets there are
multiple base substitutions. In addition, only HMF also considers the following type of
cases as a single event: ATA>CTC. We left all mutation calls as provided and we only used

the mutations that were marked as ‘PASS’.

Overlap between datasets

For the analyses in which we combined the data from all datasets we had to consider
the following in terms of overlap:

e PCAWG includes a subset of the TCGA donors. When we worked with TCGA

dataset alone, we worked with the complete set of donors, but for the analysis

for which we used TCGA and PCAWG together, we excluded the donors they

have in common with the TCGA dataset (653 donors).
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e One cancer genome in HMF has a percentage of overlap on the level of mutations
higher than expected with a cancer genome in PCAWG and was therefore

excluded.

3.2. RNA-Seq, methylation and clinical data

RNA-Seq data was available for a subset of donors in PCAWG, TCGA and HMF. PCAWG
and TCGA used STAR as aligner and to obtain the counting data. HMF used STAR as their
aligner and provided the results of Isofox [85], a tool they developed for counting
fragment support for identifying and counting gene and transcript features using
genome aligned RNA-Seq data. We explored the option to combine the three datasets
to work with all the RNA-Seq samples together. We performed a principal component
analysis (PCA) and observed that the samples split according to the cohort they belong
to, with less split between PCAWG and TCGA. One possible explanation for this is the
use of different pipelines. However, as the HMF dataset contains mostly metastatic
samples it was not to be excluded that this also may explain some of the differences.

Therefore, | decided to work with the datasets separately across the different analyses.

Methylation data was available in the PCAWG dataset and in TCGA dataset. For both

datasets Sesame was used to compute the beta values.

The clinical data available for the different datasets is summarised in Table 3, although

in some cases it was not available for all the samples in that dataset.

Table 3. Clinical data available across the different datasets.

PCAWG TCGA B-CAST HMF
Tumour grade v v x -
Tumour stage v v x -
Cancer subtype v v v v
Survival v v x v
Age of the patient v v x v
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3.3. Protein annotation and protein structures

Protein structures were downloaded from the Protein Data Bank (PDB) [86] using the
European Portal (Protein Data Bank in Europe or PDBe). For the proteins with a low-
quality structure or without any structure we downloaded the protein model (if any)
from the Swiss-Model Repository [87]. For some specific analyses we needed to use
structures of high quality and we selected those crystal structures with a resolution <2
A. For example, to compute the change in the free energy of protein folding upon
mutation, we used FoldX, which requires accurate structures to be able to predict the

potential changes successfully.

3.4. Data availability

PCAWG data was downloaded from the ICGC Data Portal at the section “DCC Data

releases - PCAWG” that can be accessed at https://dcc.icgc.org/releases/PCAWG. The

mutational, methylation and clinical data from TCGA included in this study is all public

and was downloaded from https://gdc.cancer.gov/about-

data/publications/pancanatlas. The RNA-Seq data (counts format) per cancer type was

downloaded through the ‘TCGABiolinks’ R package. The information related to the
Immune Landscape of Cancer in TCGA dataset is available at:

https://gdc.cancer.gov/about-data/publications/panimmune. HMF data was available

upon request at https://www.hartwigmedicalfoundation.nl/en/data/data-acces-

request/. At the moment of the deposition of this PhD Thesis, B-CAST data was under
embargo which will not be lifted until the main paper has been published, after which
one will be able to apply for access through the European Genome-Phenome Archive

(EGA). | had access for this data as partner in the B-CAST project.
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4. METHODS

Next, we describe the methods employed per chapter.

4.1. CHAPTER 1. Genomics landscape of 25,499 cancer genomes

4.1.1. Plots

All plots were done with the ‘ggplot2’ R package [88] under R version 3.6.0.

4.1.2. Mutational signatures

Mutational signatures were used as a proxy for the mutational processes that are
predicted to be active in each sample. We were provided with the mutational signatures
for PCAWG and TCGA. For HMF we generated the mutational signatures using
SigProfiler-SingleSample [89] [90], which attributes a known set of mutational signatures
to an individual sample. The inputs of the tool were the somatic mutations in the sample
(VCF file) and the set of known signatures that we wanted to be assigned. We used as
reference the COSMIC signatures v3.3. First, SigProfilerMatrixGenerator creates
mutational matrices for all types of somatic mutations in the file. Next, the mutational
matrices are fitted to the COSMIC matrices and the attribution of signatures is done. Per

sample we obtain the relative percentage of the signatures that had been assigned to

each sample.

Somaic mutotions  COSMIC SigProfilerSingleSample Attribution of @ known set of COSMIC
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Figure 11. Scheme of procedure followed by SigProfilerSingleSample. From an input of a file with the
somatic mutations in the sample, the tool makes use of SigProfiler-MatrixGenerator, SigProfiler-
Attribution and Sigprofiler-Plotting to do a final attribution of the mutations in the sample to a known set
of COSMIC mutational signatures. ‘Chromosomes’ and ‘signatures’ images have been taken from Ashiqul
et al. (2022) [91].
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4.2. CHAPTER 2. Use case in PCAWG dataset. Recurrent somatic mutations reveal
new insights into consequences of mutagenic processes in cancer

4.2.1. PCAWG cohort — quality control

We used the cohort of cancer genomes assembled by the PCAWG project [92] of the
ICGC and TCGA. For every donor, whole-genome sequencing data was available for a
normal-tumour pair and all samples were analysed uniformly. A detailed description of
the quality control is provided in the PCAWG marker paper [92]. In short, 176 samples
were excluded for various reasons as part of the quality control, most commonly
because of contamination with RNA. Samples of another 75 donors were of borderline
quality for various reasons, including a high percentage of paired reads mapping to
different chromosomes [92] [93]. We decided not to include the samples of those
donors, which left us with genomic data of 2,583 donors covering 37 tumour types
(Appendix 1 - S1 Table). The distribution of the samples across the tumour types is also
indicated in Appendix 1 - S1 Table. In case there were multiple tumour samples for the
same donor, we selected a single sample following the decision made within the
consortium. To make the decision five criteria were used as described by the PCAWG
Drivers and Functional Interpretation Group [94]. In order of importance, they
prioritized the sample: 1) of a primary tumour over metastatic and recurrent ones; 2)
with a OxoG score over 40, which indicates low levels of oxidative damage artefacts [95];
3) with the highest quality according to the star rating system [93]; 4) with RNA-Seq data
available; 5) with the lowest level of contamination with foreign DNA. If none of these

criteria led to the selection of a single sample, a random selection was made.

4.2.2. PCAWG cohort — mutation calls

The description of the procedure for the mutation calls is provided in the marker paper
of the PCAWG consortium [92]. In brief, the sequenced reads of the respective normal
and tumour sample pairs were aligned with BWA-MEM to the GRCh37/h19 genome.
Four mutation calling pipelines were run on the resulting BAM-files for each

normal/tumour sample pair. The pipelines used for calling SSMs were MuSE [96] and
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three in-house pipelines developed at the Deutsches Krebsforschungszentrum (DKFZ) in
collaboration with the European Molecular Biology Laboratory (EMBL), Wellcome
Sanger Institute and Broad Institute, respectively. A consensus set was built by keeping
those calls on which two or more callers agreed. SIMs were called by SMuFIN [97] and
three pipelines developed by the same institutes as mentioned for SSMs. The consensus
was determined by stacked logistic regression instead, as the level of agreement
between the callers was lower than for SSMs. Furthermore, the SIM calls were left-
aligned to make them comparable across samples. Several filters were applied to both
the SSM and SIM calls to remove, among other things, calls due to oxidative damage
artefacts [95] and germline variants. Great care was taken by the consortium to reduce
the number of false positive mutation calls, resulting in a reliable dataset that is believed

to be a conservative representation of the true set of mutations.

4.2.3. Features describing each cancer genome

We computed 29 general features and 13 related to recurrence (Table A in Appendix 1
- S1 File) to characterize different aspects of the somatic mutations in a cancer genome.
We used the vcfR package in R to read in the VCF files [98]. The general features
comprised the number of SSMs and SIMs (two features), the percentage of SIMs with
respect to the total number of mutations (one feature), the distribution of SSMs and
SIMs across the different subtypes (six and four features, respectively), and the
homopolymer context of 1 bp SIMs for each of the four subtypes (four times four
features). We used the BCFtools (version 1.5) to compute recurrence using the VCF files
asinput. Recurrence was captured by the overall percentage of recurrent SSMs and SIMs
(two features), percentage of recurrent mutations of type SIM (one feature) and
recurrence per SSM and SIM subtype (six and four features, respectively). The
homopolymer context is not included in the recurrence features, as the number of
recurrent SIMs is too low to stratify into 16 additional features. Except for the number

of SSMs and SIMs, all other 40 features were in percentages.
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4.2.4. Principal Component Analysis and hierarchical clustering on Principal
Components

The R package FactoMineR (v1.41) was used for the PCA [99]. All input features for the
PCA were scaled to zero mean and unit variance to account for the differences between
the ranges of the features, especially with respect to the two features in absolute terms
versus the ones in terms of percentages. The first 18 PCs explained together over 80%
of the variance of the data. The remaining components were assumed to mostly
represent noise in the data. The PCs were used as input to the ‘hierarchical clustering
on principal components’ (HCPC) function from the FactoMineR package. The Euclidean
distance was used as a measure of dissimilarity and the Ward criterion for linkage. We
cut the hierarchical clustering tree at various heights to see a more global down to a
more specific division of the samples. The HCPC function includes a consolidation step
in the form of k-means clustering [100], which uses the centroids of the hierarchical
clustering as a starting point. This consolidation step was repeated a maximum of 10
times. The k-means clustering increased the variance between clusters from 17.5 to
18.9. Other advantages of this hybrid approach are that it reduces the sensitivity of k-
means clustering to outliers and the initial centroids are selected in an informed way
instead of at random. As a consequence of this step, some samples were finally assigned
to a different cluster than after the hierarchical clustering. We decided a division into 16
clusters that were named alphabetically (the details about this decision will be explained
in Results - Section 5.3.4). A ‘v test’, included in the FactoMineR package, was used to
determine which features were significantly associated with each cluster. This test
compares the mean of a particular feature in a cluster to the overall mean in the dataset.
We corrected the p-values of all ‘v tests’ for multiple testing using the Benjamini-
Yekutieli method. A feature is considered to be significantly associated to a cluster if the

adjusted p-value < 0.05.

4.2.5. Detection and enrichment of motifs

We collected for clusters A, E, G, H, L and M all SSMs of the subtype that is the most
characteristic. This is C>A for clusters A and H, C>G for cluster E and M, C>T for cluster

G and T>G for cluster L. In addition, we looked at T>G SSMs in cluster H to compare them
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to cluster L. Next, we extracted from the reference genome (GRCh37/h19) the ten
adjacent bases in 5" and 3’ direction of the mutation using the Rsamtools package in R.
We used the extracted sequence context as input to construct two sequence logos per
cluster: one for the mutations that are recurrent within the cluster and one for those
that are not. We include each recurrent mutation only once to avoid giving extra weight
to highly recurrent mutations. As a measure of information content, we used the relative

entropy [101] [102], which is defined for position i by:

f(bi
RE; = Ypetacer [ (bi)log, %

Here, f(b;) stands for the frequency of base b (A, C, G or T) in position i and P(b) stands
for the prior probability of base b as determined by the frequency in the human genome

(GRCh37/h19). The height of each base in the sequence plot is proportional to

b.
f(b)log, %. A positive value corresponds to an enrichment of the base with

respect to the prior probability and a negative value to a depletion. The relative entropy
(REi) is zero, if all four bases are observed with the same frequency as the prior in
position i. We set 0.25 as a threshold for RE; to define the enriched motif. Furthermore,
we computed per cluster the percentages of all, non-recurrent and recurrent SSMs that
were in the sequence context that was found to be enriched in the recurrent SSMs. To
estimate the percentage of the respective motifs in the human genome, we first slid a
window of the same size (k) as the motif across the genome with a shift equal to the
length of the motif and counted all possible k-mers. Next, we added to this the counts
retrieved in the same way for the reverse complement of the reference sequence
(corresponding to the opposing strand), since we also combined the reverse
complements for each of the SSM subtypes. From this we computed the percentage of
the enriched motif with respect to all k-mers and to the k-mer with the base that is

mutated in the enriched motif at the same position.
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4.2.6. Statistical tests

The correlation between every possible pair of the 42 features was measured by the
Spearman’s rank correlation coefficient using the R package Hmisc (v4.1-1). Multiple
testing correction of the p-values of all correlation tests (including those in Appendix 1 -
S2 Text) was done by the Benjamini-Yekutieli method. For the other correlations

mentioned we also used the Spearman’s rank correlation coefficient.

We used the Wilcoxon rank-sum test with continuity correction as the test of

significance for differences in features observed between clusters.

The different proportions of sequence motifs between recurrent and non-recurrent

SSMs were assessed by using x2 tests.

4.2.7. Plots

Figures 32, 34, 36 and 37, the pie charts in Figure 35 and the plots in Appendix 1, except
for S1, were made using the R package ggplot2 (v3.0.0). Figure 37, S3 Fig (Appendix 1)
and S4 Fig (Appendix 1) additionally required ggseqlogo (v0.1) [103] and Figure 33 was
made with the use of the R package corrplot (v0.84). Figure 38 was made using Microsoft
PowerPoint and we also included images from the Servier Medical Art website
(http://smart.servier.com/). The ‘clustering tree’ in S1 Fig (Appendix 1) was made using
the clustree R package [104]. We have manually replaced the nodes in the tree with the
pie diagram showing the distribution of tumour types in each cluster. For the colours of
the different tumour types, we have made use of the script provided by the PCAWG
consortium, available at: https://github.com/ICGC-TCGA-PanCancer/pcawg-colour-

palette.
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4.3. CHAPTER 3. Characterization of amino acid changes due to somatic mutations
in protein coding genes

4.3.1. Workflow for the automatic evaluation of missense mutations

Missense mutations selection

We focused on the analysis of all the missense mutations in our joint dataset,
irrespective whether they were the result of a single-base substitution or a multiple base
substitution. Starting for the genomic mutation, for the genes with more than one
transcript we selected the mutation in the canonical transcript, since the same mutation
in a different transcript could translate to a different amino acid. As TCGA mutation data
already is given for a list of canonical transcripts, for the genes that were in common
with PCAWG or HMF we used the one selected in TCGA. For the genes that were just
mutated in PCAWG or HMF we selected the canonical according to UniProt annotation.
For the cases without a canonical transcript, we followed the UniProt rule of selecting

the longest one.

Protein features defined

Eight features were selected for the evaluation of the amino acid changes, which we
considered to provide interesting information for elucidating their potential relevance.

These eight features are described next.

1) Chemical change

The side chain properties such as volume, polarity, acidity, basicity, conformational
flexibility and the ability to form, for example, a hydrogen bond or a salt bridge, vary
across the different groups of amino acids [105]. These characteristics could play a
crucial role in protein folding, stability, interaction of protein-protein complexes and
protein function. Therefore, a mutation that results in a different amino acid with a
different biochemical group usually involves a significant alteration. We considered the
classification of the amino acids according to the charge of their side chain (polar, non-

polar, acidic polar and basic polar amino acids, Figure 3) and established nine categories
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depending on which was the change (Figure 12). For example, “same category” indicates
that the original amino acid and the amino acid resulting from the mutation belong to
the same group (e.g., both acidic polar amino acids). The category “gain of polarity”

indicates that the original amino acid was non-polar and the one after the mutation is

polar.
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Figure 12. Categories among the cases of amino acid changes.

We also annotated if the original amino acid was replaced with an amino acid of a similar
or different size. We considered 4 categories depending of the weight of the residues
(Table 4): ‘big’ (tryptophan (W), tyrosine (Y), arginine (R) and phenylalanine (F)),
‘medium’ (histidine (H), methionine (M), glutamic acid (E), lysine (K) and glutamine (Q)),
‘small’ (aspartic acid (D), asparagine (N), isoleucine (1), leucine (L), cysteine (C), threonine
(T), valine (V), proline (P)) and, finally, ‘tiny’ (serine (S), alanine (A), glycine (G)). We gave
a score from 0 to 3, ‘0’ if the two amino acids (before and after mutation) were in the
same size category, ‘1’ if the two amino acids were one position away from each other
(e.g., from a ‘small’ to a ‘medium’ amino acid), ‘2’ if the two amino acids were two
positions away in the size category (e.g., from a ‘small’ to a ‘big’ amino acid) and ‘3’ if
the two amino acids were three positions away in the size categories (e.g., ‘tiny’ amino

acid mutated to a ‘big’ amino acid or vice versa).
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Table 4. Amino acid residues weights. Source: Bio-Synthesis Inc [106].

. . AA AA . .
Amino acid (AA) name (3 letters code) | (1 letter code) Residue weight (Da)
Tryptophan Trp w 186.22
Tyrosine Tyr Y 163.18
Arginine Arg R 156.19
Phenylalanine Phe F 147.18
Histidine His H 137.14
Methionine Met M 131.20
Glutamic acid Glu E 129.12
Lysine Lys K 128.18
Glutamine Gln Q 128.13
Aspartic Acid Asp D 115.09
Asparagine Asn N 114.11
Isoleucine lle I 113.16
Leucine Leu L 113.16
Cysteine Cys C 103.15
Threonine Thr T 101.11
Valine Val \Y 99.13
Proline Pro P 97.12
Serine Ser S 87.08
Alanine Ala A 71.08
Glycine Gly G 57.05

2) Solvent accessibility

The solvent accessibility of an amino acid or Accessible Surface Area (ASA) of the amino
acid in the protein structure refers to the degree to which the amino acid is exposed to
the solvent in which the protein is contained or if it is facing the inner core of the protein
[107]. Considering a threshold, it can be established if an amino acid is exposed to the
solvent in which the protein is contained or if it is in the inner core. In the first case, the
amino acids are more likely involved in interactions with other proteins or substrates,
while in the second case the amino acids would be buried in the structure and more
relevant for maintaining the core of the protein. Changes in the solvent accessibility
after mutation has been suggested to provide hints about the maintenance or change
of protein packaging [108]. It has been suggested that pathogenicity is more frequently
associated to the buried residues than to the exposed ones [108].

We used ASAquick (http://mamiris.com/ASAquick/) to obtain the ASA of the amino acid
that was being mutated and computed the relative ASA, to classify the amino acid as

buried or exposed (>20% is considered exposed) [108].
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3) Secondary structure

Protein secondary structures, which are considered as the linkages between primary and
tertiary structures, are defined as local structures that form the backbone of the protein
and are stabilized by hydrogen bonds [109]. The main four secondary structures are an
a-helix, B-strand and turn/loop (Figure 13) [110]. We annotated in which of these
secondary structures the mutated amino acid is located the amino acid mutated. We
retrieved this information from the PDB file of the protein in question if there was a
protein structure available, or we took the PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/)

predictions collected in DescribePROT [111] when there was no structure available.

p
Loops and

a-helix % L turns
f S\

G
ip-\
g =

B-strand

Figure 13. Protein secondary structures: (a) a-helix, (b) B-strand and (c) turn or loop. Adapted from
Shafee, T. (2020).

4) Domain

Domains are functional or structural units defined in the proteins [112]. They are
normally responsible for a particular function or interaction that contributes to the
overall role of the protein [112]. For all the protein coding genes for which we had
mutations, we did the crosslink from the Ensembl Transcript ID (the canonical
transcripts) to the UniProt ID using the R package biomaRt [113]. With the UniProt ID,
we downloaded the corresponding ‘xml files’ that contain all the information for each
protein. Parsing the file with an ‘in-house’ script, we collected the domain information
as defined by the InterPro [114] resources PROSITE [115], Pfam [116] and SMART [117].
We annotated for each amino acid mutated whether it is part of a protein domain, if any

is defined for the protein in question.
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5) Disruption of specific site (active, metal, protein-protein binding sites)

We also retrieve from the UniProt annotation (‘xml file’) whether the amino acid
mutated is in any relevant site, for example an active site, binding site, site, zinc finger
or DNA binding site. In the case of PIK3CA, apart from the annotations available in the
UniProt file, we annotated the amino acids involved in the interactions between p110a

(PIK3CA) and p85a (PIK3R1) using the Chimera software [118].

6) Amino acid conservation

The amino acid conservation is based on the estimation of evolutionary rate of the
amino acid in the protein sequence or structure [119]. This indicates how well an amino
acid is conserved across species. Extracting conservation scores from a multiple
sequence alignment of homologous proteins can provide interesting information, since
highly conserved residues are generally considered to be critical for protein function
[119]. We obtained the pre-calculated evolutionary conservation scores from ConSurf-
DB (information obtained after for now their last update: November 4th, 2019). The
conservation scores go from 1 to 9 (Figure 14), where ‘1’ is lowly conserved or a more
variable amino acid and ‘9’ highly conserved or a not variable amino acid. ConSurf [119]
obtains the score per amino acid by doing a multiple sequence alignment (Figure 14)
with homolog sequences from different species and considers how variable each amino
acid position is.

For the PIK3CA analysis, we obtained the results of amino acids conservation from the

ConSurf server (https://consurfdb.tau.ac.il), to be able to download the different files

that the tool provides such as the scripts to display the structure with the corresponding

colours according to the conservation score computed per residue (Figure 14).
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Figure 14. Amino acid conservation scores computed by ConSurf [119]. From the left, piece of a multiple
sequence alignment of homologous proteins from different species, each amino acid position is coloured
according to the conservation score computed. Next, protein structure with the conservation scores
indicated and legend with the meaning of the different colours, towards blue less conserved.

7) Amino acid mutated in a hotspot in the 3D structure

Finding 3D clusters of amino acids that are mutated inside the protein structure can be
indicative of relevant sites for the correct function of the protein [120]. Also, the
identification of clusters in which there are mutations that are already considered
hotspots in cancer may help us find less frequent mutations that could have the same
implications as the hotspot and, therefore, are of interest to study. We used mutation3D
[30] to look for potential clusters among the mutations in our data (Figure 15). We also
included the annotation of amino acids, if any was described as involved in any particular
function, to point out cluster including these amino acids since they could be relevant in
terms of having an effect on protein function.

The computation of the statistical significance of the clusters found by mutation3D, as
explained by the authors, is done in the next way: “mutation3D performs an iterative
bootstrapping method to calculate a background distribution of cluster sizes arising from
a random placement of an equivalent number of substitutions in a given protein
structure. By default, mutation3D will randomly rearrange all amino acid substitutions
15,000 times in a given structure and calculate the minimum complete linkage (CL)
distance at which a cluster of size n (where n is all cluster sizes found in the original data)
is observed in the randomized data. For each cluster in the original data, P values are
computed empirically as the percentile rank of its CL distance among all CL distances for

randomized clusters containing the same number of amino acid substitutions” [30].
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Figure 15. Schematic example of the use of mutation3D to find clusters in the 3D structure of a protein
in our workflow.

8) Change in the free energy of protein folding

Protein stability is a fundamental property affecting proteins function, activity, and
regulation [121]. The final shape adopted by the protein is the most energetically
favourable one. Computing the change in the free energy of protein folding upon
mutation is indicative of how the protein structure has been affected. We made use of
FoldX [122] to find mutations affecting the stability of the protein (destabilizing or
stabilizing mutations) or not affecting. The thresholds used to determine if an amino
acid change was destabilizing, stabilizing or not affecting the stability of the protein are

shown in Figure 16.

Fo l d BAG = OG5, - AG,

(Biophysics method)

Destabilizing mutation: AAG > 2 kcal/mol
Not affecting stability: 2 kcal/mol > AAG > -2 kcal/mo!
Stabilizing mutation: AAG <-2 kcal/mol

Figure 16. FoldX computation to obtain the change in free energy degrees for protein folding and the
categories depending on threshold: destabilizing, stabilizing or not affecting stability.
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4.3.2. Statistical methods

Dimensionality reduction method: Factor Analysis of Mixed Data

The Factor Analysis of Mixed Data (FAMD) is a principal component method that allows
the analysis of a dataset containing both quantitative and qualitative variables. This
method allows to analyse the similarity between individuals by taking into account the
mixed types of variables [123]. We applied this method, available in the FactomineR
package [99], to our set of mutations characterized by the eight protein features to

visualize how similar or different the mutations are.

Hierarchical Clustering of Principal Components (HCPC)

As a next step to the FAMD, we performed a hierarchical clustering of principal
components (HCPC) [124] with the aim of finding groups of mutations sharing features.

This method is also available in the FactomineR package.
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4.4. CHAPTER 4. Landscape of protein changes in p110a (PIK3CA) in cancer

4.4.1. Data visualization

All plots were done with ggplot2 R package under R version 3.6.0.

4.4.2. Statistics: Chi-squared test / Fisher’s Exact Test

We applied the independence test Chi-square Test or Fisher’s Exact Test (depending on
sample size) to determine if there was a significant relationship between two categorical
variables regarding different mutational signatures or conditions between (a) ‘tumours
with PIK3CA mutated’ vs. ‘tumours without a mutation in PIK3CA’ and (b) ‘tumours with
a protein domain mutated’ vs. ‘tumours without that particular protein domain
mutated’. With previous tests we tested whether the odds ratio was equal to 1
(alternative: two-sided). If the value of the odds ratio is 1 or close to 1 it means that
there are no differences between the two conditions compared. These tests were done

inR (v3.6.0).

4.4.3. Survival analysis and associations

In breast, uterus and colorectal cancer cohorts, we investigated if there were differences
in survival rate in tumours with PIK3CA mutated vs. not mutated, as well as considering
the tumours mutated in the different PIK3CA protein domains. For the survival analysis,
we added the parameters age, tumour grade and tumour stage as they may impact on
survival. In the case of breast cancer, we also added the breast cancer subtype to the
model for this reason.

We carried out univariable and multivariable survival analyses using Cox proportional
hazards model. We used Kaplan-Meier curves for the visualization of the results where
applicable. For both methods we used the suvminer and survival R packages. All
statistical tests were two-sided and we considered results to be statistically significant if

the p-value is below 0.05.
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4.4.4. RNA-Seq analyses: Differential expression analysis and Gene Set
Enrichment Analysis

We performed a differential expression (DE) analysis using the DESeq2 R package [125]
in breast, uterus and colorectal cancer cohorts grouping the samples by PIK3CA
mutational status. Next, we performed the DE analysis testing between different
domains mutated. We considered a gene to be differentially expressed if the p-value
was below 0.05. In addition to looking at the individual genes that were differentially
expressed, we also performed a Gene Set Enrichment Analysis (GSEA) [126][127]. In this
analysis you consider sets of genes together that individually might not be significantly
differentially expressed. We performed the analysis using two different lists of gene sets
downloaded from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb): HALLMARKS
(“h.all.v7.2.symbols”) and KEGG PATHWAYS (“c2.cp.kegg.v7.5.1.symbols.gmt”).

4.4.5. Deconvolution of bulk RNA-Seq samples using SPOTIlight

Using SPOTIight [85] and a single-cell RNA-Seq reference for breast cancer, we
performed a deconvolution of the bulk RNA-Seq samples from primary breast tumours
in TCGA to study the tumour microenvironment (TME). We obtained the cellular
composition estimated inside of each sample. The reference allowed us to obtain the
different distribution of cancer and normal cells from the breast, stromal cell

populations and immune cell populations.

Single-cell RNA-Seq reference

The single-cell RNA-Seq (scRNA-Seq) reference for breast cancer was obtained from Wu
et al. (2021) [56], which included 26 primary tumours from the three major clinical

subtypes of breast cancer: 11 ER-positive, 5 HER2-negative and 10 TNBC.
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Deconvolution steps

As input for performing the deconvolution, SPOTlight computed the marker genes that
characterize each of the populations in our reference in which we are going to
deconvolute the bulk RNA-Seq samples. From these marker genes, we filtered out
ribosomal and mitochondrial genes which correspond to bad quality and dead cells. We
considered a log2-fold change cut off of 0.5 (absolute number). We kept a list of genes
manually curated specifically related to T cells to be able to separate them, irrespective
of the log2-fold change. The genes kept were: CCR7, CD274, CD3D, CD3E, CD4, CD40LG,
CD8A, CD8B, CTLA4, EOMES, FOXP3, GZMA, GZMH, ICOS, IFNG, IL2RA, IL7R, ITGB1,
KLRB1, LAG3, LEF1, NKG7, PASK, PDCD1, PDCD1LG2, PTPRC, RORA, SELL, TBX21, TCF7,
TIGIT, TOX, TRAC, TRBC1 and TRBC2. In addition, SPOTlight selected the 3,000 highest
variable genes in the whole data. The different cell populations that we considered in

the different deconvolutions performed are shown in Table 5 and Table 6.

Table 5. Populations in the first level of annotation of the single-cell RNA-Seq reference [56].
With the first deconvolution of the bulk RNA-Seq data we obtained the relative proportion of
each of these populations in each sample.

Cell category Cell population type
Cancer SC
Cancer and Cancer Cycling
normal cells from | Luminal Progenitors
breast tissue Mature Luminal
Myoepithelial
Endothelial

Endothelial Lymphatic LYVE1
CAFs MSC iCAF-like

CAFs myCAF-like

DCs

Macrophage

Monocyte

Immune cells B cells

Plasmablasts

T cells + NK cells + NKT cells
Cycling

Stroma cells

Deconvolution 1
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Table 6. Populations in the second level of annotation of the single-cell RNA-Seq reference
[56]. In the second deconvolution of the bulk RNA-Seq data we focused on macrophages, in the
third on CD4 T helper cells and, in the fourth, on CD8 and NK cytotoxic cells. The different
subpopulations inside these groups are shown.

