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Summary

The prevention of tropical forest deforestation is essential for mitigating climate change.
We tested the machine learning algorithm Maxent to predict deforestation across the
Peruvian Amazon. We used official annual 2001–2019 deforestation data to develop a
predictive model and to test the model’s accuracy using near-real-time forest loss data for
2020. Distance from agricultural land and distance from roads were the predictor variables that
contributedmost to the final model, indicating that a narrower set of variables contribute nearly
80% of the information necessary for prediction at scale. The permutation importance indicat-
ing variable information not present in the other variables was also highest for distance from
agricultural land and distance from roads, at 40.5% and 14.3%, respectively. The predictive
model registered 73.2% of the 2020 early alerts in a high or very high risk category; less than
1% of forest cover in national protected areas were registered as very high risk, but buffer zones
were farmore vulnerable, with 15% of forest cover being in this category. To our knowledge, this
is the first study to use 19 years of annual data for deforestation risk. The open-source machine
learning method could be applied to other forest regions, at scale, to improve strategies for
reducing future deforestation.

Introduction

The conversion of tropical forest land to other land uses contributes to nearly 20% of the world’s
greenhouse gas emissions (Achard et al. 2007), which includes activities such as gross deforest-
ation, forest replacement by agriculture and pastureland and the establishment of monoculture
forest plantations, among other activities (Gibbs et al. 2010, Hosonuma et al. 2012, Austin 2017).
Several international initiatives were developed to assist developing countries with financial
incentives to avoid deforestation and improve forest management, including the REDDþ
(Reducing Emissions from Deforestation and Forest Degradation) mechanism, established
by the Conference of Parties to the United Nations Framework Convention on Climate
Change (UNFCCC) (Corbera & Schroeder 2011), as well as international funding initiatives,
including the Carbon Fund of the Forest Carbon Partnership Facility (FCPF) and the Green
Climate Fund developed by the UNFCCC. More local initiatives include the National Forest
Conservation Program for the Mitigation of Climate Change (Programa Bosques) of the
Ministry of the Environment of Peru (MINAM), developed in 2010 within the framework of
the free trade agreement between the USA and Peru. As countries increase their capacity to
monitor and manage their forests, many systems focus on estimating periodic deforestation
from satellite imagery (Potapov et al. 2012, Romijn 2012, Petersen 2018), and a few current
systems contain satellite-based near-real-time early alerts of forest loss (Hansen et al. 2016,
Musinsky et al. 2018). Techniques such as kernel densitymapping (West et al. 2019) and hotspot
analysis (Sanchez-Cuervo &Aide 2013, Kalamandeen et al. 2018) are used to track the density of
deforestation over time. However, these systems monitor past deforestation events, even if they
are considered near-real-time, as satellite images may be available for days to weeks after image
capture (Hansen et al. 2016).

The Peruvian Amazon contains the second largest portion of Amazon forest following Brazil,
with a complex heterogeneous landscape and a variety of anthropogenic pressures that have
increased deforestation in the last decade. These pressures include cacao plantations, which
are a historic deforestation driver, particularly in forests at higher altitudes (Bax &
Francesconi 2018), where cacao and coffee plantations are favoured at altitudes from 1000
to 2500 m, but they can also be found sporadically in the lowlands. Oil palm plantations
represent a more recent driver of deforestation, with significant large-scale impact beginning
c. 2007 in key lowland rainforest regions of San Martin and Ucayali (Vijay et al. 2018).
Illicit artisanal-scale gold mining has had a devastating impact in the last decade, albeit often
restricted to the rainforests of Madre de Dios (Asner & Tupayachi 2017, Espejo et al. 2018),
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where cattle ranching is also prevalent in the eastern area, which
has similar landscape characteristics to the nearby Brazilian state
of Acre (Chávez Michaelsen et al. 2013, Recanati et al. 2015).

