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DIVISORS OF A MODULE AND BLOW UP

ANA L. BRANCO CORREIA AND SANTIAGO ZARZUELA

Abstract. In this paper we work with several divisors of a module E ⊆ G ≃ Re

having rank e, such as the classical Fitting ideals of E and of G/E, and the
more recently introduced (generic) Bourbaki ideals I(E) (A. Simis, B. Ulrich,
and W. Vasconcelos [18]) or ideal norms [[E]]R (O. Villamayor [22]). We found
several relations and equalities among them which allow to describe in some cases
universal properties with respect to E of their blow ups. As a byproduct we are
also able to obtain lower bounds for the analytic spread ℓ(

∧
e E), related with the

algebraic local version of Zak’s inequality as explained in A. Simis, K. Smith and
B. Ulrich [16].

1. Introduction

Paraphrasing W. Vasconcelos [21], the divisors of a module E over a ring R are the
ideals of R that carry important information about the structure and properties of
E. Let E be a finitely generated torsionfree R-module having rank e with a fixed
embedding f : E ⊆ G ≃ Re. Then the Fitting ideals of E and of G/E are typical
examples. They determine the free locus, and they give rise in particular to the
notions of principal class, equimultiple, complete intersection, etc. Another divisor
ideal that play a significant role in the study of the integral closure of E is detf(E),
introduced by Rees in [14]. By definition detf (E) is the ideal defined by the image of
the mapping

∧e f in
∧eRe ≃ R and up to isomorphism detf(E) =

∧eE/τR(
∧eRe).

In [21] the ideal detf(E) is also denoted by det0(E), since it does not depend on f .
It is useful for instance to lead with reductions of modules. In fact, if U ⊆ E are
modules of the same rank over a domain, then U is a reduction of E if and only if
det0(U) is a reduction of det0(E). See also [19] or [21] for further details.

On the other hand, O. Villamayor attached in [22] a new class of ideals to E,
called the norm of E and denoted by [[E]]R, and showed that the blow up at any

representant of this class has a universal flattening property. That is, if X
π

−→
Spec(R) is the blow up of R with center [[E]]R, then π

∗(E)/ tor(π∗(E)) is a locally
free sheaf of OX -modules of rank e, and π is universal for this property. He named
this blow up as the blow up of R at E. In the analytical setting the construction of
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a homomorphism with such flattening property was established by H. Rossi in [15],
who asked for the determination of this construction by some universal property. In
fact, under the name of Nash transformation ofR at E the existence in general of this
universal construction was established by A. Oneto and E. Zatini in [12], obtaining
as a particular case of this construction the usual Nash blowing-up. Similarly, the
higher Nash blowups defined by T. Yasuda in [23] may be seen as particular cases of
these general Nash transformations. And also the e-th F -blow ups, e a non-negative
integer, of a variety X of positive characteristic as defined by Yasuda himself in [24].

The main novelty in Villamayor’s construction is that he showed that there exists
a module E1 of projective dimension at most 1 having rank e whose Fitting ideal
Fe(E1) is a representative of [[E]]R, as a fractional ideal. This Fitting ideal Fe(E1)
is in fact a sub-determinantal ideal of any matrix representing E, which gives an
effective method to compute the blow up of R at E. For instance, N. Hara, T.
Sawada and T. Yasuda have recently used this approach in [5] in order to compute
explicitly F -blowups for some surface singularities by using Macaulay2 [10].

In section 2, we make clear the analogies of these ideals by showing that det0(E) =
F0(G/E) is also a representant of [[E]]R. To do this we explore the relationship
between Fitting ideals and determinant ideals with exterior algebras. Moreover, by
using that det0(E) det0(E)

−1 defines the non-free locus of E and that det0(E) · S is
invertible if and only if E ⊗R S/τR(E ⊗R S) is free for any birational extension S
of R, we may also show that the blow of R at det0(E) has the universal flattening
property, providing another proof for the existence of this universal object, somehow
in the spirit of [12, section 2].

As a byproduct of the above study we get some results concerning the algebraic
local version of the so-called Zak’s inequality. Let R be a Noetherian ring and
E a finitely generated torsionfree R-module having a rank. We define the Rees
algebra R(E) of E to be the quotient S(E)/τR(S(E)) of the symmetric algebra
by its R-torsion submodule τR(S(E)). R(E) inherits a natural graduation from the
symmetric algebra and we denote by En the nth graded piece, that is, En := R(E)n.
If (R,m, k) is also a local ring the fiber cone of R(E) is the graded ring F(E) :=
R(E) ⊗R k =

⊕
n≥0E

n/mEn. The Krull dimension of F(E) is called the analytic
spread of E and is denoted by ℓ(E). In [17], A. Simis and B. Ulrich discussed the
problem

“when does the inequality ℓ
(∧eE

)
≥ htFe(E) hold?”

posed in [16]. This problem is related to the named Zak’s inequality for the dimen-
sion of the image of the Gauss map when the variety is not smooth in terms of the
dimension of its singular locus. Using the relationships obtained in section 2 for the
considered divisor ideals, we also give some affirmative answers for this question (cf.
Proposition 2.3 and Corollary 2.5).

For some modules E it is possible to find a free submodule F such that the
quotient E/F is isomorphic to an ideal I. For example this happens whenever R is
a Noetherian normal domain and E is a torsionfree R-module (cf. [1, Chap. 7, §4,
Théorème 6]). If it exists, the ideal I ≃ E/F is called a Bourbaki ideal of E. More
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generally an exact sequence of R-modules

0 → F → E → I → 0

with F a free module and I an R-ideal is called a Bourbaki sequence. In [18], A.
Simis, B. Ulrich, and W. Vasconcelos developed the notion of generic Bourbaki
ideals defined over a suitable faithfully flat extension of R. This approach has
the advantage that the Bourbaki ideal thus obtained is essentially unique. As a
matter of fact, they proved that for some families of modules E over a local ring
R and having rank there is a suitable Nagata extension R′′ of R, together with a
free R′′-module F such that E ′′/F = E is isomorphic to an R′′-ideal of rank 1,
where E ′′ = E ⊗R R

′′ (cf. [18, Proposition 3.2]). They wrote I(E) to denote this
ideal and called it a generic Bourbaki ideal of E. The induced epimorphism of
R′′-algebras R(E)⊗R R

′′ ≃ R(E ′′) ։ R(I(E)) plays a major role throughout their
work. They used it to transfer properties about R(E) to R(I(E)) and vice-versa. In
fact, in the case where the kernel is generated by a regular sequence on R(E ′′), then
R(E ′′) is a deformation of R(I(E)) and properties such as Cohen-Macaulayness and
normality can be transferred from R(I(E)) to R(E ′′), and hence to R(E) (cf. [18,
Theorem 3.5]).

In [4] we examined their construction of I(E) and proved other properties. In
particular, we related the depth of R(E) and of R(I(E)). In section 4 we establish
other relations between E and a I(E). Especially, we obtain a formula relating the
minimal number of generators of E and of I(E).

Theorem. [cf. Theorem 4.4] Let R be a Noetherian local ring, let E be a finitely
generated R-module having rank e ≥ 2 (and U a reduction of E). If I(E) is a
generic Bourbaki ideal of E (with respect to U) then

(1.1) µ(E) = µ(I(E)) + e− 1.

This formula may be seen as an extension of a similar one for the analytic spread
proved in [18]. In particular, Eq. (1.1) implies that there exists a generic Bourbaki
I(E) which is perfect of grade 2 if and only if E is not a free R-module and also
proj dim E = 1.

In section 5, we relate generic Bourbaki ideals with Fitting ideals for a finitely
generated R-module E having rank e ≥ 2. Supposing that I ≃ E ′′/F is a generic
Bourbaki ideal of E over a Nagata extension R′′ of R, we extend a basis x1, . . . , xe−1

of F to a generating set x1, . . . , xn of E ′′ = E ⊗R R
′′ and consider a finite free

presentation R′′m ϕ
→ R′′n φ

→ E ′′ → 0 with respect to this set of generators, that
is
[
x1 · · · xn

]
ϕ = 0. For this presentation there exists an (n − e + 1) × (n − e)

submatrix ψ of ϕ satisfying grade In−e(ψ) ≥ 1, and in the case where grade Fe(E) ≥
2 then E ′′/F ≃ In−e(ψ) (see Theorem 5.3). As a consequence, we deduce that any
generic Bourbaki ideal is always isomorphic to a Fitting ideal. It is important to
note this Fitting ideal is also a sub-determinantal ideal of a specific presentation of
E ′′.

The interaction between their Rees algebras and the relations between numerical
invariants of E and I(E) such as reduction number, analytic spread, minimal number
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of generators, justify that a generic Bourbaki ideal I(E) may also be viewed as a
divisor of E. In the final section 6 we return to the questions about the relations
among the different divisor ideals of E including now the generic Bourbaki ideal.
The realization obtained by Villamayor of the norm ideal as a Fitting ideal is the
key for that inclusion. Observing first that the norm ideal behaves well under the
extension of scalars by flat homomorphisms, we have that

I(E) ≃ In−e(ψ) ⊆ In−e(ρ) ⊆ Fe(E
′′),

with ρ the n × (n − e) submatrix of ϕ containing φ and In−e(ρ) ≃ [[E ′′]]R′′ ≃
det0(E) · R

′′. If moreover proj dim E = 1 then In−e(ρ) = Fe(E
′′). In particular,

since if E is a contracted module over a 2-dimensional regular local ring it may be
seen that Fe(E

′′) itself is a generic Bourbaki ideal [6], we get that there exists a
generic Bourbaki ideal I(E) of E which is a representative of [[E ′′]]R′′ (cf. Corollary
6.3), and so it fulfills the corresponding universal flattening property with respect
to E ′′.

