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A B S T R A C T   

Nutrition and social interactions are both key aspects of the daily lives of humans. In this work, we propose a 
system to evaluate the influence of social interaction in the nutritional habits of a person from a first-person 
perspective. In order to detect the routine of an individual, we construct a nutritional behaviour pattern dis-
covery model, which outputs routines over a number of days. Our method evaluates similarity of routines with 
respect to visited food-related scenes over the collected days, making use of Dynamic Time Warping, as well as 
considering social engagement and its correlation with food-related activities. The nutritional and social de-
scriptors of the collected days are evaluated and encoded using an LSTM Autoencoder. Later, the obtained latent 
space is clustered to find similar days unaffected by outliers using the Isolation Forest method. Moreover, we 
introduce a new score metric to evaluate the performance of the proposed algorithm. We validate our method on 
104 days and more than 100 k egocentric images gathered by 7 users. Several different visualizations are 
evaluated for the understanding of the findings. Our results demonstrate good performance and applicability of 
our proposed model for social-related nutritional behaviour understanding. At the end, relevant applications of 
the model are discussed by analysing the discovered routine of particular individuals.   

1. Introduction 

Nutrition plays an important role in our daily routine. Recent 
research (Hamrick, Andrews, Guthrie, Hopkins, & McClelland, 2011) 
has shown that an average of 2.5 h a day is spent eating or drinking by 
American people, out of which 78 min drinking or eating while doing 
other primary activities, such as working, driving, or preparing meals. 
Food behaviour has been generally regarded as what people eat, with a 
focus on healthy versus unhealthy meals. However, recent studies 
(Laska, Hearst, Lust, Lytle, & Story, 2015) have shown that how and 
where people eat have a direct impact on health, being associated to 
diseases like diabetes, obesity (Stalonas & Kirschenbaum, 1985), cancer 
(Hopkinson, Wright, McDonald, & Corner, 2006) and even mental ill-
nesses (Donini, Savina, & Cannella, 2003). Another key question related 
to eating habits is how much people eat; the social aspect of eating (i.e. 
social eating), which implies the act of two or more people eating 
together, exercises a considerable influence on this matter. For instance, 

in Higgs and Thomas (2016), the authors concluded that people are 
inclined to eat more and, consequently, spend more time in food-related 
environments, when joined by someone else. Moreover, social eating has 
proven to be a very powerful facilitator for establishing humans bonds 
(Dunbar, 2017). What attracts people towards social eating is an op-
portunity for overeating, which is facilitated by the tendency of people 
to order and take larger quantities of food while being in a social group 
setting (Herman, 2017). All of these factors involuntarily shape the way 
people eat. 

Human behaviour when related to nutrition and social has been 
previously studied with computer vision and machine learning models. 
For instance, food balance estimation has been analysed from images 
intentionally collected by the user (Aizawa, Maruyama, Li, & Morikawa, 
2013). At the same time, the study of behaviour in our society has been 
addressed from crowds (Li, 2018) and individuals (Talavera, Wuerich, 
Petkov, & Radeva, 2020) through the analysis of images. When studying 
behaviour, the collection of data describing the daily life of people is 
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needed. One way through which individual behaviour can be captured is 
through the means of lifelogging (Gurrin, Smeaton, & Doherty, 2014; 
Bolanos, Dimiccoli, & Radeva, 2016), an emerging mainstream activity 
in which day-to-day life activities are tracked using various techniques. 
Our hypothesis is that the type of lifelogging that entails tracking ac-
tivities in the form of photo-streams recorded by wearable cameras can 
be of help for the objective understanding of people’s behaviour. Such 
egocentric photo-streams are recorded at a set time interval by portable 
cameras worn by the user as a necklace. These images provide an 
objective first-person perspective of the activities conducted by the 
camera wearer. Some examples of sampled images from egocentric 
photo-streams can be seen in Fig. 1. The data is extremely meaningful for 
inferring and extracting patterns related to human behaviour as shown 
in Clarkson (2002), Varini, Serra, and Cucchiara (2017). However, there 
is a lack of automated tools that can process egocentric photo-streams 
with the aim of providing insight into the nutritional routine. What is 
more, to the best of our knowledge, the effect of the correlation of 
nutritional habits and social activity on behaviour has not been studied 
from images before. 

This work is motivated by the above-drawn conclusions by several 
studies on the effects of social interaction on the food-related human 
behaviour. Hence, the focal research questions are: Can social- and food- 
related descriptors help us discover nutritional habits from visual information 
through analysis of egocentric photo-streams?. And if yes, how does peo-
ple’s social daily life impact their nutritional behaviour? And what is the 
extent of this influence? Can we quantify it? To answer these questions, 
we propose an automatic system for understanding people’s social- 
nutritional habits from egocentric photo-stream. We address the auto-
matic extraction of the main influencing factors, as well as how the 
respective behaviour manifests. The understanding of these factors can 
help people towards becoming self-aware of their habits. This is espe-
cially beneficial for comprehending the social psychology underlying 
long-term nutritional routines. Our proposed system analyses the social 
characteristic of eating and its impact on food-related habits. The 
approach we propose is able to analyse social behaviour by identifying 
social interaction and the regularity of appearance of people with whom 
the camera wearer socially engages. We employ the pipeline previously 
proposed in Talavera, Glavan, Matei, and Radeva (2020) to extract 
nutritional information from egocentric timelines corresponding to 
whole recorded days. We account for the impact of social activity on 
eating habits by identifying and quantifying the instants of social eating. 
To do so, we create social-nutritional descriptors for the recorded days of 
the camera wearer. Days are compared based on these social-nutritional 
descriptors, which capture the routine behaviour of the day. Finally, to 

discriminate between routine and non-routine related days, we apply 
anomaly detection seeking non-routine related days by means of the 
Isolation Forest algorithm (Liu, Ting, & Zhou, 2008). Moreover, for a 
broader reach of the applicability of our model, we introduce several 
ways of visualizing the obtained results and correlations. We study the 
performance of the proposed tool on data collected by 7 users included 
in the EgoRoutine dataset (Talavera et al., 2020), who have visually 
lifelogged their daily lives for an average of approximately 15 days each. 
This case study analysis displays the relevancy of the proposed model for 
applications in the field of behaviour interpretation. 

The contributions of this work are twofold:  

• Routine discovery captured by social and nutritional indicators: To the 
best of our knowledge, this is the first work that addresses the 
automatic discovery of nutritional habits in relation to social in-
teractions from collections of egocentric photo-streams. A novel 
routine discovery pipeline is proposed for the personalized discovery 
of routine and non-routine nutritional behaviour from multiple un-
seen egocentric photo-stream timelines in relation to the interrela-
tion among food-related and social interactions of the user. 

• Social-eating metrics are introduced for the quantification and anal-
ysis of the nutritional behaviour of the camera wearer. These metrics 
are used for the later identification of similarity among days, i.e. the 
discovery of routine vs. non-routine related habits at the level of 
daily life. 

The rest of the paper is organized as follows: in Section 2 we address 
relevant literature to our research, followed by Section 3 which provides 
an overview of the methods and techniques used for the construction of 
the proposed pipeline model. The experimental setup of the work is 
described in Section 4. In Section 5 and Section 6, we present the 
experimental results and discussions, respectively. Finally, Section 7 
draws our final conclusions. 

2. Related works 

Food detection and recognition from images have been widely 
studied. For example, in Kagaya, Aizawa, and Ogawa (2014), the au-
thors focused on the recognition and tracking of food-intake in images 
where food occupies a significant part of the image. This approach is not 
suitable for our research since it only focuses on classifying single im-
ages. In the case at hand, we are working with continuous sets of labels 
that describe the lifestyle of the user, which has been addressed in the 
literature (Talavera et al., 2020). The work proposed in Talavera et al. 

Fig. 1. Examples of egocentric images describing daily activities including both food-related and non-food related activities.  
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(2020) introduces a model which employs a Convolutional Neural 
Network pipeline for classification of unseen chronological sets of im-
ages based on the food scene depicted by each image. The model is able 
to recognize 16 distinct classes out of which 15 are food-related classes 
(i.e. ranging from ‘bar’ to ‘market indoor’ and ‘restaurant’), the 16th 
class represents the ‘non-food’ label. 

