
Please note the following before 
checking your manuscript

Dear Professor Cañestro,
 
Please note:

•	 Queries may be nested in the addresses section or in the reference list, please look out for 
these. 

•	 References that could be in any way misread (for example, those that follow numbers or 
symbols) are usually set in brackets, on the line.

•	 Please check reference numbering carefully, as they may have been renumbered (for example, 
to avoid duplications).

•	 When marking up your corrections, please use the Commenting tools only (do not edit the text 
directly).

•	 If your article has Supplementary Information but you have not received the file(s) along with 
this proof, please let us know as soon as possible.

•	 We do not usually edit Supplementary Information in house, so should you require changes to 
your SI, please send a revised file and indicate what changes have been made.

  



Loss is nothing else but change, and change is Nature’s 
delight — Marcus Aurelius, AD 121–180

Great attention has in the past been paid to the mechan­
isms of evolution by gene duplication (that is, neofunc­
tionalization and subfunctionalization)1,2. By contrast, 
gene loss has often been associated with the loss of 
redundant gene duplicates without apparent functional 
consequences, and therefore this process has mostly been 
neglected as an evolutionary force. However, genomic 
data, which is accumulating as a result of recent tech­
nological and methodological advances, such as next-
generation sequencing, is revealing a new perspective of 
gene loss as a pervasive source of genetic change that has 
great potential to cause adaptive phenotypic diversity.

Two main molecular mechanisms can lead to the loss 
of a gene from a given genome. First, the loss of a gene 
can be the consequence of an abrupt mutational event, 
such as an unequal crossing over during meiosis or the 
mobilization of a transposable or viral element that 
leads to the sudden physical removal of the gene from 
an organism’s genome. Second, the loss of a gene can 
be the consequence of a slow process of accumulation 
of mutations during the pseudogenization that follows 
an initial loss-of-function mutation. This initial muta­
tion can be caused by nonsense mutations that generate 
truncated proteins, insertions or deletions that cause a 
frameshift, missense mutations that affect crucial amino 
acid positions, changes involving splice sites that lead to 
aberrant transcripts or mutations in regulatory regions 
that abolish gene expression. In this Review, the term 
‘gene loss’ is used in a broad sense, not only referring to 
the absence of a gene that is identified when different 
species are compared, but also to any allelic variant car­
rying a loss-of-function (that is, non-functionalization) 
mutation that is found within a population.

Here, we address some of the fundamental questions 
in evolutionary biology that have emerged from this novel 

perspective of evolution by gene loss. Examples from all 
life kingdoms are covered, from bacteria to fungi and 
from plants to animals, including key examples of gene 
loss in humans. We review how gene loss has affected the 
evolution of different phyla and address key questions, 
including how genes can become dispensable, how many 
of our current genes are actually dispensable, how patterns 
of gene loss are biased, and whether the effects of gene loss 
are mostly neutral or whether gene loss can actually be 
an effective way of adaptation. Finally, promising future 
perspectives on the study of gene loss are discussed. These 
include the development of computational pipelines to 
identify the complete catalogue of gene losses that have 
occurred during the evolution of a given species, the effect 
that anticipated findings have on the fields of evolutionary 
biology and biomedicine, and the means by which com­
parative population genomics approaches and the meas­
ure of ‘population gene dispensability’ can help to discover 
new genes that are relevant for human health.

Phylogenetic pervasiveness of gene loss
The field of comparative genomics, and especially our 
perspective on animal evolution, changed after the 
sequencing of the genome of various cnidarian species. 
These studies revealed that the ancestral eumetazoan 
genome was much more complex than expected and 
that gene loss was pervasive in many animal phyla3–6 
(FIG. 1). This new perspective superseded the traditional 
notion that had influenced the analyses of the first 
known genomes (Caenorhabditis elegans, Drosophila 
melanogaster, Arabidopsis thaliana and human), the 
scala naturae, in which attempts were made to correlate 
the apparent increase of biological complexity in the 
evolutionary ladder that leads up to humans with an 
increase in the number of genes7. The ancestral eumeta­
zoan genome had a gene repertoire made up of at least 
7,766 gene families that were putatively homologous with 
a gene in the sea anemone and at least one other gene 
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Pseudogenization
An evolutionary phenomenon 
whereby a gene loses its 
function, accumulates 
mutations and becomes a 
pseudogene.

Eumetazoan
Clade that classically includes 
all animals (metazoan) except 
sponges and Placozoa, 
although recent analyses of 
ctenophores have challenged 
the monophyly of this group.

Homologous
Genes that share sequence 
similarity because they have 
evolved from a common 
ancestral gene.

Evolution by gene loss
Ricard Albalat and Cristian Cañestro

Abstract | The recent increase in genomic data is revealing an unexpected perspective of gene 
loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This 
novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss 
been in the divergence of phyla? How do genes change from being essential to dispensable and 
finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These 
questions are addressed, and insights are discussed from genomic studies of gene loss in 
populations and their relevance in evolutionary biology and biomedicine.

NATURE REVIEWS | GENETICS	  ADVANCE ONLINE PUBLICATION | 1

REVIEWS



Nature Reviews | Genetics

Annelida

Nematoda

Mollusca

Platyhelminthes

Cnidaria

Placozoa

Ctenophora

Porifera

Ec
dy

so
zo

a

Chordates

Echinoderms

D
eu

te
ro

st
om

es
Pr

ot
os

to
m

es

B
ila

te
ri

a

W
nt1

W
nt2

W
nt3

W
nt4

W
nt5

W
nt6

W
nt7

W
nt8

W
nt9

W
nt10

W
nt11

W
nt16

W
ntA

nd

nd
nd

Homo sapiens
Gallus gallus

Xenopus tropicales
Danio rerio

Ciona intestinalis
Branchiostoma floridae

Saccoglossus kowalevskii
Strongylocentrotus purpuratus

Paracentrotus lividus
Drosophila melanogaster

Anopheles gambiae
Tribolium castaneum

Apis mellifera
Acyrthosiphon pisum

Daphnia pulex
Glomeris marginata

Achaearanea tepidariorum
Cupiennius salei

Ixodes scapularis
Caenorhabditis elegans

Platynereis dumerilii
Capitella teleta

Helobdella robusta
Patella vulgata
Lottia gigantea

Schmidtea mediterranea
Schistosoma mansoni

Hymenolepis microstoma
Echinococcus spp.

Hydra  magnipapillata
Clytia hemisphaerica

Acropora millepora
Nematostella vectensis

Pleurobrachia pileus
Mnemiopsis leidyi

Amphimedon queenslandica
Oscarella spp.

Trichoplax adhaerens

Arthropoda

A

2 11

2

4
16

10

8

6–10 16 A

Lo
ph

ot
ro

ch
oz

oa3

Bilaterian
An animal clade that includes 
protostomes and 
deuterostomes. Members of 
this clade are characterized by 
a stage during their life cycle in 
which they have right–left 
symmetry (unlike the radial 
symmetry present in most 
cnidarians and sponges).

Deuterostomes
A superphylum that includes 
animals in which the first 
opening, the blastopore, 
becomes the anus. This 
superphylum includes 
Ambulacraria (hemichordates 
and echinoderms) and 
Chordates (cephalochordates, 
urochordates and vertebrates).

in any bilaterian analysed at the time (that is, D. mela-
nogaster, C. elegans, pufferfish, frogs and humans)5. 
Whereas deuterostomes seemed to have collectively 
lost only 33 gene families — a total of 0.42% — from 
the ancestral gene repertoire, protostomes had collec­
tively lost 1,292 gene families (17%), which suggests a 

different propensity for gene loss between the two groups. 
The increased availability of genome sequences from a 
diverse range of species within protostomes, however, 
reveals that ecdysozoans have suffered extensive gene 
losses, whereas Lophotrochozoa have a gene retention 
rate that is similar to that of vertebrates8 (BOX 1; FIG. 1). 