For any unexplained terminology we refer to the book of W. Bruns and J. Herzog
[2]. Finally, we would like to thank T. Yasuda for telling us about the paper by
Oneto-Zatini [12].

2. Divisors of a module - part 1

2.1. Fitting ideals. Let E be a finitely generated R-module. Then the Fitting
ideals of E are typical examples of divisors of E. By definition, Fi(E) := In−i(ϕ) is
the ideal generated by the (n− i)× (n− i) minors of ϕ where

(2.1) Rm ϕ
→ Rn φ

→ E → 0

is a finite presentation of E, 0 ≤ i ≤ n. This ideal is independent of the choices of
the generators and of any finite free presentation (2.1) of E. We have that Fi(E) ⊆
Fi+1(E) and if, in addition, E has rank e (which means that E ⊗R Quot(R) ≃
Quot(R)e) then Fe(E) is the smallest Fitting ideal which is different from zero.
Hence if E has positive rank e then

F0(E) = · · · = Fe−1(E) = (0) ( Fe(E) ⊆ · · · ⊆ Fi(E) ⊆ · · · ⊆ R.

Now suppose that we have a given embedding E ⊆ G ≃ Re with E of rank e.
Then, G/E has rank 0 and the first non-zero Fitting ideals Fe(E) and F0(G/E)
are related by the inclusion V (Fe(E)) ⊆ V (F0(G/E)) = SuppG/E. Recall that
a torsionfree module E ⊆ G ≃ Re is an ideal module if grade G/E ≥ 2. (This
condition implies that E has rank e. Also that E is not free if E ( G.) In this case,

(2.2) V (Fe(E)) = V (F0(G/E)) = SuppG/E.

In particular, grade Fe(E) ≥ 2. See [3, section 3] for further details. In this section,
we prove that F0(G/E) ⊆ Fe(E) (up to an isomorphism), and that the equality
holds for ideal modules having projective dimension equal to one (see Proposition
2.6).
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2.2. Determinants. Let E be a finitely generated R-module and let f : E → Re

be an R-homomorphim. The image of the mapping
∧e f in

∧eRe ≃ R defines an
R-ideal, that is im

∧e f = I ·
∧eRe ⊂

∧eRe, where I is an R-ideal, and we write
(abusing notation slightly)

detf(E) := I = im
∧e f ⊆ R.

This ideal is called the determinant of the module E with respect to f .
The module E does not need to be torsionfree. In fact, since τR(E) ⊆ ker f , we

always have a commutative diagram

E
π

zzzz✉✉
✉✉
✉✉
✉✉
✉

f

  ❅
❅
❅
❅
❅
❅
❅
❅

E/τR(E)
f

// Re

where π is the canonical epimorphism and f ◦ π = f . We have the following pro-
perties.

Properties 2.1. Let R be a Noetherian ring. Let E be a finitely generated R-mo-
dule, f : E → Re an R-homomorphism and ϕ : R → S a homomorphism of rings.
Then

a) detf(E) = detf(E/τR(E)).
b) detf⊗id(E ⊗R S) = detf(E) · S.
c) detf⊗id(E ⊗R S) = detf⊗id

(
E ⊗R S/τS(E ⊗R S)

)
.

Proof. (a)
∧e π :

∧eE →
∧eE/τR(E) is an epimorphism, hence im

∧e f = im
∧e f

and (a) follows.

(b) The homomorphism f induces the commutative diagram

E ⊗R S
π′

vvvv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

f⊗id

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

E ⊗R S/τS(E ⊗R S)
f⊗id

// Re ⊗R S ≃ Se

The exterior powers commute with base extensions, and so applying
∧e we get

commutative diagrams

∧eE
∧e f

//

��

∧eRe ≃ R

��∧eE ⊗R S
(
∧e f)⊗id

//

≃
��

∧eRe ⊗R S ≃ S

≃
��∧e(E ⊗R S)

∧e(f⊗id)
//

∧e π′

��
��

∧e(Re ⊗R S) ≃ S

∧e
(
E ⊗R S)/τR(E ⊗R S)

)
∧e f⊗id

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
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Now
detf⊗id(E ⊗R S) = im

∧e (f ⊗ id) = (im
∧e f) · S = detf(E) · S.

(c) follows by (a) and (b). �

We say that f has rank if im f has rank. In this case, also ker f ⊂ E has rank.
Assume that E and f have both rank e and put Q = Quot(R) for the total ring
of fractions of R. Then, rank(f ⊗ id) = e and f ⊗ id : E ⊗R Q −→ Re ⊗R Q is an
isomorphism. Moreover, the homomorphism f : E/τR(E) → Re is injective. This is
a consequence of the following observation.

Lemma 2.2. Let R be a Noetherian ring. Let E be a finitely generated torsionfree
R-module having rank e and f : E → Re an R-homomorphism with rank f = e.
Then f is a monomorphism.

Proof. We have that E⊗RQ ≃ f(E)⊗RQ ≃ Qe and so ker f⊗RQ = 0. This implies
that ker f ⊆ τR(E) = 0, proving that f is a monomorphism. �

2.3. Determinants and Fitting ideals. In order to see determinants as Fitting
ideals we fix some notation. For a positive integer n, we set [n] = {1, . . . , n}. Let
H = {i1, . . . , ih} be a subset of [n] and suppose that i1 < i2 < · · · < ih. We write

(2.3) xH = xi1 ∧ xi2 ∧ · · · ∧ xih .

Let A = (αij) be an n×m matrix over a ring R. For subsets {i1 < · · · < ir} ⊆ [n]
and {j1 < · · · < js} ⊆ [m] we write

A[i1, . . . , ir | j1, . . . , js] =



αi1,j1 · · · αi1,js
...

...
αir ,j1 · · · αir,js


 .

Suppose that E is generated by x1, . . . , xn. Suppose m ≤ n. Hence {xH : H ∈
Pm([n])}, where Pm([n]) denotes the set of all subsets of [n] with m elements, is the
corresponding generating set of

∧mE. If uj =
∑n

i=1 αijxi for 1 ≤ j ≤ m, then

(2.4) u1 ∧ · · · ∧ um =
∑

H={i1<···<im}∈Pm([n])

detA[i1, . . . , im|1, . . . , m]xH .

Now, let (v1, . . . , ve) be any basis of Re. Hence
∧eRe = 〈v1 ∧ · · · ∧ ve〉 ≃ R. Let

f : E → Re be an R-homomorphism and suppose that f(xij ) =
∑e

k=1 αkjvk and put
A = (αij). Therefore

im
∧e f = 〈f(xi1) ∧ f(xi2) ∧ · · · ∧ f(xie) : i1 < i2 < · · · < ie〉

= 〈detA[i1, . . . , ie|1, . . . , e] v1 ∧ · · · ∧ ve : i1 < i2 < · · · < ie〉

= 〈detA[i1, . . . , ie|1, . . . , e] : i1 < i2 < · · · < ie〉 ·
∧eRe.

It follows that detf (E) is the ideal generated by the e × e minors of A = (αij).
Moreover, since E is generated by n elements, we have a natural epimomorphism
Rn

։ E. Hence

Rn // //

ψ

33E
f

// Re = G // G/ im f
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is a finite presentation of G/ im f . Therefore F0(G/ im f) = Ie(ψ) and we have

(2.5) detf(E) = F0(G/ im f).

Now assume that E has rank e and let Q = Quot(R) be the total ring of fractions
of R. Hence we have natural homomorphisms

∧eE →
(∧eE

)
⊗R Q ≃

∧e (E ⊗R Q) ≃
∧eQe ≃ Q.

Suppose also that f : E → Re is an R-homomorphism such that im f has rank e.
(Note that if E has rank e one can always find such an R-homomorphism f . Also,
that this is the case if f : E →֒ Re is an embedding.) Hence we have a natural
Q-isomorphism

Qe ≃ E ⊗R Q
f⊗id
−→ Re ⊗R Q ≃ Qe

and natural homomorphisms
∧eE

∧e f
−→

∧eRe →֒
(∧eRe

)
⊗R Q ≃

∧e (Re ⊗R Q) ≃
∧eQe ≃ Q.

Therefore, we get commutative diagrams

(2.6)
∧eE

∧e f
//

��

ρ

��

∧eRe

��

γ

~~

(
∧eE)⊗R Q

(
∧e f)⊗id

//

≃
��

(
∧eRe)⊗R Q

≃
��∧e(E ⊗R Q)

∧e(f⊗id)
//

≃
��

∧e(Re ⊗R Q)

≃
��∧eQe //

≃

��

∧eQe

≃

��

Q // Q

where (
∧e f) ⊗ id is an isomorphism. This implies that ker(

∧e f) ⊆ τR(
∧eE).

Moreover,
∧eRe is torsionfree and so ker(

∧e f) = τR(
∧eE) is independent of f .

Therefore one has

(2.7) detf(E) ≃
∧eE/τR(

∧eE).