Recent approaches in spatial modelling utilize the historic
occurrence of local deforestation, along with sets of environmental
and socioeconomic conditions, to identify areas at higher risk
of deforestation (Aguilar-Amuchastegui et al. 2014, de Souza &
De Marco 2014, 2018, Bonilla-Bedoya et al, 2018). These
approaches utilize the species distribution modelling (SDM)
framework, where the correlation of occurrence or presence points
and environmental, bioclimatic or socioeconomic layers are proc-
essed through a machine learning-based algorithm that ultimately
correlates location and multivariate space to produce a suitability
map (de Souza & De Marco 2018). Machine learning algorithms
have been applied in order to predict the risk of landslides
(Chen 2017) and wildfires (Fonseca et al. 2016), as well as habitat
alterations from fire disturbance (Franklin et al. 2014). Among the
most popular machine learning approaches in SDM is the use of
maximum entropy through the recently open-sourced program
Maxent (Phillips 2017).

The current study aims to significantly increase the spatial res-
olution and modelling scale and leverage 19 years of deforestation
data to present a robust deforestation risk model of the entire
Peruvian Amazon at a 100m spatial resolution. To our knowledge,
no other study has used this range of annual data for deforestation
risk modelling and at this geographical scale combined with high
spatial resolution. Previous studies on deforestation prediction and
risk have either been limited to a 1km spatial resolution of predic-
tor variables (Bax et al. 2016, Bonilla-Bedoya et al. 2018, de Souza &
DeMarco 2018) or 10 or fewer years of deforestation data (Aguilar-
Amuchastegui et al. 2014, Bax & Francesconi 2018), and none
combine higher-spatial-resolution data and variables (i.e., ≤100 m)
with high-temporal-cadence deforestation data (i.e., >10 years of
annual data).

We had three specific objectives. The first was to develop the
risk deforestation model for the entire Peruvian Amazon at
100m spatial resolution using Maxent as the SDM framework
and using 19 years of official annual deforestation data. Second,
we tested the temporal transferability of the model by partitioning
data in time in order to test whether amodel trained with early data
is able to predict later deforestation events. Lastly, we tested the
spatial transferability of the model by evaluating whether a model
trained with data in one area could predict deforestation in
another. We hypothesized that the combined use of high-tempo-
ral-cadence deforestation data, along with high-spatial-resolution
predictor variables, would produce a robust deforestation risk
model that would anticipate deforestation events signalled by an
independent early alert (near-real-time) system.

Material and methods

The Peruvian Amazon

The deforestation risk modelling and analysis encompassed the
entire Peruvian Amazon biome delineated by the MINAM
(2015a) and used in its national and international reporting of
deforestation and greenhouse gas emissions. The biome is distrib-
uted within 15 departments, with most of the remaining intact for-
ests being humid tropical forests in Loreto, Ucayali and Madre de
Dios. The biome extends from the eastern slopes of the Andes from
c. 3200 m altitude to the lowlands of the Amazon Basin and con-
tains c. 690 000 km2 of forest cover (MINAM 2015b). More than

2.3million people live in the region, with clear trends in population
concentrations and net migration rates, both positive and negative,
dependent on the region (Menton & Cronkleton 2019).
Deforestation in the Peruvian Amazon has steadily risen over
the past 19 years, with spikes occurring in 2005 and 2010 being
El Niño-related (Potapov et al. 2014). There have been several
national and international initiatives to reduce deforestation
(e.g., the Joint Declaration between Norway, Germany and
Peru), but there has been no notable reduction in the rate of defor-
estation for the entire biome thus far.

Deforestation data

Forest cover loss was used as a proxy for deforestation data, with a
minimum mapping unit of 30 m and an overall accuracy of 99.4%
(Potapov et al. 2014). These date were obtained from the
GeoBosques platform (http://geobosques.minam.gob.pe) of the
National Forest Conservation Program for Climate Change
Mitigation (PNCBMCC) ofMINAM,which provides annual forest
cover loss data from 2001 to 2019, from a year 2000 forest cover
baseline, which is the basis for estimating remaining forest cover.
The underlying algorithm and measurement system are based on
the tropical forest cover loss system developed by the University of
Maryland’s Global Land Analysis and Discovery (Potapov et al.
2014). The extent of the Peruvian Amazon biome was delimited
by MINAM for emissions reduction reporting, and it excludes for-
est cover loss due to river meandering (MINAM2015b). Due to the
volume of pixels and computational resource limits, deforestation
data were resampled to the 100m pixel spatial resolution using
ArcGIS 10.5 (Esri).