The field of food-related scene recognition in egocentric vision is 
fairly new, with limited research available on this specific topic. The 
classification of food-related scenes from egocentric images was first 
presented in Talavera et al. (2019). The authors developed a hierarchical 
classification model and introduced a food-scene taxonomy as well as a 
new egocentric dataset, called EgoFoodPlaces. The dataset is split 
semantically in meta-classes corresponding to nutrition-related activ-
ities (i.e. eating, preparing, acquiring). Each meta-class is in turn split 
into sub-classes, until a three-level taxonomy is reached. A deep Con-
volutional Neural Network (CNN) is applied to each level of the taxon-
omy, resembling a DECOC classifier (Pujol, Radeva, & Vitria, 2006), 
which decomposes a multi-class classification problem into multiple 
classification problems organized hierarchically. The model proposes 
not only the classification into 15 food-related scene classes corre-
sponding to the lowest level of the taxonomy, but also the recognition of 
meta-classes at different levels (e.g. cooking, shopping, eating), which 
provides a more general view on the nutritional behaviour. 

Person re-identification refers to the task of identifying known peo-
ple in a set of images, based on facial features. It has been approached 
from various angles, ranging from probabilistic approaches to deep 
learning approaches (Zheng, Gong, & Xiang, 2011; Yi, Lei, Liao, & Li, 
2014). In egocentric images, this task was addressed in a supervised 
fashion with a limited amount of data and people appearing in the 
frames in Talavera, Cola, Petkov, and Radeva (2019). Therefore, we do 

not consider their work as relevant for our study and instead, we address 
person re-identification as an unsupervised task, i.e. relying on clus-
tering techniques for the identification of people throughout the photo- 
sequences. Social interactions and food-related scenes were previously 
used for image classification in Herruzo, Portell, Soto, and Remeseiro 
(2017). The authors label images as ‘Eating’, ‘Socializing’ or ‘Sedentary’ 
and the possible combinations of these three labels, resulting in twelve 
in total. Their focus was on image classification given a limited set of 
general scenarios. Moreover their proposed model did not look for 
patterns throughout time or on how the different labels interact. 

Previous works on routine discovery are based on the main idea of 
clustering similar days and disregarding non-routine days considered as 
outliers. Hence, anomaly detection methods were able to identify days 
considered as non-routine related (Talavera, Petkov, & Radeva, 2019). 
In their work, the authors analyzed a day as the aggregation of the 
feature vectors extracted of the images of that day. Even though they 
achieved good performance, their work loses time-related behaviour by 
aggregating the feature vectors. Moreover, they only study context in-
formation without higher semantics such as activity, object in the scene, 
or others. 

The study presented in Talavera et al. (2020) addressed the discovery 
of nutritional habits. Their proposed classification of images does not 
provide a level of understanding with respect to the social interaction 
aspect in the behaviour of the individual. Therefore, we go a step further 
and incorporate the study of routine by combining different daily 
behaviour descriptors such as social interaction and food-related scenes 
occurrence. Moreover, we do not simply aggregate day descriptors as in 
Talavera et al. (2020), but study their accumulated information through 
the use of Long-Short-Term-Memory deep neural networks. Moreover, 
their experiments reinforced the suitability of the Isolation Forest 

Fig. 2. Overview of the proposed pipeline for identifying eating routine.  
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clustering algorithm, as an anomaly detection technique, for discerning 
between days which follow a routine pattern and days which exhibit 
irregular behaviour. From the above-mentioned works, and based on 
our own perception of this unsupervised task, we continue addressing 
the discovery of routine-related behaviour through anomaly detection. 

3. Methodology 

This section presents in detail the constituent components of the 
proposed pipeline for routine discovery in relation to social interactions. 
Fig. 2 depicts a broad overview of the entire pipeline, starting from the 
input of the photo-stream timelines, corresponding to all the recorded 
days of a particular user, to the final outcome, represented by the two 
clusters of days: routine and non-routine related when it comes to eating 
and social habits, respectively. We have decomposed our proposed 
method into four stages which are described closely, for a better 
comprehension, in the following subsections. Moreover, the pipeline 
design employs high levels of modularity, which implies that some 
stages can be decoupled and used individually. 

From this point on, we will use the terms ‘camera wearer’ and ‘user’ 
interchangeably, since the design of the proposed pipeline has been 
highly inspired by the EgoRoutine dataset (Talavera et al., 2020), which 
includes 7 users, playing the role of camera wearers. 

In Algorithm 1 we provide an overview of the workings of our pro-
posed pipeline in pseudocode format. The information illustrated in this 
algorithm coincides with the graphical depiction in Fig. 2, albeit it 
provides a more detailed set of steps for each of the described stages. 
Each step is in turn discussed in the following sub-Sections to a greater 
detail. 

3.1. Individualized person identification per user 

In the first stage of the pipeline (i.e. stage A), we aim to identify and 
group all individuals present in the collection of egocentric photo- 
streams recorded by the same user. Since egocentric photos imply a 
first person perspective, we assume that the individuals that can be 
identified by analysing the photos are engaged, to some degree, in a 
social activity with the camera wearer. A visual representation of stage A 
is presented in Fig. 3. 

Stage A has been divided in two steps, see Fig. 3. In the first one, 
stage A.1, each photo in the user’s collection of photo-streams is ana-
lysed using the face recognition functionality of the OpenCV library 
(Bradski, 2000). This process leads to the identification and extraction of 
all faces available in the photo-streams. An extracted face is then rep-
resented as an embedding, meaning an 128-d feature vector, as resulting 
from the face recognition process. Subsequently to the extraction of all 

Algorithm 1: Pseudocode of the proposed system. 

Fig. 3. Overview of stage A of the pipeline which entails the identification of people which recurrently appear in the user’s recorded days, indicating social 
interaction. Stage A.1 implies the identification and characterization of all human faces which are then clustered in stage A.2 in order to identify the people with 
which the user had recurrent interaction over the recorded days. 
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the faces, stage A.2 cluster them. Since the collection of recorded photos 
spans a period of multiple days (the exact number of days might vary 
depending on the user), we expect that people who are related to the 
user’s routine to reappear. Moreover, the number of reappearing people 
is unknown, therefore we opted for the DBScan clustering with 
Euclidean distance approach (Birant & Kut, 2007), which does not 
require any prior knowledge of the number of clusters, in this context 
specifically, the number of reappearing people. DBScan is a density 
based clustering approach, therefore it groups together core sample 
points, in our case, faces, which lie in dense regions. The final vector 
space contains a collection of points, each corresponding to a 128-d vec-
tor describing an identified face, with the format: 

identified face = [m1 m2⋯ m128], (1)  

where mi represents the ith measurement of the detected face, resulting 
from the application of OpenCV. 

The density approach accounts for the reappearing persons: the more 
a person is socially engaged in the routine of the user, the more instances 
of their face will be present in the recorded photo-streams. This creates a 
dense region of reappearing face instances, thus allowing the clustering 
algorithm to group them as an individual. On the other hand, points 
which have a limited number of neighbours in the extracted faces space 
(i.e. lie in a low density area) will be deemed as outliers. Since we want 
to eliminate the cases of randomly appearing, unrelated people (for 
example, people on the public transport or faces in ads) being captured 
by the egocentric camera, we discard the outliers group altogether. 

The outcome of stage A is therefore a series of identified individuals 
as represented by a cluster of their faces, extracted from all the photos 
recorded by the user. This outcome will flow into stage B of the pipeline; 
nevertheless stage A can be also used individually for other applications 
which employ unsupervised person re-idetification. 

3.2. Nutritional and social day descriptors extraction 

The second stage of the pipeline operates on individual timeline 
photo-streams, corresponding to the recorded days. The aim of this stage 
is to analyse the day photo-stream in order to create a detailed day 
descriptor vector consisting of nutritional, social eating characteristic 
and social interaction information. Each of the three components of the 
day descriptor vector are computed by a corresponding sub-stage and 
concatenated together in order to obtain the final day descriptor, as seen 
in Fig. 4. 

