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Abstract. We extend the algorithm of [DG02] and [DP06] for computing
p-adic Darmon points on elliptic curves to the case of composite conductor.

We also extend the algorithm of [DL03] for computing ATR Darmon points
to treat curves of nontrivial conductor. Both cases involve an algorithmic

decomposition into elementary matrices in congruence subgroups Γ1(N) for

ideals N in certain rings of S-integers. We use these extensions to provide
additional evidence in support of the conjectures on the rationality of Darmon

points.

1. Introduction

Let E be an elliptic curve over Q of conductor pM , with p a prime not dividing
M . Let K be a real quadratic field in which p is inert and all the primes dividing
M are split, and denote by Hp = P1(Kp)\P1(Qp) the Kp-points of the p-adic upper
half plane.

A construction of Darmon [Dar01] associates to every τ ∈ Hp ∩K a local point
Pτ ∈ E(Kp), which is defined as a certain Coleman integral of the modular form f
corresponding to E under the Modularity Theorem. The points Pτ are conjectured
to be rational over ring class fields of K, and to behave in many aspects as Heegner
points.

An algorithm for the effective calculation of p-adic Darmon points was given
in [DG02] and was improved in [DP06]. Some Pτ ’s were computed in concrete
examples and checked to be p-adically close to global points, providing extensive
numerical evidence in support of the conjectures. However, due to the restrictions
imposed by the algorithm, only elliptic curves of prime conductor p (that is, with
M = 1) could be treated.

In the articles [DG02] and [DP06] it is crucial to assume that M = 1 when
applying the “continued fraction trick” (see [DG02, p. 42]) in order to transform
certain semi-indefinite integrals into double integrals. The present article provides
a different procedure for performing this step when M > 1.

In other words, we extend the algorithm of [DG02] and [DP06] to a much larger
class of curves. As an application, we compute p-adic Darmon points on curves of
composite conductor and we check that they are close to global points, which pro-
vides new experimental evidence in support of the validity of Darmon’s construction
in its stated generality.
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The method for transforming semi-indefinite integrals into double integrals is
based on an algorithmic decomposition into elementary matrices in congruence
subgroups Γ1(N) for ideals N in certain rings of S-integers. This can be seen as an
algorithmic version of the congruence subgroup problem. In particular we improve
on a theorem of Cooke-Weinberger (see Corollary 2.4).

In addition, essentially the same method of elementary matrix decompositions
can also be applied to the so-called ATR points, a different instance of Darmon
points introduced in [Dar04, §8] and [DL03, §4] for elliptic curves over totally real
fields. Although the construction of ATR points is radically different (for instance,
they are defined by means of complex integrals), their explicit computation has some
formal similarities with respect to the p-adic setting. In particular the methods used
until the present have all used a “continued fraction trick” which in this case only
applies to curves of trivial conductor (cf. [Gär11, p. 108] for a discussion of this
issue). The present article provides also a method for computing ATR Darmon
points in curves of non-trivial conductor.

The rest of the article is organized as follows. In Section 2 we introduce an
algorithm for computing elementary matrix decompositions in certain congruence
subgroups. We state it in a level of generality so that it can be applied both to the
p-adic and the ATR setting. In Section 3 we recall the definition of p-adic Darmon
points, we discuss the algorithm for computing them in curves of composite level
and we include some tables of numerical computations performed using it. Finally,
in Section 4 we briefly recall ATR points and we make explicit the method for
computing them in curves of non-trivial conductor, as well as a detailed example
of a numerical verification of Darmon’s conjecture in this case.
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details on his implementation of the overconvergent modular symbols algorithm,
Kate Petersen for pointing out some relevant references, and Henri Darmon for
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partially supported by MTM2009-13060-C02-01 and 2009 SGR 1220.

2. Elementary matrix decomposition in Γ1

Let F be a number field with ring of integers O, and let S be a finite set of places
of F containing the archimedean ones. Let OS denote the subring of F consisting
of those elements whose valuation is non-negative at all the places outside S.

For an ideal N of OS , we denote by Γ1(N) the subgroup of SL2(OS) defined as

(2.1) Γ1(N) =

{
γ ∈ SL2(OS) : γ ≡

(
1 ∗
0 1

)
(mod N)

}
,

and by E1,N the subgroup of Γ1(N) generated by the elementary matrices of the
form

(2.2)

(
1 0
y 1

)
with y ∈ N and

(
1 x
0 1

)
with x ∈ OS .

If the group of units O×S is infinite, then Γ1(N) = E1,N; see for instance [Vas72]
for a proof of this result, and also for its relation with the Congruence Subgroup
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Problem. Therefore, when O×S is infinite every matrix in Γ1(N) can be factored
into a product of elementary matrices of type (2.2). However, the proof given in
[Vas72] is not explicit, so it does not give rise to an algorithm for systematically
performing such decomposition. In this section we see that the results and tech-
niques introduced in [CW75] can be adapted to provide –assuming GRH– such an
algorithm, in the particular case where F has at least one real archimedean place.
Thus from now on we will assume that O×S is infinite and that F has at least one
real place.