Predictor variables

The predictor variables selected for this study were based on poten-
tially direct and indirect drivers of deforestation and units of con-
servation (Supplementary Annex A1, available online).
Continuous land cover variables for the year 2000 include distance
from agricultural land, distance from pastureland, distance from
mining and distance from non-forest land. These land cover var-
iables are available from the land covermaps of GeoBosques, which
are derived from 30m spatial resolution Landsat image mosaics for
the year 2000 and are designed to be a complementary dataset to
the annual deforestation data. Distance from roads was calculated
using the road database from the Ministry of Transportation and
Communication (MTC). Roads included major paved, minor
paved and unpaved road categories, which were combined into
a single road category for this study. Distance from rivers was
derived from the land cover map for the year 2000 available from
GeoBosques. All distances are Euclidean distances calculated using
ArcGIS 10.5 (Esri).

Categorical predictor variables included natural protected areas
obtained from the National Service of Natural Areas Protected by
the State (https://geo.sernanp.gob.pe) and native community
boundaries obtained from the Ministry of Culture (https://
geoportal.cultura.gob.pe). Both of these datasets were from the
year 2019. Elevation above sea level and slope – both continuous
predictor variables – were derived from the void-filled seamless
Shuttle Radar Topography Mission (SRTM) digital elevation
model (http://srtm.csi.cgiar.org) available at 30 m spatial resolu-
tion. All predictor variables were projected to Universal
Transverse Mercator (UTM) Zone 18 South and resampled to
100-m pixels.
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Maxent

We used Maxent (version 3.4.1) running on the R Studio for PC
platform (1.2.5033) for the estimation of deforestation risk.
Maxent uses presence-only point occurrences together with
predictor variables to model distribution over the study area
(Phillips et al. 2006). This approach identifies the correlation
between multiple presence points and the combination of continu-
ous or categorical layer values in multivariate space (Phillips et al.
2006, Phillips & Dudík 2008). Here, the ‘species’ is the location of
the forest cover loss as a proxy for a deforestation event, as used by
the Peruvian government. The location of a deforestation event in
any given year is a result of the various interactions between
the predictor variables at the given location. Following Aguilar-
Amuchastegui et al. (2014), we assume that future deforestation
will occur under the same set of conditions, although understand-
ing that several factors can influence the future deforestation rate,
including changes in government priorities and climate change.
Although true absence data are not included in the Maxent
algorithm, we also follow Aguilar-Amuchastegui et al. (2014) in
that the true absence of deforestation may be misidentified due
to factors that include near-persistent cloud cover in some areas
and low-quality pixels in a given year.

Deforestation risk

We used Maxent default settings for regularization and selecting
feature classes for all model runs, which include linear, quadratic,
threshold and hinge features (Phillips &Dudík 2008), as well as the
jack-knife option, which estimates the importance of individual
predictor variables. The default settings allow Maxent to select
an amount of regularization that is appropriate for the number
of point localities and types of features used (Phillips & Dudík
2008). The total amount of deforestation from 2001 to 2019 was
more than 21 728 km2 or more than 23 million point localities
in a 30-m resolution grid of the Peruvian Amazon. Therefore,
deforestation data were resampled to the 100m pixel spatial
resolution, and 10 000 point localities of deforestation were chosen
at random from the full dataset. Environmental factors and
interactions between predictor variables define the set of features
that constrain the geographical distribution of the ‘species’ being
modelled (Phillips et al. 2006). Among several options, Maxent
models produce a logistic output format that can be used as a raster
file in GIS, with pixel values from 0 to 1 that represent an estimate
of relative probability of presence (Phillips & Dudík 2008). Pixels
with a logistic value close to 1 are the sites most suitable for a
‘species’ (Phillips & Dudík 2008), or, in this study, those that most
closely resemble the conditions for deforestation.