This independence allow us to forget the homomorphism f . In fact, in [21] the ideal
detf (E) is denoted by det0(E). This ideal is, then, an invariant of E, called the
order determinant of E, and we have

(2.8) det0(E) := detf(E),

where f : E → Re is an R-homomorphism with rank f = e. Therefore

(2.9) det0(E) = detf(E) = F0(G/ im f) = im
∧e f ≃

∧eE/τR(
∧eE).

(To be more precise, we should define det0(E) as the class of fractional ideals iso-
morphic to

∧eE/τR(
∧eE), but for the purposes in this paper we prefer to think
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det0(E) as any ideal of R in this class of the form detf (E), with f of rank e. Note
that since detf(E) = Ie(ψ) with rankψ = e, then detf(E) has positive grade.)

Assume that E is a finitely generated torsionfree R-module having rank e > 0.
The modules

∧eE and
∧eE/τR(

∧eE) have the same Rees algebra. Therefore, the
above approach allows us, by means of the equalities in Eq. (2.9), to deduce a lower
bound for the analytic spread ℓ

(∧eE
)
. In particular, we obtain an affirmative

answer for ideal modules to the question posed in [17]. We note that ideal modules
are orientable (which means that

(∧eE
)∗∗

≃ R); in this case an affirmative answer
is given in [17, Corollary 3.2] under the assumption that R is a local equidimensional
and universally catenary ring.

Proposition 2.3. Let R be a Noetherian local ring and E ⊆ G ≃ Re a finitely
generated torsionfree R-module having rank e > 0, but not free. Then

ℓ
(∧eE

)
≥ htF0(G/E).

If E is an ideal module then

ℓ
(∧eE

)
≥ htFe(E).

Proof. In this case im f = E and we have

ℓ
(∧eE

)
= ℓ
(∧eE

/
τR
(∧eE

))
= ℓ(det0(E)) = ℓ(F0(G/E))

≥ ht(F0(G/E)) = htFe(E)

- the last equality holds in the case where E is an ideal module (by (2.2)). �

2.4. The norm of a module. Let E be a finitely generated R-module having rank
e. O. Villamayor attached in [22] a class of ideals to E called the norm of E and
denoted by [[E]]R, and showed that the blow up at any representant of this class
has a universal flattening property. According to [22]

(2.10) [[E]]R := im
(∧eE → Q ≃

∧eE ⊗R Q
)

and, any fractional ideal isomorphic to this one is a representative of [[E]]R. In
particular, [[E]]R = im ρ, where ρ is as in the diagram (2.6). Moreover, since
im ρ ≃ γ(im

∧e f) then considered det0(E) as fractional ideal we get

(2.11) [[E]]R ≃ det0(E).

Let X = Spec(R). Then the blow up of X at E, denoted by BlE(X), is defined
as the blow up of X with respect to any representative of [[E]]R. In particular, we
have that

BlE(X) ≃ ProjR[det0(E)t] = Proj

(
⊕

n≥0

det0(E)
ntn

)
.

The following construction is done in [22] to determine another ideal representing
[[E]]R: Since E has rank e we can choose an n × (n − e) submatrix ϕ′ of ϕ, in
(2.1), with rank (n− e), that is having a non-zero divisor (n− e)× (n− e) minor.
Hence there exists a free R-submodule M of ker φ having rank (n− e). The module

E1 := Rn/M = coker(Rn−e ϕ′

→ Rn) is an R-module with a finite free presentation
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0 → Rn−e → Rn → E1 → 0. Moreover, the module E1 has rank e, there is a natural

surjection E1

ν
։ E and E1/τR(E1) ≃ E/τR(E). Further, by Properties 2.1,

[[E]]R ≃ det0(E) = det0(E/τR(E)) = det0(E1/τR(E1)) = det0(E1) ≃ [[E1]]R.

Therefore, the blow ups at E and E1 are isomorphic. Moreover, by [22, Proposi-
tion 2.5], the Fitting ideal Fe(E1) is a representative of [[E1]]R as a fractional ideal.
Hence

BlE(X) ≃ ProjR[Fe(E1)t] = Proj

(
⊕

n≥0

Fe(E1)
ntn

)
.

Note that the surjection ν implies an inclusion of the respective Fitting ideals, and
so we have

(2.12) [[E]]R ≃ [[E1]]R ≃ Fe(E1) ⊆ Fe(E).

Using (2.12) we obtain another inequality for the analytic spread of
∧eE.

Proposition 2.4. Let R be a Noetherian local ring and E a finitely generated R-
module having rank e > 0, but not free. Then, there exists a module E1 of projective
dimension 1 having rank e such that E1/τR(E1) ≃ E, and

ℓ
(∧eE

)
≥ htFe(E1).

Proof. Let E1 constructed as above. Then

ℓ
(∧eE

)
= ℓ
(∧eE

/
τR
(∧eE

))
= ℓ(det0(E)) = ℓ([[E]]R)

= ℓ(Fe(E1)) ≥ htFe(E1),

as asserted. �

In particular, if proj dim E ≤ 1 then E = E1, and we get another affirmative
answer for the problem mentioned in [17], without additional assumptions on R.

Corollary 2.5. Let R be a Noetherian local ring and E a finitely generated R-mo-
dule having rank e with proj dim E = 1. Then

ℓ
(∧eE

)
≥ htFe(E).

The module E1 is also useful to prove the equality of the first non-zero Fitting
ideals of E and G/E, for ideal modules having projective dimension equal to one.
We note that this equality was proved in [6] in the case where R is a 2-dimensional
regular local ring.

Proposition 2.6. Let R be a Noetherian ring and E ⊆ G ≃ Re a finitely generated
torsionfree R-module having rank e > 0. Then, up to isomorphism,

F0(G/E) ⊆ Fe(E).

Moreover, if E is an ideal module with proj dim E = 1 then

F0(G/E) = Fe(E).
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Proof. Let E1 constructed as above. Using Eq. (2.5), (2.11) and (2.12) we get

F0(G/E) = det0(E) ≃ [[E]]R ≃ Fe(E1) ⊆ Fe(E).

Now, if proj dim E = 1 then Fe(E1) = Fe(E). Moreover, if E is an ideal module
then

grade F0(G/E) = grade Fe(E) = grade G/E ≥ 2,

and so F0(G/E) = Fe(E), as asserted. �

2.5. The universal property of the blow up at a module. Next we show that
the blow up at the order determinant det0(E) has an universal flattening property.
This gives an alternative to [22, Theorem 3.3].

To do this we begin to prove an easy consequence of Lipman’s Theorem (see [9,
Theorem D.18]).

Proposition 2.7. Let R be a Noetherian local ring and E ⊆ G ≃ Re a finitely ge-
nerated torsionfree R-module having rank e > 0. Then the following are equivalent:

a) E is free.
b) F0(G/E) is a principal ideal (generated by a non-zero divisor of R).
c) det0(E) is invertible.

Proof. “(a) ⇒ (b)” If E is free, we have a natural exact sequence 0 → E → G →
G/E → 0 with E and G free R-modules. Since G/E has rank 0 then τR(G/E) =
G/E and so (b) follows by Lipman’s Theorem.

“(b) ⇔ (c)” is clear.
“(b) ⇒ (a)” By Lipman’s Theorem, proj dim G/E ≤ 1, and so proj dim E = 0

proving that E is free. �

Under our conditions, the ideal det0(E) behaves well by localization as well as
the computation of the inverse. Therefore the ideal det0(E) det0(E)

−1 defines the
non-free locus of E.

Corollary 2.8. Let R be a Noetherian ring and E ⊆ G ≃ Re a finitely generated
torsionfree R-module having rank e > 0. Then

V (det0(E) det0(E)
−1) = Spec(R) \ V (Fe(E)).

Proof. Let p be an R-prime ideal. We have

Ep is free ⇐⇒ det0(Ep) = det0(E)p is invertible

⇐⇒ (det0(E)p)(det0(E)p)
−1 = Rp

⇐⇒ (det0(E) det0(E)
−1)p = Rp

⇐⇒ p + (det0(E))(det0(E))
−1,

and the equality follows. �

We say that a ring homomorphism ϕ : R → S is birational if ϕ induces an isomor-
phim Q(R) ≃ Q(S) between the total ring of fractions.
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Proposition 2.9. Let R be a Noetherian ring and E a finitely generated R-module
having rank e. Let ϕ : R→ S be a birational homomorphism of rings. Then

E ⊗R S/τR(E ⊗R S) is free ⇐⇒ det0(E) · S is invertible.

Proof. Since E has rank e there exists an R-homomorphism f : E → Re with
rank f = e. By Properties 2.1

detf⊗id(E ⊗R S/τR(E ⊗R S)) = detf⊗id(E ⊗R S) = detf (E) · S.

Now we observe that E ⊗R S has rank e. In fact, since ϕ is birational

(E ⊗R S)⊗S Q(S) ≃ E ⊗R Q(S) ≃ E ⊗R Q(R)⊗Q(R) Q(S)

≃ Q(R)e ⊗Q(R) Q(S) ≃ Q(S)e.

Moreover, we also have

im(f ⊗ id)⊗S Q(S) = (im f ⊗R S)⊗S Q(S) ≃ Q(S)e.