With the input being a photo-stream consisting of a single recorded 
day from the user, each image is processed independently by the three 

sub-stages. For stage B.1, the food scene classifier proposed by Talavera 
et al. (2020) is applied. The classifier has the following behaviour: given 
an image, it decides whether the scene depicted is not related to any food 
environment. If this holds, the image is labeled as ‘non-food’, otherwise 
the classification process continues. The classifier’s decision making 
process entails discriminating between 15 food scene classes ranging 
from ‘bakery shop’ to ‘kitchen’ and ‘restaurant’. A vector containing the 
classification likelihood of each food scene is obtained, the final classi-
fication is the food scene class with the highest percentage in likelihood. 
Based on the food scene classification, the pipeline has the ability to 
compute the top 5 most appearing food scenes in a day with their cor-
responding percentages of appearance. 

For stage B.2, person re-identification is performed using the same 
photo-stream. A similar procedure as before is employed for face 
recognition. The OpenCV library is utilized to identify faces in the 
image. In the case in which at least a face is found, this result is cross- 
referenced with the respective user’s identified individual clusters 
from stage A. If a match is found, the appearance of the previously 
identified person in the image at hand is stored in a binary vector of 
dimension 1×P, where P is the total number of identified individuals as 
per stage A of the pipeline. For example, if person N has been re- 
identified in the image at hand, the binary vector corresponding to the 
image will have a positive bit at position 1×N, where N ⩽P. An overall 
metric accounting for the total time spent in social interactions is 
computed as fp

i = ni where ni is the number of occurrences of face i. 
Quantifying the amount of time a person appears within the photo se-
quences is based on the images metadata and is computed separately. 

Gathering this information for all images corresponding to a day, the 
nutritional information is cross-referenced with the social re- 
identification in stage B.3. This results into a series of social eating 
characteristics for the day:  

• Total Eating Time (TET),  
• Time Eating Alone (TEA),  
• Time Eating with One other person (TEO),  
• Time Eating with a Group (more than one other person) (TEG). 

3.3. Day descriptors manipulation and final day encodings extraction 

In stage C of the pipeline, see Fig. 5, the day descriptor vectors are 
contextualized with respect to all the days recorded by the user. Rou-
tines imply consistency both over habits, but also over time. Having this 
general characteristic of routine in mind, we compare the day de-
scriptors in order to investigate how much distinction exists between 

Fig. 4. Stage B: The extraction and assembly of day descriptions occurs for every recorded day of the user. Stage B.1 provides nutritional descriptors, which offer 
information about the visited food scenes as extracted by the classifier proposed in Talavera et al. (2020). Stage B.2 provides details into the social aspect of the day. 
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days. We define two steps (i.e. C.1 and C.2), which simultaneously 
compute the difference in nutritional activities and the social pairwise 
interaction distance between/among all the days of the user, 
respectively. 

To compare days with respect to the different nutritional and social 
activities, we can not directly compare image to image since activities of 
the days can have different duration. Instead, in Stage C.1 we apply 
Dynamic Time Warping (DTW) (Müller, 2007) on the days, as repre-
sented only as their nutritional activities information extracted from the 
day descriptor vectors. For each day, the nutritional information is 
presented in a timeline manner, each image in the timeline being rep-
resented by its food scene category or ‘non-food’ label. We define a day 
as the vector containing the food and non-food classes ordered by their 
temporal appearance throughout the day. Given two such vectors, s′ and 
s”, each representing a day, we can compute the path warping w = (w0,

w1,…,wQ), where Q is the length of the path. Each element in the path wq 

is a tuple (wq[1],wq[2]) which indicates the mapping between the two 
timelines (i.e. element wq[1] in s′ corresponds to element wq[2] in s”). Eq. 
(2) describes the formula behind the DTW algorithm which computes 
the optimal path warping (i.e. minimal distance path) which defines the 
best correspondence between the sequences: 

DTW dist(s′ , s”) =
∑Q

q=0
dist(s′wq [1], s

”
wq [2]). (2)  

DTW is a suitable approach for this problem, since it is designed to 
measure similarity between time series, by stretching or shifting one of 
the series time wise in order to match the second series. DTW also ac-

counts for small differences in time, which is desirable since daily events 
take place within a certain time margin. 

Stage C.2 compares the days with respect to their social interaction. 
We judge social activity by the (re) appearance of the identified people 
(from the person identification phase of the pipeline) in the day photo- 
stream. Socially, a day is described by a chronological sequence of 24 
binary vectors which describe the people which are socially engaged 
with the user each hour of the day. For social comparison of the days, we 
propose Hamming distance: this computes how many of the bits differ 
between the two binary sequences representing the compared days. 
Given two sequences of binary vectors, b′ and b”, corresponding to two 
distinct days, we compute the Hamming social distance as per: 3: 

Social dist =
∑23

i=0
hamming dist(b′

[i], b”[i]). (3)  

where i indicates the hour and hamming dist(b′

[i], b”[i]) computes the 
number of bit differences between two social interactions b′

[i] and b”[i]. 
Prior to this point, the pipeline is employed to extract features from 

the days that can capture the correlation between social activity and 
nutritional routine. An overview of all the extracted features is given as 
follows, elements 3–9 being computed by the pipeline phase described 
in Section 3.2; we note that not all of the features the pipeline has the 
capacity of extracting are employed as day descriptors for the routine 
discovery clustering proposed in our model.  

1. DTW nutritional distances between the days (as given by Eq. (2)) 

Fig. 5. Stage C: The day descriptors given by the previous stage, stage B, are manipulated and contextualized with respect to all the days recorded for the user. Stage 
C.1 compares all the days, using dynamic time warping (DTW). Later, Stage C.2 compares all the days with respect to the social activity using Hamming distance. 
Finally, in stage C.3 the feature space is scoped down by using an LSTM AutoEncoder to extract encodings from all the recorded days. 
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2. Hamming social interaction distances between the days (as given by 
Eq. (2))  

3. Total time eating per day (TET)  
4. Time eating alone per day (TEA)  
5. Time eating with one person per day (TEO)  
6. Time eating in a group per day (TEG)  
7. Top 5 food scenes per day  
8. Top 5 food scenes percentages per day  
9. Social interaction time per day. 

An intermediate feature vector is created for each day. The vector is the 
result of the concatenation of the nutritional distances (as given by Eq. 
(2)), the social eating characteristics of the day (TET, TEA, TEO and TEG 
as computed by the pipeline phase described in Section 3.2) and, finally, 
the social interaction distances (as given by Eq. 3). The social eating 
characteristics are time based metrics describing the day. The final 
vector has the following aspect: 

Day = concat(distDTW(s
′

, s”), [TET TEA TEO TEG], Social dist). (4)  

The size of the intermediate feature vector is dependent on the number 
of days recorded by the user. In order to capture routine, at least 7 
recorded days are required (i.e. by analysing one week which includes 5 
working days, routine should become apparent). Therefore, the size of a 
feature vector is expected to be at least 1 × 18 (7 nutritional distances, 7 
social interaction distances and 4 social eating metrics) and increases 
significantly with the increase in the number of recorded days. 

In order to compress the information that appears in the time series, 
we pass the intermediate feature vectors through stage C.3, during 
which an Long-Short-Term-Memory (LSTM) auto-encoder is applied. 

Auto-encoders (Baldi, 2012Bengio, 2009) are machine learning tools 
used to reduce the feature size of the input data by encoding it to a 
feature vector of a set size, based on the input features. The resulting 
encoding vector can be extracted and used for data compression or 

machine learning tasks. In the context of autoencoders, the compression 
and decompression of data are done using functions based on neural 
networks; these functions are learned by the network based on exam-
ples, as opposed to the user-defined ones (Park, Marco, Shin, & Bang, 
2019). In this case, Long-Short-Term-Memory (LSTM) networks (Greff, 
Srivastava, Koutník, Steunebrink, & Schmidhuber, 2016Hochreiter and 
Schmidhuber, 1997) are used, due to the strength of their recurrent and 
persistent memory. 