Cell population type | Cell population subtype
Macro_CXCL10
Macro_EGR1
Deconvolution 2 Macrophages Macro_LAM1_FABP5S
Macro_LAM2_APOE
Macro_SIGLEC1
T_cells_CD4+_CCR7
T _cells_CD4+_IL7R
T cells_CD4+ T-regs_FOXP3
T cells_CD4+_Tfh_CXCL13
T cells_CD8+_ZFP36
T cells_CD8+ GZMK

T _cells_CD8+_IFIT1
Deconvolution 4 Ci/:tDcic?;S cNeII<Is T cells_CD8+_IFNG

T_cells_CD8+_LAG3

T_cells_NK_cells_AREG
T_cells_NKT_cells_FCGR3A

Deconvolution 3 CD4 T Helper cells
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5. RESULTS

5.1. CHAPTER 1. GENOMIC LANDSCAPE OF 25,499 CANCER GENOMES

At the basis of studying protein changes are the genomic mutations that caused them.
Here we describe the genomic landscape of the four cohorts, individually, and when
combined. We will also zoom into breast, colorectal and uterus cancer because of their

relevance in the context of studying the PIK3CA gene (Chapter 4).

5.1.1. Genomic description of the individual datasets

Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset

The PCAWG dataset consists off whole genome sequencing of mostly primary tumours
from 2,583 donors and 37 different cancer types (Figure 17). The largest cohort is liver
cancer followed by pancreatic, prostate and breast adenocarcinoma. For breast
adenocarcinoma we also have the subtype information available for 91 out of the 211
samples (Figure 27a). The most mutated cancer type is skin melanoma considering
Somatic Single-base Mutations (SSMs) and Somatic Insertion/deletion Mutations (SIMs)
combined (Figure 18a). If we only consider SSMs then it is still the most mutated cancer
type (Figure 18b). The cancer type with the highest median of SIMs is lung squamous
cell carcinoma (Lung-SCC) (Figure 18c). The mutation subtypes distribute differently
depending on the cancer type (Figure 19). For example, percentage wise, C>A mutations
are the most prevalent in the two forms of lung cancer, C>T mutations in skin cancer
and C>G mutations in bladder cancer. Further details on the genomic landscape of the

PCAWG dataset are provided in Appendix 1.
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Hartwig Medical Foundation (HMF) dataset

The HMF dataset consists off whole genome sequencing of 4,557 donors with metastatic
disease from 38 different primary tumour locations. For 100 donors the biopsy was
taken from the primary tumour (44 breast, 25 nervous system, 8 oesophagus, 3 ovary,
3 pancreas, 13 prostate and 4 stomach cancer). For 122 tumours we do not know the
primary location. Figure 20 shows the number of donors available per location of the
primary tumour of the corresponding metastatic tumour. The biggest cohort is formed
by donors with breast cancer as primary cancer type followed by colorectal, lung and
prostate cancer. For 752 out of the 787 breast cancer samples we know the subtype
(Figure 27b). The most mutated cancer type is skin cancer, considering SSMS and SIMs
combined (Figure 21a), or only SSMs (Figure 21b). The metastatic cancer with the
highest median of SIMs is oesophagus cancer (Figure 9c). The mutation subtypes
distribute differently depending on the primary tumour location (Figure 22), but they
follow a trend similar to what we see in primary tumours (Figure 19 and Figure 25). For
example, the highest percentage of C>A mutations is in lung cancer, C>T mutations in

skin cancer and C>G mutations in urothelial tract cancer.
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Figure 20. Number of donors per location of the primary tumour in the HMF dataset.
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The Cancer Genomes Atlas (TCGA) dataset

The TCGA dataset consists off whole exome sequencing of mostly primary tumours from
9,104 donors and 32 different cancer types (Figure 23). The biggest cohort is breast
adenocarcinoma (BRCA), followed by lung adenocarcinoma (LUAD), Brain Lower Grade
Glioma (LGG) and Head and Neck Squamous Cell carcinoma (HNSC). The most mutated
cancer type is skin cancer (SKCM), when considering SSMs and SIMs (Figure 24a), or only
SSMs (Figure 24b). The cancer type with the highest median of SIMs is lung squamous
cell carcinoma (LUSC) (Figure 24c). The mutation subtypes distribute differently
depending on the cancer type (Figure 25), but again we see the same cancer types at
the top as in PCAWG. For example, the percentage of C>A mutations is the highest in

the lung cancer cohorts, C>T in skin melanoma and C>G in bladder cancer.
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Breast CAncer STratification (B-CAST) study dataset

The B-CAST dataset consists of 9,255 donors with breast primary tumours for which a
panel of 323 genes was sequenced. This subset of genes was selected because of their
known relevance to breast cancer. From the total number of samples, 345 did not have
a mutation in any of the genes in the panel. The highest percentage of tumours are
Luminal A (59%), followed by 12% Triple-negative, 11% Luminal B and 5 % HER2 enriched
(Figure 27d). For 13% of the tumours the molecular subtype is unknown.

Considering only the mutations affecting coding, there are 33,142 somatic mutations
across 8,520 donors, considering deletions, insertions, multi- and single-nucleotide
substitutions (Figure 26). Per mutation type, Figure 26 includes the top mutated genes
either in absolute counts (A.C.) or correcting the number of mutations by the length of
the gene (C.C), to account for the fact that larger genes would have more chance of
accumulating more mutations. PIK3CA is in the top 10 for single-base substitutions. | will

focus on PIK3CA in Results - Chapter 4.
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5.1.2. Consensus of the joint dataset and largest cohort

By joining the four datasets described in the previous section we have a total of 24,845
donors, considering that we had to remove 653 patients from the TCGA dataset that
overlap with the PCAWG dataset and also one donor from HMF overlapping also with
PCAWG. The largest cohort in the joint dataset is breast cancer. For this cancer we have
available information of the breast cancer subtype in some cases. In PCAWG dataset,
the subtype is known for less than half of the tumours, but the most frequent among
the ones known is basal or triple-negative breast cancer (Figure 27a). In TCGA, B-CAST

and HMF breast cancer donors the most frequent subtype is Luminal A (Figure 27b-d).

c. TCGA d. B-CAST

Figure 27. Breast cancer subtype distribution in the individual datasets.
LumA: Luminal A. LumB: Luminal B. Her2: HER2-enriched.
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5.1.3. Description of mutational signatures across cancer types

Focusing on breast, colorectal and uterus cancer, there were a total of 64 known
mutational signatures present across these tumours (Table 7). The dominating signature
varied across the three cancer types and there was also stratification of tumour
genomes within the same cancer type. We observed the different mutational signatures
and their proportions in breast, colorectal and uterus tumours from primary (TCGA,
PCAWG) and metastatic (HMF). Primary breast tumours showed a different profile with
respect to uterus and colorectal primary tumours, while the metastatic breast cancer
had a similar profile to metastatic uterus cancer. In primary breast cancer (Figure 28,
TCGA and PCAWG) we differentiated three main patterns, a group of samples
characterized by defective homologous recombination DNA damage repair (signature
SBS3), a second group characterized by the activity of APOBEC family of cytidine
deaminases (signatures SBS2 and SBS13) and, third, a group of tumours that has mainly
signature SBS5, which is a clock-signature, normally related to the age of the patient.
We observed a kind of mutual exclusivity between SBS3 and SBS2/13. When one of the
previous mutational signatures is dominating in a sample, the other is practically
inexistent. In primary colorectal cancer (Figure 29, TCGA and PCAWG) we also observed
a mutual exclusivity but different than in breast. Donors with hypermutation activity of
polymerase epsilon (Pol €) (SBS10a, SBS10b) did not present at the same time the
mutational signature SBS40 nor damage by reactive oxygen species (SBS18). We noted
that mutational signatures SBS10a and SBS10b that were associated with mutations in
the exonuclease domain of Pol € were often present together with SBS28. SBS28 is a
signature of unknown aetiology but has already been related to samples with SBS10a/b
signatures [128]. It has been proposed that SBS28 could be the third minor component
of the original SBS10 signature related to T>G transversions. The original SBS10
signature would therefore be captured by these three signatures now: a highest
prevalence of the C>A component captured by SBS10a, followed by C>T (SBS10b) and
T>G (SBS28) [128]. APOBEC signature was largely absent in colorectal tumours, with only
isolated cases in TCGA. Primary uterus cancer (Figure 30, TCGA and PCAWG) showed a
group of samples with SBS40 as dominating signature, other group with defective DNA

damage repair (SBS44, SBS15, SBS21), few cases of APOBEC signature (SBS2/13),
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samples that had mainly the clock-signature SBS5 and, finally, a clear group dominated
by the mutational signatures related to mutations in the exonuclease domain of Pol ¢
(SBS10a, SBS10b). In the three metastatic tumours (Figure 28, 29 and 30, HMF) we had
a high proportion of samples with SBS40 as dominating signature, for which the
aetiology is unknown, but it has been correlated with patients’ age in some studies
[129]. In the case of metastatic colorectal cancer (Figure 29), this SBS40 signature was
the dominating signature across almost all donors. In the case of metastatic breast and
uterus (Figure 28 and 30) we also had a group of tumours that showed the activity of
APOBEC cytidine deaminases with SBS2 and SBS13 as dominating signatures. There were
no differences in mutational signatures when divided the breast cancer donors

according to their molecular subtypes (Figure 31).

Table 7. Main SBS mutational signatures identified in primary and metastatic tumours from
breast, colon and uterus and the mutational processes to which they are related to (if known).
Descriptions were taken from COSMIC v3.3.

Signature Description
SBS 1 | Spontaneous deamination of 5’-methylcytosine (clock-like signature)
SBS 2

Activity of APOBEC family of cytidine deaminases
SBS 13

SBS 3 | Defective homologous recombination DNA damage repair
SBS 5 | Clock-like signature
SBS 9 | Polymerase eta somatic hypermutation activity
SBS 10a
SBS 10b
SBS 28 | Unknown. Often found in samples with SBS10a/SBS10b signatures
SBS 14 | Concurrent polymerase epsilon mutation and defective DNA mismatch repair
SBS 6
SBS 15
SBS 21 | Defective DNA mismatch repair
SBS 26
SBS 44
SBS 20 | Concurrent POLD1 mutations and defective DNA mismatch repair
SBS 30 | Defective DNA base excision repair due to NTHL1 mutations
SBS 36 | Defective DNA base excision repair due to MUTYH mutations
SBS 40 | Unknown. Correlated with patients’ ages for some types of cancer

Polymerase epsilon exonuclease domain mutations

SBS 17a/b | Unknown, but SBS17b has been associated to fluorouracil chemotherapy
treatment and to damage inflicted by reactive oxygen species (in some studies)
SBS 18 | Damage by reactive oxygen species

SBS 31
SBS 35

Platinum chemotherapy treatment
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Take-home messages Chapter 1

e Skin cancer is the highest mutated cancer type in terms of SSMs. Considering
SIMs, lung cancer is the highest mutated in primary tumours and oesophagus
cancer in metastatic tumours. Among the different mutation subtypes, C>A
mutations are the highest in lung cancer, C>G in bladder cancer and C>T in skin

cancer.

e After curation of our joint dataset, the largest cohort is breast cancer with 11,159

breast tumour genomes.

e We could classify cancer genomes according to the dominant mutational
signatures. We identify in primary breast, colorectal and uterus cancer that these
cancer types shared as a dominant mutational signature SBS5, a clock-like
signature. Uterus and colorectal primary tumours show three groups
characterized by the same dominant mutational signatures (SBS40, Pol € and

defective DNA mismatch repair).

e In primary breast cancer a mutual exclusivity is observed between SBS3 and

APOBEC signatures.

e In metastatic tumours from breast, uterus and colorectal cancer, we identify a
group of donors that share SBS40 as the dominant mutational signature. SBS40
is the most dominant signature in almost all colorectal cancer samples. Breast
and uterus cancer also share a group of donors characterized by SBS2/13

signatures (APOBEC activity).

84



5.2. CHAPTER 2. USE CASE IN PCAWG DATASET: RECURRENT SOMATIC
MUTATIONS REVEAL NEW INSIGHTS INTO CONSEQUENCES OF MUTAGENIC
PROCESSES IN CANCER

To illustrate the importance of studying the genomic landscape (Results - Chapter 1) to
gain insights into the mutational processes in cancer, we studied the somatic mutations
in the PCAWG dataset. We divided these mutations in ‘recurrent’, identical somatic
mutations happening at exactly the same genomic location in two or more tumour
genomes from different donors, and ‘non-recurrent’, the remaining mutations. We
computed 13 features based on the recurrent somatic mutations found in 2,583 cancer
genomes across 37 cancer types included in this dataset together with 29 other, general
genomic features. Based on the total of 42 features we were able to group the samples

into 16 clusters that capture clinically relevant cancer phenotypes.

This work has been published as: “Stobbe MD, Thun GA, Diéguez-Docampo A, Oliva M,
Whalley JP, Raineri E and Gut IG (2019) Recurrent somatic mutations reveal new insights
into consequences of mutagenic processes in cancer. PLoS Comput Biol 15(11):
€1007496.” The complete article and its Supplementary Material are available in Annex

1.

5.2.1. Recurrence is higher than expected by chance

There were 1,057,935 recurrent SSMs, which represent 2.44% of the total number of
SSMs found in the PCAWG cohort. This were around five times higher (Fig A-l in
Appendix 1 - S1 Text) than expected if only chance would drive recurrence (based on
5,000 simulations, Appendix 1 - S1 Text). For the six SSM subtypes (see Materials) the
observed recurrence was around three (C>G and T>C SSMs) to twelve times (T>G SSMs)
higher than expected by chance (Fig A-1l in Appendix 1 - S1 Text). On tumour type level,
we can either determine recurrence by only considering the samples from the same
tumour type (‘within tumour type’) or across all samples (‘pan-cancer’). In both cases,
Kidney-RCC, Liver-HCC, Lung-AdenoCA and Lung-SCC stand out as the observed number
of recurrent SSMs was only around three times (within tumour type) and around two

times (pan-cancer) higher than expected by chance (Fig A-IlI+1V in Appendix 1 - S1 Text).
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In contrast, the largest ratio was 86 times for recurrence ‘within tumour type’ (Prost-

AdenoCA) and 7 times for recurrence ‘pan-cancer’ (Eso-AdenoCA).

5.2.2. Number of samples does not always correspond to the level of
recurrence

To see the effect of the number of samples on recurrence, we looked at the overall
recurrence within each tumour type (Figure 32). Although tumour types with more
samples generally had a higher total number of recurrent mutations (Figure 32A), there
were notable exceptions. For example, Liver-HCC has the most samples of all tumour
types (314), but less recurrent SSMs and SIMs than six and five other tumour types,
respectively. If we look at the percentage of recurrent mutations, even more tumour
types overtake Liver-HCC as in this respect it ranks 9th and 10th in terms of SSMs and
SIMs, respectively (Figure 32B). The opposite is true for Eso-AdenoCA (97 samples),
which has a higher absolute number and percentage of recurrent SSMs than eight other
tumour types that have more samples. Stomach-AdenoCA has the highest absolute
number and percentage of recurrent SIMs of all tumour types, but less samples than 13
of them. One partial explanation for this is that a lower number of samples does not
always translate to a lower total number of mutations (Figure 32C), even though the
correlation is strong (Spearman's Rank correlation coefficient rs = 0.73, p = 2.8e-07).
However, even if the number of samples and the number of mutations are in line, the
level of recurrence may still give a different picture. Liver-HCC, for instance, has also a
higher total mutational load than Eso-AdenoCA (1.2-:10° and 7.9-10* more SSMs and

SIMs, respectively), but still a lower level of recurrence.

86



VBRI 083
) TV O

ROy e
5 T TR

Sqe-

SiMs
SINs
SIMs

\!?nd snem 405

rmwlmtmldwbl

w
o §
i
e |

(e )
Vi g
T e Y] L AL LR AN

YENKTe-pRAn

Number of recurrent mutations

E

- Eu-
‘S
i
5
=

Percentage of recurrent mutations

Figure 32. Recurrence within each tumour type in absolute numbers and percentages. The tumour types

Ay deqny
L el )
Virma vy L

SSMs

Ry v

-

Tam out Bype [sumber dl;u-ok:l
SSM=

e,
BB

.y ey
L L T
VINTON) e
or- i

o ey

WEHT Wy

DO R

D) Qe iy

‘ tﬁo-wk—uovfaw

b b

sss 39 Joueu 01 J

US ST S e —

2 -3 = = ] - B

PSS Weuno% P aquny - o @ :

87

types in terms of the following three values: (A) Absolute number of recurrent mutations, where

recurrence is defined by considering each tumour type separately (‘within tumour type’ recurrence). (B)
Percentage of recurrent mutations ‘within tumour type’. (C) Total number of mutations, counting

are ordered from the lowest to the highest number of samples. We labelled the top 10 ranking tumour
recurrent mutations only once.



5.2.3. General mutational characteristics versus recurrence

For each cancer genome, we computed 29 basic mutational characteristics that capture
the effects of mutagenesis (e.g., relative frequency of each SSM subtype) and 13
features capturing recurrence at different levels (Table A in S1 File (Appendix 1), see
Methods). Recurrence for these features was determined based on the entire cohort. A
detailed description of each of these 42 measures is available in Appendix 1 - S1 File.
Based on the comparison of the recurrence-related features with the general ones
(Appendix 1 - S2 Text), the key findings were that across the entire cohort: 1) the
correlation between mutational load and the absolute level of recurrence is stronger for
SSMs (rs = 0.89) than for SIMs (rs = 0.76); 2) the same correlation, but instead taking the
percentage of recurrent mutations, is weak and negative for SSMs (rs = -0.21) and non-
significant for SIMs; 3) relative recurrence for SIMs is higher than for SSMs; 4) a
particularly high percentage of C>T SSMs and 1 bp A/T deletions are recurrent (4.19%
and 15.27%, respectively); 5) there is a strong tendency for T>G SSMs to be recurrent
despite their modest total number; 6) there is a strong correlation between the level of
recurrence for SIMs and the percentage of 1 bp SIMs in a long homopolymer context.
Looking into the different tumour types, there were clear contrasts in terms of the
associations between general and recurrence-related characteristics. For example,
there is a statistically significant positive correlation between the number of mutations
and the percentage recurrent for only two tumour types in the case of SSMs (Eso-
AdenoCA: rs = 0.48 and Skin-Melanoma: rs = 0.58) and for seven types with respect to
SIMs (most notably: Biliary-AdenoCA: rs = 0.71 and Eso-AdenoCA: rs = 0.67) (Fig D in
Appendix 1 - S2 Text).

5.2.4. Recurrence characteristics divide the cohort

Next, we used the recurrence-based and general mutational features all together to see
if we can uncover meaningful clusters of cancer genomes. As there were strong
correlations between some of these features (Figure 33), we first performed a principal
component analysis (PCA) to obtain independent features and reduce dimensionality
(Figure 34). We took as many principal components (PCs) as needed to explain at least

80% of the variance in the data and considered the remaining PCs to capture noise. We
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used this subset of PCs as input for hierarchical clustering [99]. The resulting hierarchical
tree was cut at the desired height to obtain clusters. The centroids were computed for
each cluster and used as input to the k-means consolidation step, which further
improved the initial clustering (see Methods) [100]. To get a pan-cancer perspective we
analysed all samples together.

The crude division into two clusters separated the cancer genomes with low relative
levels of recurrent SIMs (e.g., Liver-HCC, Kidney-RCC and Lung-SCC) from those with high
levels (e.g., ColoRect-AdenoCA, Eso-AdenoCA, Lymph-BNHL and Panc-AdenoCA)
(Appendix 1 - S1 Fig). At three clusters, the relative level of recurrent SSMs split off a
group of mainly Skin-Melanoma samples from the two other clusters. This cluster largely
remained unchanged when increasing the number of clusters while the two other
clusters continued to divide and became more specific to a tumour type or a particular
mutational process. At the level of six clusters, for example, we saw a cluster split off
that we can connect to microsatellite instability (MSI). We will discuss in further detail
the division into 16 clusters (labelled from A to P), chosen as a trade-off between too
many clusters, which would each be specific to just a handful of samples, and too few,
which would result in loss of meaningful information (Figure 35). There are nine clusters
(A, B, C, G, H, 1, L Mand P) for which at least half of the samples are from the same
tumour type. For another two clusters (O and N) samples from two tumour types
constitute a majority. In the remaining five clusters (D, E, F, J and K) three or more
tumour types are required for this. For each tumour type the percentage of samples in
each of the 16 clusters is shown in Appendix 1 - S2 File. The association of each of the
42 features with the clusters is shown in Figure 36. The key characteristics of each cluster
are shown in Figure 35. To facilitate a tight linkage of the clusters to mutational
processes, we considered, in addition to the mutational features of a cancer genome,
also tumour type assignment, microsatellite instability (MSI) status, immunoglobulin
heavy-chain variable region gene (IGHV) mutation status (Lymph-CLL only) and tobacco
smoking history of the donor (where available) (Appendix 1 - S3 Text). To provide further
details on each cluster we integrated annotation based on GENCODE [130], Oncotator
[131], driver predictions [132] [94], replication time [133] and mutational signatures
[129]. A summary of this and further details are described in S3 Text in Appendix 1. In

the following sections (5.2.5, 5.2.6, 5.2.7, 5.2.8, 5.2.9), we will show how the level of
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recurrence can be indicative of the mutational processes, often in combination with the
general features. Moreover, we show that our recurrence-based approach groups
cancer genomes in a novel way that complements current classification approaches and

captures clinically actionable cancer phenotypes.
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Figure 33. Spearman’s rank correlation between the 42 mutational features. The colour of the circles
indicate positive (blue) and negative (red) correlations, colour intensity represents correlation strength as
measured by the Spearman’s rank correlation coefficient. The size of the circle indicates the adjusted p-
value with larger circles corresponding to lower p-values. The p-values were corrected for multiple testing
using the Benjamini-Yekutieli method. Crosses indicate that the correlation is not significant (adjusted p-
value > 0.05).
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described in detail in Appendix 1 - S1 File (Step 1). We scale all features to zero mean and unit variance to
compensate for the differences between the ranges of the features (Step 2). The arrows in the PCA plot
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Euclidean distance as a dissimilarity measure and Ward’s method as the linkage criterion (Step 5). The
results of the hierarchical clustering are used as a starting point for k-means clustering (Step 6). Some
samples will in this step switch to a different cluster compared to the initial partition. This consolidation
step is repeated a maximum of 10 times. Further details on the annotation of the clusters (Step 7) are
described in Appendix 1 - S3 Text.
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Figure 35. Key characteristics of the 16 clusters. Tumour types that form together 250% of the cluster are
listed. The legend for colours for the pie chart is provided in Figure 36. The key characteristics are those
features with the strongest significantly negative or positive association with the cluster. Only if the
association with overall recurrence is significant, the respective direction is indicated. 1Cluster has a low
median number of SSMs (<200) and SIMs (<20).

5.2.5. High levels of recurrent SSMs and low levels of recurrent SIMs
characterize exposure to UV light

A positive association with overall recurrence of SSMs and more specifically with
recurrence of C>T SSMs characterizes cluster G that mainly consists of Skin-Melanoma
samples (Figure 36). The association is negative with the recurrence of SIMs. We link this
cluster to mutagenesis induced by UV light (Appendix 1-S3 Text). The samples assigned
to cluster G account by themselves for 60.7% of the total number of recurrent C>T SSMs.
The combination of the high total number of SSMs per sample and the high percentage
of C>T substitutions in this cluster is what contributes to the high level of recurrence.
The mechanisms inherent to UV-light exposure further increase the probability of
recurrence as it tends to result in C>T SSMs near energy sinks in the genome. The energy
from UV-light-exposed DNA usually travels along the DNA strand until it arrives at the
lowest energy point, a dT, particularly when it is next to a dC, which acts as energy
barrier [134]. In agreement with this, for C>T mutations that are recurrent within this

cluster there is a strong enrichment of a TTTCCT motif (the underlined C is mutated) (see
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Methods). While the percentage of this motif in the genome is estimated to be only 0.4%
of all 6-mers with a C at the central position, 4.5% and 19.5% of the non-recurrent and
recurrent C>T SSMs, respectively, within this cluster are at this motif (Figure 37). An
enrichment of a CTTCCG motif was found for frequently recurrent mutations in
promoters in 38 melanoma samples [135]. In another set of 184 melanoma samples a
CTTCCGG motif was found at the majority of ETS transcription factor binding sites
(TFBSs) [136]. As the sequences are centred at the core consensus ETS binding motif
TTCC, instead of at a mutation, the underlined nucleotide is the most frequently
mutated base. In a subset of highly mutable ETS TFBSs the second Cis the most mutated.
These and our specific sequence motif help explain the observed high level of
recurrence. Furthermore, a decreased activity level of the nucleotide excision repair
pathway was detected in melanoma at active transcription factor binding sites and
nucleosome embedded DNA compared to the flanking sites [18]. This increases local

mutation rates and hence also increases the probability of recurrence.
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5.2.6. High levels of recurrent SSMs characterize deregulated activity of Pol €

A high level of recurrent SSMs also characterizes cluster H, specifically C>T and C>A
SSMs. This cluster captures samples that can be considered ultra-hypermutators and
their mutations are mainly caused by deregulated activity of polymerase epsilon (Pol €)
(Appendix 1 - S3 Text). These samples have a very high total number of C>A SSMs
(median: 297,750) and the median percentage of recurrent C>A SSMs across the
samples is 7.7%. Two thirds of all recurrent C>A SSMs in the entire cohort are also
recurrent within only this cluster. The C>A mutations that are recurrent within this
cluster are enriched for the motif TTCTTT, when considering only ungapped motifs
(Figure 37, see Methods). Of the recurrent C>A SSMs 32.2% are at this motif, while for
non-recurrent ones this is true for only 13.7% (x? test: p<2.2e-16). In the genome, the
estimated percentage of this motif of all corresponding 6-mers (NNCNNN) is far smaller
(0.6%), suggesting that effects of deregulated activity of Pol € are most likely dependent
on a sequence context exceeding a single neighbouring base on each side as also

observed for whole-exome data by Martincorena et al. [137].
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Figure 37. Enriched sequence motifs. The sequence logos represent the sequence context of ten bp 5’
and 3’ of the non-recurrent (left-side) or recurrent (right-side) mutations of the indicated cluster and SSM
subtype. Here recurrence is defined as a mutation at the same genomic location in two or more samples
from the same cluster. Each recurrent SSM is included only once to avoid giving extra weight to highly
recurrent mutations. Relative entropy is used as a measure of information content (see Methods). Setting
a threshold of 0.25 for the relative entropy results in the motifs highlighted in the rectangles. In the upper
right corner of each sequence logo the number of mutations is indicated. To the right of the sequence
logos are the percentages in which the enriched motif found for the recurrent SSMs is present in context
of the mutations in the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The
enrichment for the motif for recurrent SSMs is in all four cases significantly higher than for the non-
recurrent SSMs (x? test: p<2.2e-16).
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5.2.7. High levels of recurrent SIMs characterize microsatellite instability

The highest level of recurrent SIMs across all clusters is observed for cluster J, which
could be linked to a defective mismatch repair (MMR) pathway resulting in MSI
(Appendix 1 - S3 Text). Of the 179,691 recurrent 1 bp SIMs in the entire cohort, almost
half of them are recurrent when only considering this cluster. The very high median
number of SIMs (30,228) in this cluster may play a role in the high level of recurrence.
The key factor, however, is most likely the mutational process behind MSI, which is
slipping of the DNA polymerase during replication of repetitive sequences and the lack
of repair by the MMR pathway [138]. This not only explains the elevated number of SIMs
[139], but also the association of this cluster with all SIM subtypes in the context of
midsize-to-long homopolymers. As such homopolymers are scarce in the genome, the
shift towards specifically altering them increases the probability of recurrence (Table F
in Appendix 1 - S2 Text). Especially striking in this cluster is the proportion of 1 bp C/G
deletions that are in the context of a midsize homopolymer (median: 73.2% vs. 8.4% for
the other clusters combined, p = 1.2e-12). This translates to 6.0% recurrent 1 bp C/G

deletions within this cluster versus <0.7% for any other cluster (Appendix 1 - S3 Text).

5.2.8. Positive association with recurrence of SSMs and SIMs: Gastric-acid
exposure and hypermutation of immunoglobulin genes

Clusters L, M and N all positively associate with recurrence of both SSMs and SIMs.
Cluster L, which for >80% consists of Eso-AdenoCA and Stomach-AdenoCA samples, can
potentially be linked to gastric-acid exposure (Appendix 1 - S3 Text). The T>G and T>C
SSMs that are recurrent within this cluster cover 45% and ~20%, respectively, of the total
observed in the whole cohort. The median percentage of SSMs falling in late-replicating
regions (Table C and Fig A in Appendix 1 - S3 Text) is significantly higher than in the rest
of the clusters combined (75.2% vs. 61.0%, p<2.2e-16). In general, the mutational load
is expected to be higher in late-replicating regions as the MMR pathway is said to be less
efficient there [140]. However, the question is why the effect is so strong in cluster L
compared to the others (Fig B in Appendix 1 - S3 Text). It could be that transient single
strand-DNA at stalled replication forks, whose formation has been suggested to be more

prevalent in late-replicating regions [141], is particularly vulnerable to the mutagenicity
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of acid-exposure. Alternatively, if the oxidative stress induced by gastric-acid exposure
leads to the oxidation of dG in the dNTP pool [142], the use of error-prone DNA
polymerases that incorporate the oxidized dG into the DNA [143] may be more frequent
in late-replicating regions [144]. The strong shift towards late-replicating regions favours
higher levels of recurrence. The same holds for the enrichment of the specific sequence
context ‘AACTT’ that we observe for T>G mutations that are recurrent within this cluster
(Figure 37, see Methods). Nearly 39% of the recurrent T>G SSMs are confined to this
motif and ~12% of the non-recurrent ones (x? test: p<2.2e-16), which is still far higher
than the estimated percentage of this motif in the genome (0.5% of all NNNTN 5-mers).
For SIMs, the cluster has a positive association with recurrence for three out of the four
SIM subtypes as well as with the same subtypes in a midsize and/or long homopolymer
context. This suggests similar mechanisms as for cluster J. Finally, as observed for SSMs
in this cluster, SIMs also show a tendency to fall into late-replicating regions (67.2%,
Table C and Fig C in Appendix 1 - S3 Text). This may further add to the high level of

recurrence for SIMs.