Figure 1 | The wingless (Wnt) family: a paradigmatic example of the pervasiveness of gene loss during metazoan 
evolution. In the past decade, the accumulation of fully sequenced genome data from various species has revealed great 
heterogeneity in the dynamics of gene loss within different animal groups. In ecdysoazoans, for instance, not all insects show 
the same rate of gene loss, and European honeybees (Apis mellifera) seem to have retained more genes than other insects (for 
example, species of fly and mosquito in the Diptera order)206. The finding, for instance, of an active DNA CpG methylation 
toolkit (that is, Dnmt1, Dnm3a, Dnmt3b and Mdb) in honeybees was particularly remarkable, as it has been lost in most other 
insects207,208. To date, the red flour beetle (Tribolium casteneum) has preserved the largest number of patchy orthologues that 
are also present in humans but that were lost in all other sequenced insects209. The genomes of crustaceans and myriapods 
showed less gene loss, and these groups conserved more universal bilaterian genes than insects151,210. In lophotrocozoans, 
gene loss propensity is also heterogeneous among species. Mollusc gastropods, such as Lottia gigantea or annelids, such as 
Capitella teleta or Helobdella robusta, seem to have rates of gene retention similar to those in deuterostomes8, whereas other 
lophotrocozoans, such as the flatworm Schmidtea mediterranea, have lost approximately 40% of the ancestral gene 
families8,171. Extensive gene loss (red boxes) has affected all Wnt gene subfamilies (1 to 11; 16 and A) throughout all metazoan 
taxa. Some gene losses seem to be ancestral (red circles) and thereby probably relevant for the evolution of entire groups (for 
example, ancestral loss of Wnt3 in the stem protostome). Other gene losses seem to occur recurrently in diverse lineages and 
show a patchy distribution (for example, Wnt11 loss in some chordates, echinoderms, arthropods, nematodes, molluscs and 
sponges). Controversial animal phylogenies (dashed tree branches)211,212 or uncertain gene orthologies (nd) hinder the ability 
to determine whether the absence of Wnt families in most basal metazoans (grey boxes) is due to gene losses or to gene 
gains. References for the list of Wnt genes in each species are supplied in Supplementary information S3 (box).
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Protostomes
A superphylum that includes 
animals in which the first 
opening, the blastopore, 
becomes the mouth. This 
superphylum includes two 
groups: Ecdysozoa (for 
example, arthropods and 
nematodes) and Lophotocozoa 
(for example, molluscs, 
annelids and platyhelminthes).

Propensity for gene loss
Proclivity of a gene to be lost 
during evolution of a clade, as 
estimated from the fraction of 
lineages in which a given gene 
has been lost and corrected by 
the time during which the gene 
was lost or preserved.

‘Patchy’ orthologues
Orthologues belonging to gene 
families that have suffered 
extensive gene loss during the 
evolution of a given clade, such 
that their presence is unevenly 
distributed and restricted to a 
few species in the clade.

Parahoxozoa
A hypothetical subkingdom 
that includes all animals apart 
from poriferans and 
ctenophores based on the 
absence of homeobox (Hox)–
ParaHox genes from the first 
sequenced species of the later 
groups.

In deuterostomes, the sequencing of the genomes of 
Ambulacraria (sea urchins), Cephalochordata (amphi­
oxus), Urochordata (ascidians and larvaceans) and 
several vertebrate species revealed a low propensity for 
gene loss in this group, with the exception of urochor­
date species9–13. Urochordates have suffered many more 
gene losses than other chordates, a circumstance that 
correlates with a morphological simplification of their 
body plan and the evolution of a determinative develop­
mental mode11–13. Gene loss reached extreme levels in the 
urochordate Oikopleura dioica14,15 (BOX 2).

The pervasiveness of gene loss during the evolution 
of the Wnt gene family exemplifies the varying trends 
for gene loss of different animal taxa (FIG. 1). Genome 
sequencing of diverse species in a given taxon has often 
uncovered novel ‘patchy’ orthologues that reveal previously 
hidden origins of ancestral gene families. These data 
allow us to differentiate ancestral gene losses from genes 
that have recurrently been lost in different lineages (FIG. 1). 
For example, comparison of the genome sequences of dif­
ferent sponge species shows that genome complexity pre­
dates the last common ancestor of all metazoans16,17 and 
may have arisen even earlier18,19, supporting the notion 
that the absence of many genes in some lineages is due 
to extensive gene loss. A paradigmatic example was the 
finding of homeobox (Hox) and ParaHox genes in two 
calcisponges, which led researchers to reconsider the 
Parahoxozoa hypothesis20 and to validate the presence of 
the predicted Hox and ParaHox ‘ghost’ loci based on the 
loss of these genes in ctenophore Mnemiopsis leidyi and 
the sponge Amphimedon queenslandica17,21.

Alongside animals, fully sequenced genomes from 
a wide range of organisms, including prokaryotes22–26, 
protista27, fungi28,29 and plants30, have shown that gene 

loss is pervasive in all life kingdoms. Recent exhaustive 
analyses comparing hundreds of genomes of bacteria and 
archaea revealed that loss of gene families has also been 
pervasive, dominating their evolution with frequencies, 
in some cases, up to three times higher than the rate of 
gene gain31–33. In plants and fungi, extensive polyploidy 
events have been followed by gene loss34, and therefore 
these groups represent particularly useful models for 
understanding the dynamics and extent of gene loss after 
whole-genome duplication (WGD) events (for additional 
discussion, see REFS 30,35,36).

Taken together, the pervasiveness of gene loss in most 
life forms suggests that reductive evolution would not only 
have driven the evolution of parasitic and symbiotic 
species, as is classically asserted37, but would also be a 
prevalent evolutionary force that affects all organisms25.

Gene loss and dispensability
The pervasiveness of gene loss throughout evolution 
leads to the fundamental question of how many genes can 
readily be lost in a given genome. Intuitively, the answer 
to this question depends on how many genes are actually 
essential for a given organism, and therefore cannot be 
lost, and how many genes are to some degree dispensable, 
and therefore susceptible to being lost because their loss 
has no impact or only a slightly negative impact on fitness, 
at least under certain circumstances (FIG. 2).

The knockout paradox. Gene dispensability is a meas­
ure that is inversely related to the overall importance of 
a gene (that is, gene essentiality), and this measure has 
been approximated by the fitness of the corresponding 
gene knockout strain under laboratory conditions38,39. 
Understanding which genes are dispensable or essen­
tial by linking genotypes with phenotypes is one of the 
most challenging tasks in the field of genetics and bio­
medicine in the twenty-first-century post-genomic era. 
This understanding is important both theoretically, such 
as when defining the minimal genome for a free living 
organism40, and practically, such as when identifying all 
essential genes that are responsible for human diseases41.

