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ABSTRACT

We study scenarios of the appearance of strange homoclinic attractors (which contain only one fixed point of saddle type) for one-parameter
families of three-dimensional non-orientable maps. We describe several types of such scenarios that lead to the appearance of discrete homo-
clinic attractors including Lorenz-like and figure-8 attractors (which contain a saddle fixed point) as well as two types of attractors of spiral
chaos (which contain saddle-focus fixed points with the one-dimensional and two-dimensional unstable manifolds, respectively). We also
emphasize peculiarities of the scenarios and compare them with the known scenarios in the orientable case. Examples of the implementation
of the non-orientable scenarios are given in the case of three-dimensional non-orientable generalized Hénon maps.
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In the theory of dynamical systems, the topics related to the con-
struction and study of scenarios of the dynamical chaos onset are
ones of the most prioritized and demanded not only for the the-
ory itself, but also for the numerous applications. The pioneering
works by Lorenz,1 Hénon,2 and Shilnikov3 laid the foundation for
the topics connected with the study of strange homoclinic attrac-
tors, i.e., such attractors that contain either equilibria in the case
of flows or fixed (periodic) points in the case of maps along with
all homoclinic orbits. For three-dimensional maps, the problem
of studying discrete homoclinic attractors and scenarios for their
occurrence was stated in Ref. 4. This research was continued in
a series of papers, but the case of non-orientable maps was not
studied in detail. In the present paper, we analyze scenarios of the
appearance of discrete homoclinic attractors of non-orientable
three-dimensional maps from two different but complementary
positions: we construct abstract phenomenological scenarios for
the appearance of such attractors and also find examples of their
implementation in one-parameter families of three-dimensional
non-orientable Hénon-like maps. We distinguish four types of

such non-orientable discrete attractors: Lorenz-like and figure-8
(which contain saddles) as well as spiral figure-8 and Shilnikov
attractors (which contain saddle-foci with the one-dimensional
and two-dimensional unstable manifolds, respectively). We show
features of phenomenological scenarios and compare them with
the scenarios for similar attractors in the orientable case. We
also discuss some new methods (saddle charts, generalized Lya-
punov diagrams) that essentially simplify the process of finding
of strange homoclinic attractors.

I. INTRODUCTION

In the theory of dynamical chaos, phenomenological (purely
theoretical, not connected with concrete models) scenarios of its
occurrence play an important role since they allow one to explain
mechanisms of the formation of chaotic dynamics in experiments
from quite simple positions. Besides, such scenarios can open new
directions of study, which include, as an integral part, questions of
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their realizations in concrete models. Many of these scenarios that
underlie the theory of dynamical chaos have been well known for a
long time. One can point out such famous and classical scenarios of
the chaos appearance as the Landau–Hopf scenario as a result of an
infinite cascade of adding frequencies,5,6 the Ruelle–Takens scenario
at the destruction of a three-dimensional torus,7 the Feigenbaum
scenario via an infinite cascade of period doubling bifurcations in
strongly dissipative systems,8 the Afraimovich–Shilnikov scenarios
through the break-down of two-dimensional tori,9 etc. Their phe-
nomenology may be quite simple, but arising here, mathematical
problems as well as the questions of realization are always extremely
complicated.

In the present paper, we also consider the topic of phenomeno-
logical scenarios, but our subject is three-dimensional dissipative
diffeomorphisms. We study scenarios of the appearance of the
so-called discrete homoclinic attractors, and we construct exam-
ples of their implementation in one-parameter families of three-
dimensional generalized Hénon maps of the form

x̄ = y, ȳ = z, z̄ = Bx + G(y, z), (1)

where B is the Jacobian of the map and G(y, z) is a smooth function
of the coordinates y and z only [usually, G(y, z) is a polynomial].

Following Ref. 4, we call a discrete homoclinic attractor a strange
attractor of a map that contains exactly one saddle fixed point O
whose invariant stable and unstable manifolds intersect and have
transversal homoclinic orbits. Thus, the attractor should also con-
tain entirely the unstable invariant manifold Wu(O) of this point.
The last fact is evident since if there is a point of Wu(O) that does
not belong to the attractor, then the fixed point does not belong to
the attractor either. Indeed, in this case, arbitrary close to O, there
exist points whose forward iterations leave the attractor.

Remark 1. This situation is well known for the famous Hénon
attractor, see, e.g., Ref. 10, where it is shown that a stable 115-
periodic orbit exists with a narrow basin of attraction of size 10−51

nearly (up to distance 10−22) the classical values of the parameters
a = 1.4, b = 0.3 of Ref. 2. This is such a subtle effect that it is impos-
sible to detect it with standard numerical methods. However, what
is valuable is that, in the case of three-dimensional maps, discrete
homoclinic attractors can be genuine pseudohyperbolic attractors11,12

where all two-dimensional areas are exponentially expanded, which
implies that any orbit of attractor has a positive maximum Lyapunov
exponent. These issues are outside the scope of the present paper.

Discrete homoclinic attractors can be of various types. First,
one distinguishes attractors by the type of the saddle fixed points.
In the three-dimensional case, these are saddle points either of type
(2,1) with the two-dimensional stable and one-dimensional unsta-
ble manifolds or of type (1,2) with the one-dimensional stable and
two-dimensional unstable manifolds. Second, they are divided into
saddles when all eigenvalues of the fixed point are real and saddle-
foci when there is a pair of complex conjugate eigenvalues. In
addition, it is also natural that saddle points differ by the type of
orientability of maps in the restriction to their invariant manifolds,
and, certainly, they are different for orientable and non-orientable
maps. Recall that a diffeomorphism of R

n is called orientable or
orientation-preserving if it has positive Jacobian at all points of R

n,
and, otherwise, when the Jacobian is negative everywhere, it is called
non-orientable or orientation-reversing. In the present paper, we will
consider mainly non-orientable case.

The idea of constructing bifurcation scenarios of the appear-
ance of discrete homoclinic attractors was motivated by Shilnikov’s
work3 where a phenomenological scenario for the appearance of a
spiral Shilnikov attractor in three-dimensional flows was described.
The Shilnikov attractor appears as a result of a simple chain of bifur-
cations that occur when a parameter varies. We display this scenario
in Fig. 1:

(i) at the beginning, the attractor is a stable equilibrium Oµ,
Fig. 1(a), then an Andronov–Hopf bifurcation occurs, and Oµ

becomes a saddle-focus of type (1,2) (with eigenvalues λ, γ
± iω, where λ < 0, γ > 0,ω 6= 0) and a new attractor appears,
which is a stable limit cycle Lµ, Fig. 1(b);

(ii) a “differentiable bifurcation” of Lµ takes place when the multi-
pliers become a complex conjugate; in this case, Wu(O) begins
to wind of Lµ, and the so-called “Shilnikov funnel” is formed
into which all the orbits from an absorbing region are drawn,
Fig. 1(c); and

(iii) a spiral Shilnikov attractor emerges when a homoclinic orbit
appears for Oµ, Fig. 1(d).

FIG. 1. Main steps of the classical Shilnikov scenario for flows, which leads to the appearance of a spiral attractor containing a saddle-focus equilibrium with the two-dimen-
sional unstable manifold: (a)⇒(b) a stable fixed point Oµ becomes saddle-focus and a stable limit cycle Lµ appears after an Andronov–Hopf bifurcation, (b)⇒(c) a Shilnikov
funnel near Lµ is formed, and (c)⇒(d) a Shilnikov attractor is created.
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As we see, this scenario is distinguished first of all by the
simplicity and, of course, it is universal since it is observed in one-
parameter families with simple and natural bifurcations. Moreover,
as we know, this Shilnikov scenario occurs in a wide variety of
models, see, e.g., Ref. 13.