Cluster M, with mainly Lymph-BNHL and Lymph-CLL samples, is linked to the somatic
hypermutation of the immunoglobulin genes (Appendix 1 - S3 Text). In the
aforementioned tumour types, this process is indicative of memory B cells being the cell
of origin as opposed to naive B cells [145]. The cluster has positive associations with the
level of recurrence for all six SSM subtypes. The association is particularly strong for C>G.
Of all recurrent C>G SSMs, 10.7% can be found in this cluster alone. The high level of
recurrence may partially be explained by the hypermutation observed in the limited
area of the genome where the immunoglobulin genes are located. For SIMs, the cluster
has positive associations with the level of recurrence for all four subtypes as well as with
those subtypes in general when in a midsize and/or long homopolymer context. This
cluster has the highest median percentage of SIMs in late-replicating regions (67.5% vs.
57.8% for the other cluster combined, p<2.2e-16, Table C and Fig C in Appendix 1 - S3

Text), which may contribute to the high level of recurrence.

In cluster N, which consists of ~47% Panc-AdenoCA samples, the sources of mutagenesis

are less clear, even after the inclusion of all annotation layers (Appendix 1 - S3 Text).
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Except for C>G and T>C SSMs, the cluster has positive associations with the recurrence
of all other subtypes of SSMs and every SIM subtype. This is especially noticeable as the
median of the total number of mutations across samples is intermediate. A high
percentage of the recurrent mutations are SIMs in this cluster with a median of 35.0%.
This is far higher than for samples of the other clusters combined (median: 15.5%,
p<2.2e-16). The positive associations with all SIM subtypes when in a midsize-to-long

homopolymer context may point to a slippage-related mechanism (see also cluster J).

5.2.9. Negative association with recurrence: Tobacco-smoke exposure,
alcohol use and increased activity of cytidine deaminases

There are also several mutagenic processes that are associated with low levels of
recurrence (Figure 36) including those represented by clusters A, B, C and E. Cluster A,
of which 84% are lung cancer samples, is linked to mutational processes induced by
tobacco-smoke exposure (Appendix 1 - S3 Text). This cluster shows a positive association
with the total number of SSMs and the percentage of C>A SSMs, the latter is a known
consequence of tobacco-smoke exposure [146]. There are several factors that increase
the probability of recurrence in this cluster, including the high total mutational load
together with the high percentage of C>A SSMs and the enrichment of mutations in late-
replicating regions (Appendix 1 - S3 Text). Also, tobacco-smoke induced mutations have
been shown to be enriched in linker DNA (i.e., DNA not wrapped around a nucleosome)
[147], which constitute only between 10% and 25% of the genome in eukaryotes [148].
The key to explaining the lack of recurrence seems to be that there is little tendency to
favour a specific sequence context for the C>A SSMs (Figure 37). This can also be
observed in the ‘tobacco smoking signature’ [149], which is present in nearly 90% of the
samples in this cluster (Appendix 1 - S3 Text). Unlike for several clusters mentioned
above, there is a positive association with SIMs in short homopolymer contexts, which
are more frequent in the genome than longer homopolymers, and the resulting
distribution is therefore also more random. Note that cluster A also has a strong
association with the percentage of total 1 bp C/G deletions, which has not been
described previously as a possible consequence of tobacco-smoke exposure (Appendix

1 - S3 Text and S4 Text).
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Cluster B, consisting of 85% Liver-HCC samples, is likely to be linked to mutational
processes indirectly induced by excessive alcohol use (Appendix 1 - S3 Text). The level
of recurrence is low despite the high number of samples of the same tumour type (277)
and the consistent pattern of a high percentage of T>C SSMs (median: 31.7% vs. 14.6%
in the other cluster combined, p<2.2e-16). With regard to 1 bp SIMs, there is a positive
association with a short homopolymer context, as for cluster A, with the exception of 1

bp A/T insertions.

In cluster C, in which ~82% are Kidney-RCC and Kidney-ChRCC samples, the mutational
processes remain largely obscure except for a few samples that can be connected to
aristolochic-acid exposure (Appendix 1 - S3 Text). Unlike for clusters A and B, the median
number of SSMs across samples is relatively low. Furthermore, mutations are nearly
equally spread between early- and late-replicating regions as only 53.9% of the SSMs
and 47.5% of SIMs are in late (Table C, Figs B and C in Appendix 1 - S3 Text). SIMs are

preferentially located in no or short homopolymer context, similar to clusters A and B.

In cluster E nearly one third are Breast-AdenoCA samples and key mutational
characteristics point to the endogenous mutational process of increased activity of
cytidine deaminases (Appendix 1 - S3 Text). There is a general paucity of associations
with characteristics of recurrence. In line with this, the mutations in this cluster are
nearly equally spread between early- and late-replicating regions of the genome (Table
C, Figs B and C in Appendix 1 - S3 Text). The most outstanding feature of this cluster is
the high percentage of C>G SSMs. This is the most rare substitution type, making the
detection of recurrence unlikely, particularly if not confined to specific genomic regions.
Interestingly though, the 655 C>G SSMs that are recurrent within this cluster are
enriched for the motif CTCW (W = A or T) (Figure 37, see Methods). Very similar motifs
have been described as being characteristic for deamination mediated by APOBEC3
[150]. The number of recurrent mutations is much lower than for the other motifs
discussed. The CTCW motif is also shorter, more general and therefore relatively
frequent in the genome (5.4% of all NNCN 4-mers), all possible causes for the lacking

trend towards recurrence.
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5.2.10. The added value of the recurrence-related features

The PCA shows that seven of the sixteen features that contribute above average to the
first two PCs are related to recurrence (Figure 34). In addition, all 16 clusters have a
statistically significant association with two or more recurrence-related features (Figure
35). The importance of the recurrence-related features is further demonstrated by the
results of running the entire workflow (Figure 34) using only the general features. In this
case we are no longer able to separate all ultra-hypermutator samples from the rest of
the cohort (Appendix 1 - S2 Fig). Furthermore, the cluster linked to hypermutation of
the immunoglobulin genes (cluster M) is dissolved, and the cluster possibly linked to
gastric-acid exposure (cluster L) is less cancer-specific as it absorbs 90 samples of the
dissolved cluster M and thereby nearly doubles in size. Another key difference is that
only ~“55% of the Lymph-CLL samples without hypermutation of the immunoglobulin

genes are confined to a single cluster as opposed to ~“86% when using all features.

Take-home messages Chapter 2 (Figure 38)

Recurrence of somatic mutations was higher than expected by chance.

The number of samples in the individual tumour types did not always

correspond to the level of recurrence.

e The level of recurrence could not be fully explained by any of the following

factors individually: mutational load, sequence context and genomic region.

e Level of recurrence can be indicative of the mutational processes in the sample:

0 UV light exposure is characterized by high levels of recurrent SSMs and
low levels of recurrent SIMs.

0 Deregulated activity of Pol € is characterized by high levels of recurrent
SSMs.

0 Microsatellite instability is characterized by high levels of recurrent SIMs.
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0 Gastric-acid exposure and hypermutation of immunoglobulin genes have
a positive association with recurrence of SSMs and SIMs.
0 Tobacco-smoke exposure, alcohol use and increased activity of cytidine

deaminases have a negative association with recurrence.

e The PCAWG dataset could be divided into 16 biologically relevant clusters using

a combination of recurrence-based and general mutational characteristics.
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Figure 38. Summary of take-home messages: Factors impacting on recurrence in the context of the
clusters. None of the three key factors (middle panel) that impact on recurrence individually explain the
observed level of recurrence in the clusters. Whether a cluster has a relatively high or a comparatively
lower mutational load is based on the median number of SSMs/SIMs across its samples (Figure 35). The
actual specific sequence contexts for SSMs are shown in Figure 37. For cluster M there is enrichment for
a specific sequence context as well, which is AGCT for C>G SSMs that are recurrent within this cluster (n
= 949) (Appendix 1 - S3 Fig). For SIMs a homopolymer of A/T’s is used to represent any type of
homopolymer. Clusters A and C have a positive association to no and/or short homopolymer context for
all types of 1 bp SIMs (red), while for clusters J, L and M this is the case for midsize and/or long
homopolymer context (green) (Figure 36). For the replication time region, we compute the percentage of
SSMs/SIMs that are in late-replicating regions (Appendix 1 - S3 Text). If this percentage is between 45—
55%, then we consider the mutations to be nearly equally spread between early- and late-replicating
regions of the genome. The specific region that is enriched in cluster M refers to the immunoglobulin
genes. The recurrence in clusters A and G is also likely to be positively impacted by an increased mutation
rate in a specific region as most of their samples are from a particular tumour type for which this has been
reported. For lung cancer (cluster A) the mutation rate is increased in linker DNA [147] and for Skin-
Melanoma (cluster G) at active transcription factor binding sites [18].
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5.3. CHAPTER 3. CHARACTERIZATION OF AMINO ACID CHANGES RESULTING FROM
SOMATIC MUTATIONS IN PROTEIN CODING GENES

For the amino acid changes that were translated from the missense mutations in our
joint dataset we attributed eight features combining amino acid, evolutionary and
structural properties. These protein features were selected because of being helpful to
elucidate the effect that a mutation could have in the protein. The features were (1) the
characteristic of the amino acid change (chemical and size change), (2) the solvent
accessibility of the amino acid that was mutated, (3) the secondary structure in which
the amino acid mutated was located, (4) the protein domain in which the amino acid
mutated was located (if any), (5) specific site in which the amino acid mutated was
involved in (if any), (6) the conservation of the amino acid that was mutated, (7) if the
amino acid change belonged to a 3D-hotspot and (8) the change in the free energy of

protein folding between the wild-type and mutated protein structure.

All features were collected taking advantage from UniProt annotation, The Protein Data
Bank (PDB) [86] and Swiss-Model Repository [87], as well as from several tools such as
FoldX [122], ConSurf [119] or mutation3D [30]. Using UniProt we indirectly collected
information from other databases such as Pfam and Interpro regarding protein domains,
or other proteomic databases in the case of functional sites. The pdb files obtained from
the Protein Data Bank and Swiss-Model Repository, were not always identically
formatted and manual curation was needed to extract the data correctly. The amino
acid conservation was collected from ConSurfDB or computed with Consurf

(https://consurfdb.tau.ac.il) [119] when needed. The energy change on protein folding

was computed using FoldX [122] and 3D hotspots were computed using mutation3D

[30].

We focused on breast cancer as use case because it was the tumour type with the largest
number of donors with missense mutations in the combined dataset, with exactly 9,306
donors with missense mutations. Across these donors there were 173,226 missense
mutations or, considering unique mutations, a total of 159,430 unique missense
mutations (Figure 39). These missense mutations were translated into 159,294 different

amino acid changes that hit 18,523 different genes. We defined each amino acid change
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with the eight protein features. The protein structure was available for less than 50% of
the proteins affected by amino acid changes in this tumour type (48% of proteins in
PCAWG dataset had a structure available, 47% in HMF, 48% in TCGA and 81% in B-CAST).
However, despite the structures that were available, not all the amino acid changes
could be mapped to a structure. Only 17% of amino acid changes in PCAWG and HMF,
19% in TCGA and 67% in B-CAST were the amino acids mapped to a structure and
therefore, we only have the complete measurements of the eight features for them. For
the amino acid changes that could not be mapped to a structure we have only the

features that were not structural.

With all, first, we described the landscape of amino acid changes found in breast cancer
and their characteristics based on eight protein features. Next, we performed a
dimensionality reduction and clustering to look for groups of mutations that may share
characteristics (Figure 39). Finally, we annotated whether mutations were drivers or not
to look whether there was a difference in the features describing each group of
mutations (considering ‘driver mutations’ one group and ‘not a driver’ the other group

of mutations).
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Donors with missense 211 donors 761 donors 972 donors 7,362 donors
Number total missense 11 466 missensa 81 467 missense 60,898 missense 19,395 missanse

Number unique missense 11,380 unique 80,294 unique 60,209 unique 12,801 unique

Number of genes 7,223 genes 156,841 genes 15,458 genes 322 genes

Total; 173, 226 missense mutations
159,430 unique

159,294 amino acid changes

Evoluation of amino acid chonges by
8 protein features
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Figure 39. Workflow of the analysis of amino acid changes in breast cancer. Across 9,306 breast cancer
donors (211 donors from PCAWG dataset, 761 from HMF, 972 from TCGA and 7,362 from B-CAST), we
found 173,226 missense mutations in total, which were 159,430 considering unique mutations. These
unique mutations were translated into 159,294 amino acid changes that were characterized by eight
protein features (chemical change, secondary structure, solvent accessibility, amino acid conservation,
domain, disruption of functional sites, change of the free energy of protein folding and belonging to a 3D
hotspot). This data was used as input for a Factor Analysis of Mixed Data (FAMD) followed by hierarchical
clustering to look for groups of mutations with the similar behaviour and a potential association to driver
mutations.

105



5.3.1. Distribution of the amino acid changes found in breast tumours across
the categories established for eight protein features

The twenty amino acids can be classified in four different groups depending on the
charge of its side chain. As we described for the feature that we named as ‘chemical
change’, depending on which is the original amino acid and which is the amino acid that
arises from the mutation, we can determine different chemical changes (Figure 40a).
The most frequent chemical change in breast cancer was a change between amino acids
from the same category, followed by a loss of charge and a loss of polarity (Figure 40b).
However, when we selected only the recurrent mutations (mutations that were found
in more than one patient in the same dataset) and plotted the distribution of the
chemical changes again, we could see that the ‘change of charge’ increased (Figure 40c).
Under the assumption that recurrent mutations might be relevant for the cancer
because they are coinciding across several patients, this may indicate that these ‘change
of charge’ mutations might be more related to relevant mutation for the disease.
The most common amino acid mutation across all datasets was E>K (Figure 41). The
second and third most common mutations (E>Q and D>N) in the overall dataset
corresponded to what we observed for PCAWG, TCGA and HMF individually (Figure 41),
but not for B-CAST. In the latter, the second most common amino acid mutation was
H>R and the third, R>Q (Figure 41d). The fact that B-CAST is a panel of genes explains
this difference in behaviour compared to the other datasets, since its composition is
biased to the genes that are included in the panel. We could see that most of mutations
in breast cancer happen in the secondary structure that is a loop (Figure 42a), next in an
a-helix and the lowest number in a B-strand (Figure 42a). Regarding the solvent
accessibility of the amino acid, mutations are more frequent in exposed amino acids
(Figure 42b), except in B-CAST for which we saw a more equal distribution between
exposed and buried amino acids. The percentage of mutations annotated as being part
of arelevant site in the protein is consistent across PCAWG, HMF and TCGA, with around
33% of the mutations. From all amino acid changes in B-CAST, less than a 13% are
affecting a functional site (Figure 42c). We had a total of 17,604 proteins that were
mutated in breast cancer. Only 7,767 proteins had domains defined in its structure. A
domain is a region that it is self-stabilizing and therefore can fold independently from

the rest in the protein and be functional [151], for the proteins that there is no domain
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annotation can be that it does not contain specific domains or that the structure is still
unknown and the potential domains in the protein were not predicted nor elucidated
yet. The protein domains more mutated in breast cancer were protein kinases followed
by cadherin and Ig-Fibronectin Type I, in all datasets (Figure 43). This is expected since
these are some of the more well-known domains and can be identified in different
proteins and therefore more chances of being mutated. The conservation of the amino
acids mutated in this tumour also tended to be high, considering the amino acids with a

score of 7 or higher (in a range from 1 less conserved to 9 highly conserved).
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Figure 40. Distribution of amino acid changes found in breast tumours across the categories of ‘Chemical
change’. (a) Categories established depending on the amino acid change that is happening. (b)
Distribution of the non-recurrent amino acid changes (amino acid mutations only found in one tumour
genome in the cohort) across the different categories of ‘chemical change’ per dataset. (c) Distribution of
the recurrent amino acid changes (amino acid mutations found in two or more tumour genomes in the
cohort) across the different categories of ‘chemical change’ across datasets.
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Figure 41. Percentage of the different amino acid changes found in breast cancer tumours. The ‘x axis’
indicates the top amino acid changes found in each dataset a) PCAWG, b) HMF, c) TCGA and d) B-CAST,
e.g. glutamic acid to lysine is indicated as E_K. Each amino acid change is coloured by the chemical change,
as defined in Figure 40a. The ‘y axis’ indicates the percentage of amino acid changes that involve that case
of amino acids in each dataset.
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b. Solvent accessibility
PCAWG HMF TCGA B-CAST
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Figure 42. Distribution of the amino acid changes found in breast cancer tumours across (a) location in
secondary structure, (b) solvent accessibility and (c) location in a functional site.

The number of amino acid changes classified in each category is indicated together with the corresponding
percentage per dataset (PCAWG, HMF, TCGA and B-CAST). (a) Location in secondary structure. The amino
acid changes were classified depending on the secondary structure in which they were located. Three
different types of secondary structure were considered: o-helix, B-strand and loop. (b) Solvent
accessibility. The amino acid mutated was classified in buried, exposed or ‘NA’, the latter in the case of
amino acids that could not be assigned to any category. (c) Location in a functional site. The number of
mutations that were happening in an amino acid that is assigned to a functional site, such as protein
binding site, DNA binding site or active site, is indicated from the total number of amino acid changes
together with the percentage to which it corresponds.
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Figure 43. Distribution of the amino acid changes found in breast cancer tumours across protein
domains. The number of amino acid changes that were assigned to a known domain is indicated together
with the corresponding percentage among the amino acid changes found in each dataset (PCAWG, HMF,
TCGA and B-CAST). The pie diagrams show the distribution of the amino acid changes across the different
domains per dataset, indicating the legend for the top mutated domains in each dataset.
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5.3.2. Proof of concept. Reduction method and clustering to find groups of
relevant mutations

Using as input the amino acid changes with the eight different protein features by which
we characterized these amino acid changes, we performed a Factor Analysis of Mixed
Data (FAMD) followed by hierarchical clustering of the principal components obtained
from the FAMD. We investigated whether we were obtaining different groups of
mutations that were sharing the same characteristics across the different protein
features or not. Furthermore, we annotated the mutations that were known or
predicted as being a driver mutation. Groups of driver mutations could share
characteristics and form clusters in which other less known mutations would be included
and therefore, these less frequent mutations could be interesting targets for further

investigation about their potential involvement in the disease.

Unfortunately, no coherent patterns were observed and no meaningful clusters could
be identified. The difficulty of using categorical data in a dimensionality reduction
method, since there are no intermediate values to go from one category to another, and
the potential lack of more accurate features to characterize amino acid changes could
be the reason of not being able to find different groups. We tried other dimensionality
reduction methods such as Multiple Correspondence Analysis (MCA) or Multiple Factor
Analysis (MFA), but all results were not conclusive. The variety of mutations and the
variation in their categorization using these protein features might be responsible of the

inability to find different clusters as we were expecting.

Take-home messages Chapter 3

e From the characterization of 159,294 amino acid changes across 9,306 breast
cancer donors by eight protein features we can highlight that it was observed
that most of the amino acid changes in breast cancer happen between amino
acids of the same category. Most of the mutated amino acids are in the
secondary structure that is a loop and the amino acid is exposed. Around 33% of

the mutations are affecting a functional site in the datasets containing all
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proteins, while only around 13% in the dataset that only contains a panel of 323

genes.

The most frequent amino acid change in breast cancer is E>K (in each of the
individual four datasets) followed by E>Q in PCAWG, TCGA and HMF and H>R in
B-CAST. Different tendencies are also seen in B-CAST regarding other protein
features. This might be explained by that its composition is biased to the genes

that are included in the panel.

Considering only the recurrent amino acid changes (mutations that were found
in more than one patient in the same dataset) the proportion of ‘change of

charge’ cases increase. These mutations might be more relevant for the disease.

The protein features collected did not stratify mutations in relevant groups nor

resulted in the characterization of driver mutations.
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5.4. CHAPTER 4. LANDSCAPE OF PROTEIN CHANGES IN p110a (PIK3CA) IN CANCER

Finding mutations in the same gene across and within cancer types could imply
similarities in the origin and characteristics of a tumour and therefore, the possibility
that the same treatment could be used for these patients [152]. However, not all
mutations in the same gene have the same effect and therefore may imply different
treatments are required [153]. For example, SF3B1 gene, which encodes a complex of
the spliceosome, a macromolecular complex that splices the pre-mRNA, is differently
mutated in different tumour types. Across the different tumour types the effect of the
mutations on the patient’s prognosis differs, while in uveal melanoma it is associated
with a more favourable prognosis [154], in chronic lymphocytic leukaemia (CLL) it is
linked to a more aggressive disease and shorter survival [155]. Also, studies have linked
the genomic landscape of tumours with tumour immunity, identifying somatic
mutations associated with immune infiltrates [156][157][158]. Therefore, combining the
study of the mutations in the genome with other measurements such as the tumour
microenvironment and other phenotypes associated to the tumours seems very
informative. This could help to characterize the tumours, elucidate the right biological

mechanism and improve the selection of treatment to fight the tumour successfully.

We investigated these aspects for PIK3CA. PIK3CA is a well-known gene involved in
several cancers that encodes the p110a protein. We looked at the landscape of protein
changes found in this protein across all cancer types and focused further analyses on the
tumours for which we had the highest number of donors with this gene mutated, which
were breast, colorectal and uterus cancer. In addition, we focused in more detail on
breast cancer and studied the association of PIK3CA mutations with the tumourimmune
microenvironment and clinical parameters of the tumour, such as grade, stage, hormone
status or survival. We focused on breast cancer for this last part because it was the
tumour type for which we had the highest number of donors and therefore we had more

power to test our hypothesis.
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5.4.1. Pan-cancer description of PIK3CA mutations

From the genomic mutations that were found in the PIK3CA gene in our dataset, we
focused on the subset of coding mutations and excluded the silent mutations, since they

do not result in a protein change.

5.4.1.1. Frequency of PIK3CA mutations across cancer types

PIK3CA was mutated in several cancer types and the proportion of mutated donors was
different per dataset (Figure 44). In the PCAWG dataset (Figure 44a) the top 3 mutated
cancer types were uterus, colorectal and breast, while in TCGA (Figure 44b) the ranking
changed to uterus, breast and colorectal cancer. In HMF (Figure 44c), breast and uterus
were the top mutated cancer types, while colorectal was in the 9t position. Considering
all datasets, including B-CAST that had ~30% of breast cancer donors with PIK3CA
mutation, and taking the mean per cancer type across the four datasets, the top
mutated cancer types were uterus (~42%), followed by breast (~¥34%) and colorectal

cancer (~29% of mutated donors).

The most frequent mutation type in PIK3CA gene was by far missense mutations (~95%
in the joint dataset), followed by deletions (Figure 45). Only 0.17% of the mutations
overall were nonsense mutations. Uterus cancer had with 1.41% the highest percentage
of the three cancer types highlighted (Figure 45). Colorectal cancer had the highest

percentage of deletions compared to breast and uterus cancer (Figure 45).
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Figure 44. PIK3CA mutations in different datasets. Total number of donors (lollipop plot, above) and
percentage of donors with PIK3CA mutation (barplot, below) per cancer type and per dataset: (a) PCAWG,

(b) TCGA and (c) HMF dataset.
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Figure 45. Mutation types in PIK3CA gene. Distribution of PIK3CA coding mutations (excluding silent
mutations) across the different mutation types in the joint dataset (all cancer types included) and in the
most frequently mutated cancer types inside the joint dataset (breast, colorectal and uterus cancer).
‘delins’: deletion followed by an insertion. ‘nonstop’: mutation that occur within the stop codon, changing
the stop codon for a new amino acid, which leads to the continued and inappropriate translation of the
mRNA making a protein longer than expected.

5.4.1.2. Description of protein changes in p110a (PIK3CA)

From all coding mutations (excluding silent) in PIK3CA gene, 5,040 were missense
mutations and were translated into 385 unique amino acid changes in the p110a
protein. Since the number of samples available for each cancer type was highly variable
(Figure 44), we focused on the cancer types with the higher percentage of PIK3CA-

mutated donors that we pointed out previously: breast, colorectal and uterus cancer.

Analysing the different protein features per amino acid change across breast, uterus and
colorectal cancer, we saw that the highest proportion of amino acid changes were
happening between amino acids classified in the same category (Figure 46), followed by
the case of change of charge, in most of cases from an acidic to a basic amino acid in
breast cancer. In colorectal and uterus cancer we also saw a proportion of mutations
that involved a loss of charge, while this proportion was small in breast cancer. We saw
that the mutations in the three cancer types were mainly happened between amino
acids of the same or similar size (Figure 47). In breast cancer, a higher percentage of
mutations affected a loop than an a-helix or B-strand, which was to a large degree due
to the most frequent mutation in this gene in this cancer (H1047R). The histidine amino

acid number 1047 is located in a loop. In colorectal and uterus cancer, a higher
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percentage of mutations affected an a-helix (Figure 48). Across datasets, the highest
percentage of mutations in PIK3CA affected residues that were considered conserved or
with an intermediate level of conservation. Most of the amino acid changes affected
exposed residues in all cancer types across the different datasets (Figure 49), what was
expected since most amino acids in p110a (PIK3CA) protein are classified as exposed.
When we explored the conservation across cancer types, we saw more conserved
residues affected in breast than in the other two cancer types. We explore this in other
datasets, such as lung and bladder cancer and saw that the amino acids affected were

also less conserved (Figure 50).
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Figure 46. Proportion of the different categories of amino acid changes in p110a (PIK3CA) protein in
breast, colorectal and uterus cancer cohorts in the PCAWG, HMF, TCGA and B-CAST dataset. The number
of samples per cohort is indicated above each bar.
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found in p110a (PIK3CA) protein in breast, colorectal and uterus cancer cohorts in the PCAWG, HMF,
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Figure 48. Proportion of type of secondary structure hit by amino acid changes found in p110a (PIK3CA)
protein in breast, colorectal and uterus cancer cohorts in the PCAWG, HMF, TCGA and B-CAST dataset.
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(PIK3CA) protein in different cohorts in the PCAWG, HMF, TCGA dataset.
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In addition, mutation3D software was able to find several 3D-hotspots of mutations in
the p110a protein structure across the different datasets (Figure 51). Several of them
had previously been reported in the literature [29][120]. The main 3D-hotspots
identified were around the amino acids in position 1047, 545 and 345, respectively.
These positions by their own have been identified as a hotspot mutation. A 3D-hotspot
that included the residues 106, 107, 108 and 111 was also identified (Figure 52), which
to our knowledge, has not yet been described in the literature. Amino acids G106 and
K111 are already known to be frequently mutated in endometrial carcinomas [159]. The
3D-hotspots were located in regions of the p110a protein structure that are known to

be relevant to its protein function [120].
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Figure 51. 3D-Hotspots of mutations on p110a protein structure found by mutation3D per dataset
(PCAWG, HMF, TCGA and B-CAST). ‘Cluster’: amino acids in p110a protein included in the 3D-hotspot
cluster. ‘Max. distance’: maximum distance between the amino acids that are belonging to the 3D-hotspot
cluster. ‘P-value’”: p-value computed empirically. The clusters with a p-value lower than 5% are highlighted
because they would have a chance of 0.05 or lower of being wrong.

Figure 52. 3D-Cluster in the linker ABD-RBD including the amino acids 106, 107, 108 and 111.
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Finally, a highlighted observation was at domain level. We observed that the distribution
of amino acid changes across the protein domains across cancer types differed (Figure
53). For example, the kinase domain was the most frequent mutated domain in breast
cancer in all datasets. We will focus on this different distribution across cancer types in

depth in the next section (5.4.1.3)
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Figure 53. Proportion of mutations in each of the main domains of p110a (PIK3CA) in breast, colorectal
and uterus cancer in the PCAWG, HMF and TCGA dataset.

In addition, the evaluation of the change in the free energy of protein folding using FoldX
[122] combined with the conservation of the amino acid that is mutated indicated that
amino acid changes happening in residues more conserved or more variable were
predicted to be destabilizing (Figure 54). There were no cases of stabilizing mutations
(Figure 54). Some highly destabilizing mutations at the C2 PI3K-type domain, such as
C378R/F/W/Y, were happening at residues very low conserved and still be potentially
damaging, what indicates that conservation would have not been enough to elucidate

the relevance of these mutations.
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Figure 54. Change in the free energy of protein folding (AAG in kcal/mol) upon amino acid changes in
p110a (PIK3CA) protein in C2 PI3K-type, helical and kinase domain. Red dotted line indicates the
threshold by which the mutation is considered stabilizing or destabilizing (< -2 kcal/mol or >2 kcal/mol,
respectively). Values between -2 and 2 kcal/mol are considered not affecting protein stability. Bars are
coloured by the score of conservation of the amino acid that is mutated.