Historically, Susumu Ohno not only pioneered the 
idea that gene duplication was an important evolution­
ary force, but in 1985 he also pondered the concept of 
gene dispensability and suggested that “the notion that 
all the still functioning genes in the genome ought to 
be indispensable for the well-being of the host should 
be abandoned” (REF. 42). The emergence of large-scale 
gene targeting approaches has facilitated the calculation 
of the number of genes that are globally dispensable in 
a given genome in certain conditions. Thus, systematic 
large-scale approaches that involve single-gene deletions 
in Escherichia coli and other bacterial species showed 
that only a few hundreds of genes are essential, suggest­
ing that nearly 90% of bacterial genes are dispensable 
when cells are grown either in rich or minimal medi­
ums39,43,44. The high degree of global gene dispensabil­
ity found in bacteria is consistent with findings from 
systematic gene deletion screens in Saccharomyces cer-
evisiae and Schizosaccharomyces pombe. These screens 
revealed that approximately 80% of protein-coding 

Box 1 | Gene loss shaped the evolution of vertebrates and humans

Analyses of gene loss in vertebrates are challenging because of the large amount of 
gene loss that followed two rounds of whole-genome duplication (WGD) during early 
vertebrate evolution (also known as 2R‑WGD or vertebrate genome duplication (VGD) 
events 1 and 2) and a third round that occurred in teleost fishes (3R or TGD; reviewed in 
REF. 191 and REF. 101, respectively). A comprehensive phylogenetic analysis of 9,461 
gene families in humans, mice, rats, chickens, frogs, zebrafish and pufferfish revealed 
that of the 7,350 gene families represented in at least one fish, one land vertebrate and 
the ascidian or fly outgroup, 5,396 families did not conserve any duplicated gene in 
some species. This observation implies massive post‑2R gene loss events, ranging from 
10,792 to 16,188 losses, depending on their chronological distribution between VGD1 
and VGD2 (REF. 82). Analyses of zebrafish and pufferfish suggest that 30% of the genes 
that were duplicated in 2R and 20% of the genes that were duplicated in 3R were lost in 
each lineage. Strikingly, although all vertebrates seem to keep losing 2R‑ancestral 
ohnologues, not all species have the same propensity to lose genes: frogs, chickens and 
fish, for instance, seem to have lost approximately four times as many ancestral genes 
as humans and rodents82. In mammals, from the 9,990 gene families that were inferred 
to be present in their most recent common ancestor, 1,421 families (14%) have zero 
genes in at least one extant genome83. Among primates, humans seem to have 
undergone the fewest number of gene losses, and whereas chimpanzees have 
undergone 729 gene losses, humans have only undergone 86 losses over the same 
period83,141. Thirty years after King and Wilson192 recognized the apparent paradox in 
which “the genetic distance between humans and the chimpanzee (<2%) is probably 
too small to account for their substantial organismal differences”, the 6% difference in 
their orthology complement was proposed as a fertile source of genetic change that 
could explain many of the differences between the two species83,193.
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Branchiostoma floridae Ciona intestinalis Oikopleura dioica Human

Ascidians Larvaceans

Urochordates Vertebrates

Cephalochordates
Chordates

Ohnologues
A term coined in honour of 
Susumo Ohno that refers to 
paralogues that originated 
from genome duplication (in 
contrast to paralogues that 
originated from small-scale 
duplications).

Polyploidy
Acquisition of additional genetic 
content due to whole-genome 
duplication.

genes are dispensable under laboratory conditions45,46. 
Following the same trend, large-scale RNA interference 
approaches in C. elegans47,48 and D. melanogaster49 sug­
gested that 65% to 85% of genes, respectively, are dis­
pensable in these organisms, and similar figures were 
obtained in mice by the Sanger Institute Mouse Genetics 
Project50. Recent attempts to test for gene essentiality in 
humans using gene trap and large-scale CRISPR–Cas9 
screens suggest that approximately 90% of tested genes 
are dispensable for cell proliferation and survival, at 
least in human cancer cell lines51–53. These surprisingly 
high values of seemingly dispensable genes in different 
organisms and their tolerance to inactivation have been 
referred as the ‘gene knockout paradox’ (REF. 38). Two 

main factors have been provided that may account for 
this observed gene dispensability54: mutational robustness 
and environment-dependent conditional dispensability.

Mutational robustness. It is plausible to assume that a 
number of the many apparently dispensable (that is, 
non-essential) genes accounting for the gene knockout 
paradox may result from the mutational robustness of bio­
logical systems (FIG. 2; recently reviewed in REF. 55). In a 
simplified view, mutational robustness is increased either 
by the presence of redundant or backup genes — this is 
also termed degeneracy or genetic buffering — or by the 
presence of alternative pathways, which are also referred 
to as functional complementation or backup pathways. 
Redundant genes usually arise by duplication (that is, 
paralogues), although they may also occur by convergent 
evolution (that is, analogues)56. Alternative pathways 
are possible because genes and proteins are structured 
in regulatory and functional networks with a scale-free 
structure: when one part of the network fails, biological 
tasks can be re-routed through alternative pathways, thus 
conferring distributed robustness to the network57.

Many insights into mutational robustness come from 
recent in silico and experimental studies in yeast. Large-
scale in silico studies of yeast metabolic networks and 
flux re‑routing have shown, for instance, that both para­
logues and alternative pathways are relevant in increasing 
gene dispensability and ultimately facilitating gene loss 
(although the contribution of each factor remains contro­
versial58–63). When multiple, rather than single, knockouts 
are considered, the number of dispensable genes drops 
from 80% to 25%, and the contribution of alternative 
pathways towards mutational robustness is more prom­
inent than that of duplication when the knockout multi­
plicity required for lethality is high54. At the experimental 
level, powerful functional genomic tools have facilitated 
genome-wide analyses of genetic interactions and net­
works in yeast (as reviewed in REF. 64). Systematic gene 
deletion screens have experimentally shown that dele­
tion of 9% of essential genes — the so-called ‘evolvable’ 
essential genes — can be overcome by evolution of alter­
native pathways, suggesting that essentiality is more of 
a quantitative than a qualitative property that is intrin­
sic to a particular gene65. Synthetic genetic array (SGA) 
analyses have found that negative genetic interactions 
— interactions among variants of different genes that 
cause severe effects on fitness, an extreme example being 
synthetic lethality — frequently occur between redundant 
genes. However, positive interactions — that is, genetic 
interactions that have less severe effects on fitness than 
would be expected — are observed between genes of 
alternative §pathways66,67.

In multicellular organisms, despite several cases of 
gene losses having been associated with gene dispensa­
bility through the evolution of functionally overlapping 
paralogues68–70 or alternative pathways71, systematic 
studies are still needed into other aspects that affect gene 
dispensability. These other aspects include transcriptional 
regulation, rewiring of transcriptional regulatory circuits, 
robustness in translation and mechanisms accounting for 
cryptic variation72.

Box 2 | Oikopleura dioica: a chordate model to study gene loss effects

Oikopleura dioica is a free-swimming planktonic larvacean urochordate that is emerging 
as an attractive model organism for studying gene loss in the field of evolutionary 
developmental biology (known as evo–devo). This is because this species occupies a key 
phylogenetic position within the closest sister group of vertebrates (see the figure), 
because the animals are easy to cultivate in the laboratory and because techniques for 
generating genetic knockdowns in this model are widely available194–196. The sequencing 
of O. dioica revealed that this animal has undergone an extreme process of genome 
compaction (its genome size is only 70 Mb) accompanied by extensive gene loss15. 
Notably, O. dioica has lost 16 of the 83 ancestral genes that are involved in DNA repair, 
including all the components of the non-homologous end-joining DNA repair system. 
This severe dismantling of the DNA repair toolkit is plausibly one of the reasons for the 
elevated rate of evolution and gene loss in this organism15. Other notable examples of 
gene loss in this species are those that affect the epigenetic machinery197, the immune 
system15, the microRNA repertoire198, the apoptotic system199 and the xenobiotic defence 
systems200. Among the key developmental genes, O. dioica has lost more than 30% of the 
homeobox gene groups14, including all central Hox genes201, and key genes involved in 
retinoic acid signalling202. This latter observation was especially surprising because 
retinoic acid is fundamental for anteroposterior axial patterning through Hox gene 
regulation in all chordates203, but O. dioica maintains an unaltered Hox1 expression 
domain (that is similar to the one found in ascidians) and a typical chordate body plan204. 
These data led to the formulation of the so‑called ‘inverse paradox’ of evo–devo, which 
proposes that organisms might develop fundamentally similar morphologies (that is, 
phenotypic unity) despite having important differences in their genetic toolkits (that is, 
genetic diversity), which is especially obvious in developmental genetic toolkits that have 
undergone extensive gene loss13.