Therefore f ⊗ id has rank e and, by Lemma 2.2, f ⊗ id is an embedding. Now the
result follows by Proposition 2.7. �

Following the notation of [22], for a given scheme (X,OX) we denote by Q(X)
the sheaf of total quotient rings of OX . Then, for a given sheaf E of OX -modules,
we also denote by tor(E) the subsheaf of torsion of E , so that E/ tor(E) is a sheaf of
torsionfree OX -modules.

Theorem 2.10. Let R be a reduced Noetherian ring, E a finitely generated R-module
having positive rank e and det0(E) the order determinant of E. Let X

π
−→ Spec(R)

be the blow up of R with center det0(E). Then

a) π∗(E)/ tor(π∗(E)) is a locally free sheaf of OX-modules of rank e.

b) For any birational morphism Y
γ

−→ Spec(R) for which γ∗(E)/ tor(γ∗(E))
is locally free of rank e, there is a unique morphism β : Y → X such that
β ◦ π = γ.

Proof. The proof is direct, just taking into account that under our conditions the
blow up is a birational morphism, the universal property of the blow up, Proposition
2.9, and that we only need to check it locally. �

3. Reduction of modules

We briefly recall the definition of reduction of a module, and notions around, and
establish some basic properties that we need in the next section.

Suppose that E is a finitely generated R-module having a rank over a Noethe-
rian ring R. We denote by R(E) the Rees algebra of E, which is by definition the
symmetric algebra module its torsion R-submodule. An R-module U of E is said to
be a reduction of E if

R(E)r+1 = (U/τR(U)) · R(E)r
for some r ≥ 0. Since E and E/τR(E) have the same rank and the same Rees
algebra, then U is a reduction of E if and only if U/τR(U) is a reduction of E/τR(E).
Hence, we may often assume that E is torsionfree, since the theory of reductions for
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torsionfree modules affords some additional properties. The least integer r for which
R(E)r+1 = (U/τR(U)) · R(E)r is called the reduction number of E with respect to
U , and is denoted by rU(E).

The Rees algebra does not commute in general with the extension of scalars. A
simple example was given by A. Micali in [11, Chap. I, §5, Example]: Let (R,m) be
a local domain and let k = R/m. Then, RR(k)⊗R k ≃ R ⊗R k ≃ k while Rk(k ⊗R

k) ≃ k[t]. Nevertheless, because the symmetric algebra always commutes with the
extension of scalars, the Rees algebra commutes if the torsion also commutes. In
particular, we have that the Rees algebra commutes with polynomial and Nagata
extensions, which implies that reductions are preserved by polynomial and Nagata
extensions.

Let E be a finitely generated torsionfree R-module having rank. A reduction of
E is called minimal if it is minimal with respect to inclusion. Minimal reductions
always exist. The reduction number of E, denoted by r(E), is the minimum of
rU(E), where U ranges over all minimal reductions of E.

Over an integral domain the order determinants can be used to check whether a
submodule can be a reduction of a module (cf. [21, Proposition 8.66]). Since, under
the assumption that proj dim E = 1, we have

(3.1) det0(E) = Fe(E),

then we may assert the following:

Proposition 3.1. Let R be an integral domain and let U and E be finitely gene-
rated torsionfree R-modules of rank e with U ⊂ E. Suppose that proj dim E =
proj dim U = 1. Then U is a reduction of E if and only if Fe(U) is a reduction of
Fe(E).

In [3, Proposition 2.1] or [13, Theorem 3.3] we can find the fundamental proper-
ties of reduction of modules. For completeness we prove that the minimal number
of generators of a finitely generated torsionfree R-module E and of any minimal
reduction are well related as in the case of ideals.

Lemma 3.2. Let (R,m) be a Noetherian local ring, E a finitely generated torsion-
free R-module and U an R-submodule of E. Then U is a reduction of E if and only
if U +mE is a reduction of E.

Proof. Suppose that U is a reduction of E. Then R(E)r+1 = U · R(E)r for some
r ≥ 0 and we have

(U +mE) · R(E)r = U · R(E)r + (mE) · R(E)r = R(E)r+1.

Conversely, assume that (U +mE) · R(E)r = R(E)r+1 for some r ≥ 0. Then

R(E)r+1 = (U +mE) ·R(E)r = U ·R(E)r+(mE) ·R(E)r = U ·R(E)r+mR(E)r+1

and so, by Nakayama’s lemma, R(E)r+1 = U · R(E)r. �

Proposition 3.3. Let (R,m, k) be a Noetherian local ring and E a finitely generated
torsionfree R-module having rank. If U = Ra1+· · ·+Ran is a minimal reduction of E
with n = µ(U), then a1, . . . , an are linearly independent over k, where ai = ai+mE.
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In particular a1, . . . , an are part of a minimal system of generators of E. Moreover,
U ∩mE = mU and µ(E) = µ(U) + µ(E/U).

Proof. In fact, if a1, . . . , an are not linearly independent over k, without loss of ge-
nerality we may assume that an ∈ 〈a1, . . . , an−1〉, so V = Ra1 + · · · + Ran−1  U
is also a reduction of E (by Lemma 3.2), contradicting the minimality of U . Hence
a1, . . . , an are linearly independent over k and so U ∩ mE = mU . This implies
that any minimal generating set of U can be extended to a minimal generating set
of E. In particular, a1, . . . , an are part of a minimal system of generators of E.
Furthermore,

0 → U/mU ≃ (mE + U)/mE → E/mE → E/(mE + U) ≃ (E/U)/m(E/U) → 0

is an exact sequence. Hence

µ(E) = dimk(E/mE) = dimk(U/mU) + dimk((E/U)/m(E/U)) = µ(U) + µ(E/U),

and the result follows. �

Corollary 3.4. Let (R,m) be a Noetherian local ring and E a finitely generated
R-module having positive rank. If U is a reduction of E then U * mE.

Proof. Since if U ⊆ mE then U/τR(U) ⊆ m(E/τR(E)), we may assume that E is
torsionfree. Let V ⊆ U be a minimal reduction of E. We begin to prove that
V * mE. If not, since V ∩mE = mV (by Proposition 3.3) we deduce that V = mV .
Hence, by Nakayama’s Lemma, V = 0, a contradiction. Therefore V * mE, and so
U * mE. �

Any reduction U of E has rank and rankU = rankE. Moreover, E/U is a torsion
module and grade E/U > 0. Further, if V ⊂ U with E/V having rank then U/V is
a reduction of E/V (see [4, Proposition 2.4]).

Given a Noetherian local ring (R,m, k) and a finitely generated torsionfree R-mo-
dule E having rank, it is known that

(3.2) µ(U) ≥ ℓ(E) = dimF(E)

for any reduction U of E with equality if and only if U is a minimal reduction of
E, supposing k infinite. In fact, in this case the classes in E/mE of any minimal
generating set of U are a system of parameters of F(E) = R(E)⊗R R/m.

4. The quotient module E = E ′′/F

In this section we recall the construction of a generic Bourbaki ideal given in [18].
We explore the inductive process of this construction in order to prove a formula for
the minimal number of generators of a generic Bourbaki ideal. We shall do this more
generally for a quotient module E of rank 1 (not necessarily an ideal). This result
will be applied in the next section mainly in the case of modules with projective
dimension one.
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Let (R,m) be a Noetherian local ring, and E a finitely generated R-module having
a rank e > 0, and let U =

∑n

i=1Rai be a submodule of E such that E/U is a torsion
module (which holds if U is a reduction of E). Further, let Z = {zij | 1 ≤ i ≤ n, 1 ≤
j ≤ e− 1} be a set of n× (e− 1) indeterminates over R. We fix the notation

R′ = R[zij | 1 ≤ i ≤ n, 1 ≤ j ≤ e− 1] = R[Z] , R′′ = R′
mR′ = R(Z).

The ring R′′ is a local ring with maximal ideal mR′′ and infinite residue field k(Z)
and is called the Nagata extension of R with respect to Z. Further, we set

U ′ = U ⊗R R
′ , U ′′ = U ⊗R R

′′ , E ′ = E ⊗R R
′ , E ′′ = E ⊗R R

′′ ,

xj =

n∑

i=1

zijai ∈ U ′ ⊆ E ′ , F =

e−1∑

j=1

R′′xj .

In [18] it is proved that F is a free module over R′′ of rank e − 1. We denote the
R′′-module E ′′/F by E; this module has rank 1. There are good relations between
some numerical invariants of E and E. In particular, the Krull dimensions of their
Rees algebras and of their fiber cones are related by the equalities

dimR(E) = dimR(E) + e− 1,(4.1)

ℓ(E) = ℓ(E) + e− 1.(4.2)

In [4] we explored the inductive process of this construction and made deeper the
relations between E and E. In particular, we proved that, under certain conditions,
the generators x1, . . . , xe−1 of F form a regular sequence on R(E ′′) and

(4.3) R(E) ≃ R(E ′′)/〈x1, . . . , xe−1〉

(cf [4, Theorem 3.7]), hence R(E ′′) is a deformation of R(E). As a consequence we
got

(4.4) depth R(E) = depth R(E) + e− 1.

In this section, following our approach in [4], we prove that

(4.5) µ(E) = µ(E) + e− 1.

This equality allow us to construct a minimal generating set x1, . . . , xe−1, . . . , xn of
E ′′ containing the generators x1, . . . , xe−1 of F .

We use the same notation as in [4]. For 1 ≤ j ≤ e− 1 set

Zj = {z1j , . . . , znj}

and
Rj = R[Z1, . . . ,Zj ] , R

′′
j = RjmRj

= R(Z1, . . . ,Zj).