124



5.4.1.3. The distribution of mutations along p110a (PIK3CA) protein
domains differs between breast, uterus and colorectal cancer

The distribution of mutations across the domains of p110a was different among the
most PIK3CA-mutated cancer types: breast, uterus and colorectal cancer. We can
distinguish five main domains in the 1,068 amino acids long p110a protein: ABD, RBD,
C2 PI3K-type, helical and kinase domain (see Introduction 1.5.1 and legend in Figure 53).
Figure 55 shows all PIK3CA coding in our joint dataset in the three cancer types: breast
(Figure 55a), colorectal (Figure 55b) and uterus (Figure 55c) cancer. The distribution of
mutations differs across these cancer types, except for the fact that we find the well-
known hotspots mutated in all of them (residues 1047, 542 and 545). Breast cancer has
the highest peak of mutations in the hotspot of the kinase domain (H1047), colorectal
cancer has its highest peak at the hotspot at the helical domain (E545) and uterus cancer
seems to be mutated with more equal frequency across the different hotspots. In
addition, uterus had an increase in the proportion of mutations in the ABD compared to
breast and colorectal cancer, with the amino acid 88 being the most mutated (Figure
55a). The stacked bars at the right of each ‘lolliplot’ (Figure 55a-c, right) indicate the
percentages of mutations in each region, where there were clear differences among the
three cancer types. In breast cancer, there is a higher proportion of mutations in the
kinase domain (pink). Mutations in the ABD domain were hardly present in breast cancer
while they were higher in proportion in uterus cancer (Figure 55c) compared to breast
and colorectal cancer (Figure 55a and 55b). Uterus cancer had a higher proportion of
mutations in the ABD domain and ABD-RBD linker. In colorectal cancer, helical mutations
were the most abundant, due to the hotspot mutations for which they are enriched
(E545K, E542K).
Aside from missense mutations, for which their effect on the protein is normally more
uncertain, there were other mutation types that hit the p110a protein (Figure 56).
Deletions and insertions are clustered in the same positions across cancer types: end of
ABD, linker ABD-RBD or C2 PI3K-type domain (Figure 56). Deletions clustered in the C2
PI3K-type domain have been suggested to be associated to sensitivity to PI3K inhibitors
[160]. The proportion of mutations per domain with respect to the total mutations in
each tumour type is represented in bars at the right of the lolliplots (Figure 56).

Deletions and deletions followed by an insertion mainly affected the ABD, linker ABD-
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RBD and the C2 PI3K-type domain in the three cancer types. These domains are not
involved in the catalytic activity of the protein, but they are involved in the attachment
to the regulator and membrane. Insertions and deletions can have a higher impact on
protein compared to other mutations, and in this case it is suggested that these
mutations have an effect on the interaction of p110a protein with the regulator, leading
to a constitutive activation because of the regulator not being able to bind and inhibit
the activity [160]. In uterus cancer, a proportion of mutations, which were nonsense
mutations, affected exclusively the kinase domain. These cases are expected to result in
a non-active protein since the region where the catalytic activity occurs, the
phosphorylation of PIP; to PIP3 [41]. Frame-shift mutations after the kinase domain as
well as non-stop mutations were only found in breast cancer (Figure 56a), which are
expected to continue the translation of the protein sequence and result in a protein

longer than the original.
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Figure 55. Number of missense mutations per position in the p110a protein in three different cancer
types: (a) breast, (b) colorectal and (c) uterus cancer. Colours indicate the region of the protein where
the mutations are located. Note that the y axis scales are not the same, they are adapted to the values
found in each cancer type. The vertical bar to the right of each cancer type name summarises the
proportion of mutations that fall in each region. The number of samples included is 3,120, 201 and 244
for breast, colorectal and uterus cancer respectively.

N_ter: first residues of the protein from the N-terminal side; ABD: adaptor binding domain; RBD: Ras
binding domain; Helical: helical domain, Kinase: kinase domain; link_ABD_RBD: linker residues between
the ABD and RBD; link_RBD_C2: linker between the RBD and C2 PI3K type domain; link_C2_H: linker
between the C2 PI3K type domain and the helical domain; link_H_K: link between the helical and kinase
domain; C_ter: last residues of the protein until the C-terminal side.
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Figure 56. Number of non-missense coding mutations per position in the p110a protein in three
different cancer types: breast, colorectal and uterus cancer. Point colours indicate the type of mutation.
Deletion, insertion and delins (deletion followed by an insertion) are in-frame; the same mutation types
causing a frame-shift in the reading frame are annotated as “frameshift” and are changing the protein
sequence afterwards. The vertical bar on the right of each cancer type name summarises the proportion
of mutations falling in the different protein regions, indicated by different colours. The number of donors
included is 180, 11 and 13 for breast, colorectal and uterus cancer respectively.

N_ter: first residues of the protein from the N-terminal side; ABD: adaptor binding domain; RBD: Ras
binding domain; Helical: helical domain, Kinase: kinase domain; link_ABD_RBD: linker residues between
the ABD and RBD; link_RBD_C2: linker between the RBD and C2 PI3K type domain; link_C2_H: linker
between the C2 PI3K type domain and the helical domain; link_H_K: link between the helical and kinase
domain; C_ter: last residues of the protein until the C-terminal side.
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5.4.2. Underlying causes of PIK3CA mutations

We hypothesized that one possible explanation underlying the different distributions of
mutations in PIK3CA across breast, uterus and colorectal cancer could be due to the
different mutational processes that were active in each cancer type. We divide the
samples into groups depending on the domain mutated (ABD, linker ABD-RBD, C2,
helical and kinase domain), multiple domains mutated or no mutation in PIK3CA. We
also look at other possible causes behind these observations such as differences in

epigenomics, such as chromatin accessibility.

5.4.2.1. Mutational signatures can explain the different distribution of
mutations across p110a (PIK3CA) protein domains in uterus and

colorectal cancer
We used mutational signatures as a proxy for the mutational processes that could be
active in the tumours. Table 7 shows the main mutational processes identified in the
different cancer types. The activity of the APOBEC family of cytidine deaminases (SBS2
and SBS13) was the main mutational process in breast cancer together with the
defective homologous recombination (HR) DNA damage repair pathway (SBS3, 1D6).
APOBEC signatures were also seen in some of the uterus cancer. Polymerase epsilon (Pol
€) exonuclease domain mutations (SBS10a/b, SBS28) that lead to a defective
performance of this polymerase were present in uterus and colorectal cancer donors
together with signature ID1, which is related to slippage during DNA replication of the
replicated DNA strand. Defective Mismatch Repair (MMR) signatures (SBS26, SBS44,
ID7) are mainly present in colorectal cancer and in some cases of uterus cancer.
Signatures with unknown aetiology but that were suggested to relate to age in some

studies [129], like SBS5 and SBS40, were present in all cancer types.

Principal Component Analysis (PCA) followed by hierarchical clustering on the principal
components of the mutational signatures in the different tumour types showed in breast
cancer an association between a group of donors with multiple mutations in PIK3CA and
the presence of APOBEC mutational processes, while in uterus and colorectal cancer this
association was to a mutational process related to Pol € or defective DNA mismatch

repair. The signature profile of the PIK3CA-mutated tumours split by single or multiple
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mutations in p110a (PIK3CA) protein is shown in Figure 57, Figure 58 and Figure 59. The
proportion of breast cancer donors that harbour multiple mutations in PIK3CA did not
present a different mutational signature profile than those with a single mutation
(Figure 57). We also observed clusters characterized by specific mutational processes
enriched for a particular domain mutated (Figure 60). For the donors with PIK3CA
mutations, the APOBEC signatures are related to the mutations in the helical domain
(Figure 60 — Cluster 2) while defective DNA mismatch repair and deregulated activity of
Pol € are more enriched for ABD mutations (Figure 60 — Cluster 1 and 3). Mutational
processes such as a defective DNA mismatch repair pathway and the
ultrahypermutation due to the deregulated activity of Pol € are uncommon in breast
cancer, which might explain why there are so few ABD domain mutations in this type of
cancer. Since both processes have a high number of mutations as consequence, the ABD
mutations could be because of this. To confirm it, we tested for enrichment of PIK3CA
mutations or specific PIK3CA domain mutations across groups of samples affected by
different mutational processes that lead to a high number of somatic mutations. Figure
61 shows these results with its corresponding odds ratio. No significant positive
association was found between ABD mutations and other mutational processes that
were involving a higher number of mutations, such as UV-light exposure, or an older age
of the donor (Figure 61), so a high number of mutations seemed to not be always the

explanation of the presence of ABD mutations.

130



BREAST CANCER

B $351: Spontanecus deamination S5mC to T (clock-like)
Ll 5852/13: APOBEC
Mutational signatures . $B53: Defective HR
| SBSS: Clack-like
| SBS18: Damage by reaclive oxygen species
. S8540: Unknown. Correlated with petient’s ages for some types of cancer

Primary tumours (PCAWG, TCGA)

Single mutation In PIK3CA

Figure 57. Mutational signatures PIK3CA-mutated breast tumours divided in single mutation vs.
multiple mutations in p110a (PIK3CA) protein. Each vertical bar in the plots refers to a tumour genome
from a donor and the colours correspond to the SBS signatures found in their different proportions.
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Figure 58. Mutational signatures PIK3CA-mutated uterus tumours divided in single mutation vs.
multiple mutations in p110a (PIK3CA) protein. Each vertical bar in the plots refers to a tumour genome
from a donor and the colours correspond to the SBS signatures found in their different proportions.
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Figure 59. Mutational signatures PIK3CA-mutated colorectal tumours divided in single mutation vs.
multiple mutations in p110a (PIK3CA) protein. Each vertical bar in the plots refers to a tumour genome
from a donor and the colours correspond to the SBS signatures found in their different proportions.
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Figure 60. Principal Component Analysis (PCA) followed by hierarchical clustering of principal
components of the mutational signatures describing breast and uterus cancer genomes from the
PCAWG, TCGA and HMF dataset. a) PCA showing first vs. second dimension and main clusters found after
hierarchical clustering of the principal components. Below, the mutational signatures that were
associated to each of the four clusters are listed. ‘clock’: clock-like signature. ‘MMR def’: DNA mismatch
repair deficiency. ‘HR def.”: homologous recombination DNA damage repair deficiency. ‘slippage’:
signature related to a potential slippage during DNA replication of the replicated DNA strand; substantial
number of mutations of this signature are found in cancers with DNA mismatch repair deficiency [161].
‘POLE’: Polymerase epsilon exonuclease domain mutations. ‘repair double strand breaks NHEJ': signature
that may involve repair of DNA double strand breaks by non-homologous DNA end-joining mechanisms
[161]. b) For each of the four clusters, the proportion of cancer genomes harbouring a mutation in each
of the different protein domains is indicated.
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Figure 61. Fisher’s Exact test to test for associations of PIK3CA mutations with different mutational
processes or conditions across cancer genomes from all cancer types in PCAWG and TCGA datasets. a)
Associations of the different conditions with PIK3CA mutated or not mutated. b) Associations of the
different conditions with the different PIK3CA domains mutated. The contingency tables used in the test
are included together for significant results (v = significant). The non-significant comparisons are
indicated with ‘%’ and the contingency table is not included). OR: Odds Ratio. OR equal or close to 1
indicates that there are no differences between the two conditions compared, the higher the OR the
stronger is the association. The strongest associations are indicated with the OR in bold.
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5.4.2.2. Potential cause of the different distribution of mutations

A possible factor that could drive differences, in terms of which domains are mutated in
the different cancer types is epigenetics. We hypothesised that differences in
epigenetics in the different tissues could result in differences in accessibility of the
protein domains and, therefore, making mutations more likely in certain domains in one

tissue than in the other.

First, we considered two epigenetic features, chromatin accessibility and methylation in
healthy tissues. We searched for public data on chromatin accessibility such us ATACdb

[162], CATlas [163] or EN-TEx data portal (https://www.encodeproject.org) [164], but

there was not sufficient data to have enough power to test our hypothesis in the tissues
we were interested in. For methylation there was data available in the EN-TEx project.
We observed two positions differently methylated in breast (3 samples) and uterus (2
samples) (Figure 62). The positions that showed different values are 179,175,515 and
179,181,381 in chromosome 3 (GRCh38), which are located in the intron 1-2 (between
the first and second exon) of the PIK3CA gene. However, based on this we cannot
conclude if this could have an effect on the accessibility of any domain. Second, instead
of normal tissue, we looked for differentially methylated probes in the samples of the
PCAWG and TCGA datasets, for which we only had HM450K methylation arrays available
(Appendix 2). The only probes related to PIK3CA in the HM450K methylation arrays were
5" upstream or in the intron between Exonl and Exon2 of PIK3CA, so not in the gene
body. Anyways, we did not find any of these probes differentially methylated in the

different tissues depending on the protein domain mutated.

136



i17-18
el

100 =—€d= i1-2 = PIK3CA region
;015' N
gm ...................... . Female

| | (51 ys)
fazn

a0o0- . | :
s100 5
Samn Lz)
5 Female |5
YT T (53 ys) g
fOZS o

o

0,00 ==
oW
i(L"S
{aso ...................... Ma'e

(S4ys) |
§ozn

Q.00

1.00-

'3075'
‘m ______________________ Female
% V (51ys) e
02s- o
z

0 0 - S———— 9
gtoo é\

Q75 WA
5 Female 5
bl S Y 0T (53 ys)
fozs-

TN -

Al Sl
1N
L T
AL U LT

Figure 62. Methylation values of 19 positions in the PIK3CA gene in breast and uterus tissue. Annotation
of the PIK3CA gene intron or exon in which these positions are located is indicated at the top of the plot.
The red box indicates the two positions that seem to be less methylated in uterus compared to breast
samples. Methylation data to do this plot was acquired from EN-TEx data portal.
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5.4.3. Relationship between p110a (PIK3CA) mutation and survival or other
clinical parameters in cancer

The association of p110a (PIK3CA) mutations with survival or other clinical features is
controversial. Different associations can be found across different studies described in
the literature. To our knowledge, most of studies evaluated differences between cancer
genomes mutated vs. non-mutated in p110a (PIK3CA). Only a few studies focused on
differences depending on which p110a (PIK3CA) domain is mutated, among them, most
of the studies only consider the helical and kinase domain [165][166][167] and very few
cases consider all domains [168]. We hypothesised that the disagreement in terms of
associations might be due to the different mutations in the p110a (PIK3CA) mutated
tumour. First, we checked whether there were differences in survival depending on the
p110a (PIK3CA) mutation status, and also for mutations in specific domains in breast,
uterus and colorectal cancer. Next, we tested for associations of clinical parameters,
such as breast cancer subtype in breast cancer, tumour grade and stage of the tumour,

with p110a (PIK3CA) mutational status in general or with a specific domain mutated.

Survival analyses

Survival analysis was done in the TCGA, PCAWG and HMF dataset. In the TCGA dataset,
we did see differences in uterus cancer (Figure 63). Censoring at both 5 and 15 years,
survival in PIK3CA-mutated tumours in uterus cancer was significantly higher compared
to non-mutated tumours (Cox proportional hazards (PH) regression at 5 years survival,
HR<1, p-value=0.034 and Cox PH regression at 15 years survival, HR<1, p-value=0.04,
respectively) (Figure 63). In breast and colorectal cancer, we did not find differences in
survival between PIK3CA-mutated and non-mutated tumours. We also added age, ER
and PR status (in the case of breast cancer) and sex (in the case of colon cancer) as
variables to the different Cox regression models for testing survival in PIK3CA-mutated
versus non-mutated tumours, to see if these variables could have an influence on the
results, but still non-significant results were obtained in any of the cases. The same
survival analyses in the PCAWG and HMF datasets did not show statistically significant

results in any cancer type when comparing mutated and non-mutated tumours.
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To evaluate survival depending on which p110a (PIK3CA) domain was mutated, we

performed a Cox PH regression including all mutated samples and as variable which

domain was mutated and we also did independent regressions including two groups of

tumours each time, e.g., helical domain mutated versus kinase domain mutated

tumours, kinase domain versus ABD mutated, etc. We did not see statistically significant

differences in survival in any case in any dataset.
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Figure 63. Kaplan-Meier curves for survival in PIK3CA-mutated versus non-mutated tumours in uterus
cancer. (a) Survival analysis censored at 15 years and (b) censored at 5 years. The ‘p’ in each plot
corresponds to the result of the long-rank test which coincides with the Cox regression results.
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Associations of p110a (PIK3CA) mutation with clinical parameters

The clinical parameters that were tested for relationship with p110a (PIK3CA) mutation
status were tumour grade, tumour stage and, in the case of breast cancer, ER, PR and
HER2 status of the tumour. We also tested for relationships with the age of the patient
or, in the case of colon cancer, the sex of the patient. In breast cancer, there were
significantly more PIK3CA mutations in ER-positive tumours as well as HER2-negative,
while no significant associations were found between PIK3CA mutations and tumour
grade, tumour stage nor age of the patient. Association of p110a (PIK3CA) mutation with
the stage and grade of the tumour were also not significant in the case of uterus and
colorectal cancer. No association with age was found neither in uterus nor in colorectal,

and no association with sex was found in colorectal cancer.

We tested the same clinical parameters in the subset of PIK3CA-mutated tumours
considering the pl110a (PIK3CA) domain mutated and we did not find significant

associations.

5.4.4. Gene set enrichment analysis (GSEA) of p110a mutated domains

We performed a differential expression analysis using DESeq2 (See Methods) between
PIK3CA mutated and non-mutated tumours in breast and uterus cancer from the TCGA
dataset. We identified 11,413 significantly differentially expressed (DE) genes (adjusted
p-value<0.05) between breast tumours with PIK3CA mutated and non-mutated. From
the total of DE genes, 3,049 genes (~27%) showed a higher expression in the PIK3CA
mutated tumours with respect to the non-mutated. In the case of uterus cancer, 1,590
genes were significantly differentially expressed (adjusted p-value<0.05) between
PIK3CA mutated and non-mutated tumours. From the total, 295 genes (~19%) showed
higher expression in PIK3CA mutated tumours. For both breast and uterus tumours we
also computed the differential expression between the different domains mutated as
well as between tumours with a single mutation in PIK3CA and tumours with multiple
mutations in this gene. We also used the same RNA-Seq data as input for GSEA tool with
which the gene set enrichment analysis was performed. In breast cancer, samples with

a kinase mutation showed significant enrichment of the ‘PROTEIN SECRETION’ gene set

140



compared to helical domain mutated samples. The protein secretion pathway is an
essential molecular machinery for preparing and exporting proteins to the extracellular
environment [169]. The kinase domain mutated breast cancer tumours could have an
increase in this pathway and therefore be related to higher secretion of proteins. In
uterus cancer, samples with C2 PI3K-type domain mutated, were enriched in ‘DNA
REPAIR’ gene set compared to ABD, helical and kinase domain mutated samples. ‘DNA
REPAIR’ gene set includes genes involved in DNA damage repair. The fact that it is
enriched in C2 PI3K-type may mean there are more mistakes in these samples and the
machinery is more expressed to get everything repaired. Deletions and insertions are
frequent in this domain that might also increase the activation of the DNA repair
pathways. Donors with multiple mutations in PIK3CA resulted in different gene sets
enriched in breast and uterus cancer, except for three gene sets that were enriched in
both cancer types: ‘DNA REPAIR’, ‘MTORC1 SIGNALING’ and ‘UNFOLDED PROTEIN
RESPONSE’. In the case of breast cancer seven gene sets in total were enriched in
samples with multiple mutations in PIK3CA. ‘FATTY ACID METABOLISM’, ‘CHOLESTEROL
HOMEOSTASIS’, ‘PEROXISOME’ and ‘GLYCOLYSIS’ were the gene sets only enriched in
the case of breast cancer multiple mutated samples. In the case of uterus cancer, nine
gene sets in total were enriched in samples with multiple mutations in PIK3CA. ‘MYC
TARGETS V1’, ‘OXIDATIVE PHOSPHORYLATION’, ‘PI3K AKT MTOR SIGNALING’, ‘MYC
TARGETS V2’, ‘E2F TARGETS’ and ‘G2M CHECKPOINT" were the gene sets different to

breast cancer.

5.4.5. Assessment of the tumour immune microenvironment in pl110a
mutated and non-mutated tumours in breast cancer

Using the breast cancer cohort of the TCGA dataset, we aimed to determine the intra-
tumoral immune landscape of primary breast tumours harbouring PIK3CA mutations
and without mutations in this gene. Furthermore, in the subset of PIK3CA-mutated
tumours, we analysed the differences of the tumour immune landscape depending on

which of the domains of p110a (PIK3CA) was mutated.
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Exploiting a single-cell RNA-Seq data set of primary breast cancer [56], we performed a
deconvolution of the TCGA bulk RNA-Seq data of 1,043 breast cancer donors using
SPOTlight [85] (Figure 64a). We assessed the proportions of normal breast cells, tumour
cells, stromal cells and immune cell populations inside the tumour samples. We
excluded from this analysis samples that had multiple p110a (PIK3CA) domains mutated,
since they cannot be classified in just one group. Across all the bulk RNA-Seq samples,
we were able to extract 16 different tumour, stromal and immune cell populations
(Figure 64b) that were classified in three compartments: ‘cancer and normal breast cells’
(5 populations), ‘tumour stroma cells’ (4 populations) and ‘tumour immune cells’ (7

populations) (Figure 64b-c).

In the analysis of the stromal cell compartment, we observed that donors with mutated
PIK3CA had a higher proportion of endothelial (p=0.0013) and endothelial lymphatic
LYVE1 (Lymphatic vessel endothelial hyaluronan receptor 1) (p=1.15-10°) populations
than the non-mutated ones. The two populations of Cancer Associated Fibroblasts
(CAFs) assessed showed the same trend, being significantly higher in the PIK3CA
mutated tumours (‘CAFs MSC iCAF-like’ p=0.0025; ‘CAF myCAF-like’ p=3.49-107). Next,
we assessed the main immune cell linages divided into the innate immune cells
(Dendritic Cells (DCs), macrophage and monocytes) and the adaptive immune cells (B
cells, plasmablasts, T cells and NK, and cycling immune cells) in PIK3CA mutated and
PIK3CA non-mutated tumours. We observed significant differences in proportions of
three different immune cell populations: macrophages (p=1.01-102°), T cells & NK cells

(p=1.35-103) and cycling immune cells (p=1.65-10") (Figure 64c).

Based on the significant differences observed in the proportion of immune cells, we
investigated whether also immune gene signatures (Table 8) representing the molecular
changes in different immune linages could be altered depending on mutational status.
We did the differential expression analyses of the genes contained in immune signatures
related to several immune functions comparing PIK3CA-mutated and non-mutated
tumours. The set of genes up-regulated in each immune signature in PIK3CA-mutated
and non-mutated tumours were summarized in Table 9 and the log2(foldchange) value

and significance of all genes in all signatures are shown in Figure 64d. Global analyses of
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genes sets up-regulated in PIK3CA-mutated revealed a distinctive immune gene profile
related to innate immune responses, in particular, macrophages (SPP1) secreting
cytokines (IL4, 1L25, TGFB3, TGFB1, CXCL12) which are well known to induce
immunosuppression in TME in breast cancer [57]. Also, genes linked with T helper (Th)
17 T cells (IKZF2, RORC, and CCR6) were significantly up-regulated. Higher infiltration of
Th17 T cells was associated with breast cancer progression [170] (Figure 64d). In
contrast, non-mutated tumours showed a gene profile highly related to intra-tumoral T
cell cytotoxicity (GZMB, GNLY, IFNG and TNF), T cell infiltration (CXCL9, CXCL10, CXCL16
and CCL20) and T cell exhaustion (LAG3 and TOX).

Table 8. Gene signatures related to immune function: signature name, list of genes included
in the signature and general description of the function in which they are involved in.

SIGNATURE NAME List of genes Description
Inhibitory C100rf54 (VISR), CD101, CD160, CD244, CTLA4, HAVCR2, Immune checkpoints that control
receptors LAG3, LAYN, PDCD1, TIGIT T cell activation.

BCL6, BTLA, CD200, EOMES, FOXP3, HIF1A, ID2, ID3, IKzF2, | TFsinvolved in differentiation

Transcription

F TF JAK1, JAK2, JAK3, NFKB1, PRDM1, RORC, SATB1, STAT3, processes of T cells and T cell

actors (TFs) TBX21, TCF7, TOX, TOX2, TYK2 exhaustion.

Effector/memory | CD38, CD44, CD93, ENTPD1, FASLG, GNLY, GZMA, GZMB, Gene markers of effector and
molecules GZMH, GZMK, ISG15, KLRB1, KLRG1, NKG7, PRF1, TNFSF10 memory states in T cells.

Cytokines and markers produced

CEBPD, FCER1A, ICAM1, IFNG, IL10, IL1B, IL2, IL23A, IL25, .
and expressed by innate cells

Cytokines/Innate IL4, IL6, IL6R, IL6ST, LIF, MAP3K8, MRC1, SEPP1, SIK1, SPP1,

molecules TGFB1, TGFB3, TLR2, TLR3, TNF (monocytes, macrophages and
DCs).
Co-stimulatory Surface receptors that induce T
CD27, CD28, ICOS, IL2RB, TNFRSF4, TNFRSF9, TNFSF14 L.
molecules cell activation.
CCL11, CCL19, CCL2, CCL20, CCL21, CCL22, CCL28, CCL5, Chemotactic cytokines (cell
Chemokines CXCL10, CXCL12, CXCL13, CXCL16, CXCL2, CXCLY9, IL8, XCL1, . R Y
migration).
XCL2
Chemokine CCR1, CCR2, CCR4, CCR5, CCR6, CCR7, CX3CR1, CXCR3, Chemotactic cvtokines recentors
receptors CXCR4, CXCRS, CXCR6 Yy ptors.

Table 9. Significantly differentially expressed genes in each of the immune gene signatures
between PIK3CA mutated and PIK3CA non-mutated tumours.

Up-regulated in PIK3CA-mutated Up-regulated in PIK3CA non-mutated
SIGNATURE NAME (MUT) (W)
Inhibitory receptors LAYN (p<0.05) LAG3 (p<0.05)

TFs IKZF2, RORC, JAK2, NKFB1 (p<0.05) TOX and SATB1 (p<0.05)
Effector/memory TNFSF10, CD93 and ENTPD1 (p<0.05) GZMB, CD38 and GNLY (p<0.05)
Cytokines/Innate FCER1A, IL4, IL25, IL6ST, TLR3, SEPP1, IFNG, TNF, ICAM1 and MAP3K8 (p<0.05)

CEBPD, TGFB3, TGFB1 (p<0.05)
Co-stimulatory No-up regulated genes IL2RB and ICOS (p<0.05)
. CXCL12, CCL11 and CCL22 (p<0.05) CXCL9, CXCL10, CXCL16 and CCL20,
Chemokines
(p<0.05).
Chemokine receptors CX3CR1 and CCR6 (p<0.05) CCR1 (p<0.05)
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We did not find significant differences in the 11 different stromal and immune cell
populations (Endothelial, Endothelial lymphatic LIVE1, CAFs MSC iCAF-like, CAFs myCAF-
like, DC, Macrophage, Monocyte, B cell, Plasmablast, T & NK cells and Cycling) when we
considered only the subset of PIK3CA mutated tumours and compared the groups of
samples defined by which domain is mutated to each other (Figure 65a). One possible
explanation is the heterogeneity inside of the immune populations, which may make it
difficult to find differences. Therefore, in the two populations that we found significant
differences between PIK3CA-mutated and non-mutated tumours (macrophages and, T
cells and NK cells), we deconvoluted the PIK3CA-mutated tumours with the next level of
annotation capturing the heterogeneity of macrophages, T cells and NK cells. We were
able to identify five subpopulations of macrophages (Table 6 Methods — Deconvolution
2 contains the name of the different subpopulations) (Figure 65b). In the case of T cells
and NK cells, we split the population into CD8 and NK cytotoxic cells and CD4 T helper
cells and did the deconvolution for each group. We were able to identify seven different
subpopulations within the CD8 and NK cytotoxic cells and four subpopulations within
the CD4 T helper cells (Table 6 Methods — Deconvolutions 3 and 4 contains the names
of the subpopulations) (Figure 65c-d). We observed differences in the proportion of
different subpopulations of immune cells across the different p110a (PIK3CA) domains
mutated (Figure 65e). However, after multiple testing correction using Benjamini-
Hochberg (BH), none of the differences were statistically significant. Due to this, to
confirm the observed tendencies, we assessed the differentially expressed genes from
the seven immune gene signatures previously described across the tumour with
different domains mutated (Figure 66, Figure 67, Figure 68) to support the tendencies
observed. Focusing on macrophages, we observed a tendency of a higher proportion of
a subpopulation called macrophages APOE+ (Lipid associated macrophages 2 or LAM?2
or LAM2:APOE+) in the linker ABD-RBD mutated tumours with respect to tumours
mutated in the C2, helical and kinase domain. On the contrary, for the macrophages
EGR1+and macrophages FABP5+ (Lipid associated macrophages 1 or LAM1:FABP5+), we
found a higher proportion in the C2, helical and kinase domain mutated tumours. The
differential expression analysis showed an up-regulation of CEBPD (p=0.09) in linker
ABD-RBD mutated tumours with respect to helical domain mutated ones. SPP1

(p=0.003) and CCL28 (p=0.06) were up-regulated in the helical domain mutated tumours
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compared to the linker ABD-RBD mutated tumours. These genes defined the presence
of a different profile of tumour associated macrophages in the linker ABD-RBD and the
helical domain mutated tumours. Intriguingly, helical domain mutated tumours had a
significantly higher expression of TNF compared to kinase domain mutated tumours
(p=0.02). Also, the expression of IL6 was higher in helical compared to C2 domain
mutated tumours (p=0.075). These results demonstrated a different profile in the
subpopulations of macrophages depending on the domain that is mutated in the
tumour. Within the CD8 and NK cytotoxic cell populations, we observed a tendency of a
higher proportion of T cells CD8+ LAG3+ in the linker ABD-RBD mutated tumours with
respect to the C2, helical and kinase domain mutated tumours. Other tendencies we
observed are:

- Lower proportion of NK cell AREG+ population in the linker ABD-RBD mutated
tumours with respect to helical domain mutated tumours.