The following lemma is stated and proved in [BMS67, Lemma 2.2 (b)] using the
notation of Mennicke symbols. For the convenience of the reader we restate it in
terms of explicit matrix formulas.

Lemma 2.1. Let γ =
(
a b
c d

)
be an element in Γ1(N). Suppose that c = u + ta for

some unit u ∈ O×S and some t ∈ OS, and let T be the matrix

T =

(
1 0

u(a− 1) 1

)(
1 u−1

0 1

)(
1 0

t(a− 1) 1

)(
1 0
−c 1

)
.

Then Tγ = ( 1 x
0 1 ) for some x ∈ OS. In particular,

(2.3) γ =

(
1 0

c+ t(1− a) 1

)(
1 −u−1

0 1

)(
1 0

u(1− a) 1

)(
1 x
0 1

)
.

Proof. A direct computation shows that the first column of Tγ is ( 1
0 ) . Since Tγ

belongs to Γ1(N), we see that Tγ = ( 1 x
0 1 ) for some x ∈ OS . �

Observe that, since a− 1 and c belong to N , identity (2.3) already expresses γ
as a product of elementary matrices of type (2.2). The next step is to show that,
assuming GRH, one can reduce to the case where a is congruent to a unit mod c by
multiplying γ by an elementary matrix. Before stating the result of [CW75] that
grants this, we recall some terminology related to ray class groups.

Let m be an ideal of O, with factorization into prime ideals of the form

m =
∏
p|m

pm(p).

Let Im be the multiplicative group of ideals of O relatively prime to m, and let

F1,m = {x ∈ F : vp(x− 1) ≥ m(p) for all p | m}.
There is a natural map i : F1,m → Im given by x 7→ (x). The quotient

Cm = Im/i(F1,m)

is the ray class group modulo m. The following result is [CW75, Theorem 2.13].

Theorem 2.2 (Cooke–Weinberger). Assume GRH. Let m be an ideal in O, and
let α be an ideal class in Cm. Then the set of prime ideals q contained in α such
that the reduction map

O×S −→ (OS/qOS)×

is surjective has positive density.

From this we obtain the main result of this section.

Theorem 2.3. Let γ =
(
a b
c d

)
be an element of Γ1(N). Assuming GRH, the fol-

lowing algorithm terminates and computes an expression of γ as a product of ele-
mentary matrices.
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(1) Iterate over the elements λ ∈ O to find λ such that a′ = a+ λc generates a
prime ideal and

(2.4) O×S −→ (OS/a′OS)
×

is surjective.

(2) Set γ′ = ( 1 λ
0 1 ) γ, and let γ′ =

(
a′ b′

c′ d′

)
.

(3) Iterate over the elements u ∈ O×S until finding u such that

c′ ≡ u (mod a′).

(4) Use Lemma 2.1 to find an expression of γ′ as a product of elementary
matrices.

Proof. We can, and do, choose e ∈ O×S such that ea and ec belong to O. By
applying Theorem 2.2 with m = (ec), we see that there exists a prime ideal q in

the same class of [(ea)] ∈ Cm such that O×S → (O/a′OS)
×

is surjective. Since
(ea) is integral and principal, we see that q is also principal. Therefore, q = (q)
for some q ≡ ea (mod (ec)), so that q = ea + λec for some λ ∈ O. But q and

a′ = a+ λc generate the same ideal in OS , so that O×S → (O/a′OS)
×

is surjective.
This justifies that step (1) of the algorithm can be accomplished.

Now the class of c′ in (OS/a′)× can be represented by some unit u ∈ O×S , and
this justifies step (3). �

In the particular case N = OS , the result in [CW75, Th. 2.14] asserts that any
matrix γ ∈ SL2(OS) can be expressed as a product of at most 7 elementary ma-
trices. Theorem 2.3 above and expression (2.3) give the following generalization to
arbitrary ideals N, which also slightly improves the number of elementary matrices
needed to 5.

Corollary 2.4. Under the assumption of GRH, every matrix in Γ1(N) is a product
of at most 5 elementary matrices of type (2.2).

3. Computation of p-adic Darmon points on curves with composite
conductor

In this section we explain the algorithm for computing p-adic Darmon points in
curves of composite conductor and some of the related computational issues. After
briefly reviewing the definition of p-adic Darmon points in §3.1, in §3.2 we describe
the algorithm to transform the semi-indefinite integrals appearing in the definition
of these points into double multiplicative integrals. In §3.3 we explain an efficient
way of computing these double integrals, and finally in §3.4 we comment on the
calculations that have been carried out in support of Darmon’s conjecture.

3.1. Review of p-adic Darmon points. Our presentation of the necessary back-
ground and the definition of p-adic Stark–Heegner points follows closely [DP06, §1],
to which we refer the reader for more details and, in fact, for an excellent account
of this material in the prime level case.