In the case of flows with symmetry, it is natural to expect
that the number of universal (in one-parameter families) scenar-
ios, which lead to homoclinic attractors, increases since scenarios
associated with the formation of double homoclinic loops of equi-
libria with one-dimensional unstable manifolds are added up. Per-
haps, the most famous such scenario is the scenario of the Lorenz
attractor. In the case of the Lorenz model, such a scenario (for
b = 8/3, σ = 28 and a governing parameter r) was described in
Refs. 14–16.

Yet, in Ref. 3, it was outlined that analogous scenarios can be
naturally expected in the case of maps and that they could be pre-
sented as universal scenarios for discrete homoclinic attractors (or
for Poincaré attractors in the terminology of Ref. 3). However, for a
long time, such scenarios were not studied, apparently, for reasons
that there were no known examples of discrete analogs of the spiral
and Lorenz attractors.

The discrete Lorenz-like attractors were discovered in Ref. 17
for three-dimensional Hénon maps of the form (1) with G(y, z) =
M1 + M2y − z2. Therefore, natural questions have arisen connected
with the study how these attractors appear in one-parameter fam-
ilies starting with simple dynamics. In this connection, in Ref. 4,
scenarios for certain types of discrete homoclinic attractors (includ-
ing Lorenz-like ones) of three-dimensional orientable maps were
proposed, as well as some examples of their implementation were
demonstrated for the case of maps of the form (1). This topic was
continued and expanded in Refs. 12 and 18–20, and, moreover, var-
ious discrete homoclinic attractors were also found in applications,
in particular, in some models of rigid body dynamics.21–24

In the present paper, we study bifurcation scenarios of the
appearance of discrete homoclinic attractors in one-parameter fam-
ilies of three-dimensional non-orientable maps. We assume that all
these scenarios start with the simplest attractor, an asymptotically
stable fixed point with eigenvalues λ1, λ2, λ3, where |λi| < 1. We
also assume that, for some parameter value, this point loses sta-
bility under a soft (supercritical) non-degenerate bifurcation. This
bifurcation can be only either a supercritical period doubling bifur-
cation, when exactly one eigenvalue, λ1, goes through λ1 = −1,
or a supercritical discrete Andronov–Hopf bifurcation, when a pair
of eigenvalues, λ1, λ2 goes through the unit circle in points λ1,
λ2 = e±iψ , where ψ 6= {0,π , 2π/3,π/2}.

Remark 2. Note that there is another possibility when some
eigenvalue goes through the value λ = 1, which, in the general case,
corresponds to a discrete saddle-node bifurcation after which the fixed
point disappears (thus, this bifurcation is rigid, not soft or supercrit-
ical). After such bifurcation, the attractor is lost and we should start
again. However, a bifurcation through λ = 1 can also be soft, and
this is a degenerate (codimension 2) pitchfork bifurcation. By these
reasons, we do not consider the case of transitions through λ = 1.
Nevertheless, it is worth mentioning that pitchfork bifurcations can
be generic for maps with global symmetries. Note also that, in the ori-
entable case, scenarios with λ = 1 for maps with global symmetries
were partially observed in Ref. 20.

We show that four different types of bifurcation scenarios for
the appearance of discrete homoclinic attractors are possible in
general one-parameter families of three-dimensional non-orientable
maps. Specifically, these scenarios result in non-orientable discrete
Lorenz-like, figure-8, spiral figure-8, and Shilnikov attractors.

In the scenarios of the first three attractors, the stable fixed
point loses stability under a period doubling bifurcation, after which
the fixed point becomes saddle of type (2,1), with eigenvalues λ1

< −1 and |λ2| < 1, |λ3| < 1, and a stable 2-periodic orbit emerges.
When the 2-periodic orbit loses stability, a new homoclinic attractor
can appear when the two-dimensional stable and one-dimensional
unstable manifolds of the fixed point start intersecting. Since the
unstable eigenvalue λ1 is negative, double homoclinic intersections
are created (as in flows with symmetries). Moreover, the shape of
the double homoclinic structures and, hence, the shape of the corre-
sponding homoclinic attractors, depend essentially on the two stable
eigenvalues λ2 and λ3 of the fixed point. Thus, we can classify the
various cases of scenarios (with λ1 < −1) as follows:

• 0 < λ3 < λ2 < 1 in the Lorenz-like case;
• −1 < λ2 < λ3 < 0 in the figure-8 case; and
• λ2, λ3 = λe±iϕ and 0 < λ < 1 in the spiral figure-8 case.

In these three cases, the desired homoclinic attractors are asso-
ciated with the formation of double homoclinic configurations of
saddle fixed points of type (2,1) such as a “homoclinic butter-
fly,”a “homoclinic figure-8,” and a “spiral figure-8,” respectively.
We consider the scenarios for these attractors in Secs. II and III
A. It is worth noting that we especially focus on the cases where
the unstable eigenvalue of the fixed point O is negative. Then, the
one-dimensional unstable manifold of O consists of two connected
components, separatrices 01 and 02, which are symmetric to each
other due to the negativity of the unstable eigenvalue. Accordingly,
only double homoclinic configurations can arise, i.e., if 01 intersects
Ws(O), 02 intersect it as well and vice versa.

The discrete Shilnikov attractors are considered in Sec. III B,
and their appearance is connected with the formation of homo-
clinic configurations of saddle-focus fixed points of type (1,2).
Within the framework of the corresponding scenario, such a point
is created after a supercritical discrete Andronov–Hopf bifurca-
tion of a stable fixed point. In the non-orientable case, a saddle-
focus (1,2) has eigenvalues λ, γ e±iψ , where −1 < λ < 0 and γ

> 1,ψ 6= {0,π}. Thus, we have local symmetry between the sta-
ble manifolds of the fixed point. For orientable maps, when
0 < λ < 1, there is no such symmetry in general (it can appear only
in special classes of maps with global symmetries), and, therefore,
orientable and non-orientable discrete Shilnikov attractors have dif-
ferent structures (see Sec. III C). Thus, an orientable Shilnikov
attractor is one-sided since the fixed point O lies on the boundary
of the attractor and Wu(O) accumulates to Wu

loc(O) from exactly
one side. In contrast, a non-orientable Shilnikov attractor is two-
sided: the point O lies inside the attractor and Wu(O) accumulates
to Wu

loc(O) from both sides (compare Figs. 8 and 10).
The paper is organized as follows. In Sec. II, we describe sce-

narios of the appearance of non-orientable discrete Lorenz-like and
figure-8 attractors and provide also a comparative analysis with
the orientable case. In Sec. III, we study scenarios of the appear-
ance of two types of non-orientable spiral (spiral figure-8 and
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Shilnikov) attractors. In addition, in Sec. III C, we show the differ-
ences between orientable and non-orientable Shilnikov attractors.
In Sec. IV, we recall the methods (based on saddle charts and gen-
eralized Lyapunov diagrams) for numerical finding regions with the
corresponding homoclinic attractors. In Sec. V, we provide numer-
ical implementation of the scenarios described in Secs. II and III
in one-parameter families of three-dimensional non-orientable gen-
eralized Hénon maps of the form (1) with −1 < B < 0. Finally, in
Sec. VI, we give concluding remarks and discuss open problems on
the related topics.

II. NON-ORIENTABLE DISCRETE LORENZ-LIKE AND

FIGURE-8 ATTRACTORS

In this section, we give a description of scenarios for the appear-
ance of non-orientable discrete Lorenz and figure-8 homoclinic
attractors, which contain saddle fixed points with homoclinic orbits,
in Secs. II A and II B. We also give a comparative analysis of these
scenarios with the similar scenarios of three-dimensional orientable
maps in Sec. II C.

A. Scenarios for non-orientable discrete Lorenz-like

attractors

A scenario for the appearance of non-orientable discrete
Lorenz-like attractors is outlined in Fig. 2. Let us consider a non-
orientable map Tµ. We start with the values of the parameter µ
where Tµ has a stable fixed point Oµ, Fig. 2(a). We assume that when
µ varies, as a result of a supercritical period doubling bifurcation, Oµ

loses stability and becomes a saddle of type (2,1) with the unstable
eigenvalue λ1 < −1 and a stable 2-periodic orbit (p1, p2) appears,
Fig. 2(b).