- Higher proportion of T cell CD8+ GZMK+ population in the linker ABD-RBD
mutated tumours with respect to the helical and kinase domain mutated ones,
as well as a higher proportion in the helical mutated with respect to kinase
mutated.

- Higher proportion of T cell CD8+ IFIT1 population in the C2 domain mutated with

respect to linker ABD-RBD, helical and kinase domain mutated tumours.

We also assessed the differentially expressed immune gene signatures in the different
protein domains. We identified LAG3 as a top marker with higher expression in the linker
ABD-RBD mutated tumours compared to helical and kinase domain mutated ones
(p=0.09) (Figure 66). These results showed that linker ABD-RBD mutated tumours have
a higher degree of CD8+ T cell infiltration of exhausted cells, specifically, a population of

T cells CD8+ expressing LAG3.

Finally, for T helper cell populations we saw a tendency of a higher proportion of T
regulatory cells (T-regs_FOXP3 or Tregs) in the linker ABD-RBD domain mutated tumours
with respect to tumours with a mutation in the C2, helical or kinase domain. We
assessed the differential expression of the genes in our immune gene signatures. We

observed a significantly higher expression of FOXP3 in the Transcription Factors (TFs)
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signature in the linker ABD-RBD when compared to helical domain mutated tumours
(p=0.08). Another gene supporting this higher proportion of Tregs in the linker ABD-RBD
mutated tumours is a higher expression of IL23A (p=0.0005) compared to kinase
mutated tumours. Although not significant, we also see a high log2-fold change for the
expression of TIGIT and CTLA4 in the linker ABD-RBD against both helical and kinase

domain mutated tumours.
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Figure 64. Deconvolution of TME in PIK3CA mutated and non-mutated breast cancer. a. Topic profiles
from SPOTIlight. b. Deconvolution of primary breast cancer tumours split by the mutational status of
PIK3CA. Each line indicates the relative proportion of the different cell types found in each tumour. c.
Comparison of the relative proportion of each cell type in mutated versus non-mutated tumours.
Significance of the comparisons are indicated: ns (p-value>0.05), * (p-value<=0.05), ** (p-value<=0.01),
*** (p-value<=0.001) and **** (p-value<=0.0001). d. Differential expression of genes included in the
immune gene signatures. PIK3CA mutated tumours versus non-mutated.
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Figure 65. Deconvolution of TME in PIK3CA mutated tumours depending on the domain mutated.

a. Proportions of tumour stroma and immune cells obtained after the deconvolution.

b. Proportions of the different subtypes of Macrophages obtained after the deconvolution.

c. Proportions of the different subtypes of CD8 and NK cytotoxic cells obtained after the deconvolution.
d. Proportions of the different subtypes of CD4 T helper cells obtained after the deconvolution.

e. Statistical results for the pairwise comparisons across the different domains within cell subtype. P-
values lower than 0.1 before multiple testing correction are indicated with crosses (black cross indicates
a p-value<0.05, grey cross indicates 0.05 < p-value <0.1).
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Figure 66. Differential expression of immune gene signatures linker ABD against all other domains. The
immune gene signatures are indicated at the top of the figure and are seven: ‘inhibitory receptors’,
‘transcription factors” (TFs), ‘chemokines’, ‘chemokine receptors’, ‘co-stimulatory molecules’,
‘cytokines/innate molecules’ and ‘effector/memory molecules’. To the left of each box are the groups
included in the differential expression analysis, group 1 at the top and group 2 below. Colour from red
(higher expressed in groupl) to blue (higher expressed in group 2) shows the log2-foldchange resulting
from the differential expression analysis of each comparison. Asterisk (*) indicates a p-value <0.05. Dot ()
indicates a p-value<0.1.
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Figure 67. Differential expression of immune gene signatures: all possible pairwise comparisons of C2,
helical and kinase domain mutated tumours. The immune gene signatures are indicated at the top of the
figure and are seven: ‘inhibitory receptors’, ‘transcription factors’ (TFs), ‘chemokines’, ‘chemokine
receptors’, ‘co-stimulatory molecules’, ‘cytokines/innate molecules’ and ‘effector/memory molecules’. To
the left of each box are the groups included in the differential expression analysis, group 1 at the top and
group 2 below. Colour from red (higher expressed in group1) to blue (higher expressed in group 2) shows
the log2-foldchange resulting from the differential expression analysis of each comparison. Asterisk (*)
indicates a p-value <0.05. Dot () indicates a p-value<0.1.

150



——r o s e
unl -’". - e . o oV '

o oan e e
—rs ki €an == war [T
-
m:: Samn ) i e v
s ~ e o= (B2
~ - = ey
- > r H - nes Lo
. scUs | P dan
st s o - "
. e e e
s eoa cacre Ll e - .
pe v 2 . ) W
c3i ' b fhd ' o v ': oo ' ' ' :‘ woa ' '
. remes B8 - e Y . . eRmA . s .
ovn ‘. e ‘T
[ B age i a0 ) cen | I am . |
B . o
S e o ~ o
0 s aad ] -z' n
cam
> e oLl pa— P .
"awre . i
L= me Py = 1)
e sl ~o anm
~eg - 2
e l s . 2oy - e . reves o e .
. sy ne reun
A, " Lot o~ T o
L o4
- 0 oan prow ok N e
- 1
ot o At con
oo (] g
. e = T P wAN
1 o som 5 shdA yerst
e s = e }
wanmy S e
l B 3 = = wwa e <
" X : ' ’ o e caram
e - raan . (= 1t -t ,
- Sacrw bt o [P
- .l . LN ' . “ , ‘
o~ pe - - el s . feraire 2 s -
y! owoue BN w Pt '
Py ‘e
" e TN ‘ . ™ reo .
o Wi e e - A
™ (= =1 -
o -
o ™ " S bl rrei
-
v (= 1) s K o :" Thi-
s " o » =rm Pood —-

. . W -
e > . YR o . i .

e tun s Al
o s oo e s fro—
" wo
.‘:3 ariu o ; - ~e -
“ .
s v - - wr 3
Y. T ] A4S Wiwie e “-em
3 o e —- e
o, o e
- i e e
el " o e v
- ' oy “ , ’ s . A
- -~ ™= - coin | ' -- A .
- v . ooa . b d o - ‘:; - ae .
(S » ' q
‘ s ‘:,“ . “. LN ‘, crees ‘ J ‘ .: L “. oo ‘ ‘
Laee [ e o %8,
o (33 .l - e e
=
L) ':-" "l Cree 3 -
B ez ot e
p— e P czer o
" =xein e =a

|+] value = Higher expression b greep 1 [above)

|) valie « Highee sxpression in group 2 (Delow)
Figure 68. Differential expression of immune gene signatures: ABD domain mutated tumours against all
other domains. The immune gene signatures are indicated at the top of the figure and are seven:
‘inhibitory receptors’, ‘transcription factors’ (TFs), ‘chemokines’, ‘chemokine receptors’, ‘co-stimulatory
molecules’, ‘cytokines/innate molecules’ and ‘effector/memory molecules’. To the left of each box are
the groups included in the differential expression analysis, group 1 at the top and group 2 below. Colour
from red (higher expressed in groupl) to blue (higher expressed in group 2) shows the log2-foldchange
resulting from the differential expression analysis of each comparison. Asterisk (*) indicates a p-value
<0.05. Dot () indicates a p-value<0.1.
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Take-home messages Chapter 4

e The most frequent mutation type in PIK3CA gene was missense mutation (>95%).
There were 385 unique amino acid changes resulting from these missense

mutations.

e Uterus, breast and colorectal cancer were the most frequently PIK3CA-mutated

cancer types.

e There was a different distribution of mutations along the p110a (PIK3CA) protein
domains in these three mutated cancer types. Breast cancer had a higher
proportion of mutations in the kinase domain, colorectal cancer in the helical

domain and uterus in the ABD domain and linker ABD-RBD.

e PIK3CA mutations in the ABD domain in uterus could be related to mutational
processes such as defective DNA damage repair or hypermutation activity of Pol
€. The hotspot mutation in the helical domain could be associated with the

activity of APOBEC family of cytidine deaminases.

e No significant positive association was found between ABD mutations and other
mutational processes that were involving a higher number of mutations, such as

UV-light exposure, or an older age of the donor.

e In uterus cancer from the TCGA dataset, there was a significantly higher survival
in the PIK3CA-mutated compared with non-mutated tumours. There were no
differences in survival in breast and colorectal cancer. In the PCAWG and HMF
datasets no differences were observed in any of the cancer types analysed. At
protein domain level in all datasets, no differences in survival were observed in

any cancer type.

e In breast cancer there were significantly more PIK3CA mutations were in ER-

positive tumours in breast cancer. No associations were found between the
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PIK3CA mutational status and tumour grade, tumour stage nor age of the

patient.

The tumour microenvironment of breast cancer between PIK3CA mutated and
non-mutated tumours showed different stromal composition as well as

differences in the immune populations analysed.

The tumour microenvironment of breast PIK3CA-mutated tumours showed a
significantly higher proportion of stromal cells and macrophages, and lower
proportion of T and NK cells compared with breast tumours without PIK3CA

mutation.

The analysis of the proportion of subpopulations of macrophages, T and NK cells
in breast PIK3CA-mutated tumours showed different tendencies depending on

which protein domain was mutated.

In the breast tumours with the linker ABD-RBD mutated, we identified an

exhausted profile in T cells, characterized by a significantly higher expression of

LAGS.
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6. DISCUSSION

A joint dataset of whole genome, whole exome and panel sequencing data from primary
and metastatic tumours that summed up a total of 25,499 cancer genomes across over
40 cancer types was studied. This dataset consists of four cohorts: the Pan-Cancer
Analysis of Whole Genomes (PCAWG) dataset, the Hartwig Medical Foundation (HMF)
dataset, The Cancer Genome Atlas (TCGA) dataset and the Breast-CAncer STratification
study (B-CAST) dataset. The massive increase of sequencing data and its public
availability enables the extensive study of the variation in cancer to expand our
understanding [171][172]. One caveat, however, is that there is currently no gold
standard for calling mutations and different mutation calling pipelines are being used.
This makes joining different datasets a challenge [173]. However, it goes beyond the
scope of our project to recall the mutations for 25,499 cancer genomes, which would
include downloading massive amounts of data. As our focus has largely been on
substitutions, the differences between pipelines are much smaller compared to indels
[174][171]. The vocabulary used by the different datasets also poses a challenge.
Especially when within a cohort there is no standard used either. This can lead to
typographical errors, different words used to refer to the same concept, or the same
word used for different concepts. Adhering to standards like the one proposed by
Musen et al. [175] will therefore be essential to reduce the overhead needed to
homogenize the metadata. Another challenge is that the more datasets are combined
and the more donors that participate the probability increases that the same donor is
part of multiple cohorts. As it goes against privacy standards to explicitly look for this

overlap, a mechanism will need to be put in place to be able to identify these cases.

The pan-cancer landscape of somatic mutations at the level of substitutions, insertions
and deletions was described with a view to identifying pertinent features. This shows
that in PCAWG, TCGA and HMF the most mutated cancer type considering SSMs is skin
cancer. Considering SIMs, lung cancer is the highest mutated in primary tumours and
oesophagus cancer in metastatic tumours. The distribution of the six SSM subtypes
characterizes individual cancer types and is consistent between primary and metastatic

tumours. For example, C>A mutations are the highest in lung, C>G in bladder and C>T in
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skin cancer, which is consistent across the individual datasets. Based on the somatic
mutations, an assessment of the landscape of mutational signatures in primary and
metastatic tumours was also done. Within a specific tumour type these signatures can
be used to stratify donors into distinct groups, which could be highly informative for
selecting the best treatment. Focused on breast, colorectal and uterus cancer, that
summed up to 3,601 donors with WGS or WES data, interesting results arose. Across
these three cancer types, there are groups of cancer genomes showing mutational
signature profiles in common, as well as different ones between primary and metastatic
tumours. For example, in breast cancer, using the dominant signature, three groups are
identified across 1,903 cancer genomes: SBS3 or defective homologous recombination
DNA damage repair; SBS2/13 or APOBEC activity and SBS5 clock-like signature. This
division of breast cancer tumours according to the different mutational signatures has
already been reported by Denkert et al. [176] in their study of 405 patients. The same
finding in our analysis across four times this number of patients can confirm this
observation. In metastatic breast tumours, the group of SBS3 or defective homologous
recombination DNA damage repair was not seen. Primary tumours from uterus and
colorectal cancer also showed a group of donors with the SBS5 clock-like signature as
dominating, like it was found in breast cancer, while they had other groups characterized
by SBS10 or Pol € hypermutation activity, SBS44 or defective DNA mismatch repair and,
a last group characterized by SBS40 clock-like signature. The hypermutation activity of
Pol € has been reported in uterus and colorectal cancer and has been related to a good

prognosis and favourable responses to immunotherapies [177].

To show the relevance of studying the genomic landscape of tumours, the PCAWG
dataset was used as use case. Mutations found in the DNA of a tumour are expected to
be largely unique to each tumour as there are three billion places in the DNA that can
be mutated. However, despite these odds, across the cancer genomes of 2,583
participants available in PCAWG covering 37 tumour types, a total of over a million non-
unique mutations were observed. The analysis of the genomic landscape of the PCAWG
dataset, based on 42 features either based on all or only the recurrent mutations, shows
how this can be used to stratify cancer genomes into clinically relevant groups. The

division into 16 clusters and their characteristics could be valuable for complementing

156



current classification schemes, which are mainly based on histology and organ of origin.
We can assign a new sample to one of our 16 clusters by first projecting it onto the PCA
space based on the PCAWG cohort. Next, we use the first 18 principal components to
compute the Euclidean distance to the centroid of each of the 16 clusters and assign the
sample to the nearest one. If there are multiple clusters with a minimum difference in
distance to the new sample, then to select one cluster we use the sequence motifs
(Figure 37) and various layers of annotation (Appendix 1 - S3 Text) like replication time.
Ultimately, whole-genome sequencing should be able to replace multiple diagnostic
tests currently in use and make diagnoses more accurate. One example illustrating the
value of the clusters found towards this goal is the MSI phenotype linked to one of the
clusters. For these patients, immunotherapy may be beneficial [178] while adjuvant
chemotherapy may not be needed [179]. A second example of an actionable phenotype
that we capture with one of our clusters is ultra-hypermutation (cluster H), which has
also been related to beneficial results from immunotherapy [180][181]. A third example
is the somatic hypermutation of the immunoglobulin genes, which identifies memory B-
cells as the cell of origin in the case of lymphomas. This has been linked to a less
aggressive form of Lymph-CLL and more favourable prognosis [144], which may in turn
influence treatment selection. Without explicitly analysing the immunoglobulin genes
[182], we were largely able to separate the Lymph-CLL samples with somatic
hypermutation (cluster M) from those without (cluster D). The characteristics of the
former group include a high percentage of recurrent C>G SSMs and 1 bp A/T deletions.
A final example relates to those Eso-AdenoCA samples that are assigned to cluster L,
which have a high percentage of T>C as well as T>G SSMs and a higher total mutational
load than Eso-AdenoCA samples not assigned to this cluster. Eso-AdenoCA samples with
the characteristics of cluster L have also been suggested to benefit from immunotherapy
[183]. The same treatment option may therefore be prioritized for the 22 Stomach-
AdenoCA samples that are also in cluster L. Similarly, a refined investigation of tumour
samples that do not cluster with the vast majority of its own kind may ideally point to
differences in disease prognosis or treatment response and even has the potential to
define novel subtypes or reveal misclassification. Such an analysis would be especially
worthwhile for the ~20% or less samples from Kidney-RCC, Liver-HCC, Lung-SCC or

Lymph-BNHL that are not assigned to the main cluster. Another possible application of
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this classification scheme is to assign a metastatic sample with unknown primary site to
a cluster to shed light on the possible tissue of origin or pan-cancer characteristics like

MSI.

To go beyond the genomic landscape, the amino acid changes resulting from the somatic
mutations were assessed by computing eight protein features, obtained from a
combination of amino acid, evolutionary and structural properties. This was used to
have an overview of the profiles observed within breast cancer. The most frequent
amino acid change in this tumour type in each of the four datasets is glutamic acid to
lysine (E>K), followed by glutamic acid to glutamine (E>Q) in PCAWG, HMF and TCGA
dataset, but not in B-CAST. In B-CAST the second most frequent amino acid change is
histidine to arginine (H>R). The difference is due to the fact that a subset of 323 genes
was sequenced in contrast to all genes in the other three datasets. The high frequency
of the H>R amino acid change is largely explained by a frequent hotspot mutation in the
luminal A subtype, which constitutes nearly 60% of the B-CAST dataset. B-CAST behaves
also different to the other datasets in that around 50% percent of the amino acids
mutated are exposed and the other 50% buried in the structure, while in PCAWG, HMF
and TCGA almost 60% of the amino acids mutated are exposed. Coinciding across the
four datasets, over 50% of the amino acid changes are happening to an amino acid
located in aloop in the protein structure and the protein domains more mutated in were
protein kinases followed by cadherin and Ig-Fibronectin Type IIl. After dimensionality
reduction followed by clustering based on the eight protein features no well-defined
clusters were found. Also, after the annotation of the mutations that are known as
driversin the original data, there was not any clear pattern or association of the different
drivers with specific features. Therefore, these protein features did not help to uncover
groups of mutations sharing characteristics that could be associated to known drivers.
As a limitation, some amino acid changes could not be analysed because the limited
availability of protein structures. Even if a protein structure is available for a protein, it
is often not complete and therefore the exact amino acid of interest is missing in the
structure. Moreover, depending on the feature that is measured, there is the need of a
protein structure of high quality, which further limits the number of amino acid changes

that can be analysed. This is the case for the input of FoldX, which requires a resolution
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of less than 2A to ensure that the software models the amino acid change and does the
computation of the change of the free energy of folding correctly. The recent availability
of AlphaFold [36] predicted structures could increase the number of amino acid changes
that could be evaluated at structure level. Therefore, the incorporation of these
predicted structures might increase substantially the data to get insights from this type

of analysis.

One of the most mutated genes with missense mutations across 11,159 breast cancer
patients is PIK3CA. Investigating if this gene is also frequently mutated in other tumour
types than breast cancer across the 25,499 cancer genomes, uncovered its presence
mutated in several tumour types, in particular in colorectal and uterus cancer, as it has
been previously observed [184][185]. Focus on the assessment of the eight protein
features for the protein changes in the p110a protein, encoded by PIK3CA, elucidated
differences in the proportion of mutations across the different protein domains in
breast, colorectal and uterus cancer. Deciphering the underlying causes of the different
distribution of mutations across protein domains could provide information on the
different mechanisms affected in different cancer types. We investigate potential
underlying causes of the different mutations and relate mutational processes such as
hypermutation activity of Pol € or defective DNA damage repair in uterus cancer to
mutations in the ABD domain. The lack of available data to investigate other potential
causes, such as epigenetics, did not allow us to establish a mechanism leading to

differentially mutated domains.

The survival analysis in uterus cancer in the TCGA dataset shows a higher survival rate
in patients with PIK3CA mutated tumour compared with patients with tumours without
a PIK3CA mutation, in line with previous reports [186]. This result could help to predict
the prognosis of this group of patients and the likely course of the disease [186]. When
this analysis is extended to the different mutated domains, there is no significant
differences in survival in any of the cancer types. The same survival analyses on PCAWG
and HMF datasets did not show statistically significant results in any cancer type when
comparing mutated and non-mutated tumours nor the comparisons between the

different domains mutated. Our data was not sufficient powered to demonstrate other
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associations. In the case of PCAWG dataset, this is likely due to the small sample size,
which has an even bigger impact when splitting according to the p110a domain
mutated. In the case of HMF dataset, there were few samples with survival data in the
case of uterus cancer. Partly this might be because the HMF is a relative new dataset as

the foundation behind it started in 2015 (https://www.hartwigmedicalfoundation.nl).

The data they provide regarding survival comes from trials or studies that are still
running, such as CPCT (ClinicalTrials.gov Identifier: NCT01855477) with an estimated end
date next year (2023) or DRUP (ClinicalTrials.gov Identifier: NCT02925234) with an
estimated end date in 2027. This means that a follow up of 5 or more years is not
available yet for all donors. Moreover, not all studies within the HMF dataset gave

permission for survival data to be shared.

Breast cancer is the most diagnosed cancer type in the world [1], and it is characterized
by high heterogeneity [60], which makes stratifying patients even more essential. A
better stratification of patients is important to customize the treatment strategy and to
improve the management of this disease [187]. In the attempt to associate PIK3CA
mutations to different clinical features, such as hormone receptor status, tumour grade,
tumour stage and age, a clear association was found between the ER-positive status and
having a PIK3CA mutation, as has been previously reported [188]. No other significant
results were found between PIK3CA mutation and the rest of clinical parameter analysed
in the different cancer types. Knowledge of the intra-tumoral heterogeneity in breast
cancer is also important since it facilitates immune evasion, clonal survival and therapy
resistance [55]. Immunotherapy is an emerging therapy with promising results, lower
toxicity than other strategies and high accuracy [189][190] that can be applied in some
cases depending on the cellular composition of the tumour. For the TNBC subtype it is
known that there is immune cell infiltration and the use of immunotherapy has already
been incorporated in the clinic in metastatic cases of this breast cancer subtype [191].
For other breast cancer subtypes such as HER2-positive or HR-positive the knowledge of
the immune component of the tumour microenvironment is limited [192]. The presence
of tumour-infiltrating lymphocytes (TILs) in HER2-positive has been suggested to be
linked to a favourable prognosis, while its significance in breast ER-positive tumours

remains uncertain [84]. Tumour-infiltrating lymphocyte composition, organization and
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PD-1/ PD-L1 expression are linked in breast cancer [193]. PD-1/PD-L1 axis is one of the
mechanisms by which tumour cells evade the cytotoxic immune response [194]. PIK3CA
mutations has been already associated with PD-L1 expression in other cancer types such
as cervical cancer, suggesting the potential use of PD-L1 inhibitors to fight these tumours
[195]. With a focus on finding the potential association of PIK3CA mutations and the
tumour microenvironment (TME), the intra-tumoral heterogeneity across breast cancer
donors from the TCGA dataset was analysed. The cellular composition of the TME in
breast cancer is significantly different in breast tumours with a PIK3CA mutation
compared to those without. PIK3CA mutated tumours with a significantly higher
proportion of stromal cells and macrophages, and lower proportion of T and NK cells
compared to non-mutated breast tumours suggests that different immunotherapy

strategies could be applied [58][196][197].

All stroma cell populations, endothelial cells and CAFs, are in a significantly higher
proportion in PIK3CA mutated tumours compared to not mutated. It has been suggested
that signals from the microenvironment control CAF differentiation or migration [198].
CAFs are critical for cancer occurrence and progression because of their versatile roles
in extracellular matrix remodelling, blood vessel formation, immune response, and, in
turn, promotion of cancer cell proliferation, migration and invasion [198]. Indeed, it has
been reported that CAFs lead to reprogramming of blood monocytes towards immune
suppressive lipid associated macrophages (LAMs), which inhibit T-cell activation and

proliferation [199].

PIK3CA mutated tumours showed a significantly higher proportion of macrophages and
lower proportion of T and NK cell. These populations were investigated at a more
detailed level of annotation to be more precise in the changes observed in
subpopulations, also considering the stratification of tumours according to the p110a
(PIK3CA) domain that was mutated. For the analysis of the tumour immune
microenvironment (TIME) in PIK3CA-mutated breast tumours at the level of which
p110a (PIK3CA) domain was mutated, some tendencies are observed but no significant
results are seen after multiple testing correction using Benjamini-Hochberg. This could

be due to the small sample size, so the expression of different immune signature was
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used to investigate the tendencies observed. Tumours mutated in the linker ABD-RBD
seemed to have a different profile compared with tumours with mutations in the C2

PI3K-type, helical and kinase domain, which show a more similar profile among them.

In the TIME of tumours mutated in C2, helical and kinase domain, the macrophages
EGR1+ and macrophages FABP5+ (Lipid associated macrophages 1 or LAM1:FABP5+) are
the ones in higher proportion. FABP is reported as a functional marker of pro-tumour
macrophages [200]. Tumour associated macrophages (TAMs) are increasingly
recognized as major contributors to the metastatic progression of breast cancer and
enriched levels of TAMs often correlate with poor prognosis [57]. Survival analysis using
the METABRIC40 cohort showed that the LAM1:FABP5 signature correlates with worse

survival [56].

The TIME of tumours mutated in the link ABD-RBD is characterized by three main
aspects. First, a higher proportion of the subtype of macrophages APOE+ (Lipid
associated macrophages 2 or LAM2 or LAM2:APOE+), which is characterized by the
expression of APOE. This subpopulation has been associated with immunosuppression
in breast cancer as well as in other cancer types [201][199]. Second, a higher proportion
of a subpopulation of exhausted T cells characterized by a significantly higher expression
of lymphocyte-activation gene 3 (LAG3). This has been described as sign of exhaustion
together with the expression of T-cell immunoglobulin and mucin-domain containing 3
(TIM3) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) [82]. Exhausted CD8+ T
cells express these inhibitory receptors contributing to resistance in anti-PD1 treatment
[82]. The identification of this kind of profile is interesting because there are therapies
under development to avoid the exhaustion of T cells expressing this marker [202][203].
A third aspect that characterizes these link ABD-RBD mutated tumours is a higher
proportion of T regulatory cells (T-regs_ FOXP3 or Tregs), which enhances the
suppression of the anti-tumour immunity. In summary, this shows an environment
where tumour cells block successfully the immune system that has been related to a

poor prognosis [204][82].
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The integration of 25,499 cancer genomes from four datasets enabled us to create a
pan-cancer landscape of somatic mutations that gave insights into the mutational
burden, i.e. substitutions and insertions/deletions, as well as the distribution of
mutation types across cancer genomes from different cancer types. This joint dataset
allowed us to have a large sample size to study mutational processes, using mutational
signatures as a proxy, and find groups of patients defined by different mutational
signatures. Using PCAWG as a use case we showed the relevance of studying the
genomic landscape of tumours. The study of 42 genomic features computed based on
all somatic mutations and only the recurrent ones, divided 2,583 patients covering 37
cancer types into 16 clusters that can be linked to several actionable clinical phenotypes.
New samples could be assigned to one of the defined clusters and the accuracy of the
diagnosis could be increased in some cases such as with the identification of MSI or ultra-
hypermutation, in which case patients might benefit from immunotherapy. This could
also help to the development of a generic and personalized cancer diagnostic test that
only uses the mutations found in the tumour. At protein level, when studying eight
protein features for each of the 159,294 amino acid changes resulting from the somatic
mutations, we could not uncover well-defined groups within breast cancer nor did these
features characterize drivers. However, when we focused on the p110a protein encoded
by PIK3CA, we could show that breast cancer had a higher proportion of mutations in
the kinase domain of this protein, colorectal cancer in the helical domain and uterus in
the ABD domain and linker ABD-RBD. The enrichment of ABD domain and linker ABD-
RBD mutations in uterus and colorectal cancer could be related to defective DNA
damage repair or hypermutation activity of Pol €. Focused on breast cancer, our results
showed different tumour immune microenvironments in tumours with different PIK3CA
mutated domains. Particularly, we uncovered that tumours mutated in the linker ABD-
RBD have an exhausted T cell population characterized by the expression of LAG3.
Tumours with mutations in the C2 PI3K-type, helical and kinase domain we found to be
enriched in myeloid populations with a gene profile similar to immunosuppressive
macrophages [56]. It is known that PIK3CA, as a oncogene, can promote tumourigenesis
by providing tumour cells the advantage to avoid the antitumoral response by the
immune system [205]. Our analysis suggests that different p110a (PIK3CA) domains

mutated might be related to promote tumourigenesis by different immune escape
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mechanisms. Identification of these mechanisms can improve the selection of the

optimal combination strategy to increase the efficacy of immunotherapy. In conclusion,

our analysis shows that knowledge at genomic level, such as number of mutations,

recurrence and mutational processes, as well as at protein level, such as differences in

amino acid mutations, together with the study of the tumour microenvironment,

provide new insights into cancer mechanisms. Our results contribute to stratifying

patients in biologically relevant groups and thereby help personalise treatment

strategies.

7. CONCLUSIONS

The integration of 25,499 cancer genomes from four datasets enable us to create a
pan-cancer landscape of somatic mutations that gave insights into the total number
of mutations, i.e. substitutions and insertions/deletions, as well as mutation types

aCross cancer genomes.

Using PCAWG as a use case of our joint dataset, the study of different features
computed based on all mutations and only the recurrent ones, enable to delineate
various mutational processes, uncover new mutational manifestations and

characterize several actionable clinical phenotypes in a novel way.

From our joint dataset, we translate somatic mutations into their corresponding
amino acid changes and characterize them by eight protein features. Focused on
breast cancer we identify that most of the amino acid changes happen between
amino acids of the same category. However, considering only the recurrent amino
acid changes (mutations that were found in more than one patient in the same
dataset) the proportion of ‘change of charge’ cases increase. Most of the mutated
amino acids are in the secondary structure that is a loop and the amino acid is
exposed. Around 33% of the mutations are affecting a functional site in the PCAWG,

TCGA and HMF datasets, while only around 13% in B-CAST.
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The dimensionality reduction followed by clustering of amino acid mutations in
breast cancer characterized by eight protein features did not group mutations that

could be associated with being a driver.

