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a b s t r a c t 

This paper proposes a novel methodology for delineating urban areas based on a machine learning algorithm 

that groups buildings within portions of space of sufficient density. To do so, we use the precise geolocation of 
all 12 million buildings in Spain. We exploit building heights to create a new dimension for urban areas, namely, 
the vertical land, which provides a more accurate measure of their size. To better understand their internal 
structure and to illustrate an additional use for our algorithm, we also identify employment centers within the 
delineated urban areas. We test the robustness of our method and compare our urban areas to other delineations 
obtained using administrative borders and commuting-based patterns. We show that: 1) our urban areas are more 
similar to the commuting-based delineations than the administrative boundaries but that they are more precisely 
measured; 2) when analyzing the urban areas’ size distribution, Zipf’s law appears to hold for their population, 
surface and vertical land; and 3) the impact of transportation improvements on the size of the urban areas is not 
underestimated. 
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. Introduction 

Understanding city size and why cities grow are two issues that
ave attracted the growing interest of researchers in recent decades
 Duranton and Puga, 2014 ). However, in their work one of the main
hallenges urban economists face, together with the scarcity of data,
s just how a city should be defined. Until recently, most available data
ere provided at the local administrative or local political unit level; yet,
sing these data has proved problematic: First, because the land size and
and use of these units are diverse and the population and economic ac-
ivity within them are not equally distributed (presenting a mix of both
ural and urban land) and, second, because cities can grow beyond their
orders spreading into the surrounding area. Given these circumstances,
 city definition based on economic characteristics makes little sense.
nfortunately, administrative areas are often used for policy-making
urposes but, here again, such areas do not usually reflect any functional
eality and may even compromise the effectiveness of resulting policies
 Briant et al., 2010 ). For these motives, an ability to define urban areas
ore accurately should aid analyses of the heterogeneous nature of pol-

cy impacts within the same administrative/political boundaries and of
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pillovers across functional/economic areas. It should also be helpful in
xamining the sensitivity of policy evaluation to how economic areas of
nterest are defined. 

We contribute to the literature by developing a new methodology for
elineating urban areas. By drawing on a unique database on the precise
eolocation of all 12 million buildings in Spain, we design a density-
ased machine learning algorithm to group buildings within portions
f space of sufficient density. In line with Rozenfeld et al. (2011) and
ellefon et al. (2019) , our objective is to delineate urban areas follow-

ng a bottom-up approach. These two papers both define cities through
he aggregation of cells based on a density criterion; however, here, we
o not rely on micro-aggregations to define the boundaries but use the
ocation of each of the buildings in Spanish territory as our first source
f information. One of the improvements provided by our method is
hat our algorithm uses only 10% of the entire sample at a time (with
,000 replications) and then extrapolates the structure captured in that
ubsample to the rest of the dataset. To ensure that the urban areas
elineated in this fashion are sufficiently robust, we consider that the
uildings belong to an urban area if they are assigned to that urban area
n 90% of these replications. We run different tests to provide evidence
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1 Except for the Basque Country and Navarra. 
f the stability of our algorithm and the result of our method is the de-
ineation of 717 urban areas accounting for 75% of the population and
ccupying less than 5% of the whole territory. 

Our dataset provides additional information that we are able to ex-
loit so as to better characterize Spain’s urban areas. First, we use infor-
ation on building heights (measured as the number of floors). Recent
apers by Ahlfeldt and McMillen (2018) , Brueckner et al. (2017) and
iu et al. (2018) highlight the importance of taking this measure into
ccount to understand the shape of cities and the impact the height
f buildings can have on land and housing values. Here, we calculate
he vertical land of the delineated urban areas as the footprint of the
uildings (horizontal land) multiplied by the number of floors. Our re-
ults indicate that the vertical land multiplies by three the amount of
eveloped land. This analysis of the vertical land provides a different
erspective on city size (especially in the case of the a country’s largest
rban areas). 

Second, we dispose of information on the use of the buildings (res-
dential vs non-residential) and the methodology we adopt also al-
ows us to define the employment centers within our delineated ur-
an areas. Thus, we can identify 2,056 employment centers, represent-
ng 63% of the total vertical land. However, only 70 centers house
ore than 10,000 jobs and just seven are home to more than 50,000

obs. These results are in line with the well-documented evidence that
conomic activity within urban areas is markedly more concentrated
nd presents different patterns of location to those presented by res-
dential areas. This exercise highlights an additional use of our algo-
ithm, namely, it provides a better understanding of a city’s internal
tructure. 

Various methodologies have been developed that define urban areas
s a collection of smaller units. A common approach in this regard re-
ies on commuting patterns. Here, as long as population mobility plays
 key role both in an economic system’s performance and in the daily
ife of individuals, the journey-to-work relationship between two areas
llows researchers to determine whether they belong to the same local
abor market and, hence, if they can be considered to form part of the
ame urban area (see Duranton, 2015 , for a review). However, because
f the lack of commuting data for some developing countries, an increas-
ng number of papers in recent years have opted to use information on
he distance between lights in nighttime satellite images to delineate
rban areas. Henderson et al. (2018) provide an overview of the appli-
ations of night light data in economics and Dingel et al. (2019) use
uch data to define metropolitan areas. Similarly, instead of using night
ight data a number of studies employ land cover data. This information,
rovided by NASA and, more recently, by the European Space Agency
ESA), among others is also available at the global scale. Examples of
his approach include Chowdhury et al. (2018) , who use such data to
stimate urban areas, and Baragwanath et al. (2019) , who use them
o define urban markets. Finally, recent developments in communica-
ion technologies have facilitated studies of how people use space in
ities, providing an important new tool for urban research, especially
or areas where data are scarce or simply not available. The work of
ouail et al. (2014) and Büchel and von Ehrlich (2019) are good ex-
mples of how cell phone data records can be used to understand the
patial structure of cities. 

The delineation method proposed here offers several advantages.
irst, it does not attempt to aggregate administrative units. Second, it
nly takes into consideration areas that have been developed (i.e. build-
ngs), ignoring undeveloped regions of the territory. Third, detailed in-
ormation about the buildings allows us to characterize more accurately
he structure of the city in terms of its verticality and the location of
esidential and non-residential activities. Fourth, our approach is more
obust than other methodologies and allows to explore the stability of
 boundary because it relies on the computation of several candidate
olutions that we then combine to arrive at our preferred solution. And,
nally, if the appropriate information is available, our algorithm can be
eplicated for other countries for two reasons: a) it is computationally
calable to large datasets and b) buildings are homogenous units across
ifferent countries. 

The rest of this paper is organized in six sections and three appen-
ices. In Section 2 we describe the data. Section 3 explains the method-
logy employed to delineate the urban areas. Section 4 presents the re-
ults. In Section 5 we compare our delineated urban areas with other
elineations. Finally, in Section 6 , we highlight the most important find-
ngs and draw our final conclusions. Appendix A includes the technical
etails of our algorithm; Appendix B reports some robustness checks of
he algorithm; and, Appendix C shows summary statistics. 

. Data 

Our dataset, provided by the Spanish Cadaster (Dirección General
el Cadastro), comprises a unique three-dimensional description of all
uildings in Spain 1 , geolocated with metric precision for the year 2017.
he Cadaster is an administrative registry, supervised by the Ministry
f Finance, that contains a description of all real estate data (urban and
ural). In other words, the Cadaster constitutes a record of the physical,
egal and economic characteristics of all the properties in the country,
ith one of its main uses being to provide accurate information for the

ax system. For example, one of the main local taxes in Spain, the prop-
rty tax, is dependent on the information contained in this register. In
his regard, it should be noted that the law holds that the registration
f every property is mandatory and free of charge. This rule guarantees
hat the data cover the universe of buildings. 

All unprotected data referring to each property, identified by
ts cadastral reference, can be downloaded from the Cadaster at
ttp://www.sedecatastro.gob.es . These data include all information
bout the building except that referring to its ownership and value. For
ach building, this url provides access to an online form that provides
asic information and which can be downloaded in PDF format. It also
ives access to a detailed map of the building that can be downloaded
n GIS format and detailed information about such characteristics as:
) the building’s exact location and total built surface, 2) the year of
onstruction, 3) its use (residential or non-residential), 4) height (num-
er of floors above ground), 5) its footprint (m 

2 ), and 6) the number
f total units that are contained in each building and, specifically, the
umber of residential units (dwellings). By way of illustration, Fig. 1
hows the online form and footprint map of Antoni Gaudí’s well-known
uilding, ’La Pedrera’, in Barcelona. The online form indicates that it
as built between 1906 and 1912, and records its postal address, foot-
rint (1.808 km 

2 ) and main use (residential). 
Table 1 reports the main figures to be drawn from the database. Thus,

n Spain there are more than 12 million buildings (that is, 0.25 build-
ngs per capita; 75% of them with a residential use) made up of just
ore than 37 million units (63% of which are classified as dwellings).
s discussed in the Introduction, it is especially useful to exploit the

nformation available about building heights and footprint to obtain
hat we denote as the ’horizontal’ area (the building’s footprint) and

he ’vertical’ area (which is obtained by multiplying the building’s foot-
rint by the number of floors). The horizontal area of the buildings in
pain covers 3,099 km 

2 (less than 1% of the country’s total surface area),
hile the vertical area is nearly three times that of its horizontal area

8,468 km 

2 ), which corresponds roughly to the average height of three
oors per building. 