Let E be an elliptic curve over Q of conductor N = pM , with p a prime not
dividing M . Let f(z) =

∑
n≥1 ane

2πinz be the weight two newform on Γ0(N) whose

L-series coincides with that of E. The coefficient ap is 1 (resp. −1) if E has split
(resp. non-split) multiplicative reduction at p.

Let R be the order in M2(Z[1/p]) consisting of matrices that are upper triangular
modulo M , and let Γ = R×1 denote its group of units of determinant 1. Let K be
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a real quadratic field in which p is inert and all primes dividing M are split. Set
Hp = P1(Kp) \ P1(Qp), in which Γ acts by Möbius transformations. The p-adic
Darmon point construction yields a map

Γ \ (Hp ∩K) −→ E(Kp)
τ 7−→ Pτ ,

given in terms of certain p-adic integrals, and whose definition ultimately relies on
the Z-modular symbol attached to E.

3.1.1. Measures attached to modular symbols. If V is a Z-module, a V -valued mod-
ular symbol ϕ is a map

ϕ : P1(Q)× P1(Q) −→ V, (r, s) 7→ ϕ{r → s}

such that

ϕ{r → s}+ ϕ{s→ t} = ϕ{r → t} for all r, s, t ∈ P1(Q).

For w∞ ∈ {±1} we denote by If : P1(Q) × P1(Q) → Z the Z-valued modular
symbol attached to E and w∞. That is to say

If{r → s} =


1

Ω+

∫ s

r

Reωf if w∞ = +1,

1

Ω−

∫ s

r

Imωf if w∞ = −1,

where ωf = 2πif(z)dz and Ω+,Ω− ∈ R>0 are the unique periods with the property
that the map If defined in this way takes values in Z and in no proper ideal of Z.
To simplify the exposition we assume for the rest of the article that w∞ = 1, but
the construction works very similarly for w∞ = −1.

A Z-valued measure on P1(Qp) is a finitely additive function µ from the set of
compact open subsets of P1(Qp) to Z. In [Dar01] Darmon attaches to each pair
r, s ∈ P1(Q) a Z-valued measure µf{r → s} on P1(Qp) with total measure 0 by
defining

µf{r → s}(γZp) := If{γ−1r → γ−1s}.
This is enough to define µf{r → s} for all compact open U ⊂ P1(Qp), because
either U or P1(Qp) \ U is of the form γZp for some γ ∈ Γ.

3.1.2. Double multiplicative integrals. If h is a continuous function on P1(Qp) and
µ is a measure on P1(Qp) then the integral

∫
P1(Qp)

h(x)dµ(x) is defined by means

of the Riemann sum∫
P1(Qp)

h(x)dµ(x) = lim
U={Uα}

∑
α

h(xα)µ(Uα),

where the limit is taken over increasingly finer coverings U of P1(Qp) by compact
open subsets Uα, and xα is any point in Uα. If µ is Z-valued the multiplicative
integral is defined by replacing the Riemann sum by a Riemann product:

×
∫
P1(Qp)

h(x)dµ(x) = lim
U={Uα}

∏
α

h(xα)µ(Uα).
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For τ1, τ2 ∈ Hp and r, s ∈ P1(Qp) Darmon defines a Kp-valued double integral as∫ τ2

τ1

∫ s

r

ωf =

∫
P1(Qp)

log

(
x− τ2
x− τ1

)
dµf{r → s}(x),

where log denotes a fixed branch of the p-adic logarithm. Since µf{r → s} takes
values in Z a K×p -valued double multiplicative integral can be defined as

×
∫ τ2

τ1

∫ s

r

ωf = ×
∫
P1(Qp)

(
x− τ2
x− τ1

)
dµf{r → s}(x).

These two integrals are related by the formula∫ τ2

τ1

∫ s

r

ωf = log

(
×
∫ τ2

τ1

∫ s

r

ωf

)
.

3.1.3. Semi-indefinite integrals. The double multiplicative integral satisfies the usual
additivity properties with respect to the limits, as well as the Γ-invariance property

×
∫ γτ2

γτ1

∫ γs

γr

ωf = ×
∫ τ2

τ1

∫ s

r

ωf for all γ ∈ Γ.

Therefore, it gives rise to a group homomorphism

Int× :
(
Div0(Hp)⊗Div0(P1(Q))

)
Γ
−→ K×p ,

where the subscript Γ denotes the subgroup of Γ-coinvariants. Let Z[Γ] denote the
group ring of Γ and let IΓ denote the augmentation ideal, defined by the exact
sequence

0 −→ IΓ −→ Z[Γ] −→ Z −→ 0.

Tensoring with IΓ over Z and taking Γ-coinvariants gives

(3.1) 0 −→ KΓ −→ (IΓ ⊗ IΓ)Γ
r−→ (Z[Γ]⊗ IΓ)Γ −→ (IΓ)Γ −→ 0.