The exploration of amino acid changes in PIK3CA shows a different distribution of

disease relevant mutated domains across cancer types.

Underlying causes of the different distribution of mutations across domains can be
different mutational processes. The case of a higher proportion of mutations in ABD
domain in uterus cancer seems to be linked to the deregulated activated of Pol € or

deficiency of DNA mismatch repair pathways.

Tumours with different PIK3CA mutated domains show differences in the tumour

immune microenvironments in breast cancer.

Tumours mutated in the linker ABD-RBD have an exhausted T cell population

characterized by the expression of LAG3.

Tumours with mutations in the C2 PI3K-type, helical and kinase domain have an
enrichment of myeloid populations with a gene profile similar to

immunosuppressive macrophages.
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Abstract

The sheer size of the human genome makes it improbable that identical somatic mutations
at the exact same position are observed in multiple tumours solely by chance. The scarcity
of cancer driver mutations also precludes positive selection as the sole explanation. There-
fore, recurrent mutations may be highly informative of characteristics of mutational pro-
cesses. To explore the potential, we use recurrence as a starting point to cluster >2,500
whole genomes of a pan-cancer cohort. We describe each genome with 13 recurrence-
based and 29 general mutational features. Using principal component analysis we reduce
the dimensionality and create independent features. We apply hierarchical clustering to the
first 18 principal components followed by k-means clustering. We show that the resulting 16
clusters capture clinically relevant cancer phenotypes. High levels of recurrent substitutions
separate the clusters that we link to UV-light exposure and deregulated activity of POLE
from the one representing defective mismatch repair, which shows high levels of recurrent
insertions/deletions. Recurrence of both mutation types characterizes cancer genomes with
somatic hypermutation of immunoglobulin genes and the cluster of genomes exposed to
gastric acid. Low levels of recurrence are observed for the cluster where tobacco-smoke
exposure induces mutagenesis and the one linked to increased activity of cytidine deami-
nases. Notably, the majority of substitutions are recurrent in a single tumour type, while
recurrent insertions/deletions point to shared processes between tumour types. Recurrence
also reveals susceptible sequence motifs, including TT[C>A]JTTT and AAC[T>G]T for the
POLE and ‘gastric-acid exposure’ clusters, respectively. Moreover, we refine knowledge of
mutagenesis, including increased C/G deletion levels in general for lung tumours and specif-
ically in midsize homopolymer sequence contexts for microsatellite instable tumours. Our
findings are an important step towards the development of a generic cancer diagnostic test
for clinical practice based on whole-genome sequencing that could replace multiple diag-
nostics currently in use.
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Author summary

Mutations found in the DNA of a tumour are expected to be largely unique to each
tumour as there are three billion places in the DNA that can be mutated. However, despite
these odds, in a cancer study with 2,583 participants covering 37 tumour types we observe
in total over a million non-unique mutations. Based on this observation, we hypothesize
that these mutations can be highly informative of the biological processes that caused
them. Using characteristics of these non-unique mutations and general statistics like the
total number of mutations, we classify the tumours into 16 groups. These groups not only
delineate various mutational processes, but also characterize them in more detail. More-
over, we can link the groups to several clinically actionable phenotypes. Our work is a cru-
cial step towards the development of a generic and personalized cancer diagnostic test
that only uses the mutations found in the tumour.

Introduction

Mutational processes induced by exogenous sources and/or endogenous mechanisms deter-
mine the mutational burden of a cell. They each leave their own genomic fingerprint that dif-
fers in terms of the number, types and distribution of mutations. Cancer cells usually show
higher mutation rates than normal cells due to elevated cell proliferation and lack of proper
DNA repair. The mutations accumulated before, during and after the oncogenic transforma-
tion may result in a mutational load exceeding several thousand per cancer genome [1]. Even
with such a high burden, the sheer size of the human genome with over three billion bp still
makes it improbable that by chance alone identical somatic mutations are found at exactly the
same genomic location in two or more cancer patients. Such mutations we will henceforth
refer to as being ‘recurrent’. Positive selection is one possible explanation for the recurrence of
mutations. Recurrent mutations or often more general, recurrently mutated genes and regula-
tory elements, are used in the prediction of cancer drivers that provide a growth advantage to
the cell [2]. However, the number of mutations per cancer genome that so far has been identi-
fied as being under positive selection is very small [3, 4] and the discussion on what are suffi-
cient conditions for driver mutations to cause cancer is on-going [5, 6]. Instead of focusing on
driver mutations, we hypothesize that recurrent mutations may be highly informative of the
non-randomness of mutagenesis and provide a different way to group cancer genomes. In sup-
port of this, at both megabase as well as local scale cancer-specific patterns of the non-random
distribution of mutations have been well described [7]. For instance, mutation rate is influ-
enced by replication time [8], is linked to epigenomic features [9], shows a periodic pattern
around nucleosomes [10], and can depend strongly on the 5" and 3’ flanking base as shown in
mutational signatures for several mutational processes [11]. This enrichment of mutations in
specific genomic regions or sequence contexts increases the probability of recurrence as does
the number of mutations per sample, which also varies across mutagenic processes.

We use recurrence as a starting point for a systematic analysis of cancer genomes from the
Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium [12]. This cohort study,
brought together by an initiative of the International Cancer Genome Consortium (ICGC)
and The Cancer Genome Atlas (TCGA), covers 37 tumour types from 2,583 donors (S1 Table)
and is the largest publicly available dataset of its kind. It allows a comprehensive pan-cancer
analysis of recurrence in particular since the somatic mutation calling pipeline was identical
across all genomes. Moreover, the whole-genome sequencing data that is available for all
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donors provides a more complete view than whole-exome sequencing data that so far has been
used for large-scale pan-cancer analyses [13]. To make full use of the whole-genome sequenc-
ing data and analyse recurrence in an unbiased way, we take here a purely data driven
approach that is independent of the completeness and correctness of current genome annota-
tions. Hereby we will focus on Somatic Single-base Mutations (SSMs) and Somatic Insertion/
deletion Mutations (SIMs). We first confirm that the number of recurrent mutations is far
higher than expected by chance alone and shed light on the relationship between recurrence
and the number of samples. Next, we analyse recurrence in the context of general mutational
characteristics that capture the effect of mutational processes on the genome. Finally, these
general features together with recurrence-related features form the base for clustering cancer
genomes in a novel way and determine what recurrence can tell us about mutagenesis. To help
interpret the recurrence observed in the 16 identified clusters, link clusters to potential muta-
tional processes and provide further details of each cluster, we use various types of metadata,
including tumour type information, driver predictions, and replication time. As a result, we
are not only able to refine the mutational consequences of many exposure-specific processes,
but also capture clinically relevant phenotypes by using hitherto unused, but easily obtainable
mutational features from whole-genome sequences.

Results
Recurrence is higher than expected by chance

There are 1,057,935 recurrent SSMs, which represent 2.44% of the total number of SSMs
found in the PCAWG cohort. This is around five times higher (Fig A-Iin S1 Text) than
expected if only chance would drive recurrence (based on 5,000 simulations, S1 Text). For the
six SSM subtypes (see Methods) the observed recurrence is around three (C>G and T>C
SSMs) to twelve times (T>G SSMs) higher than expected by chance (Fig A-II in S1 Text). On
tumour type level, we can either determine recurrence by only considering the samples from
the same tumour type (‘within tumour type’) or across all samples (‘pan-cancer’). In both
cases, Kidney-RCC, Liver-HCC, Lung-AdenoCA and Lung-SCC stand out as the observed
number of recurrent SSMs is only around three times (within tumour type) and around two
times (pan-cancer) higher than expected by chance (Fig A-III+IV in S1 Text). In contrast, the
largest ratio is 86 times for recurrence ‘within tumour type’ (Prost-AdenoCA) and 7 times for
recurrence ‘pan-cancer’ (Eso-AdenoCA).

Number of samples does not always correspond to the level of recurrence

To see the effect of the number of samples on recurrence, we look at the overall recurrence
within each tumour type (Fig 1). Although tumour types with more samples generally have a
higher total number of recurrent mutations (Fig 1A), there are notable exceptions. For exam-
ple, Liver-HCC has the most samples of all tumour types (314), but less recurrent SSMs and
SIMs than six and five other tumour types, respectively. If we look at the percentage of recur-
rent mutations, even more tumour types overtake Liver-HCC as in this respect it ranks 9" and
10™ in terms of SSMs and SIMs, respectively (Fig 1B). The opposite is true for Eso-AdenoCA
(97 samples), which has a higher absolute number and percentage of recurrent SSMs than
eight other tumour types that have more samples. Stomach-AdenoCA has the highest absolute
number and percentage of recurrent SIMs of all tumour types, but less samples than 13 of
them. One partial explanation for this is that a lower number of samples does not always trans-
late to a lower total number of mutations (Fig 1C), even though the correlation is strong
(Spearman’s Rank correlation coefficient rg = 0.73, p = 2.8e-07). However, even if the number
of samples and the number of mutations are in line, the level of recurrence may still give a
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Fig 1. Recurrence within each tumour type in absolute numbers and percentages. The tumour types are ordered from the lowest to
the highest number of samples. We labelled the top 10 ranking tumour types in terms of the following three values: (A) Absolute number
of recurrent mutations, where recurrence is defined by considering each tumour type separately (‘within tumour type’ recurrence). (B)
Percentage of recurrent mutations ‘within tumour type’. (C) Total number of mutations, counting recurrent mutations only once.

https://doi.org/10.1371/journal.pcbi.1007496.9001

different picture. Liver-HCC, for instance, has also a higher total mutational load than Eso-
AdenoCA (1.2:10° and 7.9-10* more SSMs and SIMs, respectively), but still a lower level of
recurrence.

General mutational characteristics versus recurrence

For each cancer genome, we compute 29 basic mutational characteristics that capture the
effects of mutagenesis (e.g. relative frequency of each SSM subtype) and 13 features capturing
recurrence at different levels (Table A in S1 File, see Methods). Recurrence for these features is
determined based on the entire cohort. A detailed description of each of these 42 measures is
available in S1 File. Based on the comparison of the recurrence-related features with the gen-
eral ones (52 Text), the key findings are that across the entire cohort: 1) the correlation
between mutational load and the absolute level of recurrence is stronger for SSMs (rg = 0.89)
than for SIMs (rs = 0.76); 2) the same correlation, but instead taking the percentage of recur-
rent mutations, is weak and negative for SSMs (rg = -0.21) and non-significant for SIMs; 3) rel-
ative recurrence for SIMs is higher than for SSMs; 4) a particularly high percentage of C>T
SSMs and 1 bp A/T deletions are recurrent (4.19% and 15.27%, respectively); 5) there is a
strong tendency for T>>G SSMs to be recurrent despite its modest total number; 6) there is a
strong correlation between the level of recurrence for SIMs and the percentage of 1 bp SIMs in
a long homopolymer context. Looking into the different tumour types, there are clear contrasts
in terms of the associations between general and recurrence-related characteristics. For exam-
ple, there is a statistically significant positive correlation between the number of mutations and
the percentage recurrent for only two tumour types in the case of SSMs (Eso-AdenoCA: rg =
0.48 and Skin-Melanoma: rg = 0.58) and for seven types with respect to SIMs (most notably:
Biliary-AdenoCA: rs = 0.71 and Eso-AdenoCA: rg = 0.67) (Fig D in S2 Text).

Recurrence characteristics divide the cohort

Next, we use the recurrence-based and general mutational features all together to see if we can
uncover meaningful clusters of cancer genomes. As there are strong correlations between
some of these features (Fig 2), we first perform a principal component analysis (PCA) to obtain
independent features and reduce dimensionality (Fig 3). We take as many principal compo-
nents (PCs) as needed to explain at least 80% of the variance in the data and consider the
remaining PCs to capture noise. We use this subset of PCs as input for hierarchical clustering
[14]. The resulting hierarchical tree is cut at the desired height to obtain clusters. The centroids
are computed for each cluster and used as input to the k-means consolidation step, which fur-
ther improves the initial clustering (see Methods) [15]. To get a pan-cancer perspective we
analyse all samples together.

The crude division into two clusters separates the cancer genomes with low relative levels of
recurrent SIMs (e.g. Liver-HCC, Kidney-RCC and Lung-SCC) from those with high levels (e.g.
ColoRect-AdenoCA, Eso-AdenoCA, Lymph-BNHL and Panc-AdenoCA) (S1 Fig). At three
clusters, the relative level of recurrent SSMs splits off a group of mainly Skin-Melanoma sam-
ples from the two other clusters. This cluster largely remains unchanged when increasing the
number of clusters while the two other clusters continue to divide and become more specific
to a tumour type or a particular mutational process. At the level of six clusters, for example, we
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Fig 2. Spearman’s rank correlation between the 42 mutational features. The colour of the circles indicate positive (blue) and negative (red) correlations, colour intensity
represents correlation strength as measured by the Spearman’s rank correlation coefficient. The size of the circle indicates the adjusted p-value with larger circles
corresponding to lower p-values. The p-values were corrected for multiple testing using the Benjamini-Yekutieli method. Crosses indicate that the correlation is not
significant (adjusted p-value > 0.05).

https://doi.org/10.1371/journal.pcbi.1007496.g002

see a cluster split off that we can connect to microsatellite instability (MSI). We will discuss in
further detail the division into 16 clusters, chosen as a trade-off between too many clusters,
which would each be specific to just a handful of samples, and too few, which would result in
loss of meaningful information (Fig 4). There are nine clusters (A, B, C, G, H, I, L, M and P)
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https://doi.org/10.1371/journal.pcbi.1007496.g003

for which at least half of the samples are from the same tumour type. For another two clusters
(O and N) samples from two tumour types constitute a majority. In the remaining five clusters
(D, E, F, ] and K) three or more tumour types are required for this. For each tumour type the
percentage of samples in each of the 16 clusters is shown in S2 File. The association of each of
the 42 features with the clusters is shown in Fig 5. The key characteristics of each cluster are
shown in Fig 4. To facilitate a tight linkage of the clusters to mutational processes, we consider,
in addition to the mutational features of a cancer genome, also tumour type assignment,
microsatellite instability (MSI) status, immunoglobulin heavy-chain variable region gene
(IGHV) mutation status (Lymph-CLL only) and tobacco smoking history of the donor (where
available) (S3 Text). To provide further details on each cluster we integrate annotation based
on GENCODE [16], Oncotator [17], driver predictions [3, 18], replication time [19] and muta-
tional signatures [20]. A summary of this and further details are described in S3 Text. In the
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Fig 4. Key characteristics of the 16 clusters. Tumour types that form together >50% of the cluster are listed. The legend for colours for the pie chart is provided in Fig 3.
The key characteristics are those features with the strongest significantly negative or positive association with the cluster. Only if the association with overall recurrence is
significant, the respective direction is indicated. ICluster has a low median number of SSMs (<200) and SIMs (<20).

https://doi.org/10.1371/journal.pcbi.1007496.g004

following sections we will show how the level of recurrence can be indicative of the mutational
processes, often in combination with the general features. Moreover, we show that our recur-

rence-based approach groups cancer genomes in a novel way that complements current classi-
fication approaches and captures clinically actionable cancer phenotypes.

High levels of recurrent SSMs and low levels of recurrent SIMs characterize
exposure to UV light

A positive association with overall recurrence of SSMs and more specifically with recurrence
of C>T SSMs characterizes cluster G that mainly consists of Skin-Melanoma samples (Fig 5).
The association is negative with the recurrence of SIMs. We link this cluster to mutagenesis
induced by UV light (S3 Text). The samples assigned to cluster G account by themselves for
60.7% of the total number of recurrent C>T SSMs. The combination of the high total number
of SSMs per sample and the high percentage of C>T substitutions in this cluster is what con-
tributes to the high level of recurrence. The mechanisms inherent to UV-light exposure further
increase the probability of recurrence as it tends to result in C>T SSMs near energy sinks in
the genome. The energy from UV-light-exposed DNA usually travels along the DNA strand
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Fig 5. Overview of the 42 features and their association with each cluster. Red and green squares indicate statistically significant negative and positive associations,

respectively, where the gradient indicates the strength of the association. White coloured squares indicate no significant association (adjusted p-value > 0.05). For

deletions a ‘no homopolymer context’ means that the base next to the deleted one is not of the same type. For insertions this refers to a base inserted 5’ to either a base of a
different type or a single base of the same type. Note that we do not have to consider preceding bases as all SIM calls were left aligned. A short homopolymer context is
defined as a 2-4 bp mononucleotide repeat of the same type of base as the 1 bp SIM, midsize is 5-7 bp in length and long > 8 bp.

https://doi.org/10.1371/journal.pchi.1007496.g005

until it arrives at the lowest energy point, a dT, particularly when it is next to a dC, which acts
as energy barrier [21]. In agreement with this, for C>T mutations that are recurrent within
this cluster there is a strong enrichment of a TTTCCT motif (the underlined C is mutated)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007496 November 25, 2019

9/27


https://doi.org/10.1371/journal.pcbi.1007496.g005
https://doi.org/10.1371/journal.pcbi.1007496

©'PLOS

COMPUTATIOMNAL

BIOLOGY

Recurrent somatic mutations characterize mutagenesis in cancer

(see Methods). While the percentage of this motif in the genome is estimated to be only 0.4%
of all 6-mers with a C at the central position, 4.5% and 19.5% of the non-recurrent and recur-
rent C>T SSMs, respectively, within this cluster are at this motif (Fig 6). An enrichment of a
CTTCCG motif was found for frequently recurrent mutations in promoters in 38 melanoma
samples [22]. In another set of 184 melanoma samples a CTTCCGG motif was found at the
majority of ETS transcription factor binding sites (TFBSs) [23]. As the sequences are centred
at the core consensus ETS binding motif TTCC, instead of at a mutation, the underlined nucle-
otide is the most frequently mutated base. In a subset of highly mutable ETS TFBSs the second
C is the most mutated. These and our specific sequence motif help explain the observed high
level of recurrence. Furthermore, a decreased activity level of the nucleotide excision repair
pathway was detected in melanoma at active transcription factor binding sites and nucleosome
embedded DNA compared to the flanking sites [24]. This increases local mutation rates and
hence also increases the probability of recurrence.

High levels of recurrent SSMs characterize deregulated activity of POLE

A high level of recurrent SSMs also characterizes cluster H, specifically C>T and C>A SSMs.
This cluster captures samples that can be considered ultra-hypermutators and their mutations
are mainly caused by deregulated activity of POLE (S3 Text). These samples have a very high
total number of C>A SSMs (median: 297,750) and the median percentage of recurrent C>A
SSMs across the samples is 7.7%. Two thirds of all recurrent C>A SSMs in the entire cohort are
also recurrent within only this cluster. The C>>A mutations that are recurrent within this cluster
are enriched for the motif TTCTTT, when considering only ungapped motifs (Fig 6, see Meth-
ods). Of the recurrent C>A SSMs 32.2% are at this motif, while for non-recurrent ones this is
true for only 13.7% ( test: p<2.2e-16). In the genome, the estimated percentage of this motif of
all corresponding 6-mers (NNCNNN) is far smaller (0.6%), suggesting that effects of deregulated
activity of POLE are most likely dependent on a sequence context exceeding a single neighbour-
ing base on each side as also observed for whole-exome data by Martincorena et al. [25].

High levels of recurrent SIMs characterize microsatellite instability

The highest level of recurrent SIMs across all clusters is observed for cluster J, which could be
linked to a defective mismatch repair (MMR) pathway resulting in MSI (S3 Text). Of the
179,691 recurrent 1 bp SIMs in the entire cohort, almost half of them are recurrent when only
considering this cluster. The very high median number of SIMs (30,228) in this cluster may
play a role in the high level of recurrence. The key factor, however, is most likely the muta-
tional process behind MSI, which is slipping of the DNA polymerase during replication of
repetitive sequences and the lack of repair by the MMR pathway [26]. This not only explains
the elevated number of SIMs [27], but also the association of this cluster with all SIM subtypes
in the context of midsize-to-long homopolymers. As such homopolymers are scarce in the
genome, the shift towards specifically altering them increases the probability of recurrence
(Table F in S2 Text). Especially striking in this cluster is the proportion of 1 bp C/G deletions
that are in the context of a midsize homopolymer (median: 73.2% vs. 8.4% for the other clus-
ters combined, p = 1.2e-12). This translates to 6.0% recurrent 1 bp C/G deletions within this
cluster versus <0.7% for any other cluster (S3 Text).

Positive association with recurrence of SSMs and SIMs: Gastric-acid
exposure and hypermutation of immunoglobulin genes

Clusters L, M and N all positively associate with recurrence of both SSMs and SIMs. Cluster L,
which for >80% consists of Eso-AdenoCA and Stomach-AdenoCA samples, can potentially be
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Fig 6. Enriched sequence motifs. The sequence logos represent the sequence context of ten bp 5" and 3’ of the non-recurrent (left-side) or recurrent
(right-side) mutations of the indicated cluster and SSM subtype. Here recurrence is defined as a mutation at the same genomic location in two or
more samples from the same cluster. Each recurrent SSM is included only once to avoid giving extra weight to highly recurrent mutations. Relative
entropy is used as a measure of information content (see Methods). Setting a threshold of 0.25 for the relative entropy results in the motifs highlighted
in the rectangles. In the upper right corner of each sequence logo the number of mutations is indicated. To the right of the sequence logos are the
percentages in which the enriched motif found for the recurrent SSMs is present in context of the mutations in the cluster and the corresponding
k-mers in the genome (N = A, C, G or T). The enrichment for the motif for recurrent SSMs is in all four cases significantly higher than for the non-
recurrent SSMs () test: p<2.2e-16).

https://doi.org/10.1371/journal.pcbi.1007496.9006

linked to gastric-acid exposure (53 Text). The T>G and T>C SSMs that are recurrent within
this cluster cover 45% and ~20%, respectively, of the total observed in the whole cohort. The
median percentage of SSMs falling in late-replicating regions (Table C and Fig A in S3 Text) is
significantly higher than in the rest of the clusters combined (75.2% vs. 61.0%, p<2.2e-16). In
general, the mutational load is expected to be higher in late-replicating regions as the MMR
pathway is said to be less efficient there [28]. However, the question is why the effect is so
strong in cluster L compared to the others (Fig B in S3 Text). It could be that transient single
strand-DNA at stalled replication forks, whose formation has been suggested to be more prev-
alent in late-replicating regions [29], is particularly vulnerable to the mutagenicity of acid-
exposure. Alternatively, if the oxidative stress induced by gastric-acid exposure leads to the
oxidation of dG in the dNTP pool [30], the use of error-prone DNA polymerases that incorpo-
rate the oxidized dG into the DNA [31] may be more frequent in late-replicating regions [32].
The strong shift towards late-replicating regions favours higher levels of recurrence. The same
holds for the enrichment of the specific sequence context ‘AACTT” that we observe for T>G
mutations that are recurrent within this cluster (Fig 6, see Methods). Nearly 39% of the recur-
rent T>G SSMs are confined to this motif and ~12% of the non-recurrent ones (3 test:
p<2.2e-16), which is still far higher than the estimated percentage of this motif in the genome
(0.5% of all NNNTN 5-mers). For SIMs, the cluster has a positive association with recurrence
for three out of the four SIM subtypes as well as with the same subtypes in a midsize and/or
long homopolymer context. This suggests similar mechanisms as for cluster J. Finally, as
observed for SSMs in this cluster, SIMs also show a tendency to fall into late-replicating
regions (67.2%, Table C and Fig C in S3 Text). This may further add to the high level of recur-
rence for SIMs.

Cluster M, with mainly Lymph-BNHL and Lymph-CLL samples, is linked to the somatic
hypermutation of the immunoglobulin genes (S3 Text). In the aforementioned tumour types,
this process is indicative of memory B cells being the cell of origin as opposed to naive B cells
[33]. The cluster has positive associations with the level of recurrence for all six SSM subtypes.
The association is particularly strong for C>G. Of all recurrent C>G SSMs, 10.7% can be
found in this cluster alone. The high level of recurrence may partially be explained by the
hypermutation observed in the limited area of the genome where the immunoglobulin genes
are located. For SIMs, the cluster has positive associations with the level of recurrence for all
four subtypes as well as with those subtypes in general when in a midsize and/or long homo-
polymer context. This cluster has the highest median percentage of SIMs in late-replicating
regions (67.5% vs. 57.8% for the other cluster combined, p<2.2e-16, Table C and Fig C in S3
Text), which may contribute to the high level of recurrence.

In cluster N, which consists of ~47% Panc-AdenoCA samples, the sources of mutagenesis
are less clear, even after the inclusion of all annotation layers (S3 Text). Except for C>G and
T>C SSMs, the cluster has positive associations with the recurrence of all other subtypes of
SSMs and every SIM subtype. This is especially noticeable as the median of the total number of
mutations across samples is intermediate. A high percentage of the recurrent mutations are
SIMs in this cluster with a median of 35.0%. This is far higher than for samples of the other
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clusters combined (median: 15.5%, p<2.2e-16). The positive associations with all SIM sub-
types when in a midsize-to-long homopolymer context may point to a slippage-related mecha-
nism (see also cluster J).

Negative association with recurrence: Tobacco-smoke exposure, alcohol use
and increased activity of cytidine deaminases

There are also several mutagenic processes that are associated with low levels of recurrence
(Fig 5) including those represented by clusters A, B, C and E. Cluster A, of which 84% are lung
cancer samples, is linked to mutational processes induced by tobacco-smoke exposure (S3
Text). This cluster shows a positive association with the total number of SSMs and the percent-
age of C>A SSMs, the latter is a known consequence of tobacco-smoke exposure [34]. There
are several factors that increase the probability of recurrence in this cluster, including the high
total mutational load together with the high percentage of C>>A SSMs and the enrichment of
mutations in late-replicating regions (S3 Text). Also, tobacco-smoke induced mutations have
been shown to be enriched in linker DNA (i.e. DNA not wrapped around a nucleosome) [10],
which constitute only between 10% and 25% of the genome in eukaryotes [35]. The key to
explaining the lack of recurrence seems to be that there is little tendency to favour a specific
sequence context for the C>A SSMs (Fig 6). This can also be observed in the ‘tobacco smoking
signature’ [11], which is present in nearly 90% of the samples in this cluster (S3 Text). Unlike
for several clusters mentioned above, there is a positive association with SIMs in short homo-
polymer contexts, which are more frequent in the genome than longer homopolymers, and the
resulting distribution is therefore also more random. Note that cluster A also has a strong asso-
ciation with the percentage of total 1 bp C/G deletions, which has not been described previ-
ously as a possible consequence of tobacco-smoke exposure (S3 Text and S4 Text).

Cluster B, consisting of 85% Liver-HCC samples, is likely to be linked to mutational pro-
cesses indirectly induced by excessive alcohol use (S3 Text). The level of recurrence is low
despite the high number of samples of the same tumour type (277) and the consistent pattern
of a high percentage of T>>C SSMs (median: 31.7% vs. 14.6% in the other cluster combined,
p<2.2e-16). With regard to 1 bp SIMs, there is a positive association with a short homopoly-
mer context, as for cluster A, with the exception of 1 bp A/T insertions.

In cluster C, in which ~82% are Kidney-RCC and Kidney-ChRCC samples, the mutational
processes remain largely obscure except for a few samples that can be connected to aristo-
lochic-acid exposure (S3 Text). Unlike for clusters A and B, the median number of SSMs
across samples is relatively low. Furthermore, mutations are nearly equally spread between
early- and late-replicating regions as only 53.9% of the SSMs and 47.5% of SIMs are in late
(Table C, Figs B and C in S3 Text). SIMs are preferentially located in no or short homopolymer
context, similar to clusters A and B.

In cluster E nearly one third are Breast-AdenoCA samples and key mutational characteris-
tics point to the endogenous mutational process of increased activity of cytidine deaminases
(S3 Text). There is a general paucity of associations with characteristics of recurrence. In line
with this, the mutations in this cluster are nearly equally spread between early- and late-repli-
cating regions of the genome (Table C, Figs B and C in S3 Text). The most outstanding feature
of this cluster is the high percentage of C>>G SSMs. This is the rarest substitution type, making
the detection of recurrence unlikely, particularly if not confined to specific genomic regions.
Interestingly though, the 655 C>G SSMs that are recurrent within this cluster are enriched for
the motif CTCW (W = A or T) (Fig 6, see Methods). Very similar motifs have been described
as being characteristic for deamination mediated by APOBEC3 [36]. The number of recurrent
mutations is much lower than for the other motifs discussed. The CTCW motif is also shorter,
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more general and therefore relatively frequent in the genome (5.4% of all NNCN 4-mers), all
possible causes for the lacking trend towards recurrence.

The added value of the recurrence-related features

The PCA shows that seven of the sixteen features that contribute above average to the first two
PCs are related to recurrence (Fig 3). In addition, all 16 clusters have a statistically significant
association with two or more recurrence-related features (Fig 5). The importance of the recur-
rence-related features is further demonstrated by the results of running the entire workflow
(Fig 3) using only the general features. In this case we are no longer able to separate all ultra-
hypermutator samples from the rest of the cohort (S2 Fig). Furthermore, the cluster linked to
hypermutation of the immunoglobulin genes (cluster M) is dissolved, and the cluster possibly
linked to gastric-acid exposure (cluster L) is less cancer-specific as it absorbs 90 samples of the
dissolved cluster M and thereby nearly doubles in size. Another key difference is that only
~55% of the Lymph-CLL samples without hypermutation of the immunoglobulin genes are
confined to a single cluster as opposed to ~86% when using all features.