Fig. 2 shows the distribution of buildings across Spanish territory
the colored dots reflecting the density of buildings): thus, black identi-
es areas without any buildings, while the blue, green and yellow dots

ndicate areas with an increasing concentration of buildings (with yel-
ow showing the highest concentrations). The areas with most yellow
ots appear along the Spanish coast and in the center of the country,
ith the Madrid area being the brightest. 

http://www.sedecatastro.gob.es
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Fig. 1. An example of building information contained in the Cadaster: La Pedrera. 
Source : http://www.sedecatastro.gob.es (left image). Photo by Florencia Potter on unsplash.com (right image). 

Table 1 

Buildings in Spain. 

Counts Areas 

Buildings 12,069,635 Horizontal area = Σ(Building footprint) 3,099 km 

2 

Residential 75.7% Percentage of Spain’s land area 0.6% 

Non-residential 24.3% 

Units within buildings 37,011,784 Vertical area = Σ(Footprint × floors) 8,468 km 

2 

Residential 63.3% Residential 65.2% 

Non-residential 36.7% Non-residential 34.8% 

Average number of floors 2.9 
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Fig. 3 presents 3-D illustrations of the location of buildings in central
reas of the present-day municipalities of Madrid, Barcelona, Sevilla,
aragoza, Valencia and A Coruña. Interestingly, the concentration of
uildings and the verticality of these areas is quite distinct. 

. Delineating urban areas with buildings and a machine learning

lgorithm 

We delineate urban areas as portions of land with a minimum, un-
nterrupted level of building density. To do so, we develop a novel ap-
roach as an extension of a well-understood machine learning algorithm
DBSCAN; Ester et al., 1996 ) that we name ‘Approximate DBSCAN’ (A-
BSCAN) 2 Its purpose is to detect robust clusters of buildings that reach
 minimum density threshold. To achieve this, our algorithm requires
wo input parameters: first, the minimum number of buildings that each
rban area (cluster) needs to include to be considered so; and, second,
 maximum search distance in which to count surrounding buildings
o check whether the first criterion is satisfied. Once a set of buildings
s identified as a cluster, our method draws its surrounding boundary
sing the 𝛼-shape algorithm Edelsbrunner et al. (1983) , a widely used
pproach to delineate tight bounding boxes. 

Fig. 4 illustrates how DBSCAN works for a random group of build-
ngs ( Fig. 4 a) when the minimum number of buildings is set at four. The
2 An open-source implementation of A-DBSCAN, written in Python fol- 
owing the scikit-lean API, is available at https://github.com/ 
arribas/adbscan _ buildings . 

r  

o  

a  

i

lgorithm first chooses a building (in red), draws a circle with a radius
qual to the chosen distance threshold (the second parameter) and eval-
ates the minimum number criterion ( Fig. 4 b). In this case, the criterion
s satisfied and this building is labelled as a ’core’ point. The algorithm
ontinues to run by drawing circles around the other points and eval-
ating the minimum number criterion. Fig. 4 c shows all the buildings
hat satisfy the minimum number criterion and which are core points.
ll these buildings/points are reachable, that is, there is a direct con-
ection from one building to another or an indirect link via paths that
ross through other core buildings. 

Fig. 4 d shows other buildings (in blue) that do not satisfy the mini-
um number criterion but which are reachable from some core build-

ngs (i.e. they are within the core building circles). These are the so-
alled ‘border’ points and they also belong to the delineated urban
rea. Finally, Fig. 4 e shows a building (in green) which, after draw-
ng the circle with a radius equal to the distance threshold, does not
atisfy the minimum number criterion. This type of building/point is
he so-called ‘noise’ point and does not belong to the delineated urban
rea. 

The final delineated urban area ( Fig. 4 f) is made up of core and bor-
er buildings (red and blue points) but does not include any noise build-
ngs (green points). By definition, the core of the delineated urban area
as the highest density of buildings and the border area the lowest. As a
esult, our definition of the urban area is in line with the traditional idea
f a city, that is, a place with high levels of building density and with
n urban spatial structure in which building density decreases towards
ts the boundaries. 

http://www.sedecatastro.gob.es
https://unsplash.com/@florenciapotter
https://unsplash.com
https://github.com/darribas/adbscan_buildings


D. Arribas-Bel, M.-À. Garcia-López and E. Viladecans-Marsal Journal of Urban Economics 125 (2021) 103217 

Fig. 2. Buildings in Spain. 
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When applying the algorithm to our building dataset, we set the two
arameters - that is, the minimum number of buildings and the distance
hreshold - based on knowledge and evidence from the Spanish urban
ystem. First, we set the minimum number to 2,000 buildings in order
o ensure the urban areas we delineate house, at least, 5,000 people.
n average, the Spanish household comprises 2.5 members ( Instituto
acional de Estadística, 2018 ). This minimum threshold is set assuming

hat the average building is a single family house, which is not exactly
he case of some areas of Spain. However, we do not want to under-
stimate, or rule out altogether, the newer settlements built largely in
ccordance with that model of urban development. For the maximum
istance threshold, our preferred results use 2,000 m. This parameter
s chosen based on information about Spanish commuting patterns. The
verage daily distance commuted by a person in Spain’s biggest cities is
pproximately 4 km ( Cascajo et al., 2018 ) which, divided by two, yields
 km per trip. 

As mentioned, our approach uses a machine learning algorithm,
ased on the original DBSCAN developed by Ester et al., 1996 . DBSCAN
acilitates cluster identification based on measures of density without
he need for auxiliary geographies. However, from a computational
oint of view, it does not scale well and, more importantly, it does not
nclude any mechanism to ensure the robustness of the clusters (or, in
ur case, urban areas). To address this shortcoming, we specifically de-
eloped the A-DBSCAN extension. Thus, we propose turning the original
lgorithm into an ensemble that combines a number of exact DBSCAN
uns (1,000 replications) on random subsamples (10% of the original
ataset) that are expanded to the rest of the sample through a nearest-
eighbor algorithm. These solutions are then summarized in one final
et of urban areas (clusters) in which buildings are classified based on
heir most common occurrence. That is, to ensure robustness, the build-
ngs belonging to an urban area are those assigned to that urban area in
t least 90% of the replications. Otherwise, these buildings are classified
s noise points and do not belong to any urban area. A more detailed
nd technical explanation of A-DBSCAN is provided in Appendix A . 

We perform several experiments to explore the degree of agreement
etween our algorithm and the original DBSCAN. An ideal test in this
ontext would be to compare the results of the two algorithms when ap-
lied to the entire dataset of Spanish buildings. However, this is not com-
utationally feasible (indeed, one of the reasons for the development of
-DBSCAN is precisely to overcome this computational hurdle). Instead,
e consider different parts of Spain characterized by varying numbers
f buildings and population, urban areas of different size, and by dif-
erent geographical features. We are then able to run both algorithms
n these subsets and to compare their delineated urban areas. To do so,
e use the ‘adjusted Rand index’ ( Hubert and Arabie, 1985 ), a measure
f similarity between two groups or classifications that is widely used
n machine learning. In our case, we compare the set of delineated ur-
an areas and the buildings that make up each area when using (1) our
lgorithm (with the 1,000 replications) and (2) the original DBSCAN.
athematically, 

and index = 

𝑎 + 𝑏 

𝑎 + 𝑏 + 𝑐 + 𝑑 

here a is the number of buildings that are assigned to the same urban
reas in (1) and (2); b is the number of buildings that are assigned to
ifferent urban areas in (1) and (2); c is the number of buildings that
re assigned to the same urban areas in (1) and to different urban areas
n (2); d is the number of buildings that are in different urban areas in
1) and in the same urban areas in (2). Intuitively, 𝑎 + 𝑏 can be consid-
red as the number of agreements (i.e., buildings assigned to the same
rban areas in (1) and (2)) and 𝑐 + 𝑑 as the number of disagreements
i.e., buildings assigned to different urban areas in (1) and (2)). As a
esult, the Rand index measures the ratio of agreements between the
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Fig. 3. Zooming in on Spain. 
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wo methods over the total number of buildings, and its values range
etween 0, dissimilarity, and 1, maximum similarity 3 

The first three columns in Table 2 present the results of these compar-
sons for six different parts of Spain. Column 1 shows their geographical
ocation; column 2 reports the size of their population, and column 3
resents the corresponding Rand index. In general, the degree of simi-
arity between the delineated urban areas when using the two methods
s quite high, with the maximum value being recorded for Sevilla (with
3 We use the adjusted version of this index that corrects for the probability of 
uildings being assigned to the same urban areas by chance. To do so, we use 
he implementation in the Python library scikit-learn ( Pedregosa et al., 
011 ). 