Since IΓ is generated over Z by elements of the form γ − 1, choosing base points
τ ∈ Hp and x ∈ P1(Q) one can define integration maps

Int×τ,x : (IΓ ⊗ IΓ)Γ −→ K×p

determined by

(3.2) Int×τ,x((γ0 − 1)⊗ (γ1 − 1)) =

∫ γ0τ

τ

∫ γ1x

x

ωf , for γ0, γ1 ∈ Γ.

Letting Λ = Iτ,x(KΓ) ⊂ K×p yields a well defined map

(3.3) Int×τ,x : Im(r) −→ K×p /Λ.

The group (IΓ)Γ ' Γab is finite, say of exponent eΓ. If y = γx ∈ P1(Q) is in the
same Γ-orbit as x, define

×
∫ τ ∫ y

x

eΓωf := Int×τ,x(eΓ · 1⊗ (γ − 1)) ∈ K×p /Λ.

This semi-indefinite integral satisfies the following properties:

(1) ×
∫ τ ∫ s

r

eΓωf ××
∫ τ ∫ t

s

eΓωf = ×
∫ τ ∫ t

r

eΓωf , for all τ ∈ Hp, r, s, t ∈ Γx;

(2) ×
∫ τ2 ∫ s

r

eΓωf ÷×
∫ τ1 ∫ s

r

eΓωf = ×
∫ τ2

τ1

∫ s

r

eΓωf , for all τ1, τ2 ∈ Hp, r, s ∈ Γx;
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(3) ×
∫ γτ ∫ γs

γr

eΓωf = ×
∫ τ ∫ s

r

eΓωf , for all γ ∈ Γ.

3.1.4. Darmon points. Let q denote the p-adic period of E and let ΦTate : K×p /q
Z →

E(Kp) be Tate’s uniformization map.
Given τ ∈ Hp∩K, let Oτ be the ring of matrices in R that have the vector (τ, 1)

as eigenvector, which is isomorphic to a Z[1/p]-order of K. Let Hτ denote the ring
class field of Oτ which we can, and do, view as a subfield of Kp by choosing a prime
of Hτ above p. By Dirichlet’s unit theorem the stabilizer Γτ of τ in Γ is a cyclic
group of infinite order isomorphic to O×τ,1/〈±1〉. Let γτ be a generator of Γτ , and
define

Jτ = ×
∫ τ ∫ γτ∞

∞
eΓωf .

Conjecture 3.1 (Darmon). The local point Pτ = ΦTate(Jτ ) belongs to E(Hτ ).

3.2. Computation of semi-indefinite integrals. In order to effectively compute
the points Jτ one needs to compute the semi-indefinite integrals

(3.4) ×
∫ τ ∫ γτ∞

∞
eΓωf .

The method used in [DG02] and [DP06] boils down to using properties (1), (2) and
(3) of semi-indefinite integrals to express them in terms of double integrals, which
can be effectively computed either via Riemann products as in [DG02] or, more
efficiently, via overconvergent modular symbols as in [DP06].

The algorithm for expressing semi-indefinite integrals in terms of double integrals
of [DG02] and [DP06] is based on the continued fraction algorithm, and it only works
under the assumption that M = 1 (i.e., that E has conductor equal to p). In this
section we introduce an algorithm that, assuming GRH, works for all levels M . In
Section 3.3 we will see that the resulting definite double integrals obtained by this
method can also be computed using overconvergent modular symbols, by suitably
adapting the techniques of [DP06].

In order to simplify the description of the algorithm, let us make the following
inessential assumption on f (cf. Remark 3.5 for how the algorithm works without
it):

Assumption 3.2. There is a d > 1, d | M such that f has eigenvalue 1 with
respect to the Atkin-Lehner operator Wd.

Observe that if M is a composite integer then Assumption 3.2 is always fulfilled.
Indeed, if p1 and p2 are distinct prime divisors of M such that f has eigenvalue −1
with respect to Wp1 and Wp2 , then f has eigenvalue 1 with respect to Wp1p2 .

Remark 3.3. Under Assumption 3.2, the double multiplicative integral is also in-
variant under the matrix wd =

(
0 1
−d 0

)
:

×
∫ wdτ2

wdτ1

∫ wds

wdr

eΓωf = ×
∫ τ2

τ1

∫ s

r

eΓωf .

Let Γ̃ be the subgroup of PGL2(Q) generated by Γ and wd. Then, by replacing Γ by

Γ̃ in the argument of Section 3.3 one can extend the definition of the semi-indefinite
integrals ×

∫ τ ∫ s
r
eΓωf to all pairs r, s ∈ P1(Q) lying in the same Γ̃-orbit.
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Let Γ1 be the congruence subgroup of SL2(Z[1/p]) defined as

Γ1 = {γ ∈ Γ: γ ≡ ( 1 ∗
0 1 ) (mod M)} ⊂ Γ.

Using the properties of the multiplicative integral it is easy to see that

(Jτ )m = ×
∫ τ ∫ γmτ ∞

∞
ωf .