Then
Rj = Rj−1 ⊗R R[Zj ] = Rj−1[Zj ].

According to [4, Lemma 3.1], we have

R′ ≃ Rj ⊗R R[Zj+1, . . . ,Ze−1] ≃ Rj [Zj+1, . . . ,Ze−1],

R′′ ≃
(
R′′
j [Zj+1, . . . ,Ze−1]

)
mR′′

j [Zj+1,...,Ze−1]
= R′′

j (Zj+1, . . . ,Ze−1),
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and

R′′
j ≃ (R′′

j−1[Zj ])mR′′
j−1[Zj ] = R′′

j−1(Zj) = R(Z1, . . . ,Zj−1)(Zj)

≃ R(Zj)(Z1, . . . ,Zj−1) =
(
(R[Zj ]mR[Zj ])[Z1, . . . ,Zj−1]

)
m(R[Zj ]mR[Zj ]

)[Z1,...,Zj−1]
.

Moreover, for 1 ≤ j ≤ e− 1, set Ej = E ⊗R Rj , E
′′
j = E ⊗R R

′′
j ≃ Ej ⊗Rj

R′′
j . Hence

Ej = Ej−1 ⊗R R[Zj ] = Ej−1 ⊗Rj−1
Rj ,

E ′ ≃ Ej ⊗Rj
R′ ≃ Ej ⊗R R[Zj+1, . . . ,Ze−1],

E ′′ ≃ E ′ ⊗R′ R′′ ≃ Ej ⊗Rj
R′′ ≃ E ′′

j ⊗R′′
j
R′′,

E ′′
j ≃ E ′′

j−1 ⊗R′′
j−1

R′′
j , E

′′
j ≃ Ej ⊗Rj

R′′
j .

Furthermore, for 1 ≤ j ≤ e − 1, set Ej = Ej/〈x1, . . . , xj〉, E ′′
j = E ′′

j /〈x1, . . . , xj〉,
where 〈x1, . . . , xj〉 denote in each case the submodule generated by x1, . . . , xj . By
convention E0 = E = E0, R0 = R. We have, for each 1 ≤ j ≤ e− 1,

(4.6) Ej ≃ (Ej−1 ⊗Rj−1
Rj)/〈xj〉 , E ′′

j ≃ (E ′′
j−1 ⊗R′′

j−1
R′′
j )/〈xj〉,

where xj = xj + 〈x1, . . . , xj−1〉 in each case (cf. [4, Lemma 3.2]). These relations
for E are also true for any submodule U of E. Moreover, since R′′ is the Nagata
extension of R′′

j with respect to Zj+1, . . . ,Ze−1,

(4.7) rankE ′′
j = rankU ′′

j = e− j ≥ 2 , µ(E ′′
j ) = µ(E ′′)

(cf. [4, Lemma 3.3]).

For the module E constructed above we are able to prove that µ(E) = µ(E)−e+1.
We argue by induction on the rank of F .

Lemma 4.1. Let (R,m, k) be a Noetherian local ring, E a finitely generated R-mo-
dule having rank e ≥ 2 and U =

∑n

i=1Rai a reduction of E. Let R′ = R[z1, . . . , zn],
R′′ = R′

mR′, x = z1a1 + · · · + znan and let U ′′ = U ⊗R R′′, E ′′ = E ⊗R R′′.
Then µ(V ′′/R′′x) = µ(V ) − 1, for every R-submodule V of E containing U and
V ′′ = V ⊗R R

′′.

Proof. Let V be any R-module such that U ⊆ V ⊆ E. Since U =
∑n

i=1Rai * mE
(by Corollary 3.4) there exists an i such that ai 6∈ mE. Without loss of gene-
rality we may assume that a1 6∈ mE. We claim that x/1 ∈ U ′′ ⊆ V ′′ ⊆ E ′′ is
part of a minimal generating set of V ′′. Suppose not, that is x/1 ∈ mV ′′. Since
V ′′ = V ′ ⊗R′ R′

mR′ = V ′
mR′ there exists y ∈ R′ \mR′ such that yx ∈ mV ′. Set

y = y +mR′ ∈ R′/mR′ ≃ R/m⊗R R
′ ≃ k[z1, . . . , zn],

and set

x = x+mV ′ = a1z1 + · · ·+ anzn ∈ V ′/mV ′ = V/mV ⊗R R
′ = (V/mV )[z1, . . . , zn],

with ai = ai + mV ∈ V/mV , (i = 1, . . . , n). Hence y x = 0 with y 6= 0. Now write

y =
∑m

j=0 yjz
j
1 with yj ∈ k[z2, . . . , zn], (j = 0, . . . , m) and ym 6= 0. Hence, we have

y x =

n∑

i=1

y aizi = y a1z1 +

n∑

i=2

y aizi =

m∑

j=0

yj a1z
j+1
1 +

n∑

i=2

y aizi
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and since y x = 0 we must have ym a1z
m+1
1 = 0. Hence ym a1 = 0. But ym a1 ∈

V/mV [z2, . . . , zn] = k[z2, . . . , zn] ⊗k V/mV with k[z2, . . . , zn] faithfully flat over k
and 0 6= ym ∈ k[z2, . . . , zn], a1 = ai +mV 6= 0 (because a1 6∈ mV ⊆ mE). Therefore
x/1 6∈ mV ′′ and x/1 is part of a minimal generating set of V ′′, as claimed. It follows
that

µ(V ′′/R′′x) = µ(V ′′)− 1 = µ(V )− 1,

proving the assertion. �

Lemma 4.2. Let (R,m, k) be a Noetherian local ring, let E be a finitely genera-
ted R-module having rank e ≥ 2 and U =

∑n

i=1Rai a reduction of E. Let R′′,

x1, . . . , xe−1, F be defined as before. Set, for each 1 ≤ t ≤ e − 1, Ft =
∑t

i=1R
′′xi.

Then

a) µ(V ′′/Ft) = µ(V )− t,
b) Ft ∩mR′′V ′′ = mR′′Ft,

for every R-submodule V of E containing U , V ′′ = V ⊗R R
′′.

Proof. Let V be any R-module such that U ⊆ V ⊆ E and set V ′′ = V ⊗R R
′′.

a) We use induction on t. For t = 1 we apply the previous lemma, since R1 =
R[z11, . . . , zn1] and F1 is freely generated by x1 = z11a1 + · · · + zn1an. Suppose
that 1 ≤ j ≤ t ≤ e − 1. We set, as before, Ej = E ⊗R Rj , Uj = U ⊗R Rj with
Rj = R[z11, . . . , z1n, . . . , z1j , . . . , znj ] = Rj−1[Zj ], R

′′
j = RjmRj

and E ′′
j = E ⊗R R

′′
j ,

U ′′
j = U ⊗R R

′′
j . Moreover, set Vj = V ⊗R Rj, V

′′
j = V ⊗R R

′′
j = V ′′

j−1 ⊗R′′
j−1

R′′
j and

F ′′
j =

∑j

i=1R
′′
jxi. Since R

′′
j is faithfully flat over R, F ′′

j ⊆ U ′′
j ⊆ V ′′

j ⊆ E ′′
j . Moreover,

Fj = F ′′
j ⊗R′′

j
R′′ and V ′′ = (V ⊗R R

′′
j )⊗R′′

j
R′′ = V ′′

j ⊗R′′
j
R′′. Therefore

(4.8) V ′′/Fj ≃ V ′′
j /F

′′
j ⊗R′′

j
R′′.

Now, suppose for induction that j > 1 and that µ(V ′′/Fj−1) = µ(V ) − (j − 1).
Hence, by Eq. (4.8),

µ(V ′′
j−1/F

′′
j−1) = µ(V ′′/Fj−1) = µ(V )− (j − 1) = µ(V ′′

j−1)− (j − 1).

Moreover, R′′
j = R′′

j−1(Zj) is the Nagata extension of R′′
j−1 (with respect to Zj) and,

as in Eq. (4.6), we have

V ′′
j /F

′′
j ≃ (V ′′

j−1/F
′′
j−1 ⊗R′′

j−1
R′′
j )/〈xj〉,

where xj = xj + R′′
jx1 + · · · + R′′

jxj−1. Further, U ′′
j /F

′′
j ⊆ V ′′

j /F
′′
j with U ′′

j /F
′′
j a

reduction of E ′′
j /F

′′
j and rank(E ′′

j /F
′′
j ) = e − j ≥ 2 (by Eq. (4.7)). Hence, by the

previous lemma and by induction assumption,

µ(V ′′
j /F

′′
j ) = µ(V ′′

j−1/F
′′
j−1)− 1 = µ(V ′′

j−1)− (j − 1)− 1 = µ(V ′′
j−1)− j.

It follows by induction that

µ(V ′′/Ft) = µ(V ′′
t /F

′′
t ) = µ(V ′′

t−1)− t = µ(V )− t

(since R′′ is faithfully flat over R′′
j for all j), proving a).

b) is a direct consequence of a). �
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Proposition 4.3. Let R be a Noetherian local ring, let E be a finitely generated
R-module having rank e ≥ 2 and U a reduction of E. Let R′′, E ′′, x1, . . . , xe−1, F
be defined as before. Set, for each 1 ≤ t ≤ e− 1, Ft =

∑t

i=1R
′′xi. Then

a) µ(E ′′/Ft) = µ(E)− t;
b) E ′′/Ft is a free R′′-module if and only if E is a free R-module.