1  

t  

i  

s

 97% degree of similarity) 4 This is remarkable because our algorithm
ses only 10% of the entire sample to calculate the exact DBSCAN (with
,000 replications), and then extrapolates the structure captured in that
ubset to the rest of the dataset. Altogether, these results provide evi-
ence of the efficiency and effectiveness of our algorithm. 

An additional advantage of our algorithm is its sampling approach,
ince it allows us to explore the stability of the delineations. In other
ords, given that each of the final delineated urban areas are based on
,000 replications, it is possible to quantify the degree of agreement be-
ween the 1,000 delineations for each urban area. The last three columns
n Table 2 explore this dimension for the largest urban areas (column
4 Additional computations for other randomly selected parts of the country 
how values that are always above 80%. 
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Table 2 

Testing A-DBSCAN: Rand and Stability indexes. 

Notes : Gridded population data from National Institute of Statistics (INE). http://ine.es/censos2011_datos/cen11_datos_resultados_rejillas.htm. 
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) found in each of the aforementioned parts of Spain. In column 5 we
raw the final boundaries of each urban area (the thicker red line) on top
f the delineations of each replication (thinner black lines). The figures
llow us not only to compare the overall stability between delineations,
ut also to identify areas within a given urban area of greater and lesser
tability. For instance, while A Coruña’s northern side displays a high
egree of agreement, its southern border is more variable across repli-
ations, suggesting a more nuanced boundary. This approach also iden-
ifies borderline cases associated with more disperse developments that
eet the requirements imposed by the algorithm in a large number of

eplications but not in enough to grant final assignation into the urban
rea. Zaragoza is a good example of this situation. 

To summarize these visual displays, we compute a Stability index,
hich is based on the average difference between the delineated area in

ach single replication and that of the final delineated urban area. We
xpress its value as a percentage of the final surface to correct for city
ize effects: 

tability index = 

∑
𝑟 

|𝐴 𝑟 − �̊� |
𝑅 

100 
�̊� 

here A r is the surface of the boundary obtained in replication r , �̊� is
he surface of the final delineation, and R is the total number of replica-
ions. This measure captures the extent to which individual boundaries
rawn as part of our method spatially overlap with the final boundary
hosen. Each individual drawing of the boundary might be larger than
he final one (as illustrated in the visualizations in Table 2 ) and include
uildings that do not form part of the final delineated urban area. How-
ver, the difference between the two offers a measure of the stability of
he final delineation and of the extent to which urban development is
learly delimited in the periphery of an urban area or, on the contrary,
he degree to which it fades away progressively. The index has a lower
ound of zero for the case of complete stability, when all replications
gree exactly, and is not upper bounded (the difference between the fi-
al delineation and each replication can be arbitrarily large). Column
 in Table 2 reports the Stability indexes for the selected urban areas.
n general, the values show high degree of stability in the delineations.
nce again, the case of Sevilla stands out as it shows the closest value to
ero and, as a result, the highest degree of stability between the delin-
ations. In contrast, and as mentioned when discussing the boundaries
column 5), less stability is found in Zaragoza because of a disperse de-
elopment that is not assigned to the final delineation of its urban area.

In summary, our algorithm for delineating urban areas has certain
dvantages over other methods. First, it is density-based and, in combi-
ation with our building dataset, identifies urban areas that only con-
ain continuous parcels of space where the building density exceeds a
inimum threshold. As discussed, this feature is in line with the tra-
itional idea of a city that has come into existence because of the ag-
lomeration economies created by the high concentration of population
nd firms. On the other hand, delineations based on, for example, com-
uting and/or administrative boundaries include large areas of unde-

http://ine.es/censos2011_datos/cen11_datos_resultados_rejillas.htm
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Fig. 4. An example of (Approximate-)DBSCAN algorithm. 

v  

l  

r  

t  

i  

s  

t  

b  

(  

m  

s  

p  

a  

m

4

4

 

t  

a  

u  

(  

b  

(  

i  

t  

e  

w  

T  

o  

(  

r  

4  

5  

t  

o  

t  

s  

e

eloped land, which reduces the overall city density. Second, our de-
ineated urban areas are spatially continuous collections of buildings
ather than exogenous aggregations, such as grid cells or administra-
ive boundaries. Such ex-ante groupings may be necessary when there
Table 3 

Buildings and delineated urban areas. 

Panel A: Counts and areas for all delineated cities 

Counts 

Buildings 5,719,503 Horizonta

Percentage of total buildings 47.4% Percen

Residential 83.1% 

Non-residential 16.9% 

Units within buildings 26,606,814 Vertical a

Percentage of total units 71.9% Percen

Residential 63.9% Reside

Non-residential 36.1% Non-r

Average number of floors 3.1 Delineated

Percen

Panel B: Number of urban areas by population size 

Urban areas 

All 717 

Population ≤ 5000 131 

5,000 < Population ≤ 10,000 220 

10,000 < Population ≤ 25,000 189 

25,000 < Population ≤ 100,000 120 

100,000 < Population ≤ 500,000 47 

Population > 500,000 10 

Notes : In 2011, 46,815,916 inhabitants lived in Spain. Populatio
within the boundaries of our urban areas) from the 2011 Popula
s no information available about individual locations or even justified in
ome specific cases but, generally, they imply a loss of granularity. Fur-
hermore, they can potentially distort the final conclusions of analyses
ased on them: the so-called ‘Modifiable Areal Unit Problem’ (MAUP)
 Briant et al., 2010, Openshaw, 1984 ). Third, our algorithm is robust to
arginal changes in the data and has a ‘built-in’ approach to explore

olution stability. Furthermore, similar to bootstrap estimates, the pro-
osed sampling approach ensures the results are computationally scal-
ble and, thus, feasible in large datasets like ours (with more than 12
illion buildings). 

. Urban areas in Spain 

.1. Main results 

As can be seen in Table 3 , our method delineates 717 urban areas
hat account for approximately 75% of the Spanish population. These
reas contain 5.7 million buildings (roughly half of Spain’s total), made
p of 26 million units (72% of the total). The sum of building footprints
the horizontal area) is 1,596 km 

2 . When we also take into account the
uildings’ floor area (the vertical area), this figure is multiplied by three
4,869 km 

2 ). Interestingly, the average number of floors in the buildings
n these urban areas is three. When considering the buildings’ footprint
ogether with the land lying between the buildings (streets, roads, parks,
tc.), the total surface of the delineated urban areas reaches 22,469 km 

2 ,
hich represents nearly 5% of the surface area of the whole of Spain.
he use of the buildings of these urban areas is mainly residential (83.1%
f the cases). As for the population size of the delineated urban areas
 Table 3 Panel B), ten of them have more than 500,000 inhabitants and
epresent one third of the Spanish population. Together with the next
7 biggest urban areas (those with a population between 100,000 and
00,000 inhabitants), they represent 52% of the whole Spanish popula-
ion. The data for these ten urban areas seem to indicate that the biggest
nes in terms of population have larger surfaces and vertical lands. For
he delineated urban areas, the correlation between their population and
urface is 0.89, while that between their population and vertical land is
ven bigger (0.98). 
Areas 

l area = Σ(Building footprint) 1,596 km 

2 

tage of total horizontal area 51.5% 

rea = Σ(Footprint × floors) 4,869 km 

2 

tage of total vertical area 57.5% 

ntial 71.5% 

esidential 28.5% 

 surface 22,469 km 

2 

tage of Spain’s land area 4.4% 

Population Percentage of Spain’s pop 

35,015,936 74.8% 

472,080 1.0% 

1,566,350 3.4% 

2,971,230 6.4% 

5,719,630 12.2% 

8,742,245 18.7% 

15,544,400 33.2% 

n is computed using population grid data (1 × 1 km cells 
tion Census. 
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Table 4 

The largest delineated urban areas. 

Population Buildings Units Surface (km 

2 ) Horizontal area (km 

2 ) Vertical area (km 

2 ) Floors 

Madrid 4,515,845 198,517 2,901,415 691 116 412 4.3 

Barcelona 4,375,970 381,730 2,891,685 1,191 133 512 3.9 

Valencia 1,654,565 174,281 1,290,016 628 66 218 3.7 

Sevilla 1,214,080 203,270 767,174 635 53 149 3.0 

Málaga 840,150 81,916 660,119 309 33 100 3.2 

Zaragoza 646,785 23,612 475,756 88 15 60 4.9 

Murcia 619,740 120,767 484,300 427 37 99 2.9 

Santa Cruz 584,520 120,724 384,778 356 27 79 3.0 

Las Palmas 578,735 93,690 372,973 319 20 65 3.2 

Granada 514,010 112,904 434,175 342 24 75 3.0 

Notes : Population is computed using population grid data (1 × 1 km cells within the boundaries of our urban areas) from 

the 2011 Population Census. Surface is total land of the delineated urban area. Horizontal area refers to the sum of building 
footprints. Vertical area is the sum of floor footprints. Floors refers to the average number of floors. 
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5 Since the circle around each unit has an area of 0.196 km 

2 ( = (0.250) 2 × 𝜋), 
the minimum number of units can be obtained by multiplying this area by the 
minimum density, that is, 49 = 0.196 km 

2 × 250 units/km 

2 . 
These results are obtained when the algorithm considers the num-
er of buildings to be found within a 2,000-meter threshold. However,
e also calculated the algorithm modifying this distance to see how it
ffects our results. Table B.1 in Appendix B presents the results of the de-
ineated urban areas with different distance thresholds (1,500 m, 1,600
, 1,800 m, 2,200 m, 2,400 m and 2,500 m). As expected, as the thresh-

ld distance falls, the number of delineated urban areas increases and
he percentage of population contained in the new delineated urban ar-
as diminishes. Thus, for the smallest distance threshold (i.e. 1,500 m),
e obtain 773 urban areas (with 70% of the population). In contrast,
s the distance increases, we obtain fewer urban areas containing more
opulation. For example, when the distance was greatest (i.e. 2,500 m),
99 urban areas are delineated containing 79% of the total Spanish pop-
lation. 