Discussion

Only a very small percentage of the 1,057,935 recurrent SSMs and 186,576 recurrent SIMs in
the PCAWG cohort are expected to be purely by chance. We estimate based on simulations
that only around 0.47% of the SSMs would be recurrent if no biological factors would play a
role, which is less than one fifth of the observed 2.44%. Technical artefacts could contribute to
the level of recurrence, but although they can never be fully excluded, the PCAWG consortium
has made a great effort to minimise false positive calls. A consensus was taken of the individual
results from multiple somatic mutation callers, followed by the application of various filters to
remove, e.g., germline variants [12] (see Methods). This resulted in a conservative, but reliable
dataset of somatic mutations. Increasing the size of the cohort may change the percentage of
recurrent mutations, but in which direction depends on the tumour type of the additional
samples, their mutational burden and importantly the mutational processes underlying the
observed mutations.

Recurrence is considered an important indication that a mutation might be under selective
pressure in protein-coding regions [37, 38]. Hence, by focusing on recurrence we are inher-
ently not only looking at the mutational consequences of mutational and repair processes, but
also at positively selected mutations. One way that has been used to reduce the influence of the
latter is to count all recurrent mutations only once [39]. However, in our approach, as we
describe each individual cancer genome with the 42 features, this is not an option as we would
not know to which samples to add this single count for each recurrent mutation. Instead, we
would need to leave out all recurrent mutations, but this would even be more rigorous. In
either case, it also implies that over a million mutations are assumed to be under positive selec-
tion. Besides the fact that recurrence is not a sufficient condition for positive selection [37], it
may not even be a necessary one in a dataset of the size of our cohort [3, 38]. Another option is
to remove all predicted driver mutations. In total there are only 4,223 predicted driver muta-
tions that are either SSMs or SIMs, which constitutes just 0.009% of the total amount of muta-
tions. It is, therefore, unlikely that leaving them out will affect the general features. Their effect
on the percentage of overall recurrence is also negligible (-0.001% for SSMs and +0.002% for
SIMs), partly because only ~12% of the predicted driver mutations are recurrent within the
PCAWG cohort. Based on the overall statistics, removing the predicted driver mutations will
also hardly affect the recurrence-related features of individual cancer genomes and conse-
quently not result in any noticeable change in the uncovered clusters. As identifying the driver
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Fig 7. Factors impacting on recurrence in the context of the clusters. None of the three key factors (middle panel) that impact on recurrence individually explain the
observed level of recurrence in the clusters. Whether a cluster has a relatively high or a comparatively lower mutational load is based on the median number of SSMs/SIMs
across its samples (Fig 4). The actual specific sequence contexts for SSMs are shown in Fig 6. For cluster M there is enrichment for a specific sequence context as well,
which is AGCT for C>G SSMs that are recurrent within this cluster (n = 949) (S3 Fig). For SIMs a homopolymer of A/T’s is used to represent any type of homopolymer.
Clusters A and C have a positive association to no and/or short homopolymer context for all types of 1 bp SIMs (red), while for clusters J, L and M this is the case for
midsize and/or long homopolymer context (green) (Fig 5). For the replication time region we compute the percentage of SSMs/SIMs that are in late-replicating regions (S3
Text). If this percentage is between 45-55%, then we consider the mutations to be nearly equally spread between early- and late-replicating regions of the genome. The
specific region that is enriched in cluster M refers to the immunoglobulin genes. The recurrence in clusters A and G is also likely to be positively impacted by an increased
mutation rate in a specific region as the majority of their samples are from a particular tumour type for which this has been reported. For lung cancer (cluster A) the
mutation rate is increased in linker DNA [10] and for Skin-Melanoma (cluster G) at active transcription factor binding sites [24].

https://doi.org/10.1371/journal.pcbi.1007496.g007

mutations is, in addition, far from unambiguous and a dynamic area of research [3, 18], it is of
limited practicality to our workflow to remove them. Of note, the impact of positive selection
might be greater when analyzing only the exome [39] as there are less mutations in total and
the large majority of drivers is found in protein-coding loci [3, 18].

Mutational load, enrichment of mutations in a specific sequence context or in specific parts
of the genome all impact on recurrence. However, none of these factors provide individually a
universal explanation for the observed levels of recurrence per cluster (Fig 7). For example, the
cluster linked to tobacco-smoke exposure has a very low percentage of recurrence, despite the
high mutational load, the enrichment of mutations in late-replicating regions and increased
mutation rate in linker DNA. The absence of a preferred sequence context likely plays a role in
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this. The short and non-specific motif found in samples with increased activity of cytidine
deaminases (CTCW) is also not sufficient by itself to result in high levels of recurrence. For
causative agents like UV light and deregulated activity of POLE, however, the high total num-
ber of mutations combined with the observed 6 bp specific sequence context does lead to high
levels of recurrent SSMs. For the cluster linked to gastric-acid exposure, the number of SSMs is
much lower than for the clusters linked to those two agents or tobacco-smoke exposure. Nev-
ertheless, it has a high level of recurrence, likely because of the 5 bp sequence motif for T>G
SSMs and the three times higher occurrence of SSMs in late-replicating regions than in early.
One possible caveat here is that replication timing is a process with very high plasticity across
cell types [19], and taking the median timing across the available five cancer cell lines (S3 Text)
may individually lead to non-adequate interpretations. A typical example for the potential
impact of an elevated local mutation rate on the proportion of recurrence is the hypermutation
of the immunoglobulin genes in memory B cells. As mutations detected in several lymphoma
samples are largely confined to those genes, their modest total number of mutations still results
in a high relative level of recurrence. Finally, in the case of the MSI samples, the slippage of the
DNA polymerase during replication of repetitive sequences, combined with a lack of repair
capacity results in a high percentage of SIMs in a midsize-to-long homopolymer context. This
coincides with a high level of recurrence for SIMs, despite the relatively equal distribution of
SIMs between early- and late-replicating regions that we observe and that has been reported
before [28]. Associations with the much more frequent short homopolymers do not translate
into high level of SIM recurrence, not even in the case of a high number of total SIMs (e.g. as
observed in the ‘tobacco-smoke exposure’ cluster). The effect of the sequence context may be
stronger for SIMs than for SSMs. This would explain the ~3.6 fold higher percentage of recur-
rent SIMs (8.69%) versus SSMs (2.44%), despite the fact that there are 20 times more SSMs.
Unlike for SSMs, the actual position of an insertion/deletion in a homopolymer cannot be
determined, contributing to loss in resolution and a higher likelihood of recurrence. In sum-
mary, we infer that the non-randomness in the distribution of mutations strongly depends on
the causative agent. Consequently, recurrence is generally able to cluster the genomes in a way
that shows clear associations with tumour type assignments and mutational processes. For
SSMs 60.0% is only recurrent in one particular tumour type, while for SIMs this percentage is
10.7% (S2 Table). This suggests a higher resemblance of mutational patterns within tumour
types for SSMs than for SIMs. In contrast, 79.8% of the recurrent SIMs (versus 37.1% for
SSMs) can only be detected in a pan-cancer approach, pointing to shared mutational processes
which allow us to group samples in a more tumour type independent way. The recurrence-
related features based on these recurrent SSMs and SIMs are key to our ability to cluster the
cancer genomes into biologically relevant clusters. If we only use the general features we lose
important information about mutational processes (52 Fig).

The simple general mutational features, the different types of annotation and the uncovered
sequence motifs do provide a deeper understanding of several mutational processes (S3 Text).
For instance, MSI samples (cluster J) have a particularly high percentage of 1 bp C/G deletions
in the context of midsize homopolymers. We also see a strong shift towards the presence of
SIMs compared to SSMs resulting in a high absolute and relative number of SIMs. Ultra-
hypermutators (cluster H) form a mirror image in this respect as we observe a shift in the
opposite direction, resulting instead in a high absolute and relative number of SSMs. Another
difference is that in cluster H there is a significantly higher percentage of mutations in late-rep-
licating regions than for cluster J (SSMs: 60.2% vs. 52.8%, p = 0.0011, SIMs: 66.7% vs. 51.3%,

p = 1.8e-06). The mutational processes induced by tobacco-smoke exposure (cluster A), whose
link to an increased percentage of C>A SSMs is well-known, are also associated with a high
percentage of 1 bp C/G deletions (S4 Text). A third example is the high percentage of 1 bp A/T
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insertions in context of a short homopolymer observed for cluster C that mainly consists of
Kidney-RCC and Kidney-ChRCC samples. For this cluster there is also a nearly equal distribu-
tion of mutations between early and late-replicating regions, which is in contrast to what is
generally observed for cancer genomes [8] with the exception of MSI samples [28]. However,
unlike for MSI genomes, for cluster C a deficient MMR pathway can most likely not explain it.
Deficient translesion synthesis has been shown in yeast to also lead to a more equal distribu-
tion [40]. In the opposite direction, the cluster possibly linked to gastric-acid exposure (cluster
L) has an unexpectedly strong tendency of both SSMs and SIMs to be in late-replicating
regions compared to all other clusters, which could point to the extensive usage of error-prone
polymerases. The sequence motif (AACTT) found for the T>G SSMs recurrent within this
cluster (n = 38,399, 38.9% with the motif) provides another interesting characteristic (Fig 6).
Only 8.9% of the T>G SSMs recurrent in the 2,479 samples not in cluster L (n = 25,318) are
confined to this motif. An important contributor to the recurrent T>G SSMs not in cluster

L is the cluster linked to the deregulated activity of POLE (cluster H). The T>G SSMs that

are recurrent within cluster H (n = 11,553) are instead enriched for the sequence motif
AAATTTAT (S4 Fig). There are some interesting parallels between cluster H and L. First, for
both holds that the Eso-AdenoCA and ColoRect-AdenoCA samples that form the majority of
cluster L and H, respectively, have a higher median number of SSMs than samples from the
same tumour types not assigned to the respective clusters (Eso-AdenoCA: 29,302.5 vs. 11,404,
p = 1.3e-09, ColoRect-AdenoCA: 850,298 vs. 15,045, p = 1.5e-08). Second, changes to the
dNTP pool are in both cases likely linked to the observed mutations together with the more
frequent usage of alternative (error-prone) polymerases (cluster L) or a polymerase with a
deregulated activity (cluster H). Third, the sequence motifs found for both clusters exceed the
single neighbouring base. The latter is the case for all sequence motifs that we found (Fig 6)
and also none of them have the same number of bases on both sides of the mutated position.
These two observations and the motifs themselves are also important to take into account
when estimating the background mutation rate used in e.g. driver prediction [25, 37]. The
motifs point to an increased mutational probability of individual bases [22] that is context-spe-
cific and characteristic for certain mutational processes. This has primarily been shown and
taken into account for a sequence context of a single neighbouring base [37] or, less frequently,
for an equal number of several bases at both sides of the mutation [25]. As we extract these
motifs based on recurrent mutations there is a possibility that positive selection plays a role.
However, this is likely negligible as the number of recurrent, predicted driver mutations is
only 427 when considering all six SSM subtypes together.

Several of our clusters are linked to cancer phenotypes that are relevant for treatment and/
or have prognostic value. Our division into 16 clusters and their characteristics could, there-
fore, be valuable for complementing current classification schemes, which are mainly based on
histology and organ of origin. We can assign a new sample to one of our 16 clusters by first
projecting it onto the PCA space based on the PCAWG cohort. Next, we use the first 18 princi-
pal components to compute the Euclidean distance to the centroid of each of the 16 clusters
and assign the sample to the nearest one. If there are multiple clusters with a minimum differ-
ence in distance to the new sample, then to select one cluster we use the sequence motifs (Fig
6) and various layers of annotation (S3 Text) like replication time. Ideally, we would use only
the samples in the ‘reference set’, which currently is the PCAWG cohort, to compute the recur-
rence-related features for a new sample. However, ~90% and ~72% of the recurrent SSMs and
SIMs, respectively, in this set are only recurrent in two samples (Fig F in S2 Text). Therefore,
the recurrence-based features of the new sample might be underestimated in which case the
sample is also less likely to be assigned to clusters that have a positive association with recur-
rence. Instead we would need to include the new sample for computing recurrence, which

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007496 November 25, 2019 17/27


https://doi.org/10.1371/journal.pcbi.1007496

©'PLOS

COMPUTATIOMNAL

BIOLOGY

Recurrent somatic mutations characterize mutagenesis in cancer

could also affect the recurrence-related features for some samples in the reference set. This
might result in changes in the clustering, but the impact of a single sample is most likely mini-
mal. Of note, the interdependence of samples in terms of the recurrence-related features also
makes cross-validation difficult. The level of recurrence is not high enough to compute recur-
rence for the training and test set separately, and even a leave-one-out strategy would create
dependence between the two sets. We hypothesize that, by increasing the size of the reference
set, we will reach at a certain point a plateau in terms of recurrence. This would enable us to
compute the recurrence-based features for a new sample using only the reference set. A larger
dataset would also allow further insights into the non-randomness of mutational processes,
especially of those that are not active across a large set of samples or that are only observed in
specific tumour types for which the number of samples is currently limited. Efforts are, in fact,
already on their way to expand the PCAWG dataset with more whole-genome sequences from
ICGC and other consortia.

Given that incorporating whole-genome sequencing in a clinical setting is gaining traction
as evidenced by projects like Genomics England (www.genomicsengland.co.uk) and the Hart-
wig Medical Foundation (www.hartwigmedicalfoundation.nl), analyses making full use of this
kind of data are urgently needed. Ultimately, whole-genome sequencing can then replace mul-
tiple diagnostic tests currently in use and make diagnoses more accurate. One example illus-
trating the value of our clusters towards this goal is the MSI phenotype linked to cluster J. For
these patients, immunotherapy may be beneficial [41] while adjuvant chemotherapy may not
be needed [42]. To classify a cancer genome as MSI, we can use our 42 features to determine
whether or not a sample belongs to cluster J, as detailed above. A high percentage of 1 bp C/G
deletions in a midsize homopolymer is, however, even by itself already a strong indication for
MSI. The MSI phenotype cluster ] captures, forms a possible alternative to either explicitly
identifying all microsatellite alterations between tumour and normal tissue [43] or using spe-
cific markers to detect alterations in five or seven of them like the Bethesda markers [44].
There are also 10 mutational signatures linked to a deficient MMR pathway of which seven are
based on single base substitutions, two on doublet base substitutions and one on small indels
[20]. Two more indel-based signatures (ID1 and ID2) that are found in nearly all cancer
genomes, are linked to a deficient MMR pathway if they contribute >10,000 indels. Signatures
look at mutational processes at mutation level rather than sample level. A non-zero contribu-
tion of an individual MSI-linked signature or a high contribution (>>10,000) of ID1 and ID2 is
not sufficient to classify a sample as MSI given that this naive approach would results in 368
possible candidates. Instead it requires a combination of signatures and/or thresholds on the
amount of mutations contributed to the sample to be able to use the signatures for MSI classifi-
cation. A second example of an actionable phenotype that we capture with one of our clusters
is ultra-hypermutation (cluster H), which has also been related to beneficial results from
immunotherapy [45, 46]. A third example is the somatic hypermutation of the immunoglobu-
lin genes, which identifies memory B-cells as the cell of origin in the case of lymphomas. This
has been linked to a less aggressive form of Lymph-CLL and more favourable prognosis [33],
which may in turn influence treatment selection. Without explicitly analysing the immuno-
globulin genes [47], we were largely able to separate the Lymph-CLL samples with somatic
hypermutation (cluster M) from those without (cluster D). The characteristics of the former
group include a high percentage of recurrent C>G SSMs and 1 bp A/T deletions. A final exam-
ple relates to those Eso-AdenoCA samples that are assigned to cluster L, which have a high per-
centage of T>C as well as T>>G SSMs and a higher total mutational load than Eso-AdenoCA
samples not assigned to this cluster. Eso-AdenoCA samples with the characteristics of cluster L
have also been suggested to benefit from immunotherapy [48]. The same treatment option
may therefore be prioritized for the 22 Stomach-AdenoCA samples that are also in cluster L.
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Similarly, a refined investigation of tumour samples that do not cluster with the vast majority
of its own kind may ideally point to differences in disease prognosis or treatment response and
even has the potential to define novel subtypes or reveal misclassification. Such an analysis
would be especially worthwhile for the ~20% or less samples from Kidney-RCC, Liver-HCC,
Lung-SCC or Lymph-BNHL that are not assigned to the main cluster. Another possible appli-
cation of our classification scheme is to assign a metastatic sample with unknown primary site
to a cluster to shed light on the possible tissue of origin or pan-cancer characteristics like MSI.

In conclusion, we provide here a comprehensive analysis of somatic mutations in cancer
genomes irrespective of tumour type using 42 features with a truly pan-cancer focus. This
allows us to include tumour types with very few samples for which individual analysis is little
informative. Moreover, information can be borrowed across the entire data set enabling the
detection of processes present in multiple tumour types. We let the genome prioritize what is
important by using position-specific recurrence and by considering features that do not
depend on the completeness and correctness of current genome annotations. This has enabled
us to delineate various mutational processes, uncover new mutational manifestations and
characterize several actionable clinical phenotypes in a novel way. Findings from this and simi-
lar analyses in the future will be of utmost importance for the goal to tailor treatment to the
individual patient.

Methods

PCAWG cohort - quality control

We used the cohort of cancer genomes assembled by the PCAWG project [12] of the ICGC
and TCGA. For every donor, whole-genome sequencing data was available for a normal-
tumour pair and all samples were analysed uniformly. A detailed description of the quality
control is provided in the PCAWG marker paper [12]. In short, 176 samples were excluded for
various reasons as part of the quality control, most commonly because of contamination with
RNA. Samples of another 75 donors were of borderline quality for various reasons, including a
high percentage of paired reads mapping to different chromosomes [12, 49]. We decided not
to include the samples of those donors, which left us with genomic data of 2,583 donors cover-
ing 37 tumour types (S1 Table). The distribution of the samples across the tumour types is also
indicated in S1 Table. In case there were multiple tumour samples for the same donor, we
selected a single sample following the decision made within the consortium. To make the deci-
sion five criteria were used as described by the PCAWG Drivers and Functional Interpretation
Group [18]. In order of importance, they prioritized the sample: 1) of a primary tumour over
metastatic and recurrent ones; 2) with a OxoG score over 40, which indicates low levels of oxi-
dative damage artefacts [50]; 3) with the highest quality according to the star rating system
[49]; 4) with RNA-Seq data available; 5) with the lowest level of contamination with foreign
DNA. If none of these criteria led to the selection of a single sample, a random selection was
made.

PCAWG cohort — mutation calls

The description of the procedure for the mutation calls is provided in the marker paper of the
PCAWG consortium [12]. In brief, the sequenced reads of the respective normal and tumour
sample pairs were aligned with BWA-MEM to the GRCh37/h19 genome. Four mutation call-
ing pipelines were run on the resulting BAM-files for each normal/tumour sample pair. The
pipelines used for calling SSMs were MuSE [51] and three in-house pipelines developed at the
Deutsches Krebsforschungszentrum (DKFZ) in collaboration with the European Molecular
Biology Laboratory (EMBL), Wellcome Sanger Institute and Broad Institute, respectively. A
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consensus set was built by keeping those calls on which two or more callers agreed. SIMs were
called by SMuFIN [52] and three pipelines developed by the same institutes as mentioned for
SSMs. The consensus was determined by stacked logistic regression instead, as the level of
agreement between the callers was lower than for SSMs. Furthermore, the SIM calls were left
aligned to make them comparable across samples. Several filters were applied to both the SSM
and SIM calls to remove, among other things, calls due to oxidative damage artefacts [50] and
germline variants. Great care was taken by the consortium to reduce the number of false posi-
tive mutation calls, resulting in a reliable dataset that is believed to be a conservative represen-
tation of the true set of mutations.

Definition of mutations

For SSMs there are 16 possible subtypes. However, we can neither detect substitutions with a
base of the same type (e.g. A>A) nor do we usually know on which strand the (pre-)mutagenic
event happened first (e.g. A>C is equivalent to T>>G on the other strand). Therefore, we com-
bined the substitutions that are each other’s reverse complement and refer to them by the
pyrimidine of the mutated base pair: C>A, C>G, C>T, T>A, T>C and T>G. We regarded
substitutions directly next to each other (median number across samples: 25) as separate single
base events since, aside from the very limited numbers, in several cases the individual callers
only supported one single base event, and only the consensus resulted in a multiple base substi-
tution call. For 1 bp SIMs, these are the four subtypes A/T deletions, C/G deletions, A/T inser-
tions and C/G insertions, as analogously to SSMs, we cannot determine on which strand the
(pre-) mutagenic event happened first.

Features describing each cancer genome

We computed 29 general features and 13 related to recurrence (Table A in S1 File) to charac-
terize different aspects of the somatic mutations in a cancer genome. We used the vcfR package
in R to read in the VCF files [53]. The general features comprised the number of SSMs and
SIMs (two features), the percentage of SIMs with respect to the total number of mutations
(one feature), the distribution of SSMs and SIMs across the different subtypes (six and four
features, respectively), and the homopolymer context of 1 bp SIMs for each of the four sub-
types (four times four features). We used the BCFtools (version 1.5) to compute recurrence
using the VCF files as input. Recurrence was captured by the overall percentage of recurrent
SSMs and SIMs (two features), percentage of recurrent mutations of type SIM (one feature)
and recurrence per SSM and SIM subtype (six and four features, respectively). The homopoly-
mer context is not included in the recurrence features, as the number of recurrent SIMs is too
low to stratify into 16 additional features. Except for the number of SSMs and SIMs, all other
40 features were in percentages.

Principal Component Analysis and hierarchical clustering on Principal
Components

The R package FactoMineR (v1.41) was used for the PCA [14]. All input features for the PCA
were scaled to zero mean and unit variance to account for the differences between the ranges
of the features, especially with respect to the two features in absolute terms versus the ones in
terms of percentages. The first 18 PCs explained together over 80% of the variance of the data.
The remaining components were assumed to mostly represent noise in the data. The PCs were
used as input to the ‘hierarchical clustering on principal components’ (HCPC) function from
the FactoMineR package. The Euclidean distance was used as a measure of dissimilarity and
the Ward criterion for linkage. We cut the hierarchical clustering tree at various heights to see
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a more global down to a more specific division of the samples. The HCPC function includes a
consolidation step in the form of k-means clustering [15], which uses the centroids of the hier-
archical clustering as a starting point. This consolidation step was repeated a maximum of 10
times. The k-means clustering increased the variance between clusters from 17.5 to 18.9. Other
advantages of this hybrid approach are that it reduces the sensitivity of k-means clustering to
outliers and the initial centroids are selected in an informed way instead of at random. As a
consequence of this step, some samples were finally assigned to a different cluster than after
the hierarchical clustering. A ‘v test’, included in the FactoMineR package, was used to deter-
mine which features were significantly associated with each cluster. This test compares the
mean of a particular feature in a cluster to the overall mean in the dataset. We corrected the p-
values of all ‘v tests’ for multiple testing using the Benjamini-Yekutieli method. A feature is
considered to be significantly associated to a cluster if the adjusted p-value < 0.05.

Detection and enrichment of motifs

We collected for clusters A, E, G, H, L and M all SSMs of the subtype that is the most charac-
teristic. This is C>A for clusters A and H, C>G for cluster E and M, C>T for cluster G and
T>G for cluster L. In addition, we looked at T>G SSMs in cluster H to compare them to clus-
ter L. Next, we extracted from the reference genome (GRCh37/h19) the ten adjacent bases in
5 and 3’ direction of the mutation using the Rsamtools package in R. We used the extracted
sequence context as input to construct two sequence logos per cluster: one for the mutations
that are recurrent within the cluster and one for those that are not. We include each recurrent
mutation only once to avoid giving extra weight to highly recurrent mutations. As a measure
of information content we used the relative entropy [54, 55], which is defined for position i by:

b)
= > f logzPU

be{A,C,G,T}

Here, f(b;) stands for the frequency of base b (A, C, G or T) in position i and P(b) stands for the
prior probability of base b as determined by the frequency in the human genome (GRCh37/

h19). The height of each base in the sequence plot is proportional to f (b )logz 0 A positive

value corresponds to an enrichment of the base with respect to the prior probablhty and a neg-
ative value to a depletion. The relative entropy (RE;) is zero, if all four bases are observed with
the same frequency as the prior in position i. We set 0.25 as a threshold for RE; to define the
enriched motif. Furthermore, we computed per cluster the percentages of all, non-recurrent
and recurrent SSMs that were in the sequence context that was found to be enriched in the
recurrent SSMs. To estimate the percentage of the respective motifs in the human genome, we
first slid a window of the same size (k) as the motif across the genome with a shift equal to the
length of the motif and counted all possible k-mers. Next, we added to this the counts retrieved
in the same way for the reverse complement of the reference sequence (corresponding to the
opposing strand), since we also combined the reverse complements for each of the SSM sub-
types. From this we computed the percentage of the enriched motif with respect to all k-mers
and to the k-mer with the base that is mutated in the enriched motif at the same position.

Statistical tests

The correlation between every possible pair of the 42 features was measured by the Spearman’s
rank correlation coefficient using the R package Hmisc (v4.1-1). Multiple testing correction of
the p-values of all correlation tests (including those in S2 Text) was done by the Benjamini-
Yekutieli method. For the other correlations mentioned we also used the Spearman’s rank cor-
relation coefficient.
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We used the Wilcoxon rank-sum test with continuity correction as the test of significance
for differences in features observed between clusters.

The different proportions of sequence motifs between recurrent and non-recurrent SSMs
were assessed by using y” tests.

Plots

Figs 1, 3, 5 and 6, the pie charts in Fig 4 and the plots in Supporting Information, except for SI,
were made using the R package ggplot2 (v3.0.0). Fig 6, S3 Fig and S4 Fig additionally required
ggseglogo (v0.1) [56] and Fig 2 was made with the use of the R package corrplot (v0.84). Fig 7
was made using Microsoft PowerPoint and we also included images from the Servier Medical
Art website (http://smart.servier.com/). The ‘clustering tree’ in S1 Fig was made using the clus-
tree R package [57]. We have manually replaced the nodes in the tree with the pie diagram
showing the distribution of tumour types in each cluster. For the colours of the different
tumour types we have made use of the script provided by the PCAWG consortium, available
at: https://github.com/ICGC-TCGA-PanCancer/pcawg-colour-palette.

Supporting information

S1 Fig. Clustering tree showing tumour type distribution for 2 to 20 clusters. The clustering
tree shows how clusters evolve across different clustering resolutions ranging from 2 to 20
clusters. For example, cluster G splits off from the rest of the cohort at a resolution of three
clusters and remains largely unchanged in higher resolutions. We have marked for each of our
16 clusters the clustering resolutions across which they remain largely stable, i.e. the Jaccard
similarity index between a cluster at resolution 16 and one at a higher or lower resolution is at
least 0.85. The number under each cluster indicates the number of samples in that particular
cluster. The colour of an arrow indicates the number of samples the two connected clusters
have in common. The transparency of the arrow indicates the proportion of samples the two
connected clusters have in common with respect to the cluster at the higher resolution. Only
arrows representing a proportion of more than 0.1 are shown. Consequently, the number of
samples in a cluster at a certain clustering resolution may not match with the connected clus-
ter(s) at a higher resolution. Note that the clustering shown is the result after the k-means clus-
tering step.

(PDF)

S2 Fig. PCA and clustering with and without the recurrence-related features. When using
only the 29 general features for the PCA (A), the first two PCs explain less variance than when
using all 42 features for the PCA (B) (27.5% vs. 29.1%). The features indicated in the two PCA
plots are those that contribute above average to the first two PCs. The subsequent clustering
also differs as shown in (C) and (D). Without using the recurrence-related features, only five
of the eight samples linked to ultra-hypermutation (D - cluster H) are in a separate cluster

(C - cluster VIII). Also the cluster linked to hypermutation of the immunoglobulin genes

(D - cluster M) is dissolved as evidenced by the fact that the samples are spread across eight
clusters (C - clusters III, IV, VI, XI, XII, XIII, XIV and XV). One consequence of this is that
only 19 of the 40 the Lymph-CLL samples with hypermutation are in the same cluster as
opposed to 36 when using all features (E). In addition, the largest fraction of cluster M ends up
in a cluster with Eso-AdenoCA and Stomach-AdenoCA samples (C - cluster XII), making that
cluster less cancer-specific than when using all features (D - cluster L). The Lymph-CLL sam-
ples without hypermutation of the immunoglobulin genes are also no longer largely confined
to a single cluster (E). Moreover, the samples with and without hypermutation end up more
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often in the same cluster than when recurrence-related features are also used.
(PDF)

S3 Fig. Enriched sequence motifs for C>G SSMs in cluster M. The sequence logos represent
the sequence context of ten bp 5" and 3’ of the non-recurrent (left-side) or recurrent (right-
side) C>G mutations of cluster M. Here recurrence is defined as a mutation at the same geno-
mic location in two or more samples from cluster M. Relative entropy is used as a measure of
information content (see Methods). Setting a threshold of 0.25 for the relative entropy results
in the motifs highlighted in the rectangles. In the upper right corner of both sequence logos
the number of mutations is indicated. To the right of the sequence logos are the percentages in
which the enriched motif found for the recurrent C>G SSMs is present in context of the muta-
tions in the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The
enrichment for the motif for recurrent C>G SSMs is significantly higher than for the non-
recurrent C>G SSMs (X2 test: p<2.2e-16).