The Ciona intestinalis photograph in the figure is from REF. 13, Nature Publishing Group.
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Gene loss fixation

Genetic drift–Selection

Non-functionalization
(adaptive or neutral)

Gene dispensability

Mutational robustness
• Redundant genes
• Alternative pathways

Environmental variability

Reductive evolution
Refers to the loss of genetic 
material that is usually observed 
during the evolution of parasitic 
or symbiotic species.

Fitness
The ability of a particular 
genotype (or phenotype) to 
survive and reproduce in a 
specific environment, which is 
usually expressed in relation to 
other possible genotypes.

Developmental genetic 
toolkits
Sets of genes that are required 
for development and that are 
widely shared among species. 

Mutational robustness
Property of a biological 
system to maintain unaltered 
phenotypes in the face of 
mutations.

Synthetic genetic array
(SGA). Methodology designed 
to map genetic interactions on 
a genome-wide scale that 
combines arrays of mutant 
strains with robotic 
manipulations for high- 
throughput double-mutant 
construction.

Synthetic lethality
This occurs when a 
combination of mutations in 
two or more genes leads to 
death, but when no effects on 
the viability of the organism 
are apparent when the genes 
are mutated individually.

Cryptic variation
Genetic diversity within a 
population that does not 
normally generate phenotypic 
diversity but that does occur 
on environmental or genetic 
perturbation.

Flux balance analyses
(FBAs). Mathematical 
approaches for calculating the 
flow of metabolites through a 
metabolic network, which can 
be applied to reconstruct 
genome-scale metabolic 
networks and to predict the 
growth rate of an organism.

Gene Ontology
(GO). A system for 
classification of genes in terms 
of their associated biological 
processes, cellular components 
and molecular functions in a 
species-independent manner.

Environment-dependent conditional dispensability. In 
addition to mutational robustness, another explanation 
for the gene knockout paradox may be that genes appear 
to be dispensable if they are involved in processes that are 
only required under specific untested environmental con­
ditions (FIG. 2). This explanation is conceivable especially 
if we consider that current genes in given species are the 
result of selective pressures of a vast range of diverse envi­
ronments that act at the evolutionary scale over millions 
of years. Computational models of flux balance analyses 
(FBAs) were developed as a promising tool for testing 
gene dispensability in a large variety of conditions (as 
reviewed in REF. 38). FBA genome-scale metabolic net­
work reconstructions in yeast predict that approximately 
40–70% of metabolic genes that seem to be dispensable 
are a part of pathways that are inactive under the tested 
conditions and, therefore, could become essential if the 
gene deletions are simulated under other conditions58. 
The generation of more than 21,000 mutant S. cerevisiae 
strains that carry deletions of approximately 6,000 open 
reading frames has provided experimental support to this 
hypothesis through testing of more than 1,000 chemical 
or environmental stress conditions. The observation that 
97% of gene deletions exhibited a measurable altered 
growth phenotype73,74 provides experimental evidence 
that most of the seemingly dispensable genes of the gene 
knockout paradox are, in fact, required for optimal growth 
in at least one condition.

It remains unclear whether the mutational robustness 
and environmental influence underlying gene dispensa­
bility in the well-studied system of yeast are as relevant 
for more complex organisms (for example, mice)75,76. 
Development of further systematic studies in complex 
multicellular organisms will be needed to shed light on 
this issue.

Biased patterns of gene loss
The uneven distribution of gene loss throughout different 
branches of the tree of life (FIG. 1) and the differences of 
dispensability observed between different genes in diverse 
groups of organisms suggest that the evolutionary patterns 
of gene loss do not occur in a stochastic way. Instead, a 
clear bias related to gene function or genomic position is 
evident (FIG. 3).

Gene functional bias. Comparative analyses of gene losses 
according to Gene Ontology (GO) categories have revealed 
obvious biased patterns of gene loss. For instance, a com­
parison of S. cerevisiae and S. pombe reveals that not all 
functional categories are equally affected by gene loss but 
that a large fraction of lost genes belong to functional GO 
categories such as ‘nuclear structure maintenance’, ‘pre-
mRNA splicing’, ‘RNA modification’, ‘post-transcriptional 
gene silencing’ and ‘protein folding/processing’ (REF. 77). 
In plants, genes that are involved in ‘DNA repair and 
modification’ or ‘ancient biochemical processes’ are more 
prone to be lost than ‘transcription factors’ and ‘protein 
kinases’ (REFS 78–81). In vertebrates, genes from GO categ­
ories such as ‘protein modification’, ‘protein metabolism’, 
‘catabolism’ and ‘peptidase activity’ are more prone to 
be lost in fish than in land vertebrates, whereas genes 

involved in ‘catalytic activity’ show the opposite trend82. 
Genes from GO categories such as ‘immune response’, 
‘chemosensation’, ‘reproduction’, ‘transcription’ or ‘gamete 
interaction’ are more prone to be lost in mammals than 
they are in other vertebrates83,84. These biased patterns of 
gene loss are likely to arise from differences in gene dis­
pensability of each functional category. Gene dispensa­
bility is affected by differences in biological, reproductive 
and environmental constraints that are associated with the 
lifestyle of each group of organisms (for example, aquatic 
versus land lifestyle) (FIG. 3).

In species that suffer relaxation of a given biologi­
cal or environmental constraint, a functional bias of 
gene loss can often be observed that is caused by the 
‘co-elimination’ of genes that are functionally linked 
in distinct pathways or complexes associated with the 
relaxed constraint77,85 (FIG. 3). This co‑elimination can 
be the result of the dismantling of a pathway within a 
gene network, the exception being ‘hub’ genes that are 
needed for other pathways. Examples of dismantling of 
pathways or complexes include: the loss of most genes 
of the eukaryotic translation initiation factor 3 (Eif3)–
signalosome complex in S. cerevisiae77; the gastric gene 
repertoire in platypuses and many teleost fish (that is, 
atp4a, atp4b, pga, pgb, pgc, pgf and cym) 86,87; the loss of 
teeth-specific genes encoding structural proteins that are 

Figure 2 | Conceptual framework for gene loss. The loss of 
a gene depends on the degree of dispensability of the gene, 
which in turn depends on how fitness is affected by its non-
functionalization. In a mutational robust system, either 
because of the presence of redundant genes or alternative 
pathways, mutations will have less impact on the fitness, 
therefore increasing the overall level of gene dispensability 
and facilitating gene loss. Gene functions are not equally 
essential in all environments and, therefore, environmental 
variability can also modify gene dispensability. Non-
functionalization of a dispensable gene can either be neutral 
(or nearly neutral) when the gene is not needed, for instance 
in a new environmental condition (for example, regressive 
evolution), or it can can be adaptive if the loss of the function 
is advantageous in the new condition (for example, if it 
provides resistance to a disease: the less-is-more 
hypothesis). Finally, the balance between genetic drift, 
which depends on the population size, and selection will 
determine the probability of the fixation of gene loss.