Therefore, replacing Pτ by a multiple of it if necessary we can always assume that
γτ belongs to Γ1 (but see also Remark 3.4).

Observe that Γ1 is one of the groups treated in Section 2. Indeed, with the
notation as in that section, if we let F = Q, S = {∞, p} and N = M · Z[1/p] we
have that Γ1 = Γ1(N). In particular, the algorithm described in Theorem 2.3 gives
an algorithmic method (under our running assumption of GRH) for computing a
decomposition of γτ of the form

(3.5) γτ = U1L1U2L2U3,

where the matrices Ui and Li are of the form

Ui =

(
1 xi
0 1

)
for some xi ∈ Z[1/p], Li =

(
1 0
yi 1

)
for some yi ∈M · Z[1/p].

In particular, Li and Ui belong to Γ. Then, for G ∈ Γ we have that

(3.6) ×
∫ τ ∫ UiG∞

∞
eΓωf = ×

∫ U−1
i τ ∫ G∞

∞
eΓωf

and

×
∫ τ ∫ LiG∞

∞
eΓωf = ×

∫ τ ∫ 0

∞
eΓωf ××

∫ τ ∫ LiG·∞

0

eΓωf

= ×
∫ τ ∫ 0

∞
eΓωf ××

∫ L−1
i ·τ ∫ G·∞

0

ω+
f

= ×
∫ τ ∫ 0

∞
eΓωf ××

∫ L−1
i ·τ ∫ ∞

0

eΓωf ××
∫ L−1

i ·τ ∫ G·∞

∞
eΓωf

= ×
∫ L−1

i ·τ

τ

∫ ∞
0

eΓωf ××
∫ L−1

i ·τ ∫ G·∞

∞
eΓωf .

(3.7)

In view of decomposition (3.5), repeated application of (3.6) and (3.7) transforms
the semi-indefinite integral (3.4) into a product of double multiplicative integrals.

Observe that Assumption 3.2 is used in (3.7) because of the integral ×
∫ τ ∫ 0

∞ eΓωf .
Indeed, the cusps 0 and ∞ are never in the same Γ-orbit if M > 1. But since

wd∞ = 0, they are in the same Γ̃-orbit. Therefore, the integral ×
∫ τ ∫ 0

∞ eΓωf is
well-defined by Remark 3.3.

Remark 3.4. As we already mentioned, one can overcome the fact that γτ =
(
a b
c d

)
does not generally belong to Γ1 by computing an appropriate power (Jτ )m. In some
cases one can apply an alternative procedure instead. This turns out to be more
convenient in the actual computations and it allows for the computation of Jτ itself.

Namely, if a ≡ pn (mod M) for some integer n, then the matrix g =

(
p−n 0

0 pn

)
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belongs to Γ and

Jτ = ×
∫ τ ∫ γτ∞

∞
eΓωf = ×

∫ gτ ∫ gγτ∞

∞
eΓωf

with gγτ belonging to Γ1.

Remark 3.5. The manipulations of the semi-indefinite integrals (3.7) are similar to,
and can be seen as a generalization of, those of [DG02] and [DP06]. However, they
are only valid under Assumption 3.2. In case f does not satisfy this assumption
one can then directly compute a preimage of an appropriate multiple of 1⊗ γτ by

the map r of (3.1) as follows. First of all, if we let P =
(
p 0
0 1/p

)
, Ux = ( 1 x

0 1 ) and

Ly =
(

1 0
y 1

)
we have that

(3.8) PUxP
−1 = Up2x, P−1LyP = Lp2y.

If we let e = p2−1, relations (3.8) show that Uex and Ley can be written as products
of commutators in Γ. Combining this with (3.5) one can algorithmically decompose
γeτ as a product of commutators. By using the identity in IΓ

gh− 1 = (g − 1)(h− 1) + (g − 1) + (h− 1),

one deduces first that

0 = (gg−1 − 1) = (g − 1)(g−1 − 1) + (g − 1) + (g−1 − 1),

and hence:

ghg−1h−1 − 1 = (gh− 1)(g−1h−1 − 1) + (g − 1)(h− 1)

+ (g−1 − 1)(h−1 − 1)− (g − 1)(g−1 − 1)− (h− 1)(h−1 − 1).

We can then find an expression of γeτ − 1 as an element of I2
Γ, namely γeτ − 1 =∑

i(αi − 1)(βi − 1). Thus in (Z[Γ]⊗ IΓ)Γ we have that

e(1⊗ (γτ − 1)) = 1⊗ (γeτ − 1) =
∑
i

1⊗ (αi − 1)(βi − 1)

=
∑
i

1⊗ αi(βi − 1)− 1⊗ (βi − 1)

=
∑
i

α−1
i ⊗ (βi − 1)− 1⊗ (βi − 1)

=
∑
i

(α−1
i − 1)⊗ (βi − 1),

which gives a preimage of e(1⊗(γτ −1)) under the map r. Then the semi-indefinite
integral is computed using (3.2).