When µ changes further, various bifurcations can occur, and
we emphasize the most important of them:

• bifurcations after which the orbit (p1, p2) and all attracting invari-
ant sets generated from it lose their stability and

• global bifurcations of the creation of homoclinic orbits to Oµ

when the unstable separatrices 01 and 02 of Oµ start intersecting
Ws(Oµ).

Recall that, when Wu(Oµ) is one-dimensional, 01 and 02

are two connected components of Wu(Oµ)\Oµ. Since the unstable
eigenvalue λ1 of Oµ is negative, it is true that Tµ(01(µ)) = 02(µ)

and Tµ(02(µ)) = 01(µ). Therefore, if 01 intersects Ws(Oµ), then
02 also intersects it and vice versa. Thus, homoclinic intersections
of the saddle Oµ appear in pairs as double homoclinic orbits. In
the case under consideration, this double homoclinic configura-
tion is associated with the saddle fixed point Oµ whose eigenvalues
λ1, λ2, λ3 satisfy the following condition, which can be considered
the characteristic condition for the scenario:

λ1 < −1, 0 < λ3 < λ2 < 1, −1 < λ1λ2λ3 < 0,

σ = |λ1||λ2| > 1,
(2)

where σ is the so-called saddle value of Oµ. Recall that the saddle
value of a saddle fixed point is defined generally as the absolute value
of the product of the two nearest to the unit circle eigenvalues such
that one eigenvalue is stable (less than 1 in modulus) and the other
is unstable (greater than 1 in modulus).

When condition (2) holds and the separatrices 01 and 02

intersect Ws(Oµ), their configuration, see Figs. 2(c) and 2(d), is
similar to the famous homoclinic butterfly in the Lorenz model.
In particular, when Wu(Oµ) starts intersecting Ws(Oµ), a pair of
primary homoclinic orbits with points (h1, h2, . . .) and (h1, h2, . . .)
in Ws

loc is created, as shown schematically in Fig. 2(c). These
orbits contain points belonging alternately to 01 and 02. Thus,
h1 ∈ 01, h2 = Tµ(h1) ∈ 02, h3 = Tµ(h2) ∈ 01, . . ., as well as h1

∈ 01, h2 = Tµ(h
1) ∈ 02, h3 = Tµ(h

2) ∈ 01, . . .. Note also that the
bifurcation of the creation of a homoclinic butterfly is accompanied
by infinitely many periodic orbits and closed invariant curves. In
particular, a 2-periodic closed invariant curve (C1, C2) is formed.
This curve is of saddle type when σ > 1. In the case σ < 1, the
curve (C1, C2) is stable, which means that it is an attractor, and the
further development of chaos can proceed through the destruction
of this curve and the appearance of a torus-chaos, for example, but
not a homoclinic attractor at all. Therefore, the condition σ > 1 is
principally important.

It is worth noting that even when the homoclinic butterfly is
formed, the orbit (p1, p2) can remain stable and it may be either a

FIG. 2. A bifurcation scenario for a discrete Lorenz-like attractor in non-orientable three-dimensional maps. The path is as follows. (a)⇒(b): A period doubling bifurcation
of stable fixed point Oµ takes place, after which Oµ becomes saddle of type (2,1) and a stable 2-periodic orbit (p1, p2) appears; (b)⇒(c) and (d): a homoclinic butterfly is
formed, in (c) primary homoclinic points inW s

loc(Oµ) are displayed; (d)⇒(e): a discrete Lorenz-like attractor emerges.
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unique attractor of the map or can coexist with a homoclinic attrac-
tor. We are interested in the case when the orbit (p1, p2) and all stable
sets generated from it lose stability. The loss of stability depends on
the model under consideration. However, one can specify the two
simplest options (see also Ref. 12):

(i) the stable orbit (p1, p2) undergoes a subcritical Andronov–Hopf
bifurcation, merges with the curve (C1, C2), and becomes a 2-
periodic saddle-focus of type (1,2) and

(ii) the stable orbit (p1, p2) undergoes a supercritical Andronov–
Hopf bifurcation after which it becomes a 2-periodic saddle-
focus of type (1,2) and a 2-periodic stable closed invariant curve
(S1, S2) shows up and then this curve merges with the 2-periodic
saddle curve (C1, C2) and both disappear (via a Chenciner
bifurcation25).

Note that the flow analogs of options (i) and (ii) are real-
ized, respectively, in the Lorenz model14 and the Shimizu–Morioka
model.26 In Refs. 12 and 24, it was shown that these options can also
be observed in the case of three-dimensional maps with orientable
discrete Lorenz-like attractors.

We can summarize the main stages of the scenario (in a one-
parameter family Tµ when µ changes) as follows (see also Fig. 2):

(a) the attractor is a non-orientable stable fixed point Oµ;
(b) after a period doubling bifurcation of Oµ: the attractor is

a 2-periodic orbit (p1, p2); the point Oµ becomes a non-
orientable saddle of type (2,1) with λ1 < −1;

(c) and (d) the creation of a homoclinic butterfly of the saddle point
Oµ whose eigenvalues satisfy condition (2), takes place,
the attractor can be still the orbit (p1, p2); and

(e) the formation of a discrete Lorenz-like attractor occurs
after (p1, p2) and all stable invariant orbits generated
from it lose stability.

B. Scenarios for non-orientable discrete figure-8

attractors

A scenario for a non-orientable discrete figure-8 attractor is
presented in Fig. 3. The beginning of this scenario is the same as
in the Lorenz-like attractor case. First, the map Tµ has an asymp-
totically stable fixed point Oµ, which undergoes a period doubling
bifurcation, and Oµ becomes a saddle of type (2,1) and a stable 2-
periodic orbit (p1, p2) emerges; see Figs. 3(a) and 3(b). The principle
difference is that the eigenvalues of the point Oµ satisfy the following
conditions when homoclinic orbits of Oµ appear:

λ1 < −1 < λ3 < λ2 < 0 and σ = |λ1||λ3| > 1, (3)

which is the characteristic condition for the figure-8 scenario.
Then, the double homoclinic configuration, appearing when

the invariant manifolds of the point Oµ start intersecting, resem-
bles a homoclinic figure-8 of a saddle equilibrium for a flow.
Therefore, such attractor was called a discrete figure-8 attractor in
Ref. 4. In Figs. 3(c) and 3(d), the moment of creation of this dou-
ble homoclinic orbit is shown when a pair of primary homoclinic
orbits with points (h1, h2, . . .) and (h1, h2, . . .) in Ws

loc are formed,
as shown schematically in Fig. 3(c). These orbits contain points
that belong to 01 and 02 alternately. Thus, h1 ∈ 01, h2 = Tµ(h1) ∈
02, h3 = Tµ(h2) ∈ 01, . . ., as well as h1 ∈ 01, h2 = Tµ(h

1) ∈ 02,
h3 = Tµ(h

2) ∈ 01, . . .; see Fig. 3(c).
Note also that as in the previous case of a discrete homoclinic

butterfly, a 2-periodic saddle closed invariant curve (C1, C2) appears
when a discrete figure-8 with σ > 1 is formed, and, besides, options
(i) and (ii) can be feasible for a non-orientable discrete figure-8
attractor.