R E V I E W S

NATURE REVIEWS | GENETICS	  ADVANCE ONLINE PUBLICATION | 5



Nature Reviews | Genetics

Biased patterns
of gene loss

GO2

GO1
GO4

GO3

ChrX

ChrYOhna

Ohnb

Gene functional bias Genomic positional bias
Pa

tt
er

ns
C

on
st

ra
in

ts

Species-
specific
GO bias

Co-elimination
of functionally
linked genes

Duplication
resistance

Duplication-
mode GO bias

Asymmetrical
gene loss between
ohnologons

Sexual
chromosome
evolution

Reciprocal
gene loss
between species

Species-specific biological 
or environmental constraints

Constraints associated with dosage-sensitive balance,
coordinated transcriptional regulation, high expression, cis-PPI

Reproductive
isolation
constraints

Differences in gene dispensability
related to GO categories

Duplication mode WGD or SSD

1 3 4 5 62 7

crucial for enamel and dentine formation in birds (that is, 
Dspp, Amel, Ambn and Enam)88; the loss of genes under­
lying the urea cycle or the immunodeficiency pathway 
in the pea aphid89; and the loss of genes that are involved 
in DNA repair by non-homologous end-joining in the 
urochordate O. dioica15 (BOX 2).

An interesting biased pattern associated with gene 
function is the loss of the so‑called ‘duplication-resistant 
genes’, which, after duplication has occurred, are con­
served as single-copy genes in most genomes90 (FIG. 3). 
Duplication-resistant genes consistently belong to func­
tional GO categories such as ‘housekeeping roles’, ‘DNA 
repair’, ‘DNA recombination’, ‘DNA damage response’ 
and other essential cellular functions. They are gener­
ally expressed at higher levels and in more tissues than 
other genes, and they also seem to be affected by the 
dosage-dependent balance30.

A biased pattern in the loss (or retention) of dupli­
cated genes also associated with GO becomes apparent 
when the mode of duplication is considered — that is, 
whole-genome duplication (WGD) versus small-scale 
duplication (SSD; FIG. 3; as reviewed in REF. 91). Studies 
from yeast, plants and vertebrates, all of which have 
suffered extensive WGDs, point to dosage balance con­
straints as a major factor affecting the loss or retention 
of duplicate genes92–94. In contrast to WSD, SSD does not 

maintain the stoichiometry of duplicated genes, which 
is consistent with the fact that genes that have functions 
in the following GO categories are more prone to be lost 
after SSDs than WGDs: ‘transcriptional regulation’, ‘signal 
transduction’ or ‘protein–protein interacting complexes’. 
Notably, all these functions are more sensitive to dosage 
imbalance. By contrast, genes that are involved in ‘DNA 
repair’, ‘RNA metabolism’, ‘nucleoplasm’, ‘apoptosis’ or 
‘organelle functions’ show the opposite trend79,80,95–97. The 
finding that gene losses between two species of yeast that 
diverged closely after an event of WGD are convergently 
biased towards certain functional categories supports the 
relationship between duplication mode and functional 
bias97. The overall level of gene loss therefore appears to 
be predictable in terms of functional bias, but unpredict­
able at the level of the fate of individual genes97.

Genomic positional bias. Patterns of gene loss also seem 
to be biased when the genomic position of genes that 
have been lost is taken into consideration. This phenom­
enon is especially obvious for the massive losses that 
occur during the diploidization that follows WGD (also 
known as biased or asymmetric fractionation)98,99 (FIG. 3). 
Comparative analyses of chromosomal regions that are 
duplicated by WGD (that is, ohnologons) in yeasts, plants 
and animals have revealed the asymmetrical distribution 

Figure 3 | Biased patterns of gene loss. Gene loss patterns do not seem to follow stochastic fashions, but they show clear 
biases related to gene function (green) or genomic position (orange). These biased patterns are mainly caused by different 
constrains associated with gene dispensability related to Gene Ontology (GO) categories; blue) and constraints associated 
with the duplication mode that precedes gene losses (red). Genes from certain GO categories are more prone to be lost in 
certain species than others owing to differences in biological and environmental constraints (1). Relaxation of these 
constraints in certain species can lead to co‑elimination of genes that are functionally linked in distinct pathways or 
complexes (2). Duplication-resistant genes from certain GO categories that have essential cellular functions, that are highly 
expressed or that are sensitive to dosage balance are prone to be lost after duplication in most organisms (3). Considering 
that small-scale duplication (SSD), but not whole-genome duplication (WGD), alters gene stoichiometry, duplication modes 
bias gene loss patterns towards certain GO categories, depending on their sensitivity to dosage balance (4). After WGD, 
gene losses are frequently asymmetrically distributed between ohnologons (Ohn), probably owing to enrichment of genes 
with high levels of transcription, dose-sensitive genes, genes with coordinated transcriptional regulation and genes that 
code for cis-protein–protein interacting (PPI) products (5). An extreme case of asymmetric distribution of gene loss occurs 
during the evolution of sexual chromosomes, in which Y chromosomes (ChrY) are often depleted of most genes that were 
once shared with the X chromosomes (ChrX; 6). Reciprocal distribution of gene losses between the ohnologons of species 
that diverged after WGD reduces the viability of hypothetical hybrids, contributing therefore to reproductive isolation (7).
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Conserved synteny
Conservation of similar blocks 
of genes between orthologous 
or paralogous chromosomal 
regions, which can be useful in 
detecting gene losses after 
speciation or large-scale 
genomic duplications, 
respectively.

Reciprocal gene loss
Divergent resolution of gene 
duplicates, such that one 
species has lost one copy, 
whereas the second species 
has lost the other copy

Baker’s rule
This rule states that 
self-compatible organisms are 
better colonizers after 
long-distance dispersal than 
self-incompatible ones.

of gene loss between ohnologons, resulting in different 
physical clusters of retained genes with high levels of 
conserved synteny68,100–102. The biological significance of 
the clusters of retained genes remains unclear, and sev­
eral functional and structural explanations have been 
hypothesized. These include enrichment of genes with 
high levels of transcription, dose-sensitive genes, genes 
that share a coordinated transcriptional regulation by 
epigenetic or long-range regulatory mechanisms and 
genes that code for cis-protein–protein interacting prod­
ucts99–101,103. Interestingly, the pattern of gene loss when 
considering genomic positions has been shown to change 
over time, and although the ‘choice’ of which copy is 
discarded seems random when considering the period 
shortly after WGD, it becomes increasingly nonrandom 
as time elapses after WGD, favouring the loss of the same 
gene copy in independent lineages97. This changing pat­
tern from initially random to non-random suggests that 
the process of gene loss itself imposes constraints on 
prospective losses.

A special case of biased pattern associated with 
genomic position is when gene losses occur in a recipro­
cal fashion between the ohnologons of two species that 
have diverged after WGD (FIG. 3). Patterns of reciprocal 
gene loss in many species of animals, plants and yeasts 
have been interpreted as the result of evolutionary events 
that have favoured reproductive isolation and speciation 
among different lineages104–107, although alternative con­
clusions exist108.

Finally, another pattern of loss associated with genomic 
position is the high frequency of gene losses during the 
evolution of sexual chromosomes from autosomes, which 
has been found in both plants109 and mammals110,111 (FIG. 3). 
The human Y chromosome, for instance, has lost nearly 
all of the approximately 640 genes that it once shared 
with the X chromosome. The exceptions to this are 36 
broadly expressed genes — namely, regulators of tran­
scription, translation and protein stability — that seem to 
be dosage-sensitive and, therefore, are likely under selec­
tive pressure to be retained as two copies in both sexes111. 
Empirical reconstruction of the evolution of the human 
male-specific Y region has revealed that each stratum 
transitioned from rapid exponential loss of ancestral genes 
to strict conservation through purifying selection112.