Table 4 describes the characteristics of the ten largest urban areas
n Spain in terms of population, number of buildings and units, sur-
ace, horizontal and vertical area and number of floors. It is interesting
o see the different structures presented by these urban areas. For ex-
mple, Madrid and Barcelona contain a similar number of inhabitants
4.52M and 4.37M, respectively) but the surface area and the number
f buildings they contain is quite different. Barcelona has nearly twice
he surface area and twice the number of buildings as Madrid. The other
ight urban areas are much smaller. 

Fig. 5 shows the geographical location of the 717 urban areas (with
olors ranging from green to yellow with increasing density of buildings
ithin the urban area). As can be seen, most of the urban areas are

oncentrated along the Mediterranean coast, and in the center and south
f Spain. The smaller scale illustration in Fig. 6 shows the delineated
rban areas in the region of Barcelona. 

It is interesting to compare our results with those reported by
ellefon et al. (2019) who also delineate the French urban areas us-

ng building density but the authors apply a new dartboard methodol-
gy. Although France and Spain are similar countries (in terms of eco-
omic development, location, etc.), some aspects of their respective ur-
an structures differ considerably. France has 0.5 buildings per capita
covering 0.9% of the land), while in Spain there are 0.25 buildings per
apita (covering just 0.6% of the territory). Likewise, the average num-
er of floors in French buildings is two, while, as we have seen, in Spain
t is three. Thus, initially it would appear that France presents a less
ense urban system. When applying the delineation method to French
uildings, 7,223 urban areas are obtained of which 695 have a core.
hese areas concentrate 75% of the French population. This last figure

s quite similar to the one reported here for the Spanish urban areas. 

.2. Identifying employment centers within the urban areas 

An interesting exercise to illustrate a further application of our
ethod is the identification of employment centers within each of the
rban areas. The goal of this exercise is to focus specifically on the con-
entration of economic activity. With this purpose in mind, we adopt
 similar approach to that described in Section 3 , albeit with some dif-
erences. Most importantly, we focus on units rather than on buildings,
iven that a single building may include several units (especially if it
ontains more than one floor). This is a prevalent feature of CBDs and
ther forms of employment concentration where firms and workers clus-
er to benefit from density. Using units instead of buildings also allows us
o account for the difference between vertically dense areas and those
lustered only horizontally. This implies, in the case of this exercise,
orking only with the non-residential units. 

Although the identification mechanism is similar to that used when
elineating city boundaries, a few changes have to be introduced. First,
nstead of running a single instance of the algorithm for the entire
ataset, we apply the method to each urban area delineated in the pre-
ious stage. Second, for each dataset of urban area buildings, we run A-
BSCAN using 50% of the sample. We retain 90% as the stability thresh-
ld and 1,000 replications to generate the delineations. Third, while
ach point still represents a single building, we now weight them based
n the number of non-residential units that the building houses. Finally,
e adapt our two algorithm parameters (minimum number of buildings
er urban area and distance threshold) to identify employment centers
n accordance with methods proposed in the literature. The most fre-
uently used are those based on density thresholds ( Giuliano and Small,
991; McMillen and Smith, 2003; Giuliano et al., 2007; Muñiz et al.,
008 ) and density peaks ( McMillen, 2001; Redfearn, 2007; Garcia-López
t al., 2017b; 2017a ), where an employment center is a place whose pri-
ary feature is a high density of workers (and certainly one with a den-

ity higher than that of nearby locations). Giuliano and Small (1991) and
cMillen and Smith (2003) define this density as 2,500 employees per

m 

2 . Assuming ten employees per non-residential unit ( Fariñas and
uergo, 2016 ), the threshold we need to impose is 250 non-residential
nits per km 

2 . By considering a distance threshold of 250 m, the mini-
um number of non-residential units is therefore 49 5 

Table 5 presents the results of the delineation of the employment
enters within each of the urban areas. Panel A shows that the footprint
f the employment centers amounts to 886 km 

2 (that is, 55% of the
orizontal land of all the urban areas). Interestingly, the economic ac-
ivity inside the urban areas is clearly more concentrated and presents a
istinct pattern of location to that of residential use. When we analyze
he vertical land associated with these employment centers, the surface
ncreases to 3,060 km 

2 (that is, 63% of the vertical land of all the urban
reas). Thus, unsurprisingly, insofar as the average number of floors is
.5 in the employment centers, the density of buildings in these areas is
igher. 
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Fig. 5. Delineated urban areas in Spain. 

Fig. 6. Delineated urban areas in the Barcelona region. 
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Table 5 

Delineated employment centers in the urban areas. 

Panel A: Counts and areas for all delineated employment centers 

Counts Areas 

Buildings 3,632,133 Horizontal area = Σ(Building footprint) 873 km 

2 

Percentage of buildings in urban areas 63.5% Percentage of horizontal area in urban areas 54.7% 

Units within buildings 21,042,024 Vertical area = Σ(Footprint × floors) 3,064 km 

2 

Percentage of units in urban areas 79.1% Percentage of vertical area in urban areas 62.9% 

Average number of floors 3.5 Delineated surface 3,020 km 

2 

Percentage of total surface of urban areas 13.4% 

Panel B: Number of employment centers by size 

Employment centers Urban areas 

All 2056 in 717 

Employment ≤ 2500 jobs 1420 in 503 

2,500 < Employment ≤ 5000 347 in 297 

5,000 < Employment ≤ 10,000 193 in 169 

10,000 < Employment ≤ 25,000 70 in 63 

25,000 < Employment ≤ 50,000 19 in 17 

Employment > 50,000 7 in 7 
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Panel B shows that, with no restriction on the size of the employ-
ent centers, the 717 urban areas contain 2056 employment centers.
owever, when we establish a minimum number of jobs per center (so
s to take the largest economic agglomerations into consideration), the
umber of employment centers falls. Thus, there are only 70 employ-
ent centers with more than 10,000 jobs and just seven centers with
ore than 50,000 jobs. In fact, only the biggest urban areas have more

han one employment center with more than 10,0000 jobs. This is the
ase, for example, of the cities of Barcelona (nine employment centers),
alencia (five), Madrid (four) and Málaga (three). This evidence is in

ine with the polycentric structure of these urban areas as reported and
nalyzed by ( Garcia-López, 2010; 2012 ). To illustrate how the algorithm
orks to delineate employment centers at a smaller scale, Fig. 7 shows

he nine biggest delineated centers in the urban area of Barcelona. 

. Comparing our delineated urban areas 

Comparing our urban area delineation results, obtained with a ma-
hine learning method based on the geolocation of the country’s build-
ngs, with previous delineations performed for Spain is far from straight-
orward. The main reason for this is that all previous methodologies
ave taken the municipality (i.e. the political administrative local en-
ity) as their starting unit of analysis. In such studies, urban areas were
uilt by aggregating surrounding municipalities to a central one. Spain
as 8,131 municipalities, most of them quite small (in fact, 90% have
ewer than 5,000 inhabitants) and with considerable variation in terms
f their surface area. This suggests that these methodologies are likely
o be much less precise and that their results cannot be treated at the
ame scale as ours. Despite this, it is nevertheless interesting to compare
ur results with those obtained using these different methodologies. 

In recent years, there have been a few attempts to aggregate mu-
icipalities into urban areas. The Statistical Atlas of Urban Areas (Atlas
stadístico de las Áreas Urbanas), published at fairly regular intervals,
y the Ministry of Public Works defines 91 urban areas. The main limita-
ion of the methodology employed, besides its use of the administrative
orders of the municipalities as its starting unit, is that it only considers
n urban area if the central city has more than 50,000 inhabitants. After
dentifying these big central municipalities, neighboring municipalities
ith sufficient economic links and sufficient numbers of commuters be-

ween the two units are added. Employing a very similar methodology,
he AUDES research Project (AUDES Areas Urbanas de España 6 ), con-
6 AUDES project. Documentation and open data available at http:// 
larcos.esi.uclm.es/per/fruiz/audes/ (accessed March 2018). 

t  
ucted in 2010, represented another attempt to delineate urban areas.
he aim of this project was to delineate all the urban areas in Spain
not just the biggest ones) using commuting and urban contiguity pat-
erns. As a result, 261 urban areas were defined. The restriction imposed
y the AUDES project was that an urban area had to have a minimum
opulation of 20,000 inhabitants. 