Long-Short-Term-Memory networks are a type of networks based on 
Recurrent Neural Networks (RNN) tailored towards extracting features 
from data with a time component (i.e. time series data). RNNs capture 
time dependencies of sequence data due to their recurrent connections 
between the neural units. However, RNNs fail for the task of capturing 
long term connections from sequences with significant temporal lags 
because of their short-term memory. This issue is overcome by the LSTM 
networks which have a more sophisticated update equation. LSTMs 
utilize memory cells that combine multiplicative interactions between 
logistic and linear units with input and output gates. 

The hidden layers of the network include memory cells that are fully 
interconnected. The memory cell corresponds to input and output gates 
which, being fed inputs from other memory cells, decide how to update 
the memory cell at hand: which new information needs to be capture or 
discarded. The update follows Eq. 5 with ci being the ith memory cell and 
its output at time t being yci (t). 

yci (t) = youti h(sci (t)), (5)  

where the internal state sci (t) is defined as per Eq. (6): 

sci (0) = 0,
sci (t) = sci (t − 1) + yini g(netci (t)), t > 0, (6)  

with ini and outi being the corresponding input and output gates of 
memory cell ci; functions g and h are differentiable functions and have 
the role to compress netci and to scale the cell’s output, respectively. 

Fig. 6. Stage D: The extracted day encodings are compared against each other in stage D.1 using Dynamic Time Warping (DTW). A day is finally described as how 
distinct it is compared to the rest of the recorded days. This information is passed to stage D.2 which produces the routine vs. non-routine clustering of all the 
recorded days of the user using the Isolation Forest approach. 
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In this way, the LSTMs have the capacity to ‘unlearn’ information 
that is no longer relevant and overcome the exponential error decay of 
RNNs, which improves the ability of the LSTM to adapt to time changes 
and gaps in the data and provide better results in the sequence mapping. 

The LSTM autoencoder can be formalized as a tool consisting of two 
LSTM neural networks, one with the purpose of encoding (i.e. the 
encoder) and the other with the purpose of decoding (i.e. the decoder). 
The two functions are related to one another as such: 

a = Encoder(b),
b
′

= Decoder(a). (7)  

The compressed encoding vector a is used as input for the decoder, 
which predicts the original input feature vector b. The goal of the model 
is to minimize the loss, which we define as the Euclidean distance be-
tween the predicted b′ and the original b. To achieve this, as much in-
formation as possible is preserved from the original vector b, while 
ensuring that the encoding a captures sufficient information for the 
reconstruction of the original vector. 

3.4. Day encodings clustering for identification of nutritional routine and 
non-routine days 

For the final stage of the pipeline, the day encodings from stage C are 
encoded using an LSTM and finally clustered for the identification of 
eating-social routine-related days. An overview of the final stage can be 
found in Fig. 6. 

The encoding representation of the days are further compared using 
DTW in stage D.1. Even though the encoding are not given in a timeline 
format, they still preserve the temporal characteristic of the previous 
representation of the days from which they have been derived. The re-
sults of the DTW algorithm provide a comprehensive view on how 
distinctive the days are. Each day is therefore represented by a sequence 
of distances corresponding to the pairwise DTW distance applied be-
tween the respective day and the rest of the recorded days. 

Finally, stage D.2 identifies the routine and non-routine days. The 
day representations given by stage D.1 are clustered using the Isolation 
Forest method (Liu et al., 2008). Moreover, the authors in Talavera et al. 
(2020) have shown that Isolation Forest outperformed other clustering 

approaches for the specific task of nutritional routine identification on 
the EgoRoutine dataset, also employed in this work. The Isolation Forest 
algorithm is an anomaly detection method based on tree ensamble: the 
method chooses a feature randomly for which it selects a random value 
within the maximum and a minimum margins; using recursive partitions 
chosen at random, it builds a tree-like structure; it decides on anomalies 
based on the length of the paths: a shorter path (i.e. closer to the root of 
the tree) is more likely to describe an anomaly given that outlier data is 
known to be more sparse. These path lengths are used in the anomaly 
score, based on the normalized and average distance of the paths; we 
compute the anomaly score a(x, n) for observation x, given a set of n 
samples as follows: 

a(x, n) = 2
− E(h(x))

c(n) . (8)  

where h(x) is the path length of point x from the root node to the last 
external node; E(h(x)) identifies the average of h(x) from a collection of 
isolation trees. The average path length is denoted by c(n) as follows: 

c(n) = 2H(n − 1) −
2(n − 1)

n
.

H(n) = ln(n) + γ (Euler′s constant).
(9)  

The anomaly outcome of the clustering represents the non-routine days, 
while the non-anomaly days are considered to be the routine days. 
Finally, based on these clustering results, visualizations are created in 
order to better understand the detected routines and their components. 
The visualizations will be presented and qualitatively analysed in the 
following section. 

4. Experimental framework 

This section presents the dataset used for measuring the performance 
and applicability of our model. The experimental setup is also presented, 
as well as the metrics applied for the evaluation of the conducted 
experiments. 

Table 1 
Distribution of EgoRoutine dataset including the number of recorded days and the total corresponding number of images for each of the 7 users in the dataset, appended 
with the distribution of routine and non-routine days as annotated by the users.   

User 1 User 2 User 3 User 4 User 5 User 6 User 7 Total 

#Days 14 10 16 20 13 18 13 104 
#Images 20,543 11,815 21,727 18,977 17,046 16,592 11,207 117,907 
#Routine days 11 7 12 7 6 15 7 65 
#Non-routine days 3 3 4 13 7 3 6 39  

Fig. 7. Examples of images in the EgoRoutine dataset extracted from two random days in the dataset.  
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4.1. Dataset 

In this work, we employ the EgoRoutine dataset proposed in Talavera 
et al. (2020) to evaluate our proposed system. This dataset consists of 
unlabeled egocentric data captured by 7 distinct users over different 
time spans (measured in days). The collections of egocentric photo- 
streams capture the daily lives of the users such as working with a PC, 
walking in street, eating alone, shopping at the supermarket, having 
lunch with colleagues, among others. An overview of the dataset dis-
tribution over the 7 users can be seen in Table 1. The gathered data 
describes a real-life scenario, i.e. the dataset predominantly capture non- 
food related environments since these tend to represent a relatively 
small fraction of a person’s day. Nonetheless, we observed that the 
collections also includes significant instances of the users in food and 
social environments, as can be seen in Fig. 7. The dataset also includes 
user annotations of the recorded days. The users have been asked to 
label a day in terms of routine behaviour which spans both the social and 
eating aspects. This resulted into a binary categorization of the days into 
‘routine’ and ‘non-routine’ days. Table 1 shows an overview of the dis-
tribution of routine and non-routine days for all the 7 users. 

4.2. Experimental setup 

Due to the modularity of our proposed pipeline, we evaluate the 
performance of the different stages that compose it.  

• Individualized person identification per user: In our proposed method, 
we empirically observed that the best grouping was obtained when 
the values Eps(∊) and MinPts are set to 0.5 and 5, respectively. The 
distance function used is the Euclidean distance.  

• Day descriptors manipulation and final day encoding extraction: We 
experimented on how to optimally describe the days for the most 
effective routine clustering. We experimented with the combinations 
of multiple day descriptors, both nutritional and social, in order to 
gain insight about which of these proposed features are most 
representative of the routine. 

The auto-encoder proposed for our pipeline is based on a ReLu 
activation layer (Ramachandran, Zoph, & Le, 2017) and an Adam 
optimizer (Kingma & Ba, 2014) architecture for the LSTM encoding 
and decoding layers. Our implementation is built on top of the 
existing models proposed in Chollet et al. (2015), for the Keras deep 
learning framework. In terms of encoding sizes, we experimented 
with various values in order to preserve as much of the meaningful 
features of the data as possible while ensuring a size reduction. The 
size of the encoding is half the size of the intermediate feature vector, 
which has been determined empirically. 

• Routine vs non-routine related days discovery: We evaluate the per-
formance when applying clustering directly on the extracted fea-
tures, on the computed distance between combinations of extracted 
features or on the encoding obtained from the extracted features. All 

clustering parameters remain the same for the different experiments, 
specifically the number of Isolation Forest estimators used is 1000. 
The random seed state used is 0, which determines the random 
factor. These parameter values were determined to perform best 
empirically, as proved in Talavera et al. (2020). 