Test localities were generated by making 10 random partitions
of the deforestation point localities for the execution of 10 model
runs. Each partition was a random selection of 10 000 georefer-
enced points of the total deforestation from 2001 to 2019. For each
of these model runs, 70% of the points were randomly selected for
model training and 30%were selected formodel testing for analysis
of the spatial accuracy of each model prediction (Phillips et al.
2006, Zutta & Rundel 2017). The relative contribution (%) and per-
mutation importance (%) of each predictive variable to the final
predictive model were recorded (Table 1). These two measures
indicate the importance of the predictive variable by indicating
the amount of information each variable contributes to the final
model (contribution %) and which variables contain information
not present in the other variables for the model development
(permutation importance %) (Bonilla-Bedoya et al. 2018).

In order to facilitate the interpretation of the final logistic
output format, a qualitative classification of deforestation risk is
presented. The natural breaks classification method (Wang &
Yang 2000, Smith 2015, Bonilla-Bedoya et al. 2018) of the final
output values was used to divide the output into five categories:
very low (<9.9%), low (10.0–20.9%), medium (21.0–33.8%), high
(33.9–48.2%) and very high (48.3–100%).

Model performance

Our study assessed model performance using the threshold-
independent test of area under the receiver operating characteristic
(ROC) curve (AUC) of the test localities. The ROC curve measures
the model’s ability to correctly predict the presence and absence of
the deforestation event by plotting the model sensitivity (omission
rate) against 1 – specificity (commission rate). Pseudo-absences are
generated by randomly selecting a set number of background
pixels as a substitute for ‘true’ absence, which the algorithm does
not use as an input variable (Phillips et al. 2006). For our study, the
default of 10 000 background pixels was randomly chosen as the
pseudo-absence for each model run. Consequently, the AUC
statistic can be understood as the probability that a presence site
of deforestation (i.e., pixel) is ranked above a random background
pixel (Phillips et al. 2006). An AUC value for a model will range
from 0 to 1.0, with values below 0.5 considered random, up to
1.0 as perfect discrimination. AUC data are presented as means
± SE (n= 10 models) following Phillips et al. (2006) and Zutta
and Rundel (2017).

Prior to the general model of deforestation risk with 19 years
of information, the spatial and temporal transferability of the
models were tested. Following the recommendations of Aguilar-
Amuchastegui et al. (2014), deforestation data from 2001 to
2010 were partitioned as training information and then validated
with deforestation from 2011 to 2019. Another pertinent aspect
was to test spatial transferability; this tested whether a risk model
of deforestation from one specific area could predict deforestation
in another distant area. For this purpose, the training samples were
divided into north and south regions of the Peruvian Amazon.

Model performance was also evaluated by overlaying the
January to December 2020 early alerts for forest loss from
GeoBosques (Vargas et al. 2019) on the final risk model in order
to ascertain the percentage of early alert pixels that were predicted
in each deforestation risk category. The 2020 early alert data were
not used in the development of the overall predictive model since it
is developed through a different methodology.

Table 1. Contribution (%) and permutation importance (%) of the variables to
the model.

Variable Contribution
(%)

Permutation
importance (%)

Distance from agricultural land 59.7 40.5
Distance from roads 17.9 14.3
Elevation 6.0 13.0
Natural protected areas 4.9 7.2
Distance from pastureland 4.1 4.2
Distance from non-forest land 4.0 11.8
Distance from mining 1.7 5.2
Slope 1.4 3.0
Native communities 0.2 0.6
Distance from rivers 0.2 0.2
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Results

Historical deforestation

The Peruvian Amazon lost c. 24 334 km2 of forest from 2001 to
2019; this was c. 3.4% of the forest cover available in the year
2000, when there was more than 707 000 km2 of forest. The annual
historical average during 2015–2019 was 1560 km2, compared to
the years 2001–2014, which was 1181 km2. Recent forest loss
has been centred on the San Martin and Loreto border (Fig. 1b)
and the Madre de Dios regions (Fig. 1c). This can be compared
with another hotspot of deforestation between the limits of
Huanuco, Pasco and Ucayali, which collectively lost 8721 km2

of forest from 2001 to 2019. A total of 682 742 km2 of forest
remained in the Peruvian Amazon at the end of 2019.

Deforestation risk

The average test AUC value for predictive models was 0.749 ± 0.003
and the average training AUC value was 0.747 ± 0.001, indicating
reasonable success in discriminating forest loss from non-forest loss
areas. Prediction values ranged from 0 to 0.722 and were divided
into the five categories established by the natural breaks (Fig. 2).
Buffer zones were more vulnerable to deforestation than protected
areas (Tables 2 & 3).