Addressing a different objective, and drawing solely on commuting
ata from the 2011 Census, Feria and Martínez-Bernabéu (2016) defined
ocal Labor Markets for Spain by adapting the procedure employed by
he Office of Management and Budget for the US Census 7 The main limi-
ation of this particular exercise was that the initial population threshold
mposed by the authors was 100,000 inhabitants and for this reason they
dentified just 41 local labor markets. 

As discussed, comparing our urban area delineations with existing
nes is conceptually challenging but empirically possible. By way of an
nitial approach, Panel B in Table 6 ranks the 10 largest urban areas
elineated by the AUDES methodology that we consider to have the
ewest limitations, as well as being the one for which we can access most
ata. We include our results in Panel A and, in Panel C, the outcomes
orresponding to the municipalities’ administrative borders, which we
onsider informative. For each urban area and method, we show the
opulation (in thousands of inhabitants), the surface (in km 

2 ) and the
ertical area (in km 

2 ). 
On average, a comparison of our delineations with those performed

y AUDES shows that our method delineates cities that contain less pop-
lation (up to 15% less). Likewise, the pattern that emerges when con-
idering area as opposed to population is similar, and if anything slightly
ore restricted boundaries than those identified by AUDES (our urban

reas have a surface area that is one third less). Indeed, proportionally,
hese differences are larger than when considering population. This out-
ome is probably the consequence of our working with buildings instead
f basing the aggregation on the municipal units. However, it is interest-
ng to see how this approach affects some of the biggest urban areas. For
xample, while the population assigned to Madrid’s urban area by AU-
ES is 40% greater than that delineated by our algorithm (6.1 vs 4.5M,

espectively), the area within the city’s boundary is almost seven times
arger for AUDES than for our delineation (4,124 vs 691 km 

2 , respec-
ively). In the case of the urban area of Barcelona, the outcome is quite
istinct. Both methods delineate an area of similar population (around
.3M inhabitants) but the surface assigned by AUDES is 26% greater
han that assigned when using our method (1,506 vs 1,191 km 

2 ). In-
erestingly, the surface of the administrative area of Barcelona is just
7 For a detailed description of the methodology, see Feria et al. (2015) . 

http://alarcos.esi.uclm.es/per/fruiz/audes/
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Fig. 7. The nine large employment centers delineated in the urban area of Barcelona. 

Table 6 

Comparison between the largest urban areas in Spain using different methods. 

Panel A: A-DBSCAN Panel B: AUDES Panel C: Municipalities 

Population 
(‘000 inh) 

Surface 
(km 

2 ) 
Vertical 
(km 

2 ) 
Population 
(‘000 inh) 

Surface 
(km 

2 ) 
Vertical 
(km 

2 ) 
Population 
(‘000 inh) 

Surface 
(km 

2 ) 
Vertical 
(km 

2 ) 

1 Madrid 4,516 691 412 Madrid 6,143 4,124 689 Madrid 3,314 605 298 

2 Barcelona 4,376 1,191 512 Barcelona 4,348 1,506 567 Barcelona 1,758 99 232 

3 Valencia 1,655 628 218 Valencia 1,641 1,135 227 Valencia 967 137 83 

4 Sevilla 1,214 635 149 Sevilla 1,227 1,467 163 Sevilla 715 141 77 

5 Málaga 840 309 100 Bilbao 948 860 n.a. Zaragoza 695 974 88 

6 Zaragoza 647 88 60 Zaragoza 747 2,290 116 Málaga 573 395 65 

7 Murcia 620 427 99 Málaga 647 588 79 Murcia 462 886 70 

8 Sta Cruz 585 356 79 Murcia 573 1,155 98 Palma 421 209 58 

9 L. Palmas 579 356 65 Palma 544 998 89 Hospitalet 412 14 18 

10 Granada 514 342 75 Sta Cruz 512 608 68 L. Palmas 406 102 40 

14,967 4,667 1,769 17,332 14,731 2,096 9,723 3,562 1,029 

UAs 717 296 8,131 
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Fig. 8. Overlap between different urban area delineations. 
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8 The index between AUDES and municipalities is 0.007 and, as a result, the 
degree of similarity between both delineations is also quite low. 
9 km 

2 . In contrast, the urban areas of Zaragoza and Murcia are espe-
ially extensive according to the administrative delineation of their bor-
ers (974 and 886 km 

2 , respectively), but their surface sizes are much
maller according to our delineation method (88 and 427 km 

2 , respec-
ively). As for the vertical land of the urban areas, even this is greater,
n average, according to the AUDES delineation, although the differ-
nce between the two methods is smaller than that for their respective
urface areas. 

Because our method takes buildings as its basic unit of analysis and
oes not impose any ancillary geography to calculate densities, the
oundaries it generates do not include any low density spaces, which
bound in the peripheries of Spain’s municipalities. However, it should
e borne in mind that these conclusions are based on a small subset of
ities. To provide confirmation, we would need to expand the analysis
o the entire set of delineations. In the sections that follow, we report
ifferent exercises aimed at comparing more accurately the outcomes of
he different delineation methods. 

.1. Rand index and overlapping 

In this section, we employ the adjusted Rand index (see Section 3 )
o compare our delineated urban areas with those of the AUDES project
nd the Spanish municipalities. As discussed, the index developed by
ubert and Arabie (1985) measures the ratio of agreements (buildings
ssigned to the same urban area in two delineations) over the total num-
er of buildings, and its values range from 0, dissimilarity or no overlap,
o 1, maximum similarity or complete overlap. The ratio between our
lgorithm and AUDES is 0.350, while that with the municipalities is
.003, indicating that the former provides the closest definition to our
wn delineations, while the municipalities is least similar 8 

Another way to compare the three delineations is simply by ana-
yzing the extent to which, and just where exactly, the alternative de-
ineations (AUDES and municipalities) are included within the bound-
ries defined by our algorithm. Fig. 8 presents two histograms showing
he number of AUDES urban areas and Spanish municipalities included
ithin our A-DBSCAN boundaries ( Figs. 8 a and 8 c, respectively) and

wo maps showing their location ( Figs. 8 b and 8 d, respectively). In line
ith the evidence presented in the paragraph above, A-DBSCAN delin-

ations coincide much more closely with the AUDES boundaries than
hey do with the municipalities. This is to be expected, given that AU-
ES are groups of municipalities linked by their common geography
nd commuting flows. However, the figure provides evidence that our
ethod is able to approximate these same boundaries using a quite dis-

inct approach. 
Geographically, our maps also reveal a number of clear patterns. Our

elineated urban areas containing parts of more than two AUDES or Mu-
icipalities are disproportionately located in the Mediterranean coast.
e interpret this in terms of the type of urban development present in
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his region compared to that in the rest of Spain. The Mediterranean re-
ion is much more developed than the rest of the country. The density of
rban development is also much higher, as can be discerned from Fig. 2 .
his pattern results in A-DBSCAN identifying larger contiguous areas in
hich the building density is above the threshold required for an area

o be considered urban. In turn, this makes our definitions of Barcelona,
alencia, or Alicante, among others, larger than their AUDES and Mu-
icipality counterparts. In contrast, in the center of the country, a much
parser region with well delimited towns and cities, most urban areas
elineated by A-DBSCAN contain only one AUDES or much fewer Mu-
icipalities. 

.2. City size distribution 

Zipf’s law suggests that a country’s city size distribution can be ap-
roximated with a Pareto distribution with shape parameter equal to
ne. The higher (lower) the Pareto exponent, the more equally (un-
qually) distributed is the city system. The power law implies that, in a
ystem of cities, the largest city is roughly twice the size of the second
argest city, about three times the size of the third largest city, and so on.
ndeed, since the seminal work of Gabaix (1999) and Eeckhout (2004) ,
n enormous amount of city size distribution literature has been pub-
ished (see Nitsch, 2005 and Arshad et al., 2018 for a review of this
iterature). 

The evidence reported by this literature is mixed. In some cases the
aw holds precisely but, in others, the outcome lies some distance from
he unit parameter. The variety of results seems to be attributable to the
ity definition employed and, as a consequence, to the heterogeneity
n the city samples used to perform the tests. Given this situation, it is
nteresting to compare the city size distribution by simulating an exer-
ise performed by Rozenfeld et al. (2011) in which different definitions
f city within the same country are taken into consideration. Thus, in
he following paragraphs, we seek to determine whether the city size
istribution in Spain depends on the definition of the units of analysis. 