We summarize the main stages of the scenario for a non-
orientable discrete figure-8 attractor (in a family Tµ when µ varies)
as follows (see also Fig. 3):

(a) the attractor is a non-orientable stable fixed point Oµ;
(b) the attractor is a 2-periodic orbit (p1, p2); after a period

doubling bifurcation, the point Oµ becomes a non-
orientable saddle of type (2,1) with λ1 < −1;

FIG. 3. A bifurcation scenario for a non-orientable discrete figure-8 attractor in three-dimensional maps: (a)⇒(b) after a period doubling bifurcation, the stable fixed point Oµ
becomes saddle and a 2-periodic stable orbit (p1, p2) appears; (b)⇒(c) and (d) a homoclinic figure-8 is created, in (c) the disposition of primary homoclinic points is shown
inW s

loc(Oµ); and (d)⇒(e) a discrete homoclinic figure-8 attractor appears.
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(c) and (d) the creation of a homoclinic figure-8 of the saddle point
Oµ whose eigenvalues satisfy condition (3) takes place,
and the attractor is the orbit (p1, p2); and

(e) the formation of a discrete figure-8 attractor occurs after
(p1, p2) and all stable invariant sets generated from it
lose stability.

C. Comparative analysis with the orientable case

In this section, we can point out similarities and differences
in the scenarios for discrete Lorenz-like and figure-8 attractors of
orientable and non-orientable maps. In both orientable and non-
orientable cases, the scenarios start similarly with a period doubling
bifurcation of a stable fixed point, which loses stability and turns into
a saddle (2,1), and an attracting 2-periodic orbit appears. After that,
the orientable and non-orientable scenarios differ in specific details.

Scenarios of orientable discrete Lorenz-like attractors in the
case of one-parameter families of three-dimensional maps were pro-
posed in Ref. 4 and studied in detail in Refs. 12, 19, and 20. We
outline the “homoclinic” stages of the scenarios for the orientable
and non-orientable cases in Figs. 4(b) and 4(d), respectively. The
first thing to notice is that the fixed points have different topological

types. In the orientable case, the eigenvalues of the point Oµ satisfy
the condition

λ1 < −1 < λ3 < 0 < λ2 < 1, 0 < λ1λ2λ3 < 1,

|λ2| > |λ3|, σ = |λ1||λ2| > 1, (4)

while, in the non-orientable case, condition (2) is fulfilled.
Let us define a two-dimensional map T̃s as restriction of Tµ in

a two-dimensional disk Ws
loc, i.e., T̃s = Tµ|Ws

loc
. This map is non-

orientable if map Tµ is orientable and is orientable if map Tµ is

non-orientable. The fixed point Õ of T̃s has eigenvalues 0 < λ2

< 1, −1 < λ3 < 0 where |λ3| < |λ2|, in the first case, and 0 < λ3

< λ2 < 1, in the second case. In both cases, in Ws
loc, there is the so-

called strong stable one-dimensional invariant manifold Wss, which
goes to Õ along the direction corresponding to the eigenvalue λ3

and divides Ws
loc into two parts. In the cases under consideration,

all homoclinic points to Õ in Ws
loc belong to the same part, but their

location is different [compare Figs. 4(b) and 4(d)].
Notice that in the general case, a homoclinic attractor can be

presented as the closure of the unstable manifold of the fixed point
Oµ (see Remark 1). Since the unstable separatrices 01 and 02 of the
saddle Oµ accumulate to themselves (forming a one-dimensional

FIG. 4. Toward a comparison of scenarios for discrete Lorenz-like attractors in (a) and (b) the orientable case and in (c) and (d) the non-orientable case. In the orientable
case (a), a discrete homoclinic configuration can be obtained as a result of an arbitrary small smooth periodic perturbation of a three-dimensional flow with a homoclinic
butterfly, while, in the non-orientable case (c), this can be obtained only by a periodic perturbation of a semiflow (when the unstable separatrices partially coincide).
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indecomposable continuum), their homoclinic points in Ws
loc(Oµ)

lie near the primary homoclinic points h1, h2, . . . and h1, h2, . . . [see
Figs. 2(c) and 2(e)].

Let us consider the points h1, h2, . . ., where h1 and h2 are
the first intersection points of the disk Ws

loc(Oµ) and the sepa-
ratrices 01 and 02, respectively. For T2(µ), the separatrices 01

and 02 are invariant, and, thus, the points h1, h3, . . . , h2i+1, . . . and
h2, h4, . . . , h2i, . . . are homoclinic points for T2(µ), which belong

to 01 and 02, respectively. When Tµ is orientable and T̃s is
non-orientable, these homoclinic points reside in different smooth
invariant curves, which are tangent at Oµ [Fig. 5(a)]. This is consis-
tent with the fact that a discrete homoclinic butterfly for T2

µ can be
represented in the Poincaré map for a small smooth periodic pertur-
bation of a three-dimensional flow with a homoclinic butterfly as in
Fig. 4(a).

If Tµ is non-orientable, since eigenvalues λ2 and λ3 of the

fixed point Õ of the orientable map T̃s are positive, all the homo-
clinic points h1, h2, . . . lie in the same smooth invariant curve, which
tends to Õ [Fig. 5(b)]. Accordingly, for T2(µ), the homoclinic points
{h1, h3, . . . , h2i+1, . . .} ∈ 01 and {h2, h4, . . . , h2i, . . .} ∈ 02 also lie in
the same curve. Therefore, in the corresponding imagined non-
perturbed flow system, the separatrices 01 and 02 should go to the
equilibrium along the same orbit. This is impossible for a flow, but a
semiflow can possess such a configuration, as in Fig. 4(c).

The fact that an orientable discrete Lorenz-like attractor for
T2(µ) can be obtained as a result of a small periodic perturbation of

FIG. 5. Orbit behavior of T̃s near a stable fixed point Õ with real eigenvalues
λ2 and λ3, where 0 < |λ3| < |λ2| < 1 and (a) λ2 > 0, λ3 < 0; (b) λ2 > 0,
λ3 > 0; (c) λ2 < 0, λ3 > 0; and (d) λ2 < 0, λ3 < 0. We consider various possi-

ble cases, and, for the sake of simplicity, we assume that the map T̃s is linear: x̄ =
λ2x, ȳ = λ3y. A neighborhood of Õ is foliated into invariant curves y = C|x|α ,
where α = ln |λ3 |

ln |λ2 |
and C runs all values from −∞ to +∞. The foliation contains

also the leaf x = 0, which corresponds to the strong stable manifoldW ss.

FIG. 6. Homoclinic configurations for discrete figure-8 attractors in (a) the ori-
entable case and in (b) the non-orientable case.

a system with the Lorenz attractor (which satisfies conditions of the
Afraimovich–Bykov–Shilnikov geometric model14,27) was proved in
Ref. 28. Besides, it was shown in Ref. 17 that an orientable discrete
Lorenz-like attractor can emerge under a local codimension 3 bifur-
cation of a fixed point with eigenvalues (−1, −1, +1). It seems that
none of this can be done in the case of a non-orientable discrete
Lorenz-like attractor.

As for the orientable and non-orientable discrete homoclinic
figure-8 attractors, first of all, they are quite similar. This can be
seen from the location of the primary homoclinic points h1, h2, . . .,
where {h1, h3, . . . , h2i+1, . . .} ∈ 01 and {h2, h4, . . . , h2i, . . .} ∈ 02, in
Ws

loc(Oµ) [see Figs. 5(c) and 5(d)]. The difference is not so essential,
which is also confirmed by the homoclinic schemes for the attrac-
tors shown in Fig. 6. Moreover, looking at Figs. 5(c) and 5(d), one
can say that for the orientable and non-orientable figure-8 attrac-
tors, there are different symmetries in Ws

loc with respect to the strong

stable manifold and with respect to Õ, respectively.
The other side of the problem is how one can obtain discrete

figure-8 attractors by means of periodic perturbations of contin-
uous systems with a figure-8 of a saddle equilibrium. In the case
with σ > 1, it is impossible since the figure-8 of the corresponding
flow is not an attractor. Accordingly, a possible discrete attractor in
the Poincaré map will be located outside of a neighborhood of the
figure-8, and, thus, it is not a homoclinic attractor. In the case σ < 1,
the attractor may be homoclinic, but we do not consider them since,
as said above, scenarios with σ < 1 can go in a completely different
way.