Generally, deforestation risk was highest near previously
deforested areas (Fig. 2b–d). Forested areas, which are often frag-
mented forests surrounded by other land uses, within the higher-
elevational zones of the eastern Andes contain the most area with
high and very high deforestation risks (Fig. 2). The area next to the

Interoceanic Highway and the area within the artisanal-scale gold
mining region of Madre de Dios demonstrated a particularly
consolidated area of elevated risk (Fig. 2c). Most very-low-risk
areas were in Loreto, which has the largest expanse of forest cover
(Fig. 2), the Southern Ucayali and western Madre de Dios region,
which contains the Manu and Alto Purus national parks, and
smaller pockets in the Loreto, SanMartin and Ucayali intersection,
which contains the Cordillera Azul National Park (Fig. 2b).
In addition, an extensive very-low-risk area was in the southern
Madre de Dios and northern Puno region, which contains the
Tambopata National Reserve and Bahuaja–Sonene National
Park (Fig. 2c).

Protected areas and buffer zones

The total forest cover in natural protected areas at the end of 2019
was 156 234 km2, with a total loss from 2001 to 2019 of 705 km2

(Table 2). Protected areas designated as national parks contained
61.2% of the total Amazonian forest cover within protected areas
and registered 42.97% of the forest loss during this time. Protected
areas within each category with the highest total forest loss from
2001 to 2019 (Table 2) included Alto Mayo (Protected Forest),
Cordillera Azul (National Park), El Sira (Communal Reserve),
Pacaya–Samiria (National Reserve) and Megantoni (National
Sanctuary). The percentage of protected forests remaining in
2019 within the category of very low risk was 66%, low risk
was 25%, medium risk was 7%, high risk was 1% and very high
was 1%. A few protected areas had much larger areas with high
risk of deforestation, notably San Matias–San Carlos (13%),

Fig. 1. Peruvian Amazon deforestation. (a) Accumulated deforestation from 2001 to 2019 and remaining forest cover. (b) Deforestation in the department of Loreto
San Martin where most large-scale forest loss is due to recent agricultural expansion of oil palm. (c) Deforestation in southern Madre de Dios from a mix of artisanal gold mining
and small-scale agriculture.
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Yanachaga–Chemillén (7%), Tingo Maria (50%), Yanesha (41%)
and Allpahuayo Mishana (24%), which all have less than
1600 km2 of forest remaining.

This pattern is in contrast to the 31 buffer zones that contain
Amazonian forests. The total forest cover at the end of 2019 was
101 137 km2, with a forest loss of 5318 km2, which is 7.6 times
greater than within the protected areas (Table 3). The greatest total
forest losses in 2001–2019 were in the buffer zones of the Cordillera
Azul (2277 km2), El Sira (923 km2) and Tambopata (307 km2).
Buffer zone forest remaining in 2019 had a higher predicted risk

of deforestation within the categories of high risk (20 397 km2

or 20%) and very high risk (15 297 km2 or 15%).

Contribution of predictive variables

Distance from agricultural land and distance from roads
contributed nearly 77.6% of the information necessary to predict
deforestation (Table 1). Distance from pastureland and elevation
contributed 10.1%, and the categorical variables of natural pro-
tected areas and native communities contributed 4.9% and 0.2%,

Fig. 2. Peruvian Amazon and five categories of deforestation risk. (a) Categories are based on the natural breaks classification of the final Maxent model for the entire Peruvian
Amazon. Natural protected areas containing any amount of Amazon forest are filled with hatch marks and surrounded by their respective buffer zones. (b) Deforestation risk for
the Cordillera Azul National Park. (c) The main artisanal gold mining region and interoceanic highway of southern Madre de Dios. (d) The Sierra del Divisor National Park.
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respectively, to the final model. The remaining land covers, often
directly associated with forest loss, distance from non-forest and
distance from mining, contributed 4.0% and 1.7%, respectively,
while slope and distance from rivers together contributed 1.6%
to the final model.