Evolution by gene loss
To understand the impact of gene loss on the evolution 
of species, it is crucial to analyse the potential adapt­
ability or neutrality of non-functionalization mutations 
that lead to gene losses (FIG. 2). Here, specific examples of 
gene losses are reviewed that may be either adaptive and 
support the ‘less-is-more’ hypothesis or neutral and thus 
occur, for instance, in the context of ‘regressive evolution’. 
Some of the evolutionary factors are then discussed that 
influence the fixation of gene losses under adaptive or 
neutral evolution.

The less-is-more hypothesis. The less-is-more hypothesis 
proposes that non-functionalization represents a frequent 
evolutionary adaptive response, which may be of special 
relevance when populations are exposed to changes in 

the patterns of selective pressures owing to drastic shifts 
of environmental conditions113,114. Adaptive gene loss has 
been reported in a number of unicellular organisms. In 
bacteria, more than 200 examples of gene loss have been 
associated with adaptations to changes in environmental 
conditions115. Meta-analysis of bacterial genome-wide fit­
ness data from transposon insertion and in-frame deletion 
mutations across 144 conditions shows that adaptive null 
mutations are extremely abundant and disproportionately 
affect enzymatic and regulatory pathways. Cases have 
even been found in which a null mutation could be adap­
tive in more than ten different conditions115. In bacteria, 
many instances of gene loss have also been associated with 
adaptive gains in pathogenicity116. For example, the loss 
of ALL1 in Cryptococcus neoformans117, cadA in Shigella 
spp.118, arabinose operon genes in Burkholderia pseudom-
allei and Burkholderia mallei119 or mucA in Pseudomonas 
aeruginosa120 confer adaptive advantages during infection. 
In the pathogen Candida glabrata, the loss of de novo bio­
synthesis of nicotinic acid (BNA) genes has also been 
positively selected as a mechanism that increases path­
ogenicity by directing infection to the murine urinary 
tract. This gene family loss leads to specific expression of 
epithelial adhesion (EPA) genes, which encode proteins 
that mediate the adherence of C. glabrata to host cells 
within the renal system121. In yeast, different S. cerevisiae 
strains have suffered gene losses that provide them with 
a major fitness advantage for growth in high-sugar-level 
substrates, as they facilitate the co‑use of various sugar 
sources as well as living in conditions of high acidity, high 
ethanol and high temperature122,123.

Adaptive gene loss has also been reported in many 
multicellular organisms. In plants, adaptive gene loss has 
been associated with changes in pollinators: for example, 
loss of AN2 leads to white flowers in Petunia axillaris, 
which has been proposed as an adaptation to pollina­
tion by nocturnal hawk moths124; and loss of the flavo­
noid 3ʹ‑hydroxylase gene leads to red flowers in Ipomoea 
quamoclit, which has been proposed as an adaptation to 
bird pollination125. In A. thaliana, the loss of scarecrow 
(SCR) and/or SnRK2‑type protein kinase (SRK) genes 
underlies the evolution from obligate outcrossing based 
on self-incompatibility to a self-fertilization system — this 
is considered to be one of the most prevalent evolution­
ary transitions of flowering plants that colonize oceanic 
islands (known as Baker’s rule)126. The non-functionaliza­
tion of the Desaturase 2 (Desat2) gene in cosmopolitan 
but not in tropical D. melanogaster strains has been associ­
ated with resistance to cold environments127. Also in flies, 
accelerated gene loss of some groups of chemoreceptors, 
such as gustatory or odorant receptors, has occurred 
under positive selection associated with the coloniza­
tion of new ecological niches, loss of behaviours and the 
evolution of new diets in different Drosophila species128–130.

Some of the most widely known cases of adaptive 
gene loss that support the less-is-more hypothesis have 
been described in humans. Loss‑of‑function mutations 
of C–C chemokine receptor type 5 (CCR5) and atypical 
chemokine receptor 1 (ACKR1; also known as DUFFY), 
for instance, provide resistance to AIDS131 and vivax 
malaria132, respectively. For CCR5, a 32‑base-pair (bp) 
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Genetic drift
Stochastic changes in allele 
frequencies in a population 
due to random sampling 
effects through successive 
generations, which is therefore 
highly affected by the 
population size.

deletion yields a non-functional allele that has been 
under intense positive selection133–135. However, AIDS 
is thought be a modern human disease, which suggests 
that the positive selection for the non-functional allele 
of CCR5 has not been caused by the action of HIV itself 
but is caused by other viruses136,137. For malaria, a loss‑of‑
function mutation abolishes the expression of Duffy 
antigen receptor for chemokines (DARC) in red blood 
cells and confers resistance to infection by two malar­
ial species: Plasmodium knowlesi and Plasmodium vivax 
(as reviewed in REF. 138). In homozygous mutants, no 
receptor is present on red blood cells, thus preventing 
their infection. Another example of positive selection for 
a blood group that is attributable to its protection from 
malaria is the O blood group, which is a consequence of 
the non-functionalization of the ABO glycosyltransferase 
gene. There is substantial evidence that this mutation 
provides protection against P. falciparum malaria, and O 
alleles have higher frequencies in areas that have historic 
malaria. Nonetheless, it remains unclear whether the 
high frequencies of the O alleles are due to selection that 
is related directly to malaria exposure or whether they 
are caused by some other reason (reviewed in REF. 138).

Another gene loss that has been suggested to be 
essential for the evolutionary origins of humans is 
the non-functionalization of myosin, heavy chain 16 
(MYH16). This gene probably became dispensable after 
the change in diet that reduced the reliance on powerful 
masticatory jaw muscles during the evolution of homi­
nids. Its loss could also have been favoured by adaptive 
selection that led to an increase in cranial capacity and 
brain size that occurred during the origin of humans139. 
Other examples of gene loss that differentiate humans 
from other primates are the non-functionalization of 
CMP‑N‑acetylneuraminic acid hydroxylase (CMAH), 
which provides resistance to some pathogens140, and the 
fixation of a null allele of CASPASE12 in human popu­
lations shortly before the migration out of Africa, which 
confers protection from severe sepsis141.

These examples of adaptive gene loss that affect all 
types of organisms show how gene loss can be a force 
of molecular evolution that promotes evolutionary 
change and generates biodiversity. However, they also 
lead to a new question: what fraction of adaptive muta­
tions are loss‑of‑function variants? Whole-genome and 
whole-population sequencing experiments in yeast have 
shown that many of the adaptive mutations that arise 
under growth-restricting environments, such as limited 
amounts of sugar, are actually loss‑of‑function mutations 
in signalling pathways, demonstrating that gene loss can 
be the major adaptive strategy142. In addition, selection 
experiments of bacterial populations under different 
conditions have shown that adaptive loss‑of‑function 
mutations of enzymatic and regulatory functions have an 
important role in the adaptation of bacterial populations 
to new environments31,115,143,144. Considering that muta­
tions that cause a loss of function are much more proba­
ble than mutations that lead to a gain of function115, the 
contribution of gene loss to adaptive evolution, especially 
as a rapid response to environmental challenges, might 
be higher than previously anticipated.

Regressive evolution. The term regressive evolution 
refers to the loss of useless characteristics over time, and 
many examples of gene loss with neutral effects on fit­
ness have been reported to occur during regressive evo­
lution. Changing from a poor to a rich vitamin C diet is 
a classic example of regressive evolution accompanied by 
recurrent gene loss that is associated with the changes of 
environmental metabolic supplies145. The l‑gulonolactone 
oxidase (GLO) gene, which encodes the enzyme that is 
responsible for the last step of vitamin C biosynthesis, has 
been independently lost in different vertebrate lineages, 
including some teleost fish, several passeriforme birds and 
some mammals, such as bats, guinea pigs and anthropoid 
primates. This occurred after these animals adopted a diet 
rich in vitamin C146. Gene loss associated with changes in 
metabolic requirements seems to be especially frequent in 
parasitic species, as the progressive intimate association 
with the hosts can lead to metabolic redundancy, result­
ing in the loss of many parasite genes (see Supplementary 
information S1 (table) for examples).