III. NON-ORIENTABLE DISCRETE SPIRAL ATTRACTORS

In this section, we observe scenarios of the appearance of
non-orientable discrete spiral attractors, which contain saddle-focus
fixed points with homoclinic orbits. We consider two types of these
attractors: spiral figure-8 attractors with the two-dimensional stable
and one-dimensional unstable invariant manifolds in Sec. III A and
spiral Shilnikov attractors with the one-dimensional stable and two-
dimensional unstable invariant manifolds in Sec. III B. Since ori-
entable maps in the case of saddle fixed points with λ1 < −1 cannot
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have discrete spiral figure-8 attractors, we only provide a compar-
ative analysis of orientable and non-orientable discrete Shilnikov
attractors in Sec. III C.

A. Scenarios for non-orientable discrete spiral figure-8

attractors

A scenario of the appearance of a non-orientable discrete spiral
figure-8 attractor is displayed in Fig. 7. This scenario can be consid-
ered an intermediate case between the first two scenarios (“Lorenz”
and “figure-8”) in the non-orientable case. The point Oµ loses stabil-
ity under a supercritical period doubling bifurcation after which the
eigenvalues take values λ1 < −1, λ2, λ3 = λe±iϕ , where 0 < λ < 1.
Thus, the point Oµ becomes a saddle-focus of type (2,1) and a sta-
ble 2-periodic orbit (p1, p2) emerges. Accordingly, when µ changes
further, this 2-periodic orbit loses stability, homoclinic orbits of
Oµ appear, and a non-orientable discrete homoclinic spiral figure-8
attractor can be formed, which contains the saddle-focus Oµ and the
one-dimensional unstable manifold [Figs. 7(c) and 7(d)]. One can
see that the shape of this attractor depends on the value of ϕ. When
ϕ is very close to 0, it is similar to a discrete Lorenz-like attractor,
compare Figs. 2(e) and 7(c), and when ϕ is close to π , it resembles a
discrete figure-8 attractor [compare Figs. 3(e) and 7(d)].

Note that the scenario for non-orientable discrete spiral figure-
8 attractors has no direct analogs in the orientable case. Some
asymmetric spiral figure-8 attractors can appear when a fixed point
is a saddle-focus of type (2,1) with eigenvalues λ1 > 1, λe±iϕ , where
0 < λ < 1, and both unstable separatrices intersect the stable man-
ifold. If an orientable map admits an appropriate symmetry, for
example, as an orientable map of the form (1) with the central
symmetry, when G(y, z) = −G(−y, −z)), then, evidently, symmet-
ric orientable spiral figure-8 attractors can appear. In our case,
a non-orientable saddle-focus Oµ has eigenvalues λ1 < −1, λe±iϕ ,
and, thus, a spiral figure-8 attractor with such point Oµ is always
symmetric due to negativity of the unstable eigenvalue λ1.

We also note that in the cases when ϕ is close to π/2 or
2π/3, the corresponding spiral figure-8 attractors can take specific
forms; see, e.g., Fig. 15 for such an attractor with ϕ close to π/2.

Unfortunately, we have not observed such attractors for ϕ close to
2π/3, although such an attractor could be quite interesting.

We summarize the scenario for a non-orientable discrete spiral
figure-8 attractor in a one-parameter family Tµ when µ changes as
follows (see also Fig. 7):

(a) the attractor is a non-orientable stable fixed point Oµ;
(b) the attractor is a 2-periodic orbit (p1, p2) that appears

after a period doubling bifurcation; the point Oµ

becomes a non-orientable saddle-focus of type (2,1);
and

(c) and (d) the orbit (p1, p2) loses stability, Ws(Oµ) and Wu(Oµ)

start intersecting, and a spiral figure-8 attractor appears
whose shape depends on the angle ϕ of the complex
eigenvalue of Oµ.

B. Scenarios for non-orientable discrete Shilnikov

attractors

A scenario of the appearance of a non-orientable discrete
Shilnikov attractor is illustrated in Fig. 8. This scenario signifi-
cantly differs from the previous three scenarios (“Lorenz,” “figure-
8,” and “spiral figure-8”). In a one-parameter family Tµ of three-
dimensional maps, it starts with a stable fixed point Oµ, Fig. 8(a),
however, in this case, Oµ loses stability under a discrete super-
critical Andronov–Hopf bifurcation. After this bifurcation, the
point Oµ becomes a saddle-focus of type (1,2) with eigenvalues
λ1,2 = γ e±iψ , −1 < λ3 < 0, where γ > 1, and a stable closed invari-
ant curve Lµ emerges [Fig. 8(b)]. Afterward, when µ changes, we
assume that the curve Lµ loses stability.

One of the most interesting and realistic ways of the stability
loss is that Lµ undergoes a doubling bifurcation. After this bifurca-
tion, the curve Lµ becomes a saddle type and two stable invariant

curves L̂1
µ and L̂2

µ of period 2 [i.e., L̂2
µ = Tµ(L̂

1
µ) and L̂1

µ = Tµ(L̂
2
µ)]

appear in a neighborhood of Lµ (see the transition (b)⇒(c) in Fig. 8).

Each of the curves L̂1
µ and L̂2

µ is invariant with respect to T2
µ, and,

hence, when µ changes, they can undergo a “differentiable bifur-
cation” (the curves of a nodal type change to a focal type). As a

FIG. 7. A bifurcation scenario for a spiral figure-8 attractor in non-orientable three-dimensional maps: (a)⇒(b) stable fixed point Oµ becomes saddle-focus after a period
doubling bifurcation; (b)⇒(c) a spiral figure-8 attractor similar to a Lorenz-like attractor appears if ϕ is close to 0; and (b)⇒(d) a spiral figure-8 attractor similar to a figure-8
attractor appears if ϕ is close to π .

Chaos 31, 043122 (2021); doi: 10.1063/5.0039870 31, 043122-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 8. A scenario for a non-orientable discrete Shilnikov attractor: (a)⇒(b) the stable fixed point Oµ becomes a saddle-focus and a stable invariant curve Lµ emerges after

an Andronov–Hopf bifurcation; (b)⇒(c) a doubling bifurcation of Lµ occurs and stable invariant curves L̂1µ and L̂2µ emerge; (c)⇒(d) a two-sided Shilnikov funnel is created

since the curves L̂1µ and L̂2µ become a focal type; and (d)⇒(e) homoclinic orbits to Oµ appear and a discrete Shilnikov attractor is formed.

result of this reconstruction, the unstable two-dimensional manifold
of the saddle Oµ begins to wind on both curves L̂1

µ and L̂2
µ, thereby

forming a two-sided “Shilnikov funnel,” into which all orbits from
the corresponding absorbing region are drawn [see Fig. 8(d)]. After-
ward, inside the funnel, all stable invariant sets (including the curves

L̂1
µ and L̂2

µ) lose stability, homoclinic intersections of Ws(Oµ) and
Wu(Oµ) appear, and a non-orientable discrete Shilnikov attractor
can be formed [Fig. 8(e)].