The ranking of permutation importance followed a similar pat-
tern to the contribution of each predictor variable to the final
model (Table 1). Distance from agricultural land had the highest
percentage contribution (40.5%), followed by distance from non-
forest land, distance from roads and elevation, which combined
had a permutation importance of 39.1%. The remaining continu-
ous predictive variables – distance frommining, distance from pas-
tureland, distance from rivers and slope – accounted for 12.4%.
Natural protected areas and native communities had permutation
importance values of 7.2% and 0.2%, respectively.

Temporal and spatial transferability

Regarding temporal transferability, the deforestation risk model
using data from the years 2001–2010 registered 86.4% of the
remaining forest in the high-risk and very-high-risk categories
for 2011, followed by 82.7% and 80.3% in the same categories
for 2012 and 2013, respectively. For 2018 and 2019, the model reg-
istered 72.5% and 63.1% of the remaining forest for the same cat-
egories (Fig. 3b). Logically, the models predicted a greater

percentage of deforestation for the years closest to the last
observation.

The mean percentage (± SD) of monthly early alerts from
January to December 2020 that were registered under the very high
deforestation risk category was 44.7% (± 7.5%). More than 35% of
monthly early alerts, except for in February, occurred in very-high-
risk areas (Fig. 3a). Indeed, the mean percentage of monthly alerts
that were registered as either high risk or very high risk was nearly
80%. The other risk categories were also fairly consistent through-
out the year, with 15.4% ± 2.8% for medium risk, 8.7% ± 2.9% for
low risk and 2.7% ± 1.1% for very low risk. The mean fractions of
early alerts that registered as very high risk were also similar
throughout the lows and peak of the deforestation season, with
41.1% ± 7.3% from January to June, when the number of
alert counts were at their lowest, 44.3% ± 8.2% from July to
September, the peak forest loss season, and 47.5% ± 8.0% from
October to December, when the number of alerts returned to
pre-peak levels.

There was far less predictive ability when deforestation local-
ities were divided into north and south regions. Northern deforest-
ation could only predict less than 10% for the mean, high-risk and
very-high-risk categories for the southern half of the Peruvian
Amazon. Similarly, southern deforestation models could only pre-
dict less than 5% of these categories in the northern half of the
Peruvian Amazon.

Table 2. Forest cover in 2019, total forest loss from 2001 to 2019 and deforestation risk in natural protected areas in the Peruvian Amazon.

Deforestation risk (% of forest cover)

Category Protected area Forest cover (km2) Forest loss (km2) vl lo md hi vh

Protected Forest Alto Mayo 1592 75 8 35 44 13 0
San Matias–San Carlos 1361 51 2 14 57 27 0
Pui Pui 182 1 27 64 9 0 0

National Park Alto Purús 24 813 13 83 14 3 0 0
Manu 16 148 65 46 45 9 0 0
Sierra del Divisor 13 451 51 93 6 1 0 0
Cordillera Azul 13 269 75 47 45 8 0 0
Bahuaja–Sonene 10 603 47 72 26 2 0 0
Yaguas 8657 3 100 0 0 0 0
Otishi 2874 12 51 46 3 0 0
Güeppi–Sekime 2023 0 98 2 0 0 0
Rio Abiseo 1838 25 39 56 5 0 0
Yanachaga–Chemillén 1056 11 1 32 61 6 0
Ichigkat Muja–Cordillera del Cóndor 871 1 96 4 0 0 0
Tingo Maria 41 0 0 0 50 50 0

Communal Reserve El Sira 5931 90 30 46 17 6 1
Amarakaeri 3904 10 35 52 13 0 0
Airo Pai 2452 1 100 0 0 0 0
Machiguenga 2093 13 10 65 24 1 0
Purús 1994 1 79 18 3 0 0
Ashaninka 1734 16 14 59 22 5 0
Huimeki 1403 2 88 11 1 0 0
Tuntanain 938 1 84 15 1 0 0
Yanesha 320 12 0 7 52 41 0
Chayu Nain 221 0 43 49 8 0 0

National Reserve Pacaya–Samiria 19 973 94 70 21 7 2 0
Pucacuro 6307 4 100 0 0 0 0
Matses 4189 3 98 2 0 0 0
Tambopata 2683 21 36 40 19 5 0
Allpahuayo Mishana 527 5 11 25 40 24 0