Fig. 9 plots the log-ranks against the log-sizes for the urban
rea boundaries created by: 1) our algorithm A-DBSCAN, 2) AUDES
ommuting-based patterns, and 3) the administrative municipalities.
anel A shows the plots for the three delineations using population as
he measure of each urban area’s size 9 The estimated Pareto exponent
s negative and very close to 1 for both our delineated urban areas and
hose from the AUDES project (-0.97 and -0.99, respectively). As dis-
ussed above, if the estimated value of the Pareto exponent is equal to
ne, then Zipf’s law is confirmed as holding exactly for these two de-
ineations. In contrast, the estimated parameter for the administrative
unicipalities is -1.23, indicating that Zipf’s law does not fit in this case

nd also that the distribution of the population across these units is more
nequal. However, the relationship does fit the log-linear specification
uite well in all three cases (with an R 

2 of 0.99, 0.99 and 0.88, respec-
ively). Interestingly, in all three delineations the slope fits very well in
he upper tail of the distribution. 

Most of the evidence tests Zipf’s law by comparing city sizes and their
opulations (with the notable exception of Rozenfeld et al., 2011 ). How-
ver, our data allow us to replicate the analysis using the surface (Panel
) and the vertical land (Panel C) of the urban areas. In the case of the
ormer, our results indicate that Zipf’s law holds only for the urban areas
roduced by our delineation (with an estimated Pareto exponent of -1.09
nd an R 

2 of 0.98). Interestingly, for the bigger urban areas (the upper
ail of the distribution) the linear fit is not perfect. For the AUDES urban
reas and the municipalities the estimated values for the coefficients lie
ar from the unit (-0.78 and -0.61, respectively) and the R 

2 values are
maller (0.79 and 0.61, respectively). In both cases, the slopes show a
9 The AUDES delineation only reports urban areas with more than 20,000 
nhabitants. For the comparisons to be meaningful, we do the same for our de- 
ineated urban areas and the administrative municipalities. 

n  

C
o

og-quadratic, as opposed to a log-linear, relationship between surface-
ank size. When the size of the urban areas is measured in terms of the
ertical land (Panel C), the estimated coefficients for both our urban
elineated areas and the AUDES areas are very close to -1 (-1.04 and -
.09, respectively). In the case of the municipalities, whose distribution
resents a clear concave shape, the coefficient is -0.67 clearly indicating
hat Zipf’s law does not hold for this delineation. A detailed inspection
f the shape of the distribution of the AUDES urban areas shows that
he biggest city in terms of vertical land is a clear outlier. This is not the
ase for our delineated urban areas, which present a more continuous
attern. 

.3. City size and transportation 

As has been well documented, one of the main problems urban
conomists face is the so-called ’Modifiable Areal Unit Problem’ (MAUP)
 Openshaw, 1984 ). As Briant et al. (2010) have shown, empirical results
an change when different spatial units are adopted. In this subsection,
e compare our delineated urban areas with AUDES urban areas and
panish municipalities by studying how city size relates to transporta-
ion 10 

Based on empirical studies analyzing the impact of transportation on
ity size measured in terms of population ( Baum-Snow et al., 2019; Du-
anton and Turner, 2012; Garcia-López et al., 2015, 2018 ) and land area
 Brueckner and Fansler, 1983; Garcia-López, 2019 ), we can estimate the
ollowing equation: 

n(City size) =𝛼0 + 

∑
𝑖 

(
𝛼1 ,𝑖 × ln(Transport 𝑖 ) 

)
+ 

∑
𝑗 

(
𝛼2 ,𝑗 × Controls 𝑗 

)
(1) 

We consider three dependent variables to measure city size. First, in
ine with tradition, we consider the size of the city in terms of population
sing the log of the 2010 population (inhabitants). Second, we take into
ccount the physical size of the city’s surface, that is, its size in terms
f land area (horizontal dimension) with the log of city surface (km 

2 ).
inally, in line with recent studies by Ahlfeldt and McMillen (2018) ,
rueckner et al. (2017) and Liu et al. (2018) , we also study the ver-
ical dimension of the city by using the log of vertical land area
km 

2 ). 
Our main explanatory variables are related to transportation. Specif-

cally, we consider the 2010 log of the length of the highway network
km), and the 2010 log of the length of the railroad network (km). To
ompute these, we use GIS maps of the road system and the railroad
etwork in Spain that form part of the Büro für Raumforschung, Raum-
lanung und Geoinformation (RRG) GIS Database. The related empirical
iterature (see the survey by Duranton and Puga, 2015 ) considers these
ariables as proxies for transportation costs (and road congestion). 

Since the different versions of the monocentric model show that so-
ioeconomic, geographical and historical characteristics also shape city
ize, we include controls related to these features. In Appendix C we
iscuss in detail the different control variables and we report summary
tatistics for all variables using cities from the three delineation methods
 Table C.1 ). 

Table 7 reports the results of estimating Equation (1) by Ordinary
east Squares (OLS). Results for population are in columns 1, 2 and 3;
hose for surface in columns 4, 5 and 6, and those for vertical land in
olumns 7, 8 and 9. As discussed, we always control for socioeconomic,
eographical and historical characteristics. A qualifier is important here,
owever: Since the results are based on OLS estimates, they only show
orrelations and not causal effects between city size and transportation
ariables. 

The results for our delineated urban areas show positive and sig-
ificant relationships between population and highways and railroads
10 Here, we do not consider urban areas and municipalities in the Balearic and 
anary Islands, the Basque Country and Navarra, and Ceuta and Melilla because 
f a lack of data for most of our explanatory variables. 
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Fig. 9. Zipf plots for different measures of city size Notes : Following Gabaix and Ibragimov (2011) , we substract 0.5 from the rank to improve the estimation. 
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column 1): The larger both transportation networks, the larger the size
f the city in terms of population. Results for AUDES (column 2) and
unicipalities (column 3) are in the same direction but present some
otable differences. First, the estimated coefficients are significantly
maller for these two alternative definitions. Second, the effect of rail-
oads is not significant in the AUDES regression. 

When we consider the size of the city in terms of land surface
columns 4, 5 and 6), we obtain similar results: Positive relationships
howing that cities with larger highway and railroad systems tend to
ave larger land areas. However, in the case of our delineation (col-
mn 4), the estimated coefficient is significantly larger than those cor-
esponding to AUDES (column 5) and municipalities (column 6). Fur-
hermore, the effect of railroads is again not significant in the AUDES
ample. 
The results for the vertical size of the city (columns 6 to 9) are in line
ith the above outcomes. In general, they show that larger highway and

ailroad systems are positively related to larger vertical developments.
he largest effects are found for our delineated urban areas. Once more
he effect of railroads is not significant in the AUDES regression. 

In short, these results show that larger transportation networks can
e related to larger cities in terms of their population, surface and verti-
al land. Our preferred results are those related to our delineated urban
reas: First, because they are in line with the theory on urban spatial
tructure ( Alonso, 1964; Mills, 1967; Muth, 1969; Brueckner, 1987; Du-
anton and Puga, 2015 ) and, second, because the other two delineations,
UDES and municipalities, seem to underestimate the effects. 
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Table 7 

How city size and transportation networks are related? 

Dependent variable: ln(Population) ln(Surface) ln(Vertical area) 

Delineation: ADBSCAN AUDES Muni ADBSCAN AUDES Muni ADBSCAN AUDES Muni 
[1] [2] [3] [4] [5] [6] [7] [8] [9] 

ln(Length of highways) 0.343 a 0.186 a 0.219 a 0.223 a 0.158 a 0.120 a 0.311 a 0.211 a 0.199 a 

(0.031) (0.038) (0.014) (0.022) (0.045) (0.010) (0.011) (0.027) (0.035) 

ln(Length of railroads) 0.232 a 0.049 0.140 a 0.157 a 0.028 0.077 a 0.184 a -0.003 0.110 a 

(0.030) (0.035) (0.013) (0.022) (0.038) (0.009) (0.010) (0.027) (0.031) 

Socioeconomy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Geography ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
History ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adjusted R 2 0.80 0.77 0.76 0.70 0.81 0.60 0.79 0.77 0.71 

Observations 674 219 7,450 674 219 7,450 674 219 7450 

Notes : Robust standard errors in parentheses. Socioeconomic variables are the log of the average income and the share of popu- 
lation with a college degree. Geographical variables are altitude, the terrain ruggedness index, land area overlying aquifers, the 
length of rivers, annual median and range of precipitation and median and range of temperatures for winter and summer months. 
Historical variables are dummy variables for cities that were Roman settlements and Medieval major towns. a , b and c indicate 
significant at 1, 5, and 10 percent level, respectively. 
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. Conclusions 

Empirical research in Urban Economics has to address the challenge
f identifying the best geographical unit of analysis for measuring what
onstitutes a city. But all too often information is provided solely for a
ity’s local administrative/political units, even though there might be a
lear consensus that such an approach fails to capture its real scope. To
olve this problem, in recent years, and drawing on increasingly more
ophisticated data, various methodologies have been developed to de-
ineate urban areas. 

In the paper, we present a new method for delineating urban areas
ased on very precise geolocated data for all the buildings in Spain.
sing machine learning tools, we design and calculate a distance-based
lustering algorithm that defines 717 urban areas containing three quar-
ers of the whole population in less than 5% of the territory. Detailed in-
ormation about the buildings allows us to better characterize the struc-
ure of the city in terms of its verticality and the location of its resi-
ential and non-residential activities. The algorithm can also be used to
elineate the employment centers within these urban areas. When com-
aring our delineated urban areas with other delineations, we find that
ur urban areas are better measured, being more similar in this regard
o commuting-based delineations than to areas delimited by administra-
ive boundaries. 