In this scenario, we emphasize the step related to the unusual
character of a doubling bifurcation of an invariant curve. As is well
known, see, e.g., Ref. 29, in the orientable case, such a bifurcation is
length-doubling and leads to the appearance of one (stable) invari-
ant curve of double length, which wraps twice around the initial
curve, while, in the non-orientable case, a pair of 2-periodic invari-
ant curves of an ordinary length emerges. This difference is closely
connected with the topology of the manifolds Wu(L) and Ws(L)
of a saddle invariant non-resonant curve for diffeomorphisms in
R

3. Locally, these manifolds are some strips Ws
δ(L) and Wu

δ (L) of
width δ that intersect transversally along L. Evidently, for diffeo-
morphisms of R

3, Ws
δ(L) and Wu

δ (L) are both either cylinders or
Möbius bands [see Figs. 9(a) and 9(b)]. We illustrate this simple
topological fact in Fig. 9(c), where the curve L is shown inside a

cub Q : −1 ≤ (x, y, z) ≤ 1 whose faces x = 1 and x = −1 of Q are
supposed to be identified. Let Wu(L) be a cylinder, in Fig. 9(c), this
is the rectangle AA′B′B with the identified edges AB and A′B′. Then,
Wu(L) divides the cube into two connected components, 0 < y < 1
and −1 < y < 0. If Ws(L) is a Möbius band (a twisted band CC′D′D
with the identified edges CD and C′D′), it also should have inter-
section points with Wu(L) (the arc p̂, q) apart from L, which is
impossible.

When such a diffeomorphism T of R
3 is non-orientable, both

the strips Ws
δ(L) and Wu

δ (L) are cylinders. Indeed, one of the two-
dimensional maps T|Wu

δ
and T|Ws

δ
is orientable (then the other map

is non-orientable), which means that the corresponding manifold
is orientable; i.e., it is a cylinder. Thus, the other manifold is also a
cylinder. If L undergoes a doubling bifurcation, as usually it occurs
along the central manifold Wc(L), as shown in Fig. 8(c). Since Wc(L)
is a cylinder, this bifurcation leads to the appearance of 2-periodic
invariant curves, which are located on both hands of L (above and
below) in Wc(L) and have approximately the same length as L. Note
that apparently, the first example of such a bifurcation was consid-
ered in Ref. 30 in the case a quasiperiodically driven Hénon map,
which is non-orientable (J = −0.4) and has a closed invariant curve
whose rotation number is the golden mean (

√
5 − 1)/2.
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FIG. 9. Local stable and unstable invariant manifolds W s
δ (L) and W

u
δ (L) of a saddle non-resonant curve L in R

3 can be either (a) both cylinders or (b) both Möbius bands,
but (c) the case when one of them is a cylinder and the other is a Möbius band is impossible.

We summarize the scenario for a non-orientable Shilnikov
attractor in a one-parameter family Tµ when µ changes as follows
(see also Fig. 8):

(a) the attractor is a stable fixed point Oµ;
(b) the attractor is the invariant curve Lµ, which emerges after an

Andronov–Hopf bifurcation of Oµ; the point Oµ becomes a
non-orientable saddle-focus of type (1,2);

(c) the attractor is the invariant curves L1
µ and L2

µ, which emerge
after a doubling bifurcation of Lµ; the curve Lµ becomes a saddle
type;

(d) the creation of a two-sided Shilnikov funnel with stable sets
occurs; and

(e) the formation of a non-orientable Shilnikov attractor occurs
after all stable invariant sets (including L̂1

µ and L̂2
µ) lose stability

and homoclinic intersections of Ws(Oµ) and Wu(Oµ) appear.

C. Comparative analysis with the orientable case

The main stages of the appearance of Shilnikov attractors
differ in details for the non-orientable and orientable cases, com-
pare Figs. 8 and 10, where a scenario for an orientable discrete
Shilnikov attractor is illustrated. As in the non-orientable case, the
orientable scenario starts with a stable fixed point Oµ, Fig. 10(a),

which loses stability under a supercritical Andronov–Hopf bifurca-
tion: Oµ becomes a saddle-focus of type (1,2) and there appears a
stable invariant curve Lµ, which is the new attractor [Fig. 10(b)].
Since the stable eigenvalue λ3 is positive, the stable separatrices
S1 and S2 are invariant, i.e., Tµ(S1) = S1, Tµ(S2) = S2, and their
behavior is independent.

As one can see in Figs. 8 and 10, the main difference in the
orientable and non-orientable scenarios is connected with the for-
mation of the Shilnikov funnel. In the orientable case, the funnel
appears due to a “differentiable bifurcation” when the curve Lµ
changes the type from nodal to focal,4,19 Fig. 10(c), and all orbits
from an absorbing domain, except those in the stable separatrix S2,
go inside the funnel. Thus, the orientable funnel is one-sided (as a
“sac”). We note that in the orientable case, both manifolds Ws(Lµ)
and Wu(Lµ) are Möbius bands [see Fig. 9(b)]. A homoclinic attrac-
tor can be created when Wu(Oµ) and Ws(Oµ) start intersecting and,
in general (when the map does not possess a certain global symme-
try), only one of the stable separatrices of Oµ, separatrix S1, intersects
Wu(Oµ) [see Fig. 10(d)].

In the non-orientable case, the Shilnikov funnel formation pro-
cess is more complicated. We show one of the most common ways
when the funnel is formed after the curve Lµ undergoes a doubling

bifurcation and stable 2-periodic invariant curves L̂1
µ and L̂2

µ become

FIG. 10. A bifurcation scenario for an orientable discrete Shilnikov attractor: (a)⇒(b) a stable fixed point Oµ becomes saddle-focus and a stable closed invariant curve Lµ
appears under an Andronov–Hopf bifurcation; (b)⇒(c) a Shilnikov funnel near Lµ is formed; and (c)⇒(d) an orientable discrete Shilnikov attractor is created.
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a focal type. Then, all orbits from the absorbing region are drawn
into the two-sided funnel (as a “sac without bottom and lid”). Note
that other mechanisms of funnel creation can also exist, see e.g.,
Ref. 31, but in any case, a non-orientable discrete Shilnikov attrac-
tor is two-sided since Wu(Oµ) accumulates to Wu

loc(Oµ) from both
sides. In this case, Wu(Oµ) intersects both stable separatrices S1 and
S2 of Oµ [see Fig. 8(e)].

IV. METHODS FOR FINDING DISCRETE HOMOCLINIC

ATTRACTORS

We consider examples of the implementation of the scenarios
described in Secs. II and III in the three-dimensional generalized
Hénon maps of the form

x̄ = y, ȳ = z, z̄ = Bx + Az + Cy + g(y, z), (5)

where A, B, C are parameters [B is the Jacobian of map (5)], g(y, z)
is a function of the coordinates y and z only, and we assume that it
vanishes at y = z = 0 together with the first derivatives.

The use of maps of the form (5) is very convenient in experi-
ments with homoclinic attractors in three-dimensional Hénon-like
maps. Map (5) appears when we formally shift a fixed point to the
origin. Thus, we do not lose any information about the attractors
except, perhaps, for the position of the fixed points in the initial map
(1) for which it can be an independent problem to find the fixed
points. On the other hand, we get more information for the fixed
point O(0, 0, 0) in the case of map (5). Hence, the linear type of the

point O is easily determined by the characteristic equation

λ3 − Aλ2 − Cλ− B = 0. (6)

In this case, for any fixed B, one can construct the so-called sad-
dle chart,20 where the domains corresponding to different types of
the point O are marked [see Fig. 11(a)]. Since −1 < B < 0, there
exist five different topological types of the hyperbolic point O, and,
accordingly, the bifurcation diagram, see Fig. 11(b) for B = −0.5,
is divided into five domains. One domain corresponds to the case
when O is a sink (stable fixed point), and the other four domains are
related to the cases when O is a saddle point of type (2,1) or (1,2) with
different types of orientability on their invariant stable and unstable
manifolds. The boundary of these domains are the three bifurcation
curves:

• the curve L+ (corresponds to eigenvalue λ = 1) with the equation
C = 1 − B − A;

• the curve L− (corresponds to eigenvalue λ = −1) with the
equation C = A + B + 1; and

• the curve Lϕ (corresponds to eigenvalue λ1, λ2 = e±iϕ) with the
equation C = B2 − 1 − AB, B − 2 ≤ A ≤ B + 2.