National Sanctuary Megantoni 1996 11 12 62 24 2 0
Cordillera de Colán 359 4 52 47 1 0 0
Tabaconas–Namballe 233 3 18 70 12 0 0
Pampa Hermosa 97 1 2 61 34 3 0
Machu Picchu 103 2 43 55 2 0 0

Total 156 234 705 66 25 7 1 1

vl = very low; lo = low; md = medium; hi = high; vh = very high.
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Discussion

Here, we leveraged 19 years of annual, high-spatial-resolution
deforestation data, with high-spatial-resolution predictor varia-
bles, representing drivers of deforestation, within an open-source,
machine learning SDM framework to produce a robust deforesta-
tion risk model for the Peruvian Amazon. In addition, we were able
to test the temporal transferability of the methodology, similar to
testing and training forest loss data from different periods in
Aguilar-Amuchastegui et al. (2014), and we tested spatial transfer-
ability by using test and training datasets from different Peruvian
Amazon regions, which has not been explored in other studies.
We were also able to test the risk model accuracy using data
from an independent, high-temporal-cadence monitoring system
(i.e., early alerts).

The approach provided a clear, geospatially explicit correlation
between deforestation and distance from agricultural land
and roads. Other studies that have applied Maxent to the
Ecuadorian (Bonilla-Bedoya et al. 2018) and the Brazilian
Amazon (de Souza & De Marco 2018), at different spatial and
temporal resolutions from our study, could identify similar sets
of variables that describe most of the deforestation modelled in
their region. Maxent, as a predictive modelling tool option, pro-
vides several advantages over other predictive modelling tools,
including the availability of graphical user interface (GUI) and
open-source versions (Phillips 2017), its relative ease of implemen-
tation (Aguilar-Amuchastegui et al. 2014), its lack of requirement
for presence and absence data where true absence can be difficult to

confirm (Philips 2006), its provision of accurate predictions with
relatively few presence data and high computing efficiency and its
ability to enable the use of large-scale high-resolution data layers
(Buermann et al. 2008).

Distance from agricultural land and distance from roads were
the key predictors of deforestation in the Peruvian Amazon.
Agricultural expansion in the past 19 years has been driven by a
complex interaction of periodic immigration from Andean and
inter-Amazonian regions, changes in commodity and gold prices,
the expansion of industrial agriculture (most often from oil palm
production) and a variety of other factors (Menton & Cronkleton
2019). Artisanal-scale gold mining in Madre de Dios has a particu-
larly devastating impact at the local scale and has increased
dramatically since 2011, but it has not had the overall impact of
small- to medium-scale agriculture. Conversion of forest to pas-
tureland is a major factor in deforestation in the eastern portion
of Madre de Dios in the area that is closest to the Brazilian state
of Acre, and it shares similar conditions for cattle ranching; this
driver is particular to this region and is not as prevalent in other
Amazonian regions of Peru. Rivers are an important form of trans-
portation and are thought to be as important a driver of deforest-
ation as roads, as they represent important transportation hubs in
many of these regions where roads and connectivity to towns are
limited (Bax et al. 2016). However, the model’s outputs reflect
that previous deforestation contributed most to predicting future
deforestation as these deforested areas will be nearer to the next
expansion of forest removal.

Table 3. Buffer zone forest cover in 2019, total forest loss from 2001 to 2019 and deforestation risk in natural protected areas in the Peruvian Amazon.

Category Protected area buffer zone Forest area (km2) Forest loss (km2)

Deforestation risk (% of forest area)

vl lo md hi vh

Protected Forest Alto Mayo 1601 152 5 23 21 26 25
San Matias–San Carlos 932 150 0 2 7 24 67
Pui Pui 298 3 5 20 42 25 8

National Park Alto Purús 16 788 9 48 37 12 3 0
Manu 5929 53 24 28 25 17 6
Sierra del Divisor 6109 59 43 39 12 5 1
Cordillera Azul 17 265 2277 0 27 25 23 25
Bahuaja–Sonene 2301 204 0 20 30 26 24
Otishi 317 3 7 43 43 7 0
Rio Abiseo 4081 212 10 30 29 16 15
Yanachaga–Chemillén 417 27 0 1 8 60 31
Ichigkat Muja–Cordillera del Cóndor 1329 4 58 37 5 0 0
Tingo Maria 27 5 0 0 4 29 67