3.3. Computation of the definite double integrals. As we have seen in Sub-
section 3.2 the computation of Jτ is reduced to products of integrals of the form

(3.9) ×
∫
P1(Qp)

(
x− τ2
x− τ1

)
dµf{r → s}(x).

Write µ for the measure µf{r → s}, and consider a decomposition of P1(Qp) into
a disjoint union of L open balls of the form

(3.10) P1(Qp) =

L⋃
i=1

gi · Zp, gi =

(
ai bi
ci di

)
∈ GL2(Q),
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which will be fixed later. This yields in turn a decomposition

×
∫
P1(Qp)

(
x− τ2
x− τ1

)
dµ(x) =

L∏
i=1

×
∫
giZp

(
x− τ2
x− τ1

)
dµ(x).

Fix such an i and let g = gi be the corresponding matrix, written g =
(
a b
c d

)
. We

are thus reduced to calculating

×
∫
gZp

(
x− τ2
x− τ1

)
dµ(x).

Apply the change of variables x = g · t to get

×
∫
gZp

(
x− τ2
x− τ1

)
dµ(x) = ×

∫
Zp

(
g · t− τ2
g · t− τ1

)
dµ(g · t).

Let logp be the unique homomorphismK×p → Kp such that logp(1−t) = −
∑∞
n=1 t

n/n
and logp(p) = 0. It is surjective, with kernel

ker
(
logp : K×p → Kp

)
= pZ ×U,

where U is the group of roots of unity in K×p . Suppose that we can express the
integrand as a power series in t of the form

(3.11)

(
g · t− τ2
g · t− τ1

)
= α0

(
1 +

∞∑
n=1

αnp
ntn

)
,

with αn belonging to Op, the ring of integers of Kp, for all n ≥ 1. Then the expres-

sion in (3.11) converges for t ∈ Zp and is constant modulo pvp(α0)+1. Therefore the

expression of (3.9) can be determined modulo pvp(α0)+1 by evaluating L truncated
power series. The logarithm logp(Jτ ) is evaluated by noting that

logp

(
α0(1 +

∑
αnp

ntn)
)

= logp α0 +

∞∑
n=1

βn
pntn

n
,

for a sequence of βn ∈ Op. By interchanging the infinite sum with the integral, to
compute logp(Jτ ) it is enough to compute∫

Zp
tndµ(g · t) =

∫
gZp

(g−1 · t)ndµ(t),

which is the nth moment of µ at gZp. This data can be efficiently computed in
time polynomial in the number of p-adic digits of precision, thanks to the methods
of Darmon and Pollack (see for instance [DP06, display 23]). Finally, one recovers
Jτ via the formula

Jτ = pvp(Jτ ) · ζ · expp(logp Jτ ),

where ζ is the Teichmuller lift of the unit part modulo p of the multiplicative
integral. Note also that vp(Jτ ) is the sum of the valuations of the α0 appearing in
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the decomposition (3.10). In order to find the power series in (3.11), we calculate:

gt− τ2
gt− τ1

=
at+b
ct+d − τ2
at+b
ct+d − τ1

=
(a− cτ2)t+ (b− dτ2)

(a− cτ1)t+ (b− dτ1)

=
b− dτ2
b− dτ1

1 + t cτ2−adτ2−b

1 + t cτ1−adτ1−b

=
b− dτ2
b− dτ1

(
1 +

gτ1 − gτ2
gτ1

∞∑
i=1

(−1)n(gτ1)ntn

)
where g is the matrix

g =

(
0 −1
1 0

)
g−1.

Note that for any two matrices g, h we have hg = gh−1. Also, for any choice of h,
a decomposition

P1(Qp) =
⋃
i

gi · Zp

gives rise to another decomposition

P1(Qp) =
⋃
i

(hgi) · Zp.

Therefore by choosing an appropriate h ∈ GL2(Qp) ∩M2(Z) we can assume that
vp(τ1 − a) = 0 for all a = 0, 1, . . . , p− 1 and that vp(τ2) ≥ 0.

In order to obtain a power series as in (3.11), the matrices g =
(
a b
c d

)
that we

consider should satisfy

vp

(
cτ1 − a
dτ1 − b

)
≥ 1.(3.12)

The conditions on τ1 and τ2 imply that the matrix corresponding to the contribution
of P1(Qp)\Zp satisfies (3.12), and we concentrate on the integral on Zp. Let r ≥ 0 be
the largest integer such that τ1 is congruent to some integer modulo pr. Let t1 ∈ Z
be a representative for the class of τ1 (mod pr). Write also t(i) for the representative
of t1 (mod pi) in the range 0, . . . , pi− 1. We can then use the decomposition given
by the matrices g in the set G = ∪r+1

i=1Gi, where

Gi =

{(
pi t(i) + bpi−1

0 1

)
| b = 1, . . . , p− 1

}
i = 1, . . . , r,

Gr+1 =

{(
pr+1 prb

0 1

)
| b = 0, . . . , p− 1

}
.