Compared to the bifurcation diagram, the saddle chart looks
more complicated. The fact is that the saddles differ here in a larger
number of characteristics. Specifically, they are distinguished in

• saddles and saddle-foci [the boundary is determined by the rela-
tion λ1 = λ2 and it holds in the so-called discriminant curve for
Eq. (6)];

FIG. 11. (a) The saddle chart for the fixed point O(0, 0, 0) of map (5) with B = −0.5 and (b) the bifurcation diagram for the point O.
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• saddles with σ < 1 and σ > 1, where σ is the saddle value
[|λ1λ2| = 1 for the boundary that consists of some pieces of the
curves C = B2 − 1 − AB (when λ1λ2 = 1) and C = 1 + B2 + AB
(when λ1λ2 = −1)]; and

• saddles with different signs of strong stable and strong unstable
eigenvalues (the boundary condition λ1 = −λ2 holds on the curve
AC + B = 0, A > 0).

Note that an analog of the saddle chart in the form of a table
was introduced in Ref. 32 for equilibria of three-dimensional flows.
Actually, saddle charts were proposed in Ref. 20 for maps of the form
(5) with 0 < B < 1. Besides, in Ref. 20, the saddle charts together
with the modified diagrams of Lyapunov exponents (the modifica-
tion consists of the fact that we add to the standard diagram some
domains of parameters where the corresponding strange attractor
is homoclinic with the fixed point O) were effectively used for the
numerical search of various homoclinic attractors. The same can
be done in the non-orientable case. In the present paper, we show
certain results of the corresponding study with the emphasis on
demonstration of the scenarios discussed in Secs. II and III by means
of the non-orientable maps of the form (5).

V. EXAMPLES OF SCENARIOS IN THE

NON-ORIENTABLE CASE

In this section, we consider concrete examples of the sce-
narios presented in Secs. II and III in the case of non-orientable

three-dimensional generalized Hénon maps of the form (5). The
map (5) always has a fixed point O(0, 0, 0) whose type depends
only on the parameters A, B, C. For example, this point is asymp-
totically stable in the region C < 1 − B − A, C < A + B + 1, C
> B2 − 1 − AB at |B| < 1; see the region “sink” in Fig. 11. We con-
sider the case when the map (5) is non-orientable and dissipative,
i.e., −1 < B < 0. The orientable case was considered before; see, e.g.,
Refs. 4, 19, and 20.

The style of our presentations is unified in the following sense.
We consider only maps of the form (5), where −1 < B < 0 is fixed,
A and C are parameters, and g(y, z) is a given polynomial. For
every such family of maps, we construct numerically the Lyapunov
exponents diagram in the (A, C)-parameter plane. This diagram
represents a six-colored chart, where different colors correspond
to different types of attractors of initial points sufficiently close
to the origin O(0, 0, 0). The “white” color means that the forward
iterations go to infinity; “green” is for a periodic attractor (all the
Lyapunov exponents 31,32,33 are negative); “cyan” stands for
quasiperiodic attractors (31 = 0,32 < 0,33 < 0); “yellow” corre-
sponds to chaotic attractors (with 31 > 0,32 < 0,33 < 0); “deep
blue” means hyperchaotic attractors (with 31 > 32 > 0,33 < 0);
and “magenta” stands for the case when the corresponding strange
attractor contains the point O(0, 0, 0), i.e., the chaos is homoclinic.
Besides, we also show the saddle charts over the Lyapunov diagrams
in order to demonstrate that our attractor is indeed the required
homoclinic attractor that contains the fixed point O(0, 0, 0) with the
appropriate set of eigenvalues.

FIG. 12. Toward a scenario of appearance of a non-orientable discrete Lorenz-like attractor in map (5) with g(y, z) = 1.5yz − 0.54y3 + 0.54z3 and B = −0.4. (a) A
fragment of the Lyapunov diagram. (b)–(e) Stages of the scenario for A = −0.13 when C changes [black arrow in plot (a)]: (b) C = 0.91, (c) C = 1.23, (d) C = 1.36, and
(e) C = 1.5 (Lorenz-like attractor). (f) The unstable separatrix 01 near O in a zoomed rectangle from plot (e), and the separatrix 02 behaves symmetrically.
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A. Example of a scenario for a non-orientable discrete

Lorenz-like attractor

In Fig. 12, we show certain stages of the formation of a
non-orientable discrete Lorenz-like attractor in the one-parameter
family of map (5) with g = 1.5yz − 0.54y3 + 0.54z3 and B = −0.4,
A = −0.13 and C is a changing parameter. Here, the point O(0, 0, 0)
is asymptotically stable at C0 ≈ −0.892 < C < C1 ≈ 0.47. At
C = C1, the point loses stability as a result of a supercritical period
doubling bifurcation: it becomes a saddle point and a stable cycle
(p1, p2) of period 2 is generated nearby [Fig. 12(b)]. In turn, when
C changes, the cycle (p1, p2) loses stability as a result of a period
doubling bifurcation [Fig. 12(c)].

This and subsequent bifurcations can lead4 to the appearance
of a two-component discrete attractors, which contain the cycle
(p1, p2). Such an attractor is shown in Fig. 12(d). With further
change of C, these two components of the attractor merge into a one-
component discrete Lorenz-like attractor, which contains the fixed
point O [Fig. 12(e)]. We note that the eigenvalues λ1 = −1.403,
λ2 = 0.982, λ3 = 0.290 of O satisfy conditions (2). In Fig. 12(f), for
C = 1.5, the unstable separatrix 01 near O is plotted, and the sep-
aratrix 02 behaves symmetrically. This is quite consistent with the
theoretical constructions from Sec. II A.

B. Example of a scenario for a non-orientable discrete

figure-8 attractor

In Fig. 13, we display the stages of the appearance
of a non-orientable figure-8 attractor in the one-parameter

family of map (5) with g = y2 + 10yz + 1.5z2 + 2z3, B = −0.5,
C = (2A − 1)/3 and A varies. In this way, the point O(0, 0, 0) loses
stability as a result of a period doubling bifurcation at A = −2.5:
the point O becomes a saddle point of type (2,1) and a stable orbit
(p1, p2) of period 2 appears in its neighborhood [Fig. 13(b)]. When
we decrease A further, the cycle (p1, p2) loses stability as a result
of an Andronov–Hopf bifurcation after which the attractor is a
closed invariant curve of period 2, Fig. 13(c); this invariant curve,
in turn, is destroyed according to one of the Afraimovich–Shilnikov
scenarios,9 and, first, a two-component strange attractor of the
“torus-chaos” type is formed, and, then, a non-orientable discrete
figure-8 attractor emerges, which contains the point O, Fig. 13(d).
In Fig. 13(e), we also illustrate the unstable separatrix 01 for
A = −2.599 (the separatrix 02 is located symmetrically). We point
out that the eigenvalues λ1 = −1.351, λ2 = −0.485, λ3 = −0.762 of
the point O satisfy conditions (3).

C. Examples of scenarios for non-orientable discrete

spiral figure-8 attractors

In Fig. 14, we present the stages of the appearance of a
non-orientable spiral figure-8 attractor in the one-parameter fam-
ily of map (5) with g(y, z) = −1.5yz − y3 + 1.45z3 for B = −0.8,
C = −2.37 and A changes. The point O(0, 0, 0) is asymptotically
stable for A∗ = −2.57 < A < −2.5125 [Fig. 14(b)]. When A = A∗,
the point loses stability as a result of a period doubling bifurca-
tion: the point becomes a saddle point (whose eigenvalues satisfy

FIG. 13. Toward a scenario of the appearance of a non-orientable figure-8 attractor in map (5) with g(y, z) = y2 + 1.5z2 + 10yz + 2z3 and B = −0.5. (a) A fragment of
the Lyapunov diagram. (b)–(d) Stages of the scenario for C = 2

3
A − 1

3
+ 0.01 when A changes [red arrow in plot (a)]: (b) A = −2.59, (c) A = −2.585, and (d) A = −2.599

(the figure-8 attractor). (e) A zoomed fragment of a neighborhood of O with pieces of the unstable separatrix 01.
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FIG. 14. Toward a scenario of the appearance of a non-orientable discrete spiral figure-8 attractor in map (5) with g(y, z) = −1.5yz − y3 + 1.45z3 and B = −0.8. (a) A
fragment of the Lyapunov diagram. (b)–(g) Stages of the scenario for C = −2.37 when A changes [black arrow in plot (a)]: (b) A = −2.56, (c) A = −2.59, (d) A = −2.60,
(e) A = −2.618, (f) A = −2.621, and (g) A = −2.638 (the spiral figure-8 attractor). (h)–(i) The unstable separatrices 01 (in red) and 02 (in green) of O for A = −2.638.