(TIF)

S4 Fig. Enriched sequence motifs for T>>G SSMs in cluster H. The sequence logos represent
the sequence context of ten bp 5" and 3’ of the non-recurrent (left-side) or recurrent (right-
side) T>G mutations of cluster H. Here recurrence is defined as a mutation at the same geno-
mic location in two or more samples from cluster H. Relative entropy is used as a measure of
information content (see Methods). Setting a threshold of 0.25 for the relative entropy results
in the motifs highlighted in the rectangles. In the upper right corner of both sequence logos
the number of mutations is indicated. To the right of the sequence logos are the percentages in
which the enriched motif found for the recurrent T>>G SSMs is present in context of the muta-
tions in the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The
enrichment for the motif for recurrent T>G SSMs is significantly higher than for the non-
recurrent T>G SSMs (y? test: p<2.2e-16).

(TIF)

$1 Table. Tumour type abbreviation, full name and number of samples.
(PDF)

S2 Table. Recurrence in pan-cancer context and within tumour type(s).
(PDF)

S1 Text. Estimation of the levels of recurrence when purely driven by chance.
(PDF)

S2 Text. Recurrence versus general mutational characteristics.
(PDF)

§3 Text. Detailed cluster-specific descriptions.
(PDF)

$4 Text. Smoking history and related mutational subtypes.
(PDF)

S1 File. Characteristic plots summarising each of the 42 features.
(PDF)

S2 File. Sample distribution per tumour type across the 16 clusters.
(PDF)
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The clustering tree shows how clusters evolve across different clustering resolutions ranging from 2 to 20
clusters. For example, cluster G splits off from the rest of the cohort at a resolution of three clusters and
remains largely unchanged in higher resolutions. We have marked for each of our 16 clusters the
clustering resolutions across which they remain largely stable, i.e. the Jaccard similarity index between a
cluster at resolution 16 and one at a higher or lower resolution is at least 0.85. The number under each
cluster indicates the number of samples in that particular cluster. The colour of an arrow indicates the
number of samples the two connected clusters have in common. The transparency of the arrow indicates
the proportion of samples the two connected clusters have in common with respect to the cluster at the
higher resolution. Only arrows representing a proportion of more than 0.1 are shown. Consequently, the
number of samples in a cluster at a certain clustering resolution may not match with the connected
cluster(s) at a higher resolution. Note that the clustering shown is the result after the k-means clustering
step.
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S2 Fig. PCA and clustering with and without the recurrence-related features.

When using only the 29 general features for the PCA (A), the first two PCs explain less variance than when using all
42 features for the PCA (B) (27.5% vs. 29.1%). The features indicated in the two PCA plots are those that contribute
above average to the first two PCs. The subsequent clustering also differs as shown in (C) and (D). Without using the
recurrence-related features, only five of the eight samples linked to ultra-hypermutation (D — cluster H) are in a
separate cluster (C — cluster VIII). Also the cluster linked to hypermutation of the immunoglobulin genes (D—cluster
M) is dissolved as evidenced by the fact that the samples are spread across eight clusters (C — clusters lll, IV, VI, XI,
XII, X1, XIV and XV). One consequence of this is that only 19 of the 40 the Lymph-CLL samples with hypermutation
are in the same cluster as opposed to 36 when using all features (E). In addition, the largest fraction of cluster M ends
up in a cluster with Eso-AdenoCA and Stomach-AdenoCA samples (C — cluster XIl), making that cluster less cancer-



specific than when using all features (D — cluster L). The Lymph-CLL samples without hypermutation of the
immunoglobulin genes are also no longer largely confined to a single cluster (E). Moreover, the samples with and
without hypermutation end up more often in the same cluster than when recurrence-related features are also used.
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S3 Fig. Enriched sequence motifs for C>G SSMs in cluster M.

The sequence logos represent the sequence context of ten bp 5" and 3’ of the non-recurrent (left-side) or recurrent
(right-side) C>G mutations of cluster M. Here recurrence is defined as a mutation at the same genomic location in
two or more samples from cluster M. Relative entropy is used as a measure of information content (see Methods).
Setting a threshold of 0.25 for the relative entropy results in the motifs highlighted in the rectangles. In the upper
right corner of both sequence logos the number of mutations is indicated. To the right of the sequence logos are the
percentages in which the enriched motif found for the recurrent C>G SSMs is present in context of the mutations in
the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The enrichment for the motif for recurrent
C>G SSMs is significantly higher than for the non-recurrent C>G SSMs (x? test: p<2.2e-16).
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S4 Fig. Enriched sequence motifs for T>G SSMs in cluster H.

The sequence logos represent the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent
(right-side) T>G mutations of cluster H. Here recurrence is defined as a mutation at the same genomic location in two
or more samples from cluster H. Relative entropy is used as a measure of information content (see Methods). Setting
a threshold of 0.25 for the relative entropy results in the motifs highlighted in the rectangles. In the upper right corner
of both sequence logos the number of mutations is indicated. To the right of the sequence logos are the percentages
in which the enriched motif found for the recurrent T>G SSMs is present in context of the mutations in the cluster
and the corresponding k-mers in the genome (N = A, C, G or T). The enrichment for the motif for recurrent T>G SSMs
is significantly higher than for the non-recurrent T>G SSMs (x? test: p<2.2e-16).



SUPPLEMENTARY TABLE: S1, S2

S1 Table. Tumour type abbreviation, full name and number of samples.

Abbreviation Full name Number of samples
Biliary-AdenoCA biliary adenocarcinoma 34
Bladder-TCC bladder transitional cell carcinoma 23
Bone-Benign benign neoplasm of the bone 16
Bone-Epith epithelial neoplasm of bone 10
Bone-Osteosarc bone osteosarcoma 35
Breast-AdenoCA breast adenocarcinoma 195
Breast-DCIS breast ductal carcinoma in situ 3
Breast-LobularCA breast lobular carcinoma 13
Cervix-AdenoCA cervical adenocarcinoma 2
Cervix-SCC cervical squamous cell carcinoma 18
CNS-GBM central nervous system - glioblastoma multiforme 39
CNS-Medullo central nervous system - medulloblastoma 141
CNS-Oligo central nervous system - oligodendroglioma 18
CNS-PiloAstro central nervous system - pilocytic astrocytoma 89
ColoRect-AdenoCA  colorectal adenocarcinoma 52
Eso-AdenoCA oesophageal adenocarcinoma 97
Head-SCC head/neck squamous cell carcinoma 56
Kidney-ChRCC chromophobe renal cell carcinoma 43
Kidney-RCC renal cell carcinoma 143
Liver-HCC hepatocellular carcinoma 314
Lung-AdenoCA lung adenocarcinoma 37
Lung-SCC lung squamous cell carcinoma 47
Lymph-BNHL B-cell non-Hodgkin lymphoma 107
Lymph-CLL chronic lymphocytic leukaemia 90
Myeloid-AML acute myeloid leukaemia 13
Myeloid-MDS myelodysplastic syndromes 2
Myeloid-MPN myeloproliferative neoplasm 23
Ovary-AdenoCA ovarian adenocarcinoma 110
Panc-AdenoCA pancreatic adenocarcinoma 232
Panc-Endocrine pancreatic endocrine neoplasm 81
Prost-AdenoCA prostate adenocarcinoma 199
Skin-Melanoma skin melanoma 107
SoftTissue-Leiomyo  soft tissue leiomyosarcoma 15
SoftTissue-Liposarc  soft tissue liposarcoma 19
Stomach-AdenoCA stomach adenocarcinoma 68
Thy-AdenoCA thyroid adenocarcinoma 48
Uterus-AdenoCA uterus adenocarcinoma 44

Unique to tumour Percentage of

S2 Table. Recurrence in pan-cancer context and within tumour type(s).

Recurrent in type(s) in which it is recurrent
recurrent SSMs | SIMs
pan-cancer context only 37.1% 79.8%
single tumour type Yes 60.0% 10.7%
No 2.8% 8.2%
multiple tumour types Yes 0.1% 0.3%
No 0.05% 1.0%

Overview of the percentages of SSMs and SIMs that are recurrent in a pan-cancer setting only,
within a single tumour type and in multiple tumour types.






SUPPLEMENTARY TEXT: S1, S2, S3, $4

S1 Text. Estimation of the levels of recurrence when purely driven by
chance. (Next section in this document)

S2 Text. Recurrence versus general mutational characteristics.
Available at: https://doi.org/10.1371/journal.pcbi.1007496.s008

S3 Text. Detailed cluster-specific descriptions.
Available at: https://doi.org/10.1371/journal.pcbi.1007496.s009

S4 Text. Smoking history and related mutational subtypes.
Available at: https://doi.org/10.1371/journal.pchi.1007496.s010







S1 Text. Estimation of the levels of recurrence when
purely driven by chance.



Estimation of the levels of recurrence when purely driven by chance

For the estimation of the levels of recurrence if only chance was the driving force we
performed the following simulation in which we only take C+G content into account. All
other factors that may influence the probability of recurrence (e.g. replication time) did
not match our definition of chance. For each cancer genome we randomly sampled the
same number of SSMs as had been observed in the sample and also kept the counts for
each of the six SSM subtypes the same. To take into account the C+G content of the
human genome, random numbers were sampled for the C>A/G/T SSMs within the range
of 1 to 1,144,530,852, which corresponds to the number of C/G bases in the
GRCh37/h19 genome. Once a number had been selected it could not be selected again
for the same cancer genome. The same was done for the T>A/C/G mutations, where we
sampled numbers within the range of 1 to 1,716,796,279. Simulations were repeated
5,000 times and for each simulation we computed the recurrence overall, recurrence
per SSM subtype and for each tumour type the recurrence ‘within tumour type’ and
‘pan-cancer’ (Fig A). Only for the recurrence within tumour type there were cases for
which there were simulations with an equal or higher number of recurrent SSMs than
observed. For three tumour types (Breast-DCIS, Cervix-AdenoCA and Myeloid-MDS) the
observed number of recurrent SSMs was zero and nearly all simulated values were also
zero (<0.5% were higher). For another five tumour types (Bone-Epith, Breast- LobularCA,
Kidney-ChRCC, Myeloid-AML and SoftTissue-Leiomyo) between 2 and 186 of the 5,000

simulated values were equal or higher.
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Fig A. Observed recurrence of SSMs versus what is expected by chance.

Each boxplot shows the ratio of the observed number of recurrent SSMs and the number of recurrent
SSMs calculated in the simulation (N=5,000) in the following settings: (I) overall recurrence; (II)
recurrence for each of the six SSM subtypes; (III) recurrence per tumour type using the ‘within tumour
type’ definition; (IV) recurrence per tumour type using the ‘pan-cancer’ definition. The dark green stars at
the top of plots III and IV indicate the tumour types with the highest median and the light green stars the
second highest. The dark red ones indicate the lowest median and the light red ones the second lowest.
For visualization purposes we left out in plot III the results of 14 tumour types for which >40% of the
simulations resulted in zero recurrent SSMs, which led to a ratio that is infinite. For the boxplots of Bone-
Osteosarc, Cervix-SCC, CNS-Medullo, Lymph-CLL and Panc-Endocrine we left out between 0.4% and
21.7% of the simulations in which no recurrent SSMs were found. In plot IV we left out for visualization
purposes the results of 77 simulations for Myeloid-MDS that were all between 8.5 and 17.






SUPPLEMENTARY FILE: S1, S2

S1 File. Characteristic plots summarising each of the 42 features.

S2 File. Sample distribution per tumour type across the 16 clusters.






S1 File. Characteristic plots summarising each of the
42 features.






Characteristic plots summarising each of the 42 features

Each cancer genome is described by 42 features (Table A). We display graphical
representations for each feature (Fig A to I) and show absolute numbers in most cases
on the y-axis (where applicable). We refer to a value as being an outlier if it is above the
third quartile plus 1.5 times the interquartile range (Q3+1.5xIQR). We describe the
main observations below the individual plots.

Table A. Overview of the 42 mutational features describing each cancer genome.

SSMs
SIMs
SIM vs. SSM ratio % of mutations of type SIM
C>A SSMs
C>G SSMs
distribution of SSMs across C>T SSMs
the 6 subtypes percentage of T>A SSMs
T>C SSMs

T>G SSMs

A/T deletions
C/G deletions
A/T insertions
C/G insertions
no

short

midsize

long

no

short

midsize
homopolymer context of long
1 bp SIMs no
short
midsize
long

no
short
midsize
long
SSMs
SIMs
recurrent SIM vs. SSM ratio % of recurrent mutations of type SIM
C>A SSMs
C>G SSMs
level of recurrence per SSM 9% of recurrent C>T SSMs
subtype T>A SSMs
T>C SSMs
T>G SSMs
A/T deletions
level of recurrence per SIM % of recurrent C/G deletions
subtype (1 bp) A/T insertions
C/G insertions

mutational burden number of

distribution of 1 bp SIMs
across the 4 subtypes

percentage of

% of A/T deletions

General features

% of C/G deletions

% of A/T insertions

% of C/G insertions

overall level of recurrence % of recurrent

Recurrence features

Overview of the 29 general features and the 13 features related to recurrence that are used as input for
the PCA. For deletions a ‘no homopolymer context’ means that the base next to the one that is deleted is
not of the same type. For insertions a ‘no homopolymer context’ refers to a base that is inserted 5’ to a
base of a different type or a single base of the same type. Note that we do not have to consider the
preceding bases as all SIM calls were left aligned. A short homopolymer context is defined as a 2-4 bp
mononucleotide repeat of the same base as the 1 bp SIM, midsize is 5-7 bp in length and long = 8 bp.
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Fig A. Overall mutational burden in terms of SIMs and SSMs per sample.

The two grey lines indicate the median number of SIMs and SSMs, respectively, across the entire cohort.
The black lines indicate the Q3+1.5xIQR. For SIMs there are 184 outliers, the highest number of samples
are from Eso-AdenoCA (22.3%), followed by ColoRect-AdenoCA (13.6%) and Lung-SCC (13.0%). For Eso-
AdenoCA this corresponds to 42.3% of the samples, 48.1% for ColoRect-AdenoCA and 51.1% for the
Lung-SCC. Highlighted in the plot (I) are samples with a high mutational load, which have a particularly
high proportion of SIMs. For SSMs there are 255 outliers of which the highest number of samples are
from Skin-Melanoma (29.8%), followed by Eso-AdenoCA (16.1%) and Lung-SCC (14.9%). This
corresponds for Skin-Melanoma to 71.0% of the samples, 42.3% for Eso-AdenoCA and 80.9% for Lung-
SCC. The outliers of Skin-Melanoma (II) are above the bulk of the samples by having a higher proportion
of SSMs. There are 122 samples that are outliers in terms of SIMs and SSMs of which the highest number
of samples are from Eso-AdenoCA (23.0%), followed by Lung-SCC (19.7%) and Skin-Melanoma (11.5%).
The eight samples highlighted in the plot (III) have a very high number of SSMs, but a lower proportion of
SIMs compared to the samples highlighted in L.
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Fig B. The percentage of mutations of type SIM per sample.

(I) The percentage of mutations of type SIM is, with the exception of one Uterus-AdenoCA sample, below 50%. The yellow line indicates the median percentage of
mutations of type SIM across the dataset (6.0%). To the right of the vertical yellow line the samples have a percentage above the median. The orange (4.3%) and
green (8.5%) lines indicate the first and third quartile, respectively. The Q1-1.5xIQR is equal to 0% and is not shown. The blue line indicates the Q3+1.5xIQR
(14.9%) to the right of which samples are outliers. (II) The percentage of mutations of type SIM versus the number of SIMs per sample. The grey lines indicate the
medians and the black lines indicate the Q3+1.5xIQR. There are 32 samples from 11 different tumour types that are outliers in terms of percentage and absolute
number. This includes 6 samples of ColoRect-AdenoCA and 5 samples each of Uterus-AdenoCA and Kidney-RCC. (III) Boxplots representing the percentage of
mutations of type SIM show considerable variability among tumour types. They are ordered according to the median.
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Fig C. Absolute and relative number of SSMs across the six subtypes.

Shown for each sample are the percentage of SSMs of the indicated subtype and the corresponding
absolute number. Per sample the six percentages sum up to 100%. The grey lines indicate the medians
and the black lines the Q3+1.5xIQR based on, for the vertical lines, the percentage of SSMs of the
particular subtype, and for the horizontal lines, the absolute numbers. The median percentage across the
entire dataset is highest for C>T (34.2%), followed by C>A and T>C (both 17.0%), T>A (11.5%), C>G
(7.7%) and T>G (6.6%). For each of the six subtypes there are a number of samples that are outliers in
terms of percentage and absolute number. For the C>A SSMs there are 78 outliers from eight different
tumour types of which the highest number of samples are from Lung-SCC (46.2%), followed by Lung-
AdenoCA (24.4%) and ColoRect-AdenoCA (16.7%). This corresponds for Lung-SCC to 76.6% of the
samples, 51.4% for Lung-AdenoCA and 25% for ColoRect-AdenoCA. There are 84 outliers for C>G SSMs
from 11 different tumour types of which the highest number of samples are from Breast-AdenoCA
(32.1%), followed by Bladder-SCC and Head-SCC (17.9% for both). This corresponds for Breast-AdenoCA
to 13.8% of the samples, 65.2% for Bladder-SCC and 26.8% for Head-SCC. For the C>T SSMs there are 80
outliers of which 79 are from Skin-Melanoma and 1 from CNS-GBM. For Skin-Melanoma this corresponds
to 73.8% of the samples. For T>A SSMs there are only 11 outliers of which 6 are from Liver-HCC and 5
from Kidney-RCC. For the T>C SSMs there are 85 outliers from 7 different tumour types of which 87.1%
are from Liver-HCC. This corresponds to 23.6% of the total number of Liver-HCC samples. Finally, for T>G
SSMs there are 146 outliers from 13 different tumour types of which the highest number of samples are
from Eso-AdenoCA (48.6%), followed by Lymph-BNHL (19.9%) and Stomach-AdenoCA (13.7%). This
corresponds for Eso-AdenoCA to 73.2% of the samples, 27.1% for Lymph-BNHL and 29.4% for Stomach-
AdenoCA.



Tupoes typs
e Sy ASmaCh ® L0

O faddw-TCC O Leng-~dercCA

O 2om-Bey 0 Lwg-50C

e SOt & Lyrghn-an

8 Dow - Ooleiar, & LyvhCLL

e Samt oA 8 Mioar 1

e Sww. 8 ® Wwoe S

© Dwse-dobymCA O Shywioe-AaN

® Cerma-AdwniC A 0§ Duary-Acher o4

0 Cords-8CC ® Panc-AaereCa
:.u% ® Cha.GeM ® P Enaoonrn
'}3 1 O CNE-Wadsha O Puow -Adarald
E B8 itmaione ® CNS-Dige ® SOon-Netwroma
8 < © ChS.-"vao O SATHSUO-LWTYD
g ® CobMect-AdencCA @ SATheue-LUpowrt
< = 8 Loo AdereCA S Sxevonns ASunal A

& ST & Ty Aknal A

. 8 Oy -LHRCC 8 Uwrus-LomnoCA
e 8 am.R00

25 50 7 100 0 25 £0 7 100

percantage (%) of SiMs
Fig D. Absolute and relative number of 1 bp SIMs across the four subtypes.
Shown for each sample are the percentage of SIMs of the indicated subtype and the corresponding
absolute number. Per sample the four percentages sum up to 100%. The grey lines indicate the medians
and the black lines the Q3+1.5xIQR based on, for the vertical lines, the percentage of SIMs of the
particular subtype, and for the horizontal lines, the absolute numbers. The median percentage across the
entire cohort is highest for 1 bp A/T insertions (38.8%), followed by 1 bp A/T deletions (35.2%), 1 bp
C/G deletions (18.2%), and 1 bp C/G insertions (3.7%). Due to the large range of percentages for the 1 bp
A/T deletions and insertions there are only 7 and 2 outliers, respectively, in terms of percentage and
absolute number. There are 405 samples for which at least 50% of the 1 bp SIMs are A/T deletions. For
three tumour types this holds for half or more of their samples: Kidney-RCC (71.3%), Skin-Melanoma
(51.4%) and Lymph-CLL (50.0%). For 1 bp A/T insertions there are 630 samples for which this subtype
makes up at least 50% of their 1 bp SIMs. For four tumour types this holds for half or more of their
samples: Cervix-AdenoCA (100%, 2 samples), CNS-Medullo (87.2%), Cervix-SCC (72.2%) and Panc-
AdenoCA (69.0%). For the 1 bp C/G deletions there are 23 outliers in terms of percentage and absolute
number of which 11 are from Lung-AdenoCA, 10 from Lung-SCC, 1 each from Blader-TCC and Head-SCC.
Interestingly, for these outliers 1 bp C/G deletions are the majority of their 1 bp SIMs. For 1 bp C/G
insertions there are 39 outliers of which 16 are from Eso-AdenoCA, 10 from ColoRect-AdenoCA, 6 from
Stomach-AdenoCA, 4 from Panc-AdenoCA and 3 from Skin-Melanoma.
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Fig E. Homopolymer context of 1 bp SIMs.

For each of the four SIM subtypes we computed per sample the percentage of 1 bp SIMs in the four
homopolymer contexts (see Main Text). The grey lines indicate the medians and the black lines the
Q3+1.5xIQR based on, for the vertical lines, the percentage of SIMs in the particular homopolymer
context, and for the horizontal lines, the absolute numbers. For most contexts, there are few outliers (12
or less) in terms of percentage and absolute number. Exceptions are the midsize and long homopolymer
context for 1 bp C/G deletions (33 and 161 cases, respectively), short homopolymer context for 1 bp A/T
insertions (102 cases) and long homopolymer context for 1 bp C/G insertions (40 cases). For a number of
samples more than 50% of a particular SIM subtype is in one of the four homopolymer contexts. These
are for (I) 1 bp A/T deletions: 13 samples in no, 487 samples in a short, 77 samples in a midsize, and 174
samples in a long homopolymer context; (II) 1 bp C/G deletions: 507 samples in no, 1,013 samples in a
short, 22 samples in a midsize and 3 samples in a long homopolymer context; (1II) 1 bp A/T insertions: 18
samples in no, 66 samples in a short, 852 samples in a midsize and 100 samples in a long homopolymer
context; (IV) 1 bp C/G insertions: 608 samples in no, 165 samples in a short, 321 samples in a midsize and
9 samples in a long homopolymer context.
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Fig F. Overall level of recurrence in terms of SSMs and SIMs per sample.
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(I) The percentage versus the absolute number of recurrent SSMs. The grey lines indicate the medians and the black lines the Q3+1.5xIQR based on, for the vertical
lines, the percentage of recurrent SSMs and, for the horizontal lines, the absolute numbers. There are 89 samples that are outliers in both relative and absolute
terms of which 77 are Skin-Melanoma samples. Only based on absolute number, there are 333 outliers of which 24.6% are Skin-Melanoma samples, followed by
22.2% Eso-AdenoCA samples. Lung-SCC samples have a high absolute number of recurrent SSMs, but the percentage that is recurrent is below the median. (II) The
percentage versus the absolute number of recurrent SIMs. The grey lines indicate the medians and the black lines the Q3+1.5xIQR based on, for the vertical lines,
the percentage of recurrent SIMs and, for the horizontal lines, the absolute numbers. There are only 4 outliers for both measurements and 295 if we instead base it
only on absolute number of recurrent SIMs of which the largest percentage are Eso-AdenoCA samples (25.4%), followed by Panc-AdenoCA (19.0%) and ColoRect-
AdenoCA (15.9%). Noticeable is the group of eight samples from four different tumour types, each of which has over 19,000 recurrent SIMs and at least 28.7% of

the SIMs are recurrent.
(continues below)
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(continued from above)

(IIT) Percentage of recurrent SIMs versus recurrent SSMs. The red boxplot corresponds to the
recurrent SIMs and the blue boxplot to the recurrent SSMs. There are 344 samples from 21
different tumour types for which the percentage of recurrent SSMs and SIMs are both above
the third quartile. The four tumour types for which half or more of their samples are in this
set: Eso-AdenoCA (54 out of 97), ColoRect-AdenoCA (28 out of 52), Panc-AdenoCA (116 out of
232) and Cervix-AdenoCA (1 out of 2). There are 381 samples from 18 different tumour types
for which both percentages are below the first quartile. For Kidney-RCC 88.8% of the samples

are in this set. This is followed by Lung-AdenoCA with 48.6%, Ovary-AdenoCA with 45.5%
and Lung-SCC with 44.7%.
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Fig G. The percentage of recurrent mutations of type SIM.

(I) Recurrent mutations show a higher percentage of type SIM than mutations overall. The yellow line indicates the median percentage of mutations of type SIM
across the dataset (17%). To the right of the vertical yellow line the samples have a percentage above the median. The orange (10.2%) and green (26.3%) lines
indicate the first and third quartile, respectively. The Q1-1.5xIQR is equal to 0% and is not shown. The blue line (50%) indicates the Q3+1.5xIQR, to the right of
which samples are outliers. There are 45 samples with more recurrent SIMs than SSMs. (II) The percentage of recurrent mutations of type SIM versus the number
of recurrent SIMs per sample. The grey lines indicate the medians and the black lines indicate the Q3+1.5xIQR. There are 30 samples from 12 different tumour
types that are outliers in terms of percentage and absolute number. This includes 7 samples from ColoRect-AdenoCA, 5 samples from Uterus-AdenoCA and 4 each
from Panc-AdenoCA and Stomach-AdenoCA. (III) The boxplots per tumour type representing the percentage of recurrent mutations of type SIM, which show a
considerable variability within and between tumour types. They are ordered according to the median percentage.
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Fig H. Absolute and relative numbers of recurrent SSMs across the six subtypes.

For each sample the percentage and absolute number of recurrent SSMs per subtype is shown. The grey
lines indicate the medians and the black lines the Q3+1.5xIQR based on, for the vertical lines, the
percentage of SSMs of the particular subtype that is recurrent and, for the horizontal lines, the absolute
numbers. For C>A SSMs there are 12 samples that are outliers in terms of percentage and number of
recurrent SSMs. Of these 12 there are seven ColoRect-AdenoCA samples and one Uterus-AdenoCa sample
that particularly stand out. Each has over 10,000 recurrent C>A SSMs and at least 5.6% are recurrent. For
C>G SSMs there are 82 outliers of which 62 are from Lymph-BNHL. There are 37 outliers for the C>T
SSMs of which 33 are Skin-Melanoma samples. For T>A SSMs there are 17 outliers of which 7 are from
ColoRect-AdenoCA and 5 from Prost_AdenoCA. For T>C SSMs there are 99 outliers of which 58 are from
Eso-AdenoCA and 17 from Stomach-AdenoCA. Finally, for T>G SSMs there are 187 outliers of which again
Eso-AdenoCA and Stomach-AdenoCA form the majority with 83 and 42 samples, respectively.

10



AT et ons GG rosd ons Tupoes type

- 1 - | e Sy ASmaCh ® L0
H .
. ﬁ | - | © Madne-TCC O Lng-AdencCA
4, o
LU : r : O Sum-Ewy 0 Lung-550
> | . I © Sow-Eu & Lurgn-SnHL
- L . ’ : : 2 Do Ooleiiars & Lwtedh Ll
1oy
| X | !.- | & Fuw AMoCA 8 Vo 2
. | . | © S L08R ® Wnoe S
o ol |
10 ] T | © Gwsg-dobimtA O Mywiog-AaN
........ '.
. ' S 1 ® Centa-diwCh 8 Ouary-AdeoCs
-‘i—’ b } =& 0 Cends-8CC ® Punc-AdereCA
-
=1
B 0 e ' @ CxB.Geu ® Panc-Enaoovrn
- | L] © CHE-Wadela 0 Pom-Adwalh
5 o ] c < o
= 10° Twc o o o : ° - - ® CNS-Oigo ® Son-Netwroma
3 v © THE-MOAR0 G SEATHELD-LINITHO
11 tonat .
E AT tseaitone GG nmnos ® CobMoct-AdencDA € S Thaue-LUpowrt
B B Lo AdeveCA S Swevoes AfunaCA
b 10 & A0S0 & Ty AknaC A
510
E & ey -LHRCC & Uwnus-LomnoCa
‘:':! 0 O R00

o

od
o

o

percentage (%) of racurrent SiMs

Fig I. Absolute and relative numbers of recurrent 1 bp SIMs across the four subtypes.

For each sample the percentage and absolute number of recurrent 1 bp SIMs per subtype is shown. The
grey lines indicate the medians and the black lines the Q3+1.5xIQR based on, for the vertical lines, the
percentage of SIMs of the particular subtype that is recurrent and, for the horizontal lines, the absolute
numbers. There is a large spread of the percentages for 1 bp A/T deletions and insertions and therefore
there are no outliers in terms of percentage and absolute number. There are 352 outliers in terms of
absolute number of recurrent 1 bp A/T deletions of which Eso-AdenoCA constitutes the largest
percentage (22.4%), followed by Panc-AdenoCA (20.2%) and Lymph-BNHL (18.8%). For the number of
recurrent 1 bp A/T insertions there are 236 outliers of which again Eso-AdenoCA contributes the highest
percentage of samples (26.7%), followed by ColoRect-AdenoCA (19.5%) and Panc-AdenoCA (16.1%). For
recurrent 1 bp C/G deletions there are 58 outliers in terms of percentage and absolute number of which
29.3% are from Eso-AdenoCA and 19.0% from ColoRect-AdenoCA. For recurrent 1 bp C/G insertions
there are 9 outliers in terms of percentages and absolute numbers of which 7 are from Panc-AdenoCA and
1 each from Eso-AdenoCA and Liver-HCC.
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APPENDIX 2.

(A) Methylation (450K array) across breast and uterus cancer samples in PCAWG
dataset.
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(B) Methylation (450K array) across breast cancer samples in TCGA dataset.
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(C) Methylation (450K array) across uterus cancer samples in TCGA dataset.
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