Proof. a) is a particular case of the previous lemma.
b) Consider the natural exact sequence 0 → Ft → E ′′ → E ′′/Ft → 0.
If E ′′/Ft is free, then E

′′ ≃ Ft ⊕ E ′′/Ft and E
′′ is free over R′′. Hence E is free

over R. Conversely, suppose that E is free. Hence µ(E) = rankE = e. Thus, by a),

µ(E ′′/Ft) = µ(E)− t = e− t = rankE ′′/Ft

and E ′′/Ft is free. �

Theorem 4.4. Let (R,m, k) be a Noetherian local ring, let E be a finitely generated
R-module having rank e ≥ 2 and U a reduction of E. Let E = E ′′/F , U = U ′′/F
with F ⊂ U ′′ ⊆ E ′′ as before. Then

a) µ(E) = µ(E)− e+ 1;
b) E is a free R′′-module if and only if E is a free R-module;
c) E has finite projective dimension if and only if E has finite projective dimen-

sion; if this is the case, proj dim E = proj dim E;
d) Assume in addition that E is torsionfree and k is infinite. If U is a minimal

reduction of E then U is a minimal reduction of E.

Proof. a) and b) are particular cases of the previous result.
c) Consider the exact sequence 0 → F → E ′′ → E → 0. Since F is a free

R′′-module proj dim F = 0 and so the first assertion follows. The second is a
consequence of b) and of [8, Proposition VII.1.8].

d) We already observed that U is a reduction of E. Now, we have

µ(U) = µ(U)− e+ 1 = ℓ(E)− e+ 1 = ℓ(E),

(by Lemma 4.2, Eq. (3.2) and (4.2)), and so U is a minimal reduction of E. �

5. Generic Bourbaki ideals and Fitting ideals

Given a finitely generated torsionfree R-module E having rank e > 0 and satisfying

G̃2 (that is µ(Ep) ≤ e for all p with depth Rp = 1), and given a submodule U of E
such that grade E/U ≥ 2, there exists a Nagata extension R′′ = R(Z) and a free
R′′-module F ≃ R′′e−1 such that E = E ′′/F is torsionfree over R′′ and having rank
1. In this case E ≃ IU(E) is an R′′-ideal (see [18, Proposition 3.2]). Such ideal
I = IU(E) is called a generic Bourbaki ideal of E with respect to U . If U = E we
simply write I = I(E). The construction of a generic Bourbaki ideal depends on the
generating set considered for U and on the set of variables, but is essentially unique.
See [18, Remark 3.4]. In particular, if U is a reduction of E and grade Fe(E) ≥ 2
then there exists I a generic Bourbaki ideal of E with respect to U with grade I > 0
(see [4, Remark 4.1]).
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The aim of this section is to relate generic Bourbaki ideals with Fitting ideals.
To do this we first observe that Fitting ideals are related, in a natural way, with
the exterior algebra. Moreover, we observe that whenever we consider a finite pre-
sentation ϕ for E ′′, with respect to a generating set containing a basis of F there
is a submatrix ψ of ϕ with the first non-zero Fitting ideal having grade ≥ 1. This
Fitting ideal is isomorphic to a generic Bourbaki ideal of E, and we use it to obtain
information about the perfection of the ideal I(E) ≃ E ′′/F (cf. Theorem 5.3). This
is the main result of this section.

For any linear map Ψ: Rm → Rn the Fitting ideal Fn−m(R
n/ imΨ) = Im(Ψ) can

be obtained as a image of a given linear map
∧n−mRn →

∧nRn ≃ R. Using the
notation introduced in section 2 (in particular Eq. (2.3)), we first note that for
complementary subsets H,K ⊆ [n], we have

(5.1) xH ∧ xK = (−1)εH,Kx1 ∧ x2 ∧ · · · ∧ xn,

where εH,K is the number of ordered pairs (i, j) ∈ H ×K such that i > j.

Lemma 5.1. Let R be Noetherian ring and Ψ: Rm → Rn a linear map with n ≥ m.
Let u1, . . . , um ∈ Rn be defined by the columns of Ψ and consider the map

θ :
∧n−mRn −→

∧nRn

x 7−→ x ∧ u1 ∧ · · · ∧ um.

Then im θ = Im(Ψ).

Proof. Suppose that Ψ = (αij) with respect to a basis (v1, . . . , vm) of Rm and a

basis (e1, . . . , en) of Rn. Hence (eH)H∈Pn−m([n]) is a basis of
∧n−mRn. Moreover,

since uj =
∑n

i=1 αijei (j ∈ [m]) then by Eq. (2.4),

u1 ∧ · · · ∧ um =
∑

K∈Pm([n])

detΨK,J eK ,

where ΨK,J = Ψ[i1, . . . , im|1, . . . , m] for K = {i1 < · · · < im} ⊂ [n], J = [m].
Therefore, for H ∈ Pn−m([n]),

θ(eH) = eH ∧
∑

K∈Pm([n])

detΨK,J eK

=
∑

K∈Pm([n])

detΨK,J (eH ∧ eK)

=
∑

K∈Pm([n])
K∩H=∅

detΨK,J (eH ∧ eK) (since z ∧ z = 0, ∀z ∈ Rn)

= detΨ[n]\H,J (eH ∧ e[n]\H)

= (−1)ε[n]\H,J detΨ[n]\H,J (e1 ∧ · · · ∧ en). (by Eq. (5.1))

Hence θ is a matrix with one row and
(
n

m

)
columns. Therefore,

im θ = 〈detΨ[n]\H,J〉H∈Pn−m([n]) = Im(Ψ),

as required. �
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In the notation of section 4, suppose that (R,m) is a Noetherian local ring and E

is a finitely generated R-module having rank e ≥ 2. Suppose also that U =
∑k

i=1Rai
is a reduction of E. Further set R′ = R[zij | 1 ≤ i ≤ k, 1 ≤ j ≤ e − 1] = R[Z],
R′′ = R′

mR′ = R(Z) and E ′′ = E ⊗R R
′′. Furthermore set

xj =

k∑

i=1

zijai , F =

e−1∑

j=1

R′′xj , E = E ′′/F.

We may extend the basis (x1, . . . , xe−1) of F to a generating set {x1, . . . , xn} of E ′′.
We note that, if necessary, we may choose it to be a minimal generating set of E ′′

since µ(E ′′/F ) = µ(E ′′)− e+ 1 (by Theorem 4.4). Let

R′′m ϕ
→ R′′n h

→ E ′′ → 0

be a finite free presentation of E ′′ with respect to the generators x1, . . . , xn, and
write also by ϕ the respective relation matrix. We have

(5.2) [x1 · · · xn]ϕ = 0,

and

rankϕ := rank imϕ = rankK = n− e,

where K = ker h is the module of relations of the generating set {x1, . . . , xn}. Hence
grade In−e(ϕ) ≥ 1 and In−e+1(ϕ) = 0 (by [2, Proposition 1.4.11]). Moreover, the
matrix ϕ has a particular form.

Lemma 5.2. In the above conditions, each row i ∈ {1, . . . , e − 1} of ϕ is a Q-
linear combination of the rows e, . . . , n, where Q = Quot(R′′). In particular, ϕ is

Q-equivalent to

[
0
Ψ

]
, where Ψ = ϕ[e, . . . , n|1, . . . , m] is a submatrix of ϕ satisfying

grade In−e(Ψ) ≥ 1.

Proof. The exact sequence 0 → F → E ′′ → E → 0 yields the exact sequence

0 → F ⊗R′′ Q→ E ′′ ⊗R′′ Q→ E ⊗R′′ Q→ 0.

Since E ⊗R′′ Q is free

E ′′ ⊗R′′ Q ≃ (F ⊗R′′ Q)⊕ (E ⊗R′′ Q).

On the other hand, ϕ = ϕ⊗R′′ id presents E ′′ ⊗R′′ Q with respect to the generators
x1 ⊗ 1, . . . , xn ⊗ 1 and we have the exact sequence

Qm ϕ
→ Qn → (F ⊗R′′ Q)⊕ (E ⊗R′′ Q) → 0.

Moreover, (x1 ⊗ 1, . . . , xe−1 ⊗ 1) is a basis of F ⊗R′′ Q. Now, let (v) be a basis of
E ⊗R′′ Q ≃ Q and let βe, . . . , βn be elements in Q such that, for all i ≥ e,

xi ⊗ 1 =

e−1∑

j=1

γij(xj ⊗ 1) + βiv,
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for some γij ∈ Q. Let (e1, . . . , en) be the canonical basis of Qn. Let h = h⊗ id and

suppose that ϕ = (αij)i,j. Since hϕ = 0 then, for all 1 ≤ k ≤ m,

0 =
e−1∑

i=1

αik(xi ⊗ 1) +
n∑

i=e

αik(xi ⊗ 1)

=
e−1∑

i=1

αik(xi ⊗ 1) +
n∑

i=e

αik

(
e−1∑

j=1

γij(xj ⊗ 1) + βiv

)

=
e−1∑

i=1

αik(xi ⊗ 1) +
e−1∑

i=1

(
n∑

j=e

αjkγji

)
(xi ⊗ 1) +

(
n∑

i=e

αikβi

)
v

=

e−1∑

i=1

(
αik +

n∑

j=e

αjkγji

)
(xi ⊗ 1) +

(
n∑

i=e

αikβi

)
v.