λ1 < −1, λ2, λ3 = ρe±iω , where 0 < ρ < 1, 0 < ω < π), and a sta-
ble cycle (p1, p2) of period 2 is generated around [Fig. 14(c)].
When A decreases further, the cycle (p1, p2) loses stability as a
result of an Andronov–Hopf bifurcation when the closed invari-
ant curve of period 2 becomes attracting [Fig. 14(d)]. Further-
more, this curve undergoes a series of bifurcations; in particu-
lar, in Fig. 14(e), the result of a doubling bifurcation is shown,
which leads to a two-component strange attractor of the “torus-
chaos” type that appears [Fig. 14(f)]. Then, this attractor is trans-
formed into a non-orientable discrete spiral figure-8 attractor,
which contains the point O [Fig. 14(g)]. In Figs. 14(h) and 14(i),
we display the unstable manifold of the saddle point O for
A = −2.638, which consists of two separatrices 01 in red and 02 in
green.

In Fig. 15, we show a variant of the scenario when passing close
to the 1:4 resonance when the point O has eigenvalues λ1 < −1,
λ2, λ3 = λe±iϕ , where 0 < λ < 1 is close to 1 and ϕ is close to
π/2. We follow this scenario in the one-parameter family of map
(5) with g(y, z) = −1.5yz − y3 + 1.45z3 for B = −0.8, A = −1.1,
and C varies. After a period doubling bifurcation (for C = −0.9),
the attractor becomes a 2-periodic orbit (p1, p2), Fig. 15(b), and
after a second period doubling bifurcation, it is a 4-periodic orbit,
Fig. 15(c). Then, the 4-periodic orbit undergoes an Andronov–Hopf
bifurcation and the attractor becomes a 4-component closed invari-
ant curve [Fig. 15(d)]. Then, a 2-periodic Lorenz-like attractor
containing the saddle 2-periodic orbit (p1, p2) is created [Fig. 15(e)].
Finally, this two-component attractor collides with the point O, and
a specific spiral figure-8 attractor is formed, which contains both the
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FIG. 15. Toward a scenario of the appearance of a non-orientable discrete spiral figure-8 attractor in map (5) with g(y, z) = −1.5yz − y3 + 1.45z3 and B = −0.8. (a) A
fragment of the Lyapunov diagram. (b)–(f) Stages of the scenario for A = −1.1 and changing C [black arrow in plot (a)]: (b) C = −0.87, (c) C = −0.75, (d) C = −0.695 86,
(e) C = −0.694, and (f) C = −0.69 (the spiral figure-8 attractor). (g)–(i) The unstable separatrices of O are shown for C = −0.69: (g) both separatrices 01 (in red) and 02

(in green) and (h) one separatrix 01, which is also displayed in a zoomed fragment near O in plot (i).

saddle-focus fixed point O and the 2-periodic orbit (p1, p2) in the
boundary [Fig. 15(f)]. In Figs. 15(g)–15(i), the unstable manifold of
the saddle point O is displayed for C = −0.69 along with the sepa-
ratrices 01 (in red) and 02 (in green). We note also that the point O
has eigenvalues λ1 = −1.121, λ2,3 = 0.01 ± 0.84i.

D. Example of a scenario for a non-orientable discrete

Shilnikov attractor

In Fig. 16, we demonstrate the stages of the appearance
of a non-orientable discrete Shilnikov attractor in the one-
parameter family of map (5) with g(y, z) = −y2 + yz for B = −0.7,
A = −2.446, and C is a parameter whose range of values is
shown by the red arrow in the Lyapunov diagram [Fig. 16(a)].

After a supercritical Andronov–Hopf bifurcation (for A = −2.446,
C = −2.222), the attractor is a stable closed invariant curve L
[Figs. 16(b) and 16(c)]. When we decrease A, first, L undergoes
a doubling bifurcation, after which a 2-periodic closed invari-
ant curve (L1, L2), where T(L1) = L2 and T(L2) = L1, becomes the
attractor [Fig. 16(d)]. Then, this 2-periodic curve becomes non-
smooth, Fig. 16(e), is destroyed, and is transformed into a torus-
chaos that can look as a chaotic resonance, Fig. 16(f), or as a
developed torus-chaos, Fig. 16(g). Finally, a non-orientable dis-
crete Shilnikov attractor appears [Fig. 16(h)]. In Fig. 16(i), the
stable manifold of the saddle point O is shown for C = −2.4.
Note also that other examples of non-orientable discrete Shilnikov
attractors, including hyperchaotic ones, in non-orientable general-
ized Hénon maps were found in Ref. 31 where a two-parameter
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FIG. 16. Toward a scenario of the appearance of a non-orientable discrete Shilnikov attractor in map (5) with g(y, z) = −y2 + yz and B = −0.7. (a) A fragment of the
Lyapunov diagram. (b)–(g) Stages of the scenario for A = −2.446 when C changes [red arrow in plot (a)]: (b) C = −2.24, (c) C = −2.31, (d) C = −2.325, (e) C = −2.34,
(f) C = −2.38, (g) C = −2.39, and (h) C = −2.4 (the Shilnikov attractor). (i) The stable manifold of O for C = −2.4.

bifurcation analysis related to their appearance was carried out as
well.

VI. FINAL REMARKS AND OPEN PROBLEMS

Scenarios of chaos development related to the appearance of
discrete homoclinic attractors in orientable three-dimensional maps
were proposed in Ref. 4. Afterward, the corresponding theory and
methods of searching for such attractors were developed in Refs. 12
and 18–20. The non-orientable case has been much less studied,
but as shown in the present paper, see also Ref. 33, it is also very
interesting and promising. However, a lot of new questions arise
here. In particular, this concerns the theory of pseudohyberbolic-
ity of non-orientable homoclinic attractors. We have not found yet
examples of such attractors (with fixed points). In any case, we do

not see any fundamental obstacles that the non-orientable Lorenz-
like and figure-8 attractors could not be pseudohyperbolic. In the
non-orientable case, such (pseudohyperbolic) attractors also exist,
but so far, this is known only for attractors of period 2, whose exam-
ples are shown in Fig. 17. In particular, as shown in Ref. 12, such
pseudohyperbolic attractors can be 2-periodic Lorenz-like attrac-
tors, as in Fig. 17(a). These attractors are also interesting because
their crises lead to the appearance of attractors (including pseudo-
hyperbolic ones) of new types, whose flow analogs were not known
even for the three-dimensional case. We refer the reader to Ref. 12
where the related problems have been studied in detail.

The same can be said about our non-orientable attractors. For
example, a non-orientable Shilnikov attractor may have an analog
in the case of a three-dimensional flow with symmetry. It differs
from the classical Shilnikov attractor by the fact that both stable
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FIG. 17. Examples of 2-periodic homoclinic attractors in three-dimensional non-orientable Hénon-like maps: (a) Lorenz-like attractor, (b) Shilnikov-like attractor, and (c)
figure-8 attractor.

separatrices of a saddle-focus can enter into the attractor, form-
ing homoclinic figure-8 loops of the equilibrium state. As far as we
know, such spiral attractors have not been observed yet in flows.
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