Together with P1(Qp)\Zp this yields a decomposition of P1(Qp) into p+1+r(p−1)
opens.

3.4. Numerical computations. To test our methods we have written a Sage
implementation of the above algorithms, modifying an existing implementation
written by Robert Pollack which in turn adapted part of the code originally written
in Magma by Darmon and Pollack ([DP06]). The code can be found on the second
author’s web page.
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Given an elliptic curve of conductor N = pM and a quadratic field K, the code
finds all the optimal embeddings of level N of K into M2(Z[ 1

p ]), and computes

the Stark-Heegner integral corresponding to the fixed point of K acting on Hp via
each embedding to a prescribed precision. The Tate parametrization yields the
coordinates of the Stark-Heegner point on E(Kp) which are then recognized as
algebraic coordinates using standard routines.

Apart from gathering numerical evidence in support of Darmon’s conjecture,
it is also worth remarking that the relative large height of the points thus found
would make it impossible to find them using naive point search methods. This is,
therefore, the only known method to finding points of infinite order on such curves.

The rest of this subsection contains the evidence that we have collected in support
of Conjecture 3.1. Although the algorithm works for arbitrary M > 1 (provided
that all its prime factors split in K), we do not intend to be exhaustive and we just
provide some examples of curves of small composite conductor. For each of these
curves we consider all the real quadratic fields K of discriminant D < 200 allowed
by the splitting conditions on p and M ; for each such field, we consider τ ∈ Hp
such that Hτ equals the Hilbert class field of K, and we are able to recognize in
all the cases Pτ as an algebraic point defined over the Hilbert class field of K. For
those fields with nontrivial class group, we give the relative minimal polynomial hD
of the X-coordinate of the point.

D h P+

13 1
(
−
√

13 + 1, 2
√

13− 4
)

28 1
(
−15
√

7 + 43, 150
√

7− 402
)

37 1
(
− 5

9

√
37 + 5

9 ,
25
27

√
37− 70

27

)
73 1

(
− 17

32

√
73 + 77

32 ,
187
128

√
73− 1199

128

)
88 1

(
− 17

9 ,
14
27

√
22 + 4

9

)
97 1

(
− 25

121

√
97 + 123

121 ,
375
2662

√
97− 4749

2662

)
133 1

(
103
9 , 92

27

√
133− 56

9

)
172 1

(
− 1923

1681 ,
11781
68921

√
43 + 121

1681

)
193 1

(
1885
288

√
193 + 25885

288 , 292175
3456

√
193 + 4056815

3456

)
Table 1. Points on elliptic curve 15A1, with p = 5
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D h P+

8 1
(
−9
√

2 + 11, 45
√

2− 64
)

29 1
(
− 9

25

√
29 + 32

25 ,
63
125

√
29− 449

125

)
44 1

(
− 9

49

√
11− 52

49 ,
54
343

√
11 + 557

343

)
53 1

(
− 37

169

√
53 + 184

169 ,
555
2197

√
53− 5633

2197

)
92 1

(
533
46 ,

17325
2116

√
23− 533

92

)
137 1

(
− 1959

11449

√
137 + 242

11449 ,
295809
2450086

√
137− 162481

2450086

)
149 1

(
− 261

2809

√
149 + 2468

2809 ,
8091

148877

√
149− 101789

148877

)
197 1

(
− 79135143

209961032

√
197 + 977125081

209961032 ,
1439547386313
1075630366936

√
197− 9297639417941

537815183468

)
D h hD(x)

65 2 x2 +
(

61851
6241

√
65− 491926

6241

)
x− 403782

6241

√
65 + 3256777

6241

Table 2. Points on elliptic curve 21A1, with p = 3
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D h P+

13 1
(
− 1

2

√
13 + 3

2 ,
1
2

√
13− 7

2

)
28 1

(
22
7 ,

55
49

√
7− 11

7

)
61 1

(
− 1

2

√
61 + 5

2 ,
√

61− 11
)

73 1
(
− 53339

49928

√
73 + 324687

49928 ,
31203315
7888624

√
73− 290996167

7888624

)
76 1

(
−2,
√

19 + 1
)

109 1
(
− 143

2

√
109 + 1485

2 , 5577
2

√
109− 58223

2

)
172 1

(
− 51842

21025 ,
2065147
3048625

√
43 + 25921

21025

)
184 1

(
59488
21609 ,

109252
3176523

√
46− 29744

21609

)
193 1

(
94663533349261
678412148664608

√
193 + 1048806825770477

678412148664608 ,

147778957920931299317
12494688311813553741184

√
193 + 30862934493092416035541

12494688311813553741184

)

D h hD(x)