Table 2 presents a comprehensive overview of all the performed 
experiments of our ablation study. The column titles of the extracted 
features correspond to the features extracted by the pipeline as per the 
overview in Section 3.3. The column titles of the ensemble of day rep-
resentation refer to the data the clustering was applied on: directly on 
the selected day features, on the custom distance of the days (see Eq. 
(10)), directly on the extracted LSTM encodings from the days described 
by the selected features. The selected features for the day descriptors and 
the ensemble method for each of the experiments are indicated by an x 
in the corresponding column. The * indicates that these experiments also 
include the variant of applying DTW on the day representations before 
clustering (we denote these experiments as Exp. N, where N is the 
number of the original experiment). DH stands for the Hamming dis-
tance and DE for the Euclidean distance, the distance formula is given 
by: 

Custom dist(d1, d2) = w0 ∗ DTW(d1 N, d2 N)+
w1 ∗ DH(d1 S, d2 S) + w2 ∗ DE(d1 TET, d2 TET)+
w3 ∗ DE(d1 TEA, d2TEA) + w4 ∗ DE(d1 TEO, d2 TEO)+
w5 ∗ DE(d1 TEG, d2 TEG) + w6 ∗ DTW(d1 top5, d2 top5)+
w7 ∗ DE(d1 ST, d2 ST)

(10)  

where the day features correspond to the features extracted by the 
pipeline (see Section 3.3) for day d. 

A weight vector w is defined for each experiment employing the 
custom distance, in order to signal which features of the day will be 
enabled in the computation of the custom distance. We have the 
following weights vectors for experiments 3, 4 and 5, respectively: (1, 1, 
1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 1, 0), (1, 1, 0, 0, 0, 0, 0, 0, 1). 

4.3. Implementation details 

Our proposed system works sequentially. Therefore, its complexity 
can be estimated by computing the aggregated complexities of the 
modules that compose it. On one side, given an image, pre-trained 
convolutional neural networks are applied in a fast-forward manner, i. 
e. no training involved, for food scene classification, which has a 
complexity of O (n) (He & Sun, 2015), where n is the number of pixels of 
the input image. This complexity is the result of adding the complexity 
of the different layers that compose the network namely, convolutional, 
ReLu and max-pooling layers, all with a complexity of O (n). On the 
other side, person re-identification is performed using DBSCAN. This 
algorithm visits each sample in the set, i.e. detected face, only once and 
has an average run-time complexity of O (m logm), where m is the 
number of sample images in the set (Birant & Kut, 2007). Afterwards, an 

Table 2 
Overview of all the conducted experiments for the ensemble of the day representations to be used for the routine discovery clustering. The features used per experiment 
are indicated with x. * indicates that DTW was applied. Time eating (TE).    

Exp. 1* Exp. 2* Exp. 3 Exp. 4 Exp. 5 Exp. 6* Exp. 7* Exp. 8* 

Extracted features Nutritional dist x x x x x x x   
Social dist x x x x x x x   
TE x x x x  x x x  
TE alone x x x x  x x x  
TE one pers x x x x  x x x  
TE group x x x x  x x x  
Top 5 Loc  x  x   x   
Top 5 %  x     x   
Social time     x   x 

Day representations before clustering Directly on Features x x        
Custom distance   x x x     
Directly on encodings      x x x  
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LSTM network is applied for the encoding of temporal descriptors in a 
fast-forward manner. In this setting, LSTMs are linearly affected by the 
size of the input and have a time complexity per weight of O (n)
(Hochreiter & Schmidhuber, 1997). Days are compared using DTW 
(Salvador & Chan, 2007), with a complexity of O (d2), where d repre-
sents the encoding vector of a day. Finally, routine discovery with 
Isolation Forest has employed that has complexity of O (m logψ(n)) (Liu 
et al., 2008), where m, and ψ(n) represent the size of the testing data and 
the sub-sampling size for the training, respectively. Therefore, we can 
conclude that the complexity of our routine discovery system is O (n +

mlogm + d2). 

4.4. Evaluation metrics 

We use different evaluation metrics for the different stages that 
compose our eating-social behavioural patterns pipeline.  

• Face clustering/ Stage A: For the evaluation of our proposed pipeline, 
we use several metrics depending on the different stages of the 
pipeline. For the evaluation of the faces clustering employed in stage 
A of the pipeline, we use three metrics: Silhouette score (Rousseeuw, 
1987) and the Structural Similarity Index (SSIM) (Hore & Ziou, 2010; 
Wang, Bovik, Sheikh, & Simoncelli, 2004). These metrics are used for 
the evaluation of the internal cohesion of the clusters. 

The Silhouette score metric describes the relatedness of each point 
with respect to the cluster group it has been assigned to, and it is 
described by the following equation: 

Silhouettescore =
b(i) − a(i)

max(a(i), b(i))
. (11)  

where a(i) is the average distance between point i and points withing 
the same cluster, and b(i) is the minimum average distance from i to 
points in the other clusters. 

In contrast, SSIM is a metric used to compare two images and 
measure their similarity; SSIM is associated with the human visual 
system with respect to quality perception of images. It is a full 
reference metric, meaning that one of the compared images is 
considered to be the original. SSIM accounts for image distortions 

based on three factors: loss of correlation, luminance distortion and 
contrast distortion.  

• Day encoding/Stage C: For the evaluation of the auto-encoder in step 
C of the pipeline, we use Mean Squared Error (MSE) (Wang & Bovik, 
2009) to compare the quality of the encoding against the original 
feature vector. We do this by using the decoding layer which decodes 
the produced encoding. The decoder should produce a feature vector 
with a high similarity to the original feature vector for a good esti-
mated performance of the auto-encoder. 

The Mean Square Error (MSE) estimator is given by Eq. (12), 
where the two instances to be compared are represented by f and g, 
having the same dimensions MxN. In our work, MSE is used to 
compare two images represented as matrices for evaluating the face 
clustering and for the evaluation of the encoding given by the LSTM 
autoencoder: 

MSE(f , g) =
1

MN

∑M

i=1

∑N

j=1
(fij − gij)

2
. (12)  

We also compute the Mean Absolute Error (MAE) in order to analyse 
the performance quality of the encoder. MAE represents the average 
of the absolute errors and is computed according to Eq. (13). Simi-
larly to MSE, two instances of the same dimensions are compared 
element wise. This metric accounts for the absolute difference be-
tween the elements, unlike the MSE. 

MAE(f , g) =
1

MN
∑M

i=1

∑N

j=1
|fij − gij|. (13)  

Moreover, we compute the Mean Euclidean (MED) distance, as per 
Eq. (14), between the original feature vector and the feature vector 
resulting from the decoding. A small MSE index and Euclidean dis-
tance correspond to higher accuracy of the encoding with respect to 
the original feature vector: 

MED(f , g) =
1
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(fi − gi)

2

√
√
√
√ . (14) 

Table 3 
Silhouette score of the clustering of routine and non-routine days for different experiments; the experiments are defined in Table 2. The NA results were obtained for 
the cases in which all days of the user were clustered as part of the same group which made the silhouette score inapplicable. The results greater then 0.5 are 
highlighted in the table.   