Therefore
∑n

i=e αikβi = 0 and each row i of ϕ, with 1 ≤ i ≤ e − 1, is a Q-linear
combination of the rows e, . . . , n. That is

ϕ =

[
Ie−1 −ΓT

0 In−e+1

] [
0
Ψ

]
,

where Γ = (γkℓ) is aQ-matrix of type (e−1)×(n−e+1) and Ψ = ϕ[e, . . . , n|1, . . . , m].
Moreover, In−e(Ψ) ·Q = In−e(ϕ) ·Q = Q, and so grade In−e(Ψ) ≥ 1, as claimed. �

Let ψ be an (n − e + 1) × (n − e) submatrix of ϕ satisfying grade In−e(ψ) ≥ 1
(exists by Lemma 5.2). Since rank imψ = n − e (again by [2, Proposition 1.4.11]),
rank kerψ = 0. But kerψ is torsionfree, hence kerψ = 0 and ψ represents an
injective linear map

0 → R′′n−e ψ
→ R′′n−e+1

with respect to the canonical bases. Moreover, using Eq. (5.2), we get for any
j = 1, . . . , m

n∑

i=e

xiαij = −

e−1∑

i=1

xiαij ∈ F.

Therefore, for any j,
∑n

i=e xiαij = 0, where xi = xi + F . Hence

(5.3) [xe · · · xn]ψ = 0.

On the other hand, let u1, . . . , un−e ∈ R′′n−e+1 be the columns of ψ and consider
the map θ :

∧1R′′n−e+1 →
∧n−e+1R′′n−e+1 ≃ R′′ given by x 7→ x ∧ u1 ∧ · · · ∧ un−e.

We have, by Lemma 5.1,
im θ = In−e(ψ).

Moreover,

x ∈ imψ ⇐⇒ x ∈ 〈u1, . . . , un−e〉 =⇒ x ∧ u1 ∧ · · · ∧ un−e = 0 ⇐⇒ x ∈ ker θ,

proving that imψ ⊆ ker θ. Therefore, there exists a complex of finite freeR′′-modules

0 → R′′n−e ψ
→ R′′n−e+1 θ

→ R′′ → 0
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with im θ = In−e(ψ) ⊂ R′′.
Now, suppose in addition that E satisfies grade Fe(E) ≥ 2. In this case, as we

already observed, E = E ′′/F is a finitely generated torsionfree R′′-module having
rank 1. Hence, E ≃ IU(E) = I a generic Bourbaki ideal ofE with respect to U . Since
In−e(ψ) = 〈|ψe|, . . . , |ψn|〉, where ψi is obtained from ψ by deleting the (i− e+1)-th
row (i = e, . . . , n), and I = 〈xe, . . . , xn〉 the mapping xi 7→ (−1)i−e|ψi| (i = e, . . . , n)
extends to an R′′-epimorphism ρ : I → In−e(ψ). In fact, if

∑n

i=e βixi = 0 and writing

ψ′ =



βe
... ψ
βn


 then [xe · · · xn]ψ

′ = 0, and we deduce that xi|ψ
′| = 0, (i = e, . . . , n).

Since I = 〈xe, . . . , xn〉, I|ψ
′| = 0 and so |ψ′| ∈ annR′′(I). But rank I = 1 > 0, hence

annR′′(I) = 0. Therefore

0 = |ψ′| =

n∑

i=e

βi(−1)i−e|ψi|,

(by Laplace’s theorem) proving that xi 7→ (−1)i−e|ψi| is well defined. Hence there

exists an R′′-epimorphism I
ρ
→ In−e(ψ). Moreover, since I, In−e(ψ) are R

′′-ideals of
rank 1 (and every ideal is a torsionfree R′′-module), ker ρ = 0 and we have

(5.4) I ≃ In−e(ψ).

Now, suppose that grade In−e(ψ) ≥ 2. By Hilbert-Burch Theorem ([2, Theorem
1.4.17]), In−e(ψ) has the free resolution

0 → R′′n−e ψ
→ R′′n−e+1 θ

→ In−e(ψ) → 0.

Moreover, In−e(ψ) ≃ R′′ or In−e(ψ) is perfect of grade 2. On the other hand, by
Eq. (5.4), In−e(ψ) ≃ IU(E) = I a generic Bourbaki ideal of E with respect to U
(IU(E) ≃ E ′′/F ). If E is not free, the Bourbaki ideal I ≃ 〈xe, . . . , xn〉 is also not
free (by Theorem 4.4). As a consequence, I has a free resolution

0 → R′′n−e ψ
→ R′′n−e+1

→ I → 0,

and we get that I = In−e(ψ) is perfect of grade 2. Hence ψ defines a presentation
of I, with respect to xe, . . . , xn.

We have proved the following result.

Theorem 5.3. Let R be a Noetherian local ring, E be a finitely generated R-module
having rank e ≥ 2 and U a reduction of E. Let R′′, E ′′ and F = ⊕e−1

i=1R
′′xi as before.

Let x1, . . . , xn be a generating set of E ′′ containing the basis x1, . . . , xe−1 of F . Let
ϕ be an n × m matrix presenting E ′′ with respect to the generators x1, . . . , xn and
let ψ be an (n− e+ 1)× (n− e) submatrix of ϕ satisfying grade In−e(ψ) ≥ 1. Then
there exists a complex of the form

0 → R′′n−e ψ
→ R′′n−e+1

→ In−e(ψ) → 0.
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Suppose in addition that E satisfies grade Fe(E) ≥ 2. Then E ′′/F is isomorphic to
an R′′-ideal I = IU(E) (a generic Bourbaki ideal of E with respect to U) and

I ≃ In−e(ψ).

Moreover, if E is not free and grade In−e(ψ) ≥ 2 then I is perfect of grade 2 with
a finite free resolution

0 → R′′n−e ψ
→ R′′n−e+1

→ I → 0

and ψ defines a presentation of I with respect to the generators xe, . . . , xn, with
I = In−e(ψ).

Corollary 5.4. Let R be a Noetherian local ring, E an ideal module having rank
e ≥ 2 and U a reduction of E. Then any generic Bourbaki ideal of E with respect
to U is isomorphic to a Fitting ideal.

Proof. Let I = IU(E) ⊂ R′′ be a generic Bourbaki ideal of E with respect to U .
Since grade Fe(E) ≥ 2 then I ≃ In−e(ψ), where ψ is a submatrix of a matrix ϕ
presenting E ′′ (by the theorem above), as required. �

For certain modules generic Bourbaki ideals can be chosen to have grade ≥ 2,
and we called them good generic Bourbaki ideals (see [4]). In fact, it is proved in
[18, Proposition 3.2] that a finitely generated R-module E having rank e > 0 and
satisfying grade Fe(E) ≥ 2 has a good generic Bourbaki ideal if and only if E is
orientable. In particular, ideal modules also have good generic Bourbaki ideals.
As already observed, V (Fe(E)) = SuppG/E = SuppR/Fe(E) in the case where
E ⊆ G ≃ Re is an ideal module. In particular, V (F1(I)) = SuppR/I = V (I) for
any R-ideal I with grade I ≥ 2. Moreover, if I ≃ E ′′/F is a good generic Bourbaki
ideal of E then, clearly,

(5.5) V (Fe(E
′′)) ⊆ V (F1(I)) = V (I).

The following result characterizes ideal modules with projective dimension equal
to one via generic Bourbaki ideals. Using the notations of Theorem 5.3, this shows
in particular that if E is not free and grade In−e(ψ) ≥ 2 then proj dim E = 1.

Proposition 5.5. Let R be a Noetherian local ring, E an ideal module having rank
e ≥ 2 and U a reduction of E. Then the following are equivalent:

a) proj dim E = 1.
b) Any good generic Bourbaki ideal of E (with respect to U) is perfect of grade

2.
c) There exists a generic Bourbaki ideal of E (with respect to U) which is perfect

of grade 2.

Proof. Suppose that E ≃ IU(E) = I is an R′′-ideal. By Theorem 4.4

proj dim R′′/I = proj dim E + 1 = proj dim E + 1.

Since grade I ≤ proj dim R′′/I the equivalences then follow. �
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Remark 5.6. Let I be a perfect ideal of grade 2. Then, ht I ≤ 2 by [20, Theo-
rem 1.1.18], and because grade I ≤ ht I we have that ht I = 2. This can be extended
to modules of projective dimension 1 in the following way: Let E be a finitely genera-
ted R-module having rank e. Suppose that proj dim E = 1. Then htFe(E) ≤ e+1.

Proof. Let 0 → Rm ϕ
→ Rn → E → 0 be a (minimal) free resolution of E. Since

rankE = e then m = n − e. Moreover, In−e(ϕ) 6= 0 and In−e+1(ϕ) = 0. Thus, by
[20, Theorem 1.1.18],

htFe(E) = ht In−e(ϕ) ≤ e + 1

with m = n− e = t. �

In [3] we defined the analytic deviation, for an ideal module E ( G ≃ Re with
positive rank e > 0, as ad(E) = ℓ(E)−e+1−htFe(E). We say that E is equimultiple
if ad(E) = 0. Moreover, we say that E is a module of the principal class if µ(E) =
htFe(E)+e−1 and that E is a complete intersection if µ(E) = grade Fe(E)+e−1.
It is clear that these notions agree with the correspondent ones for ideals. Moreover,
since µ(E) ≥ ℓ(E) (by Eq. (3.2)), ℓ(E) ≥ htFe(E)+e−1 (by [3, Proposition 3.12]),
and grade Fe(E) = grade G/E ≥ 2, then

(5.6) µ(E) ≥ ℓ(E) ≥ htFe(E) + e− 1 ≥ gradeFe(E) + e− 1 ≥ e+ 1.