Another paradigmatic case of apparently neutral loss 
associated with regressive evolution is the loss of genes in 
species that have adapted to life in the perpetual darkness 
of caves, which is a phenomenon that was commented on 
by Darwin: “As it is difficult to imagine that eyes, though 
useless, could in any way be injurious to animals living in 
darkness, I attribute their loss solely to disuse” (REF. 147). 
Vision and pigmentation became dispensable features in 
several populations of the cavefish Astyanax mexicanus 
after the colonization of dark environments148. The evolu­
tion of blindness and loss of pigmentation was caused by 
the accumulation of non-functional mutations in ocular 
and cutaneous albinism 2 (Oca2), which does not seem 
to have had any other deleterious effects148. Supporting 
the relationship between the cave lifestyle and the loss of 
Oca2, independent loss‑of‑function mutations of Oca2 
have been observed in at least two different Astyanax 
cavefish populations148. Other species, such as subterra­
nean diving beetles149, cave isopod crustaceans150, myri­
apods151, bats152 and rat moles153,154, have also recurrently 
undergone photoreceptor or pigment regression after 
the colonization of dark environments, providing more 
examples of gene loss due to regressive evolution.

Such examples of gene loss that are associated with 
regressive evolution could be a priori considered to be 
evolutionarily neutral, as each loss can be associated with 
the loss of a biological feature that seems dispensable 
under the new environmental condition. The neutrality 
of certain cases of gene loss, however, is under debate. 
It could be argued that the loss of genes is under posi­
tive selection owing to the advantages that it provides 
in energy savings and spatial efficiency (for example, to 
avoid the replication, transcription and translation of use­
less genes)155. Comparative genomics analyses in bacteria 
suggest that reduction of genome size is mainly driven 
by genetic drift156, and no evidence has been found to sup­
port a link between smaller cell size and environment, nor 
has any selective advantage of smaller genomes due to a 
reduced metabolic burden of replicating DNA been estab­
lished157,158. In yeast, however, although the loss of mating 
genes in strains that live in environmental conditions in 
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Antagonistic pleiotropy
This occurs when a gene 
controls several traits, in which 
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beneficial to the organism’s 
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fitness.
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which sexual reproduction is abolished could be inter­
preted as neutral, the loss of these genes reduces the levels 
of expression of at least 23 genes and provides a growth-
rate increase per generation of approximately 2%. This 
could be seen as a fitness advantage that leads to the gene 
loss coming under positive selection159.

Linking gene losses to energy efficiency and spatial 
savings is more difficult to explain in organisms with large 
genomes, such as animals or plants. In these organisms, 
establishing whether the loss of a gene is neutral, directly 
selected or indirectly selected either by antagonistic plei-
otropy or by a hitchhiking effect (that is, when a beneficial 
trait is negatively linked to the presence of a gene) is not 
easy and sometimes controversial. For example, an inter­
esting debate is ongoing surrounding whether the loss 
of the eye in cavefish is neutral, which is supported by 
the independent accumulation of diverse non-functional 
mutations in multiple eye-related loci160, or whether it is 
the indirect consequence of a hitchhiking effect promoted 
by positive selection on a nearby locus, which is related to 
the elaboration of a vibration attraction behaviour161–163. 
Although some tests from classical population genetics 
(as reviewed in REF. 164) could be modified to study the 

adaptive nature of loss‑of-function alleles, it is still a chal­
lenging task to assess whether an ancestral loss in a cer­
tain lineage was adaptive or neutral. In many cases, it can 
merely be pointed out that a correlation exists between the 
loss of a gene and the evolution of new biological features 
(see Supplementary information S2 (table) for examples).

Gene loss fixation: adaptive or neutral? An important 
question for understanding the evolutionary dynamics of 
gene loss is whether most gene loss fixations are neutral 
or adaptive (FIG. 2). This question belongs to the wider and 
still open neutralism–selectionism debate on whether 
genetic variation found in populations is mostly neutral 
or adaptive and whether neutral variants are relevant to 
the emergence of evolutionary innovations165. Following 
the general principles of population genetics, the proba­
bility of fixation of neutral gene losses depends only on 
the population size, and thereby on genetic drift, whereas 
in the case of adaptive gene losses, the fixation probability 
also depends on the selective coefficient (FIG. 2). Even if the 
loss of a gene is slightly deleterious, it has a probability, 
albeit a small one, of becoming fixed in the population by 
genetic drift166. For free-living unicellular organisms with 
large population sizes, gene loss fixation seems to have 
been mostly adaptive and selection-driven25,167, whereas 
analyses of unicellular genomes of parasitic and symbiotic 
species, which frequently go through bottlenecks, suggest 
that most gene loss fixations are neutral and driven by 
genetic drift25,168. The small effective population size of 
multicellular organisms, in contrast to bacteria, has led to 
the proposition that genetic drift is the major driving force 
for gene loss fixation169. Concordantly, comparative ana­
lysis of five vertebrate and five insect species reveals a high 
correlation between the rates of gene loss and the rates of 
molecular evolution of each species, suggesting that, over­
all, the fixation of most gene losses is driven by neutral 
evolution, despite the profound effect that the many gene 
losses might have on the evolution of these organisms170.

Future directions
A future challenge in the area of gene loss research will be 
to use comparative genomics to map all instances of gene 
loss in the tree of life and to identify genes that have been 
lost during the evolution of any given species or taxon in 
relation to its last common ancestor with another given 
species or taxon. Comprehensive gene loss catalogues 
that cover a wide range of diverse groups of organisms 
would provide valuable information for many fields of 
biology, including evolutionary biology and translational 
medicine (FIG. 4).

To build a complete database of gene loss, however, it is 
necessary to develop computational strategies to identify 
and to map gene losses in evolutionary trees reliably. This 
would allow to superimpose informative layers about the 
evolution of biological features in each lineage to facilitate 
links between gene losses and key evolutionary events. 
Many large-scale analyses to identify gene losses use 
the annotated ontology of predicted proteins available 
in genome databases as a starting point — for example, 
Ensembl, notably, already includes a gene gain and loss 
tree. Genes can then be classified into gene families using 

Figure 4 | Gene loss catalogues in evolutionary biology and translational medicine. 
Comparisons of the catalogues of gene losses between different species could be useful 
in many fields of biology. In the field of evolutionary biology, a comprehensive gene loss 
catalogue that covers a wide range of diverse groups of organisms can provide specific 
values of gene loss rate (GLR)213 and propensity for gene loss (PGL)214, which could help 
inference of the dispensability of any given gene during the evolution of any group of 
organisms (1). In addition, the identification of patterns of gene co‑elimination make gene 
loss catalogues useful for predicting the functional connectivity of each gene within gene 
network modules or protein complexes215 (2). Manifested recurrent and convergent 
patterns of gene loss in different species that evolve under similar changes of ecological 
conditions (for example, light exposure, temperature, salinity, food, toxic substances or 
pathogens) could lead to the discovery of cases of adaptive gene loss associated with 
those environmental changes (3). In the field of translational medicine, a gene loss 
database could help in improving functional connectivity between model organisms and 
human genomes by distinguishing orthologous from paralogous genes in the setting of 
reciprocal gene loss175 (4) and could also help in the discovery of animals that are 
‘evolutionary knockouts’ for genes related to human pathologies (5). These animals could 
become new disease models, as has already occurred for: the Antarctic icefish, which is a 
model for anaemia, osteoporosis and lipid storage disorders; the swordtail fish, which is a 
model for melanoma; the East African cichlid fish and Darwin’s finches, which are models 
for craniofacial disease; some reptilian species, which are models for heterotopic 
ossification; and cavefish, which are models for retinal degeneration, cataracts, albinism 
and diabetes (as reviewed in REFS 216,217). Finally, comparison of gene loss catalogues 
between organisms that have suffered convergent processes of regressive evolution in 
structures or biological processes related to a human disease will help in discerning new 
candidate genes for diseases (6), as has already been demonstrated for the BBS5 gene in 
Bardet–Biedl ciliopathic syndrome (as reviewed in REF. 13).
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Long-branch attraction
The phenomenon of inferring 
an incorrect phylogenetic tree 
owing to the presence of 
sequences that evolve rapidly 
and generate long branches 
that are mispositioned — 
usually attracted to the base 
— and thus distort the tree.