User 1 User 2 User 3 User 4 User 5 User 6 User 7 All Users 

OurSystem(Exp. 6.1) 0.545 0.613 0.576 0.614 0.428 0.553 0.436 0.538 ± 0.077  
Exp. 1 0.341 0.488 0.292 0.314 0.237 0.143 0.218 0.290 ± 0.109  
Exp. 1.1 0.546 0.555 0.523 0.503 0.316 0.166 0.404 0.431 ± 0.145  
Exp. 2 0.336 0.488 0.373 0.107 NA 0.172 0.218 0.282 ± 0.141  
Exp. 2.1 0.545 0.555 0.524 0.503 0.321 0.165 0.394 0.430 ± 0.145  
Exp. 3 0.433 0.472 0.293 0.560 0.649 0.220 0.277 0.415 ± 0.158  
Exp. 4 0.475 0.470 0.293 0.556 0.646 0.221 0.275 0.419 ± 0.159  
Exp. 5 0.309 0.171 0.268 0.484 0.258 0.145 0.155 0.256 ± 0.118  
Exp. 6 0.516 0.410 0.287 0.547 0.260 0.186 0.443 0.379 ± 0.136  
Exp. 7 0.330 0.636 0.429 0.121 0.238 0.372 0.839 0.424 ± 0.243  
Exp. 7.1 0.458 0.533 0.491 0.290 0.192 0.685 0.527 0.454 ± 0.164  
Exp. 8 0.150 NA 0.291 NA 0.255 0.352 NA 0.262 ± 0.084  
Exp. 8.1 0.359 NA 0.356 NA 0.272 0.571 NA 0.390 ± 0.127   

Table 4 
Silhouette score of the discovered routine and non-routine related clusters by our system against the method proposed in Talavera et al. (2020).   

User 1 User 2 User 3 User 4 User 5 User 6 User 7 All Users 

OurSystem 0.545 0.613 0.576 0.614 0.428 0.553 0.436 0.538 ± 0.077  
Method in Talavera et al. (2020) 0.477 0.478 0.272 0.341 0.156 0.137 0.222 0.298 ± 0.141   
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• Eating-social routine related days/Stage D: The output of the clustering 
in stage D of the pipeline is evaluated by the Silhouette score of the 
outcome clusters. As such, we gain knowledge with respect to the 
quality and consistency of the identified clusters. We mainly focus on 
evaluating the obtained routine clusters qualitatively, however we 
also compare the obtained results with the annotations that indicate 
the user-defined routine versus non-routine days. We evaluate the 
the performance of the clustering w.r.t. the given annotations with 
Accuracy, Precision, Recall, and F-Measure metrics. 

5. Results 

This section presents the results obtained for the conducted experi-
ments described in Section 4. We evaluate and present the achieved 
performance for some specific elements in our proposed pipeline, spe-
cifically the face clustering employed in stage A, as well as the LSTM 
autoencoder in stage C (see Fig. 2). Finally, we analyse the discovered 
routine for one of the users in the EgoRoutine dataset, through means of 
meaningful visualisations of the results given by our proposed method 
for the specific user.  

• Overall results of the proposed pipeline. Based on the various types of 
feature vectors representing a recorded day from a user, as obtained 
from the experiments in Table 2, we applied the routine identifica-
tion Isolation Forest clustering method. Table 3 illustrates the 
Silhouette scores per user, for each of the attempted experiments. 
Experiment 6.1, corresponding to our proposed pipeline, obtains an 
average Silhouette score of 0.538 over all the users. Our method is 
significantly superior, since no other experiments achieve an average 
Silhouette score over the 0.5 mark. We observe that the performance 
of the experiments is highly user dependent, for example Experiment 
7 achieves a Silhouette score of 0.839 for user 7. However, it does not 
generalize well for the rest of the users (i.e. user 4 has only a 0.121 
score). Moreover, some experiments (i.e. experiment 2, 8 and 8.1) do 
not measure any Silhouette score for some users, since all the days 
attributed to the respective user are assigned to the same routine or 
non-routine cluster. This indicates that the features included in the 
day representation are not descriptive for the routine of the user. 
Comparing the second best ranking experiment (i.e. experiment 7.1) 
with our proposed approach, it becomes evident that considering 
more information about the days does not translate into higher 
performance (i.e. as per Table 2, experiment 7.1 includes informa-
tion about the top 5 food-related locations identified throughout a 
day in addition to the features considered by our model in experi-
ment 6.1). 

Our method generalizes well for the users in the dataset, 5 out of 7 
users obtaining a Silhouette score higher than 0.5, with no user 
having a score lower than 0.4. This indicates that the collection of 
features and processing steps included in our proposed method are 
representative for the recorded days and capture the nutritional 
routine. Given that no users are identical, an alternative approach 
would imply customizing the routine discovery user-wise: choosing 
the experiment which achieves the highest score for each particular 
user. 

Moreover, in Table 4, we compare the performance of our pro-
posed model and the one proposed in Talavera et al. (2020) due to 
their similarity. We can observe how even though both methods find 
coherent clusters, with a score >0, the clusters discovered by our 
model are of higher quality.  

• Face clustering: Table 5 showcases the clustering results for the 
identified people for all users using DBSCAN with Euclidean dis-
tance. We measure the Silhouette score and Structural Similarity 
Index Measure (SSIM) within each identified cluster, and report the 
average values per user. In terms of Silhouette score, the obtained 
results do not exceed the 0.3 mark, however, since the clustering is 
applied on images depicting human faces, the Mean SSIM index of-
fers better insight into the cohesion within the face clusters. The 
obtained SSIM scores are larger than the 0.5 mark for all users, user 6 
obtaining the highest score of 0.778. This indicates that images of 
faces belonging to the same cluster are structurally similar, which 
accounts for the fact that the depictions of the face of the same in-
dividual can be captured from different angles or in different light-
ing, depending on the image instance. This reinforces our assumption 
of face clusters representing particular individuals.  

• Evaluation of autoencoder 
For the evaluation of the autoencoder employed during stage C of 

the pipeline (see Fig. 5), we measure the accuracy of the given final 
encoding. Using the decoder layer, we obtain the reconstructed 
feature vectors from the final encoding. The reconstructed feature 
vectors are subsequently compared to the original feature vectors (i. 
e. the input to the auto-encoder) using MSE, MAE, and mean 
Euclidean distance. The obtained results per user are shown in 
Table 6. As mentioned in Section 3.3, the size of the encoding differ 
per user, being influenced by the number of days recorded for the 
user. The number of recorded days increases the size of the inter-
mediate feature vector in stage C of the pipeline, which is the original 
feature vector passed as input to the auto-encoder. 

Since a most accurate decoding is desired, low MSE, MAE, and 
Euclidean distance scores are sought. We observe that the lowest 
average MSE score is obtained for user 1. There is a tendency of high 
increase in MSE score for the encoding of large dimensions such for 

Table 5 
Evaluation of the DBScan facial clustering in stage A of the proposed pipeline.  

Metric User 1 User 2 User 3 User 4 User 5 User 6 User 7 All Users 

Silhouette Score 0.319 0.243 0.358 0.275 0.301 0.252 0.291 0.291 ± 0.039  
Mean SSIM 0.622 0.585 0.778 0.576 0.603 0.693 0.679 0.648 ± 0.072   

Table 6 
Evaluation of the accuracy of the day encodings obtained in stage C of the proposed timeline. The mean MSE and Euclidean distance scores give the average difference 
between the intermediate feature vector (i.e. the original feature vector) describing the day (see Fig. 5 in the Appendix) and its decoded final day encoding given by the 
decoder layer of the autoencoder. The lowest scores are highlighted in the table.   

User 1 User 2 User 3 User 4 User 5 User 6 User 7 All Users 

Mean MSE 3,349.58 9,924.15 9,504.83 19,664.31 7,735.90 15,333.18 6,806.21 10,331.16 ± 5,083.29  
MAE 299.46 423.27 515.49 208.31 297.08 389.57 144.26 325.34 ± 127.68  
Mean Euclidean dist 1,143.50 1,487.22 1,992.29 3,819.56 1,636.51 3,270.30 1,496.90 2120.89 ± 941.42  
Size original feature vector 32 24 36 44 30 40 30 33.71 ± 6.27  
Size encoding 16 12 13 22 15 20 15 16.14 ± 3.35   
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user 4 and user 6, which obtained the highest score. This implies that 
the auto-encoder might have faced some challenges in preserving all 
the meaningful information in the original feature vector consisting 
of a large number of features. A larger encoding might have pre-
served more information. However, a balance must be reached since 
the size of encoding have a direct influence on the clustering results. 
Even with a MSE score of 19,664.31 denoting the accuracy of the 
user’s day encoding, the corresponding Silhouette score of the 
routine clustering is an adequate 0.614. The MAE values indicate 
small differences with respect to the original – encoded vectors. The 
lowest value belongs to user 7, 144.26, but overall the standard 
deviation of 127.68 indicates consistency across all users. In terms of 
mean Euclidean distance between the original vectors and the 
decoding, the distance is more or less consistent (no more than 2000) 
for the users with a lower size of the original feature vector, however, 
as seen with MSE for users 4 and 6, the distance spikes. This indicates 
that there is room for improvement in terms of finding the optimal 
encoding length, personalized for each user. 