Our delineations are superior to those obtained using these other
wo methodologies because we do not include large areas of undevel-
ped land, which serves only to reduce the city’s overall density. Be-
ause our delineated urban areas are spatially continuous collections of
uildings rather than exogenous aggregations, such as grid cells or ad-
inistrative boundaries, we believe that they better reflect the idea of

n urban agglomeration based on a high concentration of inhabitants
nd firms. Technically, it should be stressed that our algorithm is robust
o marginal changes in the data and that our results are computationally
calable in large datasets with millions of observations. Thus, one of the
ain advantages of our method is that, with the appropriate informa-

ion, it can be replicated for other countries. 
The use of our delineated urban areas as a unit of analysis for ur-

an research is feasible when statistical information is available in a
eocoded format. But, today, some information continues to be provided
t the administrative level. Moreover, in some research fields, including
olitical Economy, Public Economics and Public Policy Evaluation, it is
mportant to maintain the administrative borders in the analysis given
hat they continue to delimit the political-decision unit. However, in
oth instances, and with some simple adjustments, our urban areas can
lso be used. It remains our contention that a better definition of just
hat constitutes a city would improve the results of empirical analy-

es in Urban Economics and serve to guide policy makers when taking
ecisions that need to take into account the precise scope of the urban
rea. 
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ppendix A. The A-DBSCAN algorithm: Technical details 

This section describes in detail A-DBSCAN, the novel methodology
eveloped to delineate urban areas. The algorithm is based on an exten-
ion of the popular machine learning algorithm DBSCAN (Density-Based
patial Clustering of Applications with Noise), originally developed by
ster et al., 1996 . The intuition behind the initial proposal is rather
traightfoward. DBSCAN requires two parameters to be set, the mini-
um number of points ( min_pts ) and the distance threshold ( 𝜖), and

abels every observation in a dataset as either core, border or noise.
Core’ points contain at least a minimum number min_pts of obser-
ations within a maximum distance threshold 𝜖; ’border’ observations
all within the distance threshold of a core point, but they do not con-
ain themeselves the minimum number of points within that distance of
hemselves; finally, observations are labeled as ’noise’ if they are neither
ore, nor border. Since the original proposal, the algorithm has grown
ignificantly in popularity, and several extensions, focusing on different
ontexts (e.g. Borah and Bhattacharyya, 2004; Birant and Kut, 2007 ),
imitations (e.g. Campello et al., 2013; Karami and Johansson, 2014 ),
nd challenges (e.g. Lv et al., 2016 ), as well as a wide range of applica-
ions have been proposed. A comprehensive review is beyond the scope
f this section (see Khan et al., 2014 , for a recent account), but it is im-
ortant to note that, although most of the contributions have stemmed
rom the machine learning and data mining literature, more recently,
ocial scientists and policy makers have shown growing interest as well
e.g. Hu et al., 2015; BEIS, 2017; Wang et al., 2018 ). 

Because the way the minimum number of points and the maxi-
um distance threshold criteria are combined, DBSCAN is able to use
 density-based criteria to identify clusters of points (observations la-
eled as core or border), and this is performed without the need to

https://doi.org/10.13039/501100004837
https://doi.org/10.13039/501100002809
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ely on ancillary aggregations. However DBSCAN is “memory expen-
ive ” ( Borah and Bhattacharyya, 2004 ), which means the algorithm be-
omes for all purposes computationally unfeasible when the size of the
ataset grows to a certain point. Thus it is not scalable. Similarly, nei-
her the original proposal nor, to the best of our knowledge, any of the
xtensions proposed to date, are robust in the sense described above. As
n illustration with the initial proposal, it is entirely possible that two
lusters are connected by a single “bridge ” point that is close enough to
order points of both clusters to merge them into one. In the context of
ur application, this would equate to two distinct urban areas merged
nto one due to a single building. 

To overcome those two remaining requirements -scalability and in-
erential robustness- we develop an extension to the original DBSCAN
lgorithm, which we term ’Approximate-DBSCAN’ (A-DBSCAN). The in-
uition behind our approach is to create several replications of approx-
mate solutions, and keep only those labellings where a large majority
f the replications agree on a given label, considering as noise cases
here not enough replications agree on a specific label. Approximate

olutions are obtained by calculating the exact DBSCAN on a small ran-
om subsample, and then assigning to the remainder points the label
f their nearest observation in the considered subsample. A more de-
ailed description of our algorithm can be expressed as follows (a formal
erivation of the algorithm is included in Algorithm 1 ): 

lgorithm 1 A-DBSCAN Algorithm. 

1: procedure ADBSCAN ( 𝑋𝑌 , 𝜖, min_pts , 𝑝𝑐𝑡 𝑡ℎ𝑖𝑛 , 𝑡ℎ𝑟 ) 
2: 𝐷 ← Dataset of point locations ( 𝑋𝑌 coordinates) 
3: 

4: for r in R do : 
5: 𝐷 𝑡ℎ𝑖𝑛 , 𝐷 𝑒𝑥𝑡𝑒𝑛𝑑 ← Split 𝐷 into two random subsets

of proportions 𝑝𝑐𝑡 𝑡ℎ𝑖𝑛 and ( 1 − 𝑝𝑐𝑡 𝑡ℎ𝑖𝑛 ) 
6: 𝐿 𝑡ℎ𝑖𝑛 ← DBSCAN( 𝐷 𝑡ℎ𝑖𝑛 , 𝜖, min_pts × 𝑝𝑐𝑡 𝑡ℎ𝑖𝑛 ) 
7: 𝐾𝑁 𝑁 1 𝑡ℎ𝑖𝑛 ← Fit the K-Nearest Neighbor regressor ( 𝐾 =

1 ): 𝐿 𝑡ℎ𝑖𝑛 = 𝐾𝑁 𝑁 1( 𝐷 𝑡ℎ𝑖𝑛 ) 
8: 𝐿 𝑒𝑥𝑡𝑒𝑛𝑑 ← Use 𝐾𝑁 𝑁 1 𝑡ℎ𝑖𝑛 on 𝐷 𝑒𝑥𝑡𝑒𝑛𝑑 

9: 𝐿 𝑟 ← 𝐿 𝑒𝑥𝑡𝑒𝑛𝑑 ∪ 𝐿 𝑒𝑥𝑡𝑒𝑛𝑑 

10: 𝐿 �̄� ← ALIGN 𝐿 𝑅 

11: for i in 𝐷 do : 
12: Obtain the most common label 𝑐𝑙 𝑖 and itsfrequency across 𝑅 ,

𝑝𝑐𝑡 𝑐𝑙 
13: if 𝑝𝑐𝑡 𝑐𝑙 < 𝑡ℎ𝑟 , where 𝑡ℎ𝑟 is a set threshold then label 𝑐𝑙 as noise

14: 𝐿 𝐴𝐷𝐵𝑆𝐶𝐴𝑁 

← Final set of labels for each observation in 𝐷 

15: procedure align ( 𝐿 𝑅 ) 
16: 𝐿 𝑟𝑒𝑓 ← Solution with most clusters idenfied 
17: for r in R; 𝑟 ∉ 𝐿 𝑟𝑒𝑓 do : 
18: for cluster 𝑐𝑙 𝑟 in r do 

19: Assign to 𝑐𝑙 𝑟 the label of the nearest cluster centroid in
𝐿 𝑟𝑒𝑓 
1. Split the dataset into two random subsets, one of them potentially
smaller than the other (e.g. 10%/90%). 

2. Run the original DBSCAN algorithm on one of the subsamples to
obtain a set of cluster labels for each point in that subset. 

3. For each point in the second subset, assign the label of the nearest
point in the first subset. 

4. Save the entire set of labels as a single candidate solution. 
5. Repeat steps 1–4 a reasonably large amount of times (e.g. 1,000),

obtaining several candidate solutions. 
6. Align labels across candidate solutions so a given label represents

the same cluster in each of the replications. This can be done in the
following way: 
(a) Set the solution with most clusters as reference. 
(b) For each cluster in the remaining solutions, find the nearest clus-

ter in the reference and assign its label. In this context, nearest
can be expressed as the shortest distance between the centroids
of the two clusters. 

7. For each point in the dataset, obtain the most common label and
the proportion of times across candidate solutions where that label
is assigned. 