Communal Reserve El Sira 8035 923 1 9 23 31 36
Amarakaeri 2217 156 0 18 30 30 22
Machiguenga 4329 80 2 14 48 32 4
Purús 2159 8 6 48 29 16 1
Ashaninka 2837 184 0 6 24 38 32
Tuntanain 2784 17 38 37 18 6 1
Yanesha 276 75 0 0 0 6 94
Chayu Nain 116 0 1 35 43 20 1

National Reserve Pacaya–Samiria 9362 219 8 28 33 23 8
Pucacuro 3356 4 84 13 2 1 0
Matses 2205 22 45 32 15 7 1
Tambopata 1381 307 0 0 17 33 50
Allpahuayo Mishana 461 31 15 14 23 21 27

National Sanctuary Megantoni 2351 101 0 4 26 37 33
Cordillera de Colán 163 3 22 51 24 3 0
Machu Picchu 336 12 15 16 38 25 6
Pampa Hermosa 43 1 2 14 36 36 12
Tabaconas–Namballe 332 17 5 29 27 34 5

Total 101 137 5318 18 25 22 20 15

vl= very low; lo= low; md =medium; hi= high; vh= very high.
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The distance from native communities, although important for
conservation priorities, was not a significant contributor to the
deforestation riskmodel. This is probably due to the encroachment
on forest that is currently occurring within native communities,
most often due to illegal selective logging and other deforestation
activities. According to national statistics, native communities con-
tained the second highest amount of forest loss in 2019 below unti-
tled lands, accounting for almost 300 km2 or 19% of the total
deforestation in that year (MINAM 2020). Therefore, the native
community boundaries do not represent as concrete a deterrent
to deforestation as national park boundaries. Peruvian naturally
protected areas were among the least deforested of all the land
tenure categories monitored by the Peruvian government from

2001 to 2019, with over 30 km2 or 2.1% of the total Amazonian
deforestation in 2019 (MINAM 2020). The deforestation patterns
currently seen are in response to the location and ability of national
and local authorities to limit deforestation in many of these
protected areas.

In order to fully apply Maxent as an approach for predicting
risk, we need to address key factors that may limit the overall
accuracy of the models. First, the accuracy of the predictive model
will be dependent on the quality of the point locality data, or in this
case the forest loss locations, which are derived from satellite
data. Frequent cloud cover, rough topography and availability
of Landsat images may affect the number of pixels available for
the final annual deforestation estimation (Potapov et al. 2014).

Fig. 3. Monthly early alert count in 2020. (a) The percentage of monthly early alerts that was registered under each deforestation risk category (very low, low, medium, high and
very high). (b) Annual deforestation from 2011 to 2019 (%) recorded under each category of deforestation risk (very low, low, medium, high and very high).
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It is therefore possible that deforestation that is not identified in a
given year is counted in a subsequent year, when quality pixels
become available. In addition, the quality of the predictor variables,
including the accuracy of road maps and the correct identification
of land cover, may play a role in increasing the accuracy of the
predictive model.

Conclusion

Using open-source machine learning algorithms to identify areas
of moderate to high risk for deforestation can ultimately help to
reduce deforestation in tropical forests. The approach is simple
and easy to use and interpret for a wide range of end users, from
technical experts who wish for a relatively quick risk assessment of
large areas to less technical users wanting to explore deforestation
risk using a reliable and robust approach. To the best of our knowl-
edge, this is the first study of deforestation risk using 19 years of
historical annual data for the entire Peruvian Amazon. Indeed,
the large dataset and high spatial resolution require higher-end
computational power, which points to developing a more interac-
tive platform to reach an even wider audience interested in
exploring deforestation risk due to the alarming recent increase in for-
est loss in rainforests across the tropics. The potential of this approach
is highlighted by a static version of this risk model hosted by
the National Forest Conservation Program for Climate Change
Mitigation (PNCBMCC-MINAM) of the Peruvian Ministry of the
Environment (http://geobosques.minam.gob.pe/geobosque/visor).

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0376892921000291.
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