The experimental analysis indicates that, given a collection of egocentric 
photo-streams, the best set of descriptors is the day representation using 
the LSTM encoding of the concatenated Nutritional distance and Social 
distance, together with the computed TE, TEA, TEO, TEG. As for the set 
of parameters that allow the best performance of the methods in our 
system, we obtained the following setting: DBSCAN with 0.5 Eps and 5 
MinPts for face clustering, i.e. people re-identification; Isolation Forest 
with 1000 estimators and random seed of 0 for non-routine anomaly 
detection; and LSTM with ReLu activation Layer, an Adam Optimizer 
and N/2 encoding size, where N is the size of the intermediate feature 
vector. 

5.1. Routine vs. non-routine clustering results 

The EgoRoutine dataset was made publicly available together with 
‘routine’ and ‘non-routine’ labels, which were assigned by the camera 
wearer. These labels accounted for the occurrence and relation of the 
whole set of activities that users perform throughout the days and 
therefore are not only focused on social-nutritional habits. However, we 
find it interesting to evaluate the goodness of our model for the task of 
‘general’ routine discovery given a collection of days. We compare the 
performance of our model against the labels obtained in Talavera et al. 
(2020). Results are shown in Table 7. 

We can observe that our system obtains an overall 0.58 and 0.52 
score in accuracy and weighted accuracy, respectively. The highest 
metric score obtained is the recall of the ‘routine’ class (i.e. a score of 
0.75) which shows that the model can successfully identify and correctly 
cluster the relevant data instances (i.e. the recorded days) that have 
been categorised as ‘routine’ days by the users. The somewhat reduced 
performance of the model w.r.t. the ‘non-routine’ category is justified by 
the reduced number of non-routine days in the data set (i.e. 39 non- 
routine days compared to the 65 routine days). Moreover, non-routine 
behaviour is more diverse and inconsistent: for example, 2 non- 
routine days recorded by the same user are not necessarily expected to 
follow the same behavioural eating pattern since this is highly depen-
dent on the undertaken activities. The performance of our system is 
similar to the one of Talavera et al. (2020). We can observe that both 
obtain the same weighted accuracy and average F1-score. If we relate to 
the results described in Table 4, our method produces a better repre-
sentation in the data space of the days since the clusters are of higher 
quality. In contrast to the model proposed in Talavera et al. (2020), our 
pipeline also accounts for the social nature of eating. Results show that 
this added complexity does not represent a drawback for the discovery 
of routine-related days but a richer description. A detailed account of 
how the social features are impacting the clustering of the ‘routine’ and 
‘non-routine’ days is presented through the case study in Section 5.2. 

Table 7 
Quantitative metrics of the routine vs. non-routine clustering for our proposed 
model and the model proposed in Talavera et al. (2020).   

Our System Method in Talavera et al. 
(2020)  

Precision Recall F1- 
Score 

Precision Recall F1- 
Score 

Non-Routine 0.41 0.28 0.33 0.47 0.18 0.26 
Routine 0.64 0.75 0.69 0.64 0.88 0.74 
Average 

(Avg) 
0.52 0.52 0.51 0.55 0.53 0.50 

Weighted Avg 0.55 0.58 0.56 0.58 0.62 0.56 

Accuracy 
(Acc) 

0.58 0.62 

Weighted Acc 0.52 0.52  

Table 8 
Mean nutritional and social metrics (in minutes) per user in the EgoRoutine 
dataset. The metrics are reported over all the recorded days, over the routine 
and, respectively, non-routine days.   

Mean 
times 

Time 
eating 
(TE) 

TE 
alone 

TE w/ 
one 
pers 

TE in 
group 

Social 
interaction 
time 

User 
1 

overall 65.00 20.20 5.90 38.90 157.01 
Routine 42.81 22.46 4.65 15.70 161.59 
Non- 
routine 

104.96 16.15 8.16 80.65 94.00 

User 
2 

overall 62.70 39.76 9.50 13.45 94.00 
Routine 41.95 33.30 6.87 1.78 71.55 
Non- 
routine 

111.11 54.83 15.62 40.66 146.39 

User 
3 

overall 62.34 24.74 22.09 15.51 86.04 
Routine 66.55 29.49 19.48 17.58 74.91 
Non- 
routine 

49.70 10.50 29.92 9.28 119.44 

User 
4 

overall 101.39 60.41 19.35 21.63 62.37 
Routine 81.50 33.96 15.91 31.63 85.01 
Non- 
routine 

157.86 122.00 29.90 5.96 12.67 

User 
5 

overall 131.37 64.69 31.49 35.19 70.95 
Routine 161.04 79.37 40.97 40.70 76.25 
Non- 
routine 

44.62 31.68 4.07 8.87 50.56 

User 
6 

overall 40.33 11.66 11.26 17.40 72.54 
Routine 27.95 9.23 8.93 9.79 51.41 
Non- 
routine 

83.65 20.18 19.42 44.04 146.50 

User 
7 

overall 72.51 32.36 15.86 24.28 71.63 
Routine 67.63 33.24 12.22 22.16 68.86 
Non- 
routine 

88.77 29.42 28.00 31.34 80.86  Fig. 8. Example of several people identified in the collection of photo-streams 
of user 6 based on the face clustering from stage A of the proposed pipeline. 
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5.2. User specific results: a case study 

We present the results at user level and as average to show the op-
portunities that the proposed model presents for behaviour under-
standing from visual data. Later, and due to space limitations, we 
describe the identified routines for user 6 in the EgoRoutine dataset and 
treat it as a case study. We analyze this user’s eating and social habits in 
order to showcase the applications of our proposed pipeline model. 

Table 8 displays the total eating and social interaction times in mi-
nutes, for each user. These times are accumulated over all images 

recorded by each user and over all the images corresponding to the 
routine and non-routine days. The instances in which an increase in total 
eating time also corresponds to an increase in social eating (i.e. time 
eating with one other person or in a group) are highlighted in the table. 
The increase is judged in the context of the user. 

As per Table 8, the correlation between increased total eating and 
social eating times occur for almost all users (except user 4). In 
approximately all cases (except user 5), the enhancing influence of social 
eating on the total eating time is present for the non-routine days. This 
implies that most users maintain a nutritional and social balance, 

Fig. 9. Routine clustering output resulting from our method applied to user 6.  

Fig. 10. Identified routine over the chronologically ordered days for user 6 in the EgoRoutine dataset.  

Fig. 11. Identified routine resulting from Talavera et al. (2020) over the chronologically ordered days for user 6 in the EgoRoutine dataset.  
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quantitatively speaking, during their routine; contrasting, during non- 
routine days, they have the tendency to over-indulge themselves in so-
cial eating contexts, as hypothesised in the introduction of this work. It is 
also notable that, for some users (i.e. users 2, 5, 6, 7), an increase in 
social eating times also corresponds to an increase in general social 
interaction times. Therefore, it can be inferred that food/meal sharing is 
a meaningful opportunity for creating and maintaining social bonds. 
Given the rather limited amount of data at hand, a definite correlation 
between the social influence on eating habits cannot be decisively 
determined. However, the results presented in Table 8 are powerful 
indicators that eating within a social context can lead to more time spent 
eating and, probably, to larger quantities of food consumed. 

A sample of the identified persons with whom user 6 has interacted 
throughout the recorded days is presented in Fig. 8. The persons have 
been re-identified in various situations by means of facial recognition; 
this can be observed in the images included in Fig. 8 through the change 
in backgrounds of the images. Moreover, the social engagement with the 
user is visible from the facial expressions captured in the images, i.e. the 
identified persons are captured smiling, talking, etc. 