8. If the most common label appears a proportion of times that is
smaller than a desired threshold (e.g. 90%), label the observation
as noise; otherwise assign the most common label as the label for
that point. 

ince the core “clustering engine ” of A-DBSCAN is DBSCAN, our ex-
ension carries with it all of the original benefits, including the inde-
endence of ancillary geographies and the density-based criterion. In
ddition, since A-DBSCAN only requires to run DBSCAN on a poten-
ially small fraction of the data, the approach is much more scalable.
or A-DBSCAN to work, the original DBSCAN algorithm needs to be
pplied to a subset that is large enough to capture the overall spatial
tructure of the point pattern represented in the initial dataset. Further-
ore, our approach is also more robust to outliers and thus more likely

o accurately capture the underlying clustering process. The final label a
oint receives is not the result of a single run, but includes information
ased on several independent runs. A-DBSCAN exploits the assumption
hat the initial dataset is large to its advantage, treating it as a “pool ”
f replications from the underlying data generating process (DGP), that
an be used to construct not only one but several observed patterns, with
ess observations but with the same properties and spatial structure. By
onsidering several random subsets that come from the same DGP, we
btain empirical distributions for each observation and each label. This
pproach allows us to evaluate the uncertainty behind each assignment
nd to only label as part of a cluster those cases where we have suffi-
ient evidence. This is not possible in the traditional approach because
nly one assignment is carried out. The resulting label each point is as-
igned is thus robust to outliers, corner solutions, and other forms of
oise. 
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A
ppendix B. The A-DBSCAN with different distance thresholds ( 𝝐) 
Table B.1 

Delineated urban areas with different distance thresholds ( 𝜖). 

Panel A: 1,500 m Number of cities 

All 773 

Population ≤ 5000 98 

5,000 < Population ≤ 10,000 228 

10,000 < Population ≤ 25,000 240 

25,000 < Population ≤ 100,000 153 

100,000 < Population ≤ 500,000 48 

Population > 500,000 6 

Panel B: 1,600 m Number of cities 

a All 759 

Population ≤ 5000 106 

5,000 < Population ≤ 10,000 225 

10,000 < Population ≤ 25,000 228 

25,000 < Population ≤ 100,000 145 

100,000 < Population ≤ 500,000 49 

Population > 500,000 6 

Panel C: 1,800 m Number of cities 

All 743 

Population ≤ 5000 116 

5,000 < Population ≤ 10,000 218 

10,000 < Population ≤ 25,000 212 

25,000 < Population ≤ 100,000 140 

100,000 < Population ≤ 500,000 49 

Population > 500,000 8 

Panel D: 2,200 m Number of cities 

All 698 

Population ≤ 5000 138 

5,000 < Population ≤ 10,000 212 

10,000 < Population ≤ 25,000 173 

25,000 < Population ≤ 100,000 121 

100,000 < Population ≤ 500,000 44 

Population > 500,000 10 

Panel E: 2,400 m Number of cities 

All 669 

Population ≤ 5000 139 

5,000 < Population ≤ 10,000 200 

10,000 < Population ≤ 25,000 164 

25,000 < Population ≤ 100,000 115 

100,000 < Population ≤ 500,000 41 

Population > 500,000 10 

Panel F: 2,500 m Number of cities 

All 669 

Population ≤ 5000 143 

5,000 < Population ≤ 10,000 198 

10,000 < Population ≤ 25,000 163 

25,000 < Population ≤ 100,000 115 

100,000 < Population ≤ 500,000 38 

Population > 500,000 12 

Notes : In 2011, 46,815,916 inhabitants lived in Spain. Population
within the boundaries of our cities) from the 2011 Population Cen
Population Percentage of Spain’s pop 

32,874,204 70.2% 

359,085 0.8% 

1,644,465 3.5% 

3,813,255 8.1% 

7,589,260 16.2% 

9,255,530 19.8% 

10,212,610 21.8% 

Population Percentage of Spain’s pop 

32,716,224 69.9% 

392,360 0.8 % 

1,620,100 3.5% 

3,585,960 7.7% 

7,015,350 15.0% 

9,538,350 20.4% 

10,564,105 22.6% 

Population Percentage of Spain’s pop 

34,389,528 73.5% 

428,190 0.9% 

1,552,525 3.3% 

3,286,870 7.0% 

6,544,190 14.0% 

9,159,175 20.0% 

13,418,580 28.7% 

Population Percentage of Spain’s pop 

35,666,120 76.2% 

491,130 1.1% 

1,502,455 3.2% 

2,713,950 5.8% 

5,740,090 12.3% 

8,796,375 18.8% 

16,422,120 35.1% 

Population Percentage of Spain’s pop 

36,268,040 77.5% 

489,910 1.1% 

1,425,270 3.0% 

2,634,635 5.6% 

5,477,790 11.7% 

8,849,540 18.9% 

17,390,896 37.1% 

Population Percentage of Spain’s pop 

36,886,244 78.8% 

502,950 1.1% 

1,400,340 3.0% 

2,599,550 5.6% 

5,583,065 11.9% 

7,893,675 16.9% 

18,906,664 40.4% 

 is computed using population grid data (1 × 1 km cells 
sus. 
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Fig. B.1. Delineated urban areas with different distance thresholds ( 𝜖). 
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Table C.1 

Summary statistics for the three delineation methods. 

A-DBSCAN AUDES Municipalities 

Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Population (inhabitants) 47,838 261,519 143,494 528,340 6432 50,802 

Surface (km 

2 ) 30.43 69.97 352.8 464.9 63.15 94.57 

Vertical area (km 

2 ) 6.66 28.32 20.73 63.23 1.05 5.30 

Floors 2.80 0.38 2.95 0.40 2.57 0.43 

Length of highway network (km) 5.25 23.87 31.64 72.34 2.08 6.70 

Length of railroad network (km) 5.02 17.11 30.41 50.94 2.50 7.27 

Median income ( €) 10,823 5415 13,523 2228 1162 3128 

Share of college degree 0.10 0.05 0.13 0.05 0.07 0.05 

Altitude (km) 0.41 0.28 0.34 0.30 0.70 0.38 

Terrain ruggedness index (km) 0.04 0.02 0.05 0.04 0.06 0.05 

Land area overlying aquifers 19.91 56.23 212.9 319.1 32.47 62.18 

Length of rivers (km) 6.40 15.11 53.73 71.59 10.03 17.18 

Annual median precipitation (mm) 612.5 285.6 633.5 327.5 633.5 270.6 

Annual range precipitation (mm) 177.9 227.7 372.8 412.4 351.3 322.4 

December median temperature ( ∘C) 8.53 2.34 9.26 2.56 6.07 2.53 

January median temperature ( ∘C) 7.72 2.31 8.44 2.49 5.29 2.50 

February median temperature ( ∘C) 8.94 2.16 9.51 2.33 6.51 2.47 

March median temperature ( ∘C) 11.28 1.98 11.61 2.16 8.83 2.45 

June median temperature ( ∘C) 20.87 1.89 20.61 2.10 18.56 2.74 

July median temperature ( ∘C) 24.41 2.18 23.91 2.31 22.14 2.96 

August median temperature ( ∘C) 24.29 2.19 23.95 2.40 21.90 3.00 

September median temperature ( ∘C) 21.22 2.06 21.17 2.29 18.70 2.84 

December range temperature ( ∘C) 0.85 0.80 1.89 2.23 1.64 1.67 

January range temperature ( ∘C) 0.85 0.82 1.76 2.14 1.55 1.62 

February range temperature ( ∘C) 0.80 0.77 1.86 2.21 1.61 1.68 

March range temperature ( ∘C) 0.79 0.76 2.04 2.38 1.82 1.87 

June range temperature ( ∘C) 0.74 0.68 1.96 2.32 1.73 1.79 

July range temperature ( ∘C) 0.67 0.61 1.76 2.01 1.49 1.50 

August range temperature ( ∘C) 0.69 0.63 1.82 2.10 1.58 1.61 

September range temperature ( ∘C) 0.74 0.69 1.98 2.34 1.78 1.86 

Dummy for Roman settlements 0.24 0.43 0.53 0.50 0.06 0.24 

Dummy for Medieval major towns 0.06 0.24 0.18 0.383 0.01 0.09 

Observations 674 674 219 219 7450 7450 
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ppendix C. Control variables and summary statistics 

We control for socioeconomic characteristics by including the 2007
og of the median income ( €) (based on the municipal estimates by
ortas-Rico and Onrubia (2016) ). Using the 2011 Population Census
rid data (1 × 1 km), we compute the share of population with a col-
ege degree. 

Following Burchfield et al. (2006) , we control for geography. First,
sing data from Spain’s Digital Elevation Model we compute the altitude
km) and the terrain ruggedness index developed by Riley et al. (1999) .
econd, we compute the land area overlying aquifers (km 

2 ) and the log
f the length of the rivers (km) crossing each city. Finally, using the
tlas Climático Digital de la Península Ibérica, we compute the log of

he annual median precipitation (mm) and the log of the annual range
recipitation (mm). Similarly, we include the log of the median tem-
erature ( ∘C) and the log of the range temperature ( ∘C) for December,
anuary, February and March (winter), and for June, July, August and
eptember (summer). 

We follow Garcia-López et al. (2018) and add controls for history.
e use information about Roman settlements and Medieval major towns

rom the Digital Atlas of Roman and Medieval Civilizations (DARMC) to
lassify the cities (and create dummies) according to their importance
nd origins (Roman settlement, Medieval city). 

Finally, to consider the different dynamics and characteristics within
pain’s geography, we add dummies for the regions where our urban
reas are located. 
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