BLAST-based algorithms, phylogenetic inferences and 
maximum likelihood classifiers or probabilistic models 
based on the stochastic ‘birth and death’ model82,83,171–173. 
These analyses, however, are limited by the quality of 
genome annotations, as well as by the robustness of phy­
logenetic inferences, which in some cases can be affected 
by artefacts of long-branch attraction174. They are also limi­
ted by the difficulty of detecting cases of reciprocal gene 
losses between groups of organisms, which means that 
paralogues can be mistaken for orthologues, and gene 
losses are therefore neglected. The use of pipelines that 
include data on conserved synteny can be useful to over­
come this limitation, as they provide solid evidence for 
gene losses, especially those that take place after events 
of genome duplication175–177. Pipelines that include syn­
tenic mapping in addition to classic BLAST searches 
and phylogenetic inferences have shown their use in the 
identification of many gene losses that had previously 
been overlooked178–181. Hiller et al.182 have gone one step 
beyond previous computational gene loss analysis meth­
ods by creating a computational strategy called ‘forward 
genomics’. This approach is able to associate specific 

genomic regions in whole-genome sequences in which 
a gene loss has occurred with a given lost phenotype: for 
example, the loss of GLO or ABCD4 matches loss of the 
ability to synthesize vitamin C or low biliary phospho­
lipid levels, respectively182. Mapping gene losses but also 
losses of conserved non-coding DNA elements183 seems 
to be a promising next step in determining how the loss 
of regulatory elements of genes has led to the loss of 
some sub-functions that have influenced the evolution 
of species.

Another promising line of investigation in the field 
of population genomics is the possibility of ‘catching’ 
ongoing processes of gene loss in natural populations 
and estimating actual gene dispensability in wild con­
ditions. Analyses of 180 human genomes, after applying 
stringent filters to identify non-functionalized variants, 
have led to the inference that the genome of an average 
healthy person has 100 non-functionalized alleles, 20 of 
which are homozygous but have no apparent phenotypic 
consequences184–188. These findings show the presence of 
a substantial number of non-functional variants in nat­
ural populations. In this context, it is useful to consider 
the concept of population gene dispensability (PGD) 
as a new measure that could help in the estimation of 
the degree to which a gene is involved in the ongoing 
processes of gene loss in natural populations (BOX 3). 
The calculation of the PGD is based on the frequen­
cies of non-functional variants of a given gene within a 
population. Distributions of relative PGD values could 
provide helpful information for inferring whether gene 
losses are under negative, neutral or positive natural 
selection. Differences in relative PGD values between 
populations under different environmental conditions 
could also make it possible to identify losses of candi­
date genes for which non-functionalization is adaptive 
and could thereby have potential interest in biomedicine. 
Lim et al.189 have recently published a pioneering study 
that provides a proof of concept of the potential power 
of future PGD analyses for biomedical studies. After a 
comparative analysis of low-frequency null alleles in the 
exomes of 3,000 Finnish and 3,000 non-Finnish individ­
uals, the researchers found enrichment for null alleles 
in the Finnish population. Interestingly, two variants 
enriched in the Finnish population are null alleles of LPA, 
which encodes lipoprotein A, that are associated with low 
levels of plasma lipoprotein A. In homozygous or com­
pound heterozygous individuals, the presence of these 
null alleles provides protection against coronary artery 
disease and acute myocardial infarction. This work opens 
the door to a ‘genotype-first’ approach in which compar­
ative population genomics of gene losses can be used to 
find target genes of therapeutic interest190.

Box 3 | Population gene dispensability

To explore actual gene dispensability in natural environments resulting from 
evolutionary processes, the concept of population gene dispensability (PGD) is 
proposed here. PGD is defined as the sum of the frequencies (fnull) of all null alleles (nnull) 
for a given gene:

 PGD = Σ
n

i = 1

ƒnulli

PGD values range from 0, when no null alleles are detected, to 1 in the extreme cases 
of fixed non-processed pseudogenes. The number (nnull) and frequency (fnull) of null 
alleles depend on population mutation rate (θ), genetic drift (d) and selection (s). 
Assuming that θ and d equally affect all individuals within a population, differences 
between PGD values among genes should reflect differences in the selective pressures 
that affect the loss of a particular gene. In general, therefore, within a large population, 
it is expected that the nnull and fnull values for dispensable genes — that is, genes for 
which the losses are neutral, nearly neutral or adaptive — are greater than those for 
genes for which the losses are detrimental and in which null variants are eliminated by 
selection. Within the fraction of dispensable genes, in general, it is expected that nnull 
and fnull values for adaptive gene losses, in which null variants are enriched by selection, 
are greater than those values for neutral gene losses. Accordingly, the relative PGD 
(rPGD) value of a given gene, which is defined as the PGD of a given gene weighted by 
the average PGD in the population, helps to infer the adaptivity (when the value is in 
the high range), neutrality (in the middle range) or detrimentality (in the low range) of 
its non-functionalization. It is also expected that differences of rPGD for a given gene 
between populations exposed to different environments — for example, diet, climate, 
toxic substances or pathogens — will help to identify genes that are functionally 
associated with the different environments. The allelic frequencies of null variants of 
DUFFY (also known as ACKR1)and C–C chemokine receptor type 5 (CCR5) — which are 
higher in human populations exposed to malaria and HIV, respectively, than in 
non-exposed populations134,136,205 — are proof of concept for these expectations.
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Key points
•	 The recent increase in genomic data is revealing a novel perspec­

tive of gene loss as a pervasive source of genetic variation in all life 
kingdoms.

•	 Gene loss depends on gene dispensability, which in turn is affected 
by changes in mutational robustness and environmental conditions.

•	 Patterns of gene loss are not stochastic but show biases that are 
associated with gene functions and genomic positions.

•	 Although many gene losses are neutral and fixed by genetic drift, 
many examples support the idea that gene loss can be an adaptive 
evolutionary force that is especially effective when organisms are 
faced with abrupt environmental challenges.

•	 The future mapping of all instances of gene loss in the tree of life 
will provide valuable information for many fields of biology, includ­
ing evolutionary biology and translational medicine.

•	 Population genomics might expose ongoing processes of gene loss 
in natural populations, revealing actual values of gene dispensa­
bility and identifying adaptive gene losses with potential interest 
in biomedicine.
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Gene loss is emerging as a pervasive source of genetic 
variation. The authors review the mechanisms by which 
gene loss has influenced evolution of different species 
and discuss insights from comparative population 
genomics studies of gene loss. Further, they highlight 
future directions for the study of gene losses and their 
relevance in evolutionary biology and biomedicine.
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