Fig. 9 showcases the identified routines in the re-ordered daily 
routine distance matrix for user 6 in the EgoRoutine dataset. The rou-
tines are based on the discovered relations among days obtained by our 
proposed method. We identify two aspects: a routine cluster (i.e. days 
1–2, 4–6, 8–18, with the exception of days 13 and 14), and non-routine 
behaviour, consisting of days 3, 7, 13, and 14. These groups are visu-
alized by day in Fig. 10. 

In contrast, Fig. 11 indicates the same group visualization, but using 
the routine identification method proposed in Talavera et al. (2020). We 
notice that the user maintains a regular routine, with only small 

deviations in the form of few non-routine days, which may account for 
the difference between week days and weekends. For example, non- 
routine days 13 and 14 could fit a weekend period. The distance ma-
trix in Fig. 9 also shows some similarity between the non routine days 3, 
14, and 13, which also form a small cluster, indicating similar habits. 

Compared with the results from Talavera et al. (2020), which in-
troduces a solely nutritional approach to identifying eating routine for 
the EgoRoutine dataset, we notice that similar non-routine days were 
selected, in the form of days 3, 7, and 14. Our proposed model also 
identifies day 13 as non-routine, unlike the model in Talavera et al. 
(2020), which also considers days 15 and 18 non-routine. The overlap of 
non-routine days indicates that the user strayed from their usual habits 
significantly during those days, whether nutritionally or socially. The 
differently selected non-routine days indicate that, perhaps, the user 
strayed from routine from a nutritional standpoint (less time spent in 
food-related environments, for example) but behaved in a similar way 
socially, thus our proposed method may consider them routine, unlike 
the comparison method of Talavera et al. (2020). The routine days are 
selected similarly for both models, which solidifies the idea of a regular 
routine being maintained by this user. 

Given the detected routines, we computed the word clouds in Fig. 12 
that illustrates the most common food-related scenes seen in the 
detected routine days and non-routine days, respectively. In terms of 
common food scenes, there is some overlap between the routine and 
non-routine, in the form of the ‘restaurant’ and ‘supermarket’ classes, 
which are, overall, the most common for all users (Talavera et al., 2020). 
We can notice differences in terms of low appearance classes: for 
instance, the class ‘pub indoor’ appears only in non-routine, whereas the 
class ‘coffee shop’ appears only in the routine cloud. This strengthens the 

Fig. 12. Word cloud representation of the identified clusters by Isolation Forest for user 6. Word cloud (a) correspond to the identified routine and word cloud (b) to 
the remaining group of outliers which describe non-routine behaviour. The size of the food scene names indicates the frequency of the food scene within the routine, 
the colours were only chosen for presentation purposes. 

Fig. 13. Social interaction times with respect to food routine. Plots illustrate total time eating (TET), time eating alone (TEA), time eating with one person (TEO) and 
time eating with more than one person (TEG). All times are illustrated in minutes. 
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assumption that routine days might correspond to working days, when 
the user is forced to follow an appointed schedule, while non-routine 
days to free days, when the user has more freedom of choice in terms 
of spare time, entertainment activities they can follow. 

Based on the identified clusters, we further investigate the social 
eating aspects with respect to routines. The spider plots in Fig. 13 
showcase the amount of time (in minutes) spent in a social eating or 
interaction context during routine and non-routine days, respectively. 
What is more, in Fig. 14 we showcase the percentage of social eating in 
contrast to the total social interaction identified over all days of the user. 

For the routine days, a similarity in the shape of the spider plots for 
the days forming the cluster can be observed. This implies similarity in 
interaction patterns, although the specific times may differ. The total 
amount of time dedicated to eating habits daily is relatively low (at most 
50 min), out of which the user balances the time eating alone with time 
eating in the company of other people, with a predilection of group 
eating. On the other hand, the non-routine spider plot shows various 

shapes along to time differences, indicating higher variety of behaviour 
in those days. The total time eating is significantly higher than in the 
case of routine days (over 100 min spent eating for day 3). What is more, 
the predisposition of the user for social eating in groups is evident, days 
3 and 14 exhibiting high amounts both in total time eating and time 
eating in a group. The appreciation for social eating is also described by 
the percentage in Fig. 14, which showcases that almost 40% of the total 
social interaction of the user is realised in social eating circumstances. 

Further investigating the social eating behaviour of the user, Fig. 15 
illustrates the mean and standard deviation of people identified in the 
different food environments for the same user. On average, the user 
seems to interact with one or sometimes two people, which is consistent 
with the data shown in Fig. 13, for the routine days, which shows sig-
nificant periods of time spent eating with one person or in a group (i.e. 
two or more people). It appears that the user tends to enjoy eating with 
social company. 

Taking into account both aspects previously discussed, food scenes 
and social interaction, a timeline indicating the daily activity distribu-
tion was created. Fig. 16 illustrates the balance of food scenes and social 
activities within the recorded days classified as routine. 

Social interaction is consistent throughout most of the user’s recor-
ded days, and although the timing may differ, social eating is present as 
well. Certain blocks of mixed food activity and social eating may actu-
ally represent a lengthier social eating event differing in classification 
due to the camera position (i.e. people not present in part of the images 
consisting of food-related scenes). Overall, a routine of socialization and 
eating towards the second half of the day (social or not) can be seen 
throughout this user’s recordings. 

6. Discussions 

A broader image of behaviour is captured when investigating the 
correlation between nutritional and social habits. The knowledge of how 
nutritional habits are inferred by the social life of people can be applied 
in practice for discarding unhealthy habits, both from a nutritional and 
social standpoint, and for establishing new routines for an improved 
lifestyle. We address this challenge from a computer vision and machine 
learning point of view, and propose an image-based system for assisted 
living and well-being monitoring. We believe this can have a relevant 
societal impact and can have a positive influence in the health care 
system. 

Our proposed model has shown promising results indicating its 
suitability for the discovery of habits through the analysis of egocentric 
photo-streams when considering various food-related environments, 
eating times, as well as social factors. It provides with information 
regarding the user’s lifestyle in the hope of instilling changes and 

Fig. 14. Social eating interaction with respect to total social interaction identified for user 6.  

Fig. 15. Distribution of identified people per food-related scene for user 6.  
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improving overall health. 
The design of the proposed pipeline is modular, which implies that 

the different stages that compose it can be decouple and used individ-
ually, as well as replaced by other approaches. For instance, Stage A and 
Stage B could be decoupled together from the entire pipeline with the 
aim of computing other various metrics regarding the overall social 
interaction of the user per day, for example: total interaction time, time 
spent with one person, time spent in a group. These metrics can offer 
meaningful insights into the general behaviour of the user. 

The proposed visualization aim to provide visual insights into the 
lifestyle for both, the person who recorded the data and/or the specialist 
who evaluates the habits of that person. We believe that clear and 
informative visualization are of importance for an easy interpretation of 
the obtained results when people with different backgrounds are 
involved. 

Future lines of research will explore the incorporation of different 
descriptors of the daily activities of the user. What is more, personalized 
systems could be created for each user where the day description stage is 
customized based on a case by case basis. For instance, if a user might 
have a more active or social life, the day descriptors could weigh more 
these aspects. Within the proposed system, future studies can also focus 
on finding the optimal trade-off between encoding accuracy and 
encoding size of the auto-encoder in stage C of the pipeline. We think 
this could lead to increased performance in the identification of routine- 
related days. Moreover, based on the obtained results and discovered 
information, the incorporation of a recommendation system for the 
improvement of the user’s daily routine would lead to healthy living. 
Therefore, an end-to-end system capable of automatically processing the 
input data to later recommend actions to the user would be of high 
relevance for healthcare professionals and the general population. 

7. Conclusions 

The proposed automated system has successfully discovered social- 
nutritional routine and non-routine behavioural patterns through the 
analysis of egocentric photo-streams gathered by wearable cameras. 
These results provide personally tailored supervision of habits, showing 
the potential of our tool for innovative applications in the smart 
industry. 

We also propose tools for the visualization of the discovered routines 
by the proposed unsupervised learning methods. The visualization ac-
counts for both food-related environments and social interactions, thus 
providing insights for the time as well, which can allow specialists for 
the evaluation of the lifestyle of the camera wearer. 
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