Suppose that I is a good generic Bourbaki ideal of E. Since I ≃ E ′′/F we
always have µ(E) ≤ µ(I) + e− 1. On the other hand, from Eq. (5.5) we have that
ht I ≤ htFe(E

′′) = htFe(E). Hence, if I is an ideal of the principal class [com-
plete intersection or equimultiple, respectively] then E satisfies the same property.
However we are interested in the other situation, i.e. to know when a generic Bour-
baki ideal of E satisfies the same property as the module E. If dimR = 2 this is
always true, since then E is of the principal class if and only if µ(E) = e+ 1 and so
by Theorem 4.4 we have µ(I) = 2 = ht(I) (note that R must be Cohen-Macaulay
and so to be of the principal class is the same as to be a complete intersection).
And similarly for the equimultiple property by using the equality (4.2). In fact, in
the general case case where µ(E) or ℓ(E) reach the minimum values we have the
following result.

Proposition 5.7. Let (R,m, k) be a Noetherian local ring and let E ( G ≃ Re be
an ideal module having rank e > 0.

a) If µ(E) = e+ 1 then E is a module of the principal class.
b) If ℓ(E) = e+ 1 and k is infinite then E is an equimultiple module.

In both cases, if I is a good generic Bourbaki ideal of E then I satisfies the same
properties as E and we have

(5.7) grade Fe(E) = htFe(E) = 2 = ht I = grade I.

Proof. (a) If µ(E) = e+ 1 then ℓ(E) = e+ 1 (by Eq. (5.6)). Hence

2 ≤ grade Fe(E) ≤ htFe(E) ≤ µ(E)− e+ 1 = 2

and so
µ(E) = ℓ(E) = htFe(E) + e− 1 = grade Fe(E) + e− 1,
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proving that E is of the principal class.
(b) Let U be a minimal reduction of E. Then µ(U) = ℓ(E) = e + 1. By (a), U

is of the principal class. Then E is an equimultiple module (by [3, Proposition 4.3])
and we have

grade Fe(E) = htFe(E) = 2.

Now, let I be a good generic Bourbaki ideal of E. Then, using Eq. (4.2) and
(4.5), we get for (a)

µ(I) = 2 = ℓ(I) , 2 ≤ grade I ≤ ht I ≤ ℓ(I) = 2

and so

µ(I) = ℓ(I) = ht I = grade I = 2.

Therefore, I is of the principal class. In the same way, supposing that ℓ(E) = e+1,
then ℓ(I) = 2, and so

ℓ(I) = ht I = grade I = 2.

Therefore, I is an equimultiple ideal. In both cases, the equalities (5.7) hold. �

6. Divisors of a module - part 2

So far we have proved in Section 2 that if E is a finitely generated R-module with
rank e, and that if

Rm ϕ
→ Rn φ

→ E → 0

is a finite presentation of E, then

det0(E) ≃ [[E]] ≃ In−e(ρ) = Fe(E1) ⊆ Fe(E),

where ρ is an n× (n−e) submatrix of ϕ with a non-zero (n−e)× (n−e) minor, and
E1 is an R-module of projective dimension 1 with rank e with a finite presentation
given by ρ. Moreover, if E ⊆ G ≃ Re then

F0(G/E) = det0(E).

Now, we want to include in this context the Bourbaki ideal. Since we cannot do
this directly over the ring R, we have to extend it previously to an adequate Nagata
extension R

′′
. And this inclusion will be possible by means of the norm ideal [[E]]R

and the fact proven in the previous section that any generic Bourbaki ideal is always
isomorphic to a Fitting ideal.

We begin by observing that the norm ideal behaves well under the extension of
scalars by flat homomorphisms.

Proposition 6.1. Let h : R → S be a flat homomorphism of rings. Then

[[E ⊗R S]]S ≃ [[E]]R ⊗R S.

Proof. It is known that if E has rank and h : R→ S is flat, then E⊗RS has rank and
rankR E = rankS E⊗R S. Then, the statement follows by Eq. (2.11) and Properties
2.1. �
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In particular, supposing that R′′ is a Nagata extension of R and E ′′ = E ⊗R R
′′,

as in the previous sections, we get

(6.1) [[E ′′]]R′′ = [[E ⊗R R
′′]]R′′ ≃ [[E]]R ⊗R R

′′ = det0(E) ·R
′′.

In the notation of section 4, suppose that U =
∑k

i=1Rai is a reduction of E and

F =
∑e−1

j=1R
′′xj with xj =

∑k

i=1 zijai. Let {x1, . . . , xn} be a generating set of E ′′

containing the basis (x1, . . . , xe−1) of F . Let

R′′m ϕ
→ R′′n → E ′′ → 0

be a finite free presentation of E ′′ with respect to the generators x1, . . . , xn, and
write also by ϕ the respective relation matrix. As we observed, in section 5, there
exists an (n − e + 1) × (n − e) submatrix ψ of ϕ satisfying grade In−e(ψ) ≥ 1.
Moreover, if gradeFe(E) ≥ 2 then In−e(ψ) ≃ E ′′/F ≃ I (Theorem 5.3) with I a
generic Bourbaki ideal of E. Now let ρ be the n× (n− e) submatrix of ϕ containing
ψ. The matrix ρ defines a finite free presentation

0 → R′′n−e ρ
→ R′′n → E ′′

1 → 0

with E ′′
1 an R′′-module satisfying rank(E ′′

1 ) = e, E ′′
1/τR′′(E ′′

1 ) ≃ E ′′ (as observed in
section 2). Therefore

(6.2) In−e(ψ) ⊆ In−e(ρ) ⊆ In−e(ϕ).

Moreover, by Eq. (6.1)

(6.3) det0(E) · R
′′ ≃ [[E ′′]]R′′ ≃ Fe(E

′′
1 ) ⊆ Fe(E

′′) ≃ Fe(E)⊗R R
′′ = Fe(E) · R

′′.

Further, if gradeFe(E) ≥ 2 then

(6.4) I ≃ In−e(ψ) ⊆ In−e(ρ) = Fe(E
′′
1 ) ≃ [[E ′′]]R′′ .

In the case where E has projective dimension equal to one, we may assert in
addition that Fe(E

′′) is a representative of [[E ′′]]R′′ .

Proposition 6.2. Let R be a Noetherian local ring and E a finitely generated R-
module having rank e ≥ 2. If gradeFe(E) ≥ 2 then

I ≃ In−e(ψ) ⊆ In−e(ρ) ⊆ Fe(E
′′) ,

with In−e(ρ) ≃ [[E ′′]]R′′ ≃ det0(E) · R
′′, for any generic Bourbaki ideal I of E. If

moreover proj dim E = 1, then

I ≃ In−e(ψ) ⊆ In−e(ρ) = Fe(E
′′)

for any generic Bourbaki ideal I of E.

Proof. Follows by Eq. (6.2) and (6.4). �

Next suppose that (R,m) is a 2-dimensional regular local ring and E is a finitely
generated torsionfree R-module with rank e. Recall that E is said to be contracted
if E = ES ∩ Re, where S = R

[
m

a

]
, a is a minimal generator of m and ES is the S-

submodule of Se generated by S. Contracted modules were defined by V. Kodiyalam
in [7] as an extension to modules of the notion of contracted ideal. Integrally closed
modules over a 2-dimensional regular local ring R are contracted. Given a contracted
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module E, it may be seen that G = E∗∗ is free and that G/E is of finite length, so
gradeG/E = 2 and E is an ideal module, see [7, Proposition 2.1].

It then happens that contracted modules have a special generic Bourbaki ideal: It
is proved in [6, Corollary 3.6] that if E is contracted then Fe(E

′′) is a good generic
Bourbaki ideal. So as a consequence of all the above relations we have the following:

Corollary 6.3. Let (R,m) be a 2-dimensional regular local ring and E a finitely
generated torsionfree R-module with rank e which is not free. If E is contracted
then there exists a good generic Bourbaki ideal I of E which is a representative of
[[E ′′]]R′′ and in this case

I = Fe(E
′′) ≃ [[E ′′]]R′′ ≃ det0(E) ·R

′′.

Proof. Since E is an ideal module, gradeFe(E) = 2. Also, proj dim E = 1. The
result then follows by Proposition 6.2. �

We finish by pointing out that, in the above conditions, the blow up at any gene-
ric Bourbaki ideal has an universal flattening property under birational morphisms,
as we described in Theorem 2.10. For instance, if E is an integrally closed module
over a 2-dimensional regular local ring R, we have that the Rees algebra of E is
Cohen-Macaulay. So after a suitable Nagata extension R′′ of R, this Rees algebra
is a deformation of the Rees algebra of a good generic Bourbaki ideal of E, whose
blow up has such universal flattening property with respect to E ′′ = E ⊗R R

′′. It
would be interesting to know other instances where the Rees algebra of a module
satisfies a similar universal property.
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