40 2 x2 +
(

2849
1681

√
10− 6347

1681

)
x− 5082

1681

√
10 + 16819

1681

85 2 x2 +
(

119
361

√
85− 1022

361

)
x− 168

361

√
85 + 1549

361

145 4 x4 +
(

169016003453
83168215321

√
145− 1621540207320

83168215321

)
x3

+
(
− 1534717557538

83168215321

√
145 + 18972823294799

83168215321

)
x2

+
(

5533405190489
83168215321

√
145− 66553066916820

83168215321

)
x

+− 6414913389456
83168215321

√
145 + 77248348177561

83168215321

Table 3. Points on elliptic curve 33A1, with p = 11
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D h P+

24 1
(

12565
19321

√
6 + 31879

19321 ,
4020800
2685619

√
6 + 12075417

2685619

)
41 1

(
70
√

41 + 449, 2100
√

41 + 13443
)

61 1
(

7444913385
279945122

√
61 + 58532610047

279945122 , 1805488279736505
3312030738382

√
61 + 14113780406002997

3312030738382

)
69 1

(
63742245
280513298

√
69 + 526671623

280513298 ,
1810980922695
3322118988214

√
69 + 16959961136217

3322118988214

)
76 1

(
− 4398502037370

1404725114521

√
19 + 19299436937929

1404725114521 ,

28304052715333334100
1664895657706548931

√
19− 121810800584629037164

1664895657706548931

)
89 1

(
981
100 ,

3563
1000

√
89− 1

2

)
101 1

(
7505
10404 ,

310345
1061208

√
101− 1

2

)
124 1

(
− 210

1681

√
31 + 12769

1681 ,
35700
68921

√
31− 1678197

68921

)
129 1

(
9526581863470

129638878212649

√
129 + 154639065911401

129638878212649 ,

227155723851142702700
1476056210913547737643

√
129 + 5024283358306642389249

1476056210913547737643

)
181 1

(
− 4166720

31843449 ,
7889580565

359385165414

√
181− 1

2

)
D h hD(x)

104 2 x2 − 87841
9522 x+ 85397

6348

136 2 x2 +
(

132755895957027
12703756878289

√
34− 805260717153160

12703756878289

)
x

− 4207164401474475
12703756878289

√
34 + 24540106232139359

12703756878289

Table 4. Points on elliptic curve 35A1, with p = 7
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D h P+

8 1
(

1
2 ,

1
4

√
2− 1

2

)
53 1

(
3
2

√
53 + 23

2 ,
15
2

√
53 + 107

2

)
77 1

(
5559
55778

√
77 + 78911

55778 ,
2040153
9314926

√
77 + 17804737

9314926

)
89 1

(
793511
2401 , 150079871

235298

√
89− 1

2

)
101 1

(
− 656788148124048

108395925566683225

√
101 + 108663526315570777

108395925566683225 ,

432742605985104670344096
35687772118459783422252125

√
101− 71551860216079551941383354

35687772118459783422252125

)
137 1

(
83
81 ,

193
1458

√
137− 1

2

)
149 1

(
− 41662615293

110013332450

√
149 + 802189306199

110013332450 ,

39791672228037249
25801976926160750

√
149− 635290450369692907

25801976926160750

)
152 1

(
− 1915814571

20670100441

√
38 + 24731592007

20670100441 ,

577303899566856
2971761010503011

√
38− 7167395643538198

2971761010503011

)
161 1

(
62146167667
49710362300 ,

8395974419456303
53153799096521000

√
161− 1

2

)
188 1

(
3178296211866
1135825194001

√
47 + 22525829850817

1135825194001 ,

21864116230891316004
1210506836331759751

√
47 + 148356498531472446055

1210506836331759751

)

D h hD(x)

104 2 x2 +
(
− 992302702743

1960400420449

√
26− 57132410901980

1960400420449

)
x

− 4968445297101
1960400420449

√
26 + 61480175149213

1960400420449

140 2 x2 − 7073157
13924 x+ 398237221

55696

185 2 x2 +
(
− 908505900

7532677681

√
185− 54207252962

7532677681

)
x

− 787814100
7532677681

√
185 + 45005684581

7532677681

Table 5. Points on elliptic curve 51A1, with p = 3

D h P+

29 1 2 ·
(

5
2

√
29 + 29

2 ,
25
2

√
29 + 133

2

)
44 1

(
47
36 ,

13
54

√
11− 83

72

)
149 1

(
41297
48050

√
149 + 554429

48050 ,
28371039
7447750

√
149 + 340434623

7447750

)
Table 6. Points on elliptic curve 105A1, with p = 3
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4. Computation of ATR Darmon points on curves of non-trivial
conductor

In Section 3 we have seen that the algorithm of Theorem 2.3 can be used in
the computation of the semi-indefinite integrals entering the definition of p-adic
Darmon points. It is a substitute for the continued fractions trick of [DG02] and
[DP06].

There is another type of Darmon points, called ATR, whose definition also relies
in certain semi-indefinite integrals. Although the framework is different (e.g., they
are points on elliptic curves over number fields, and the integrals are complex
instead of p-adic), the formal properties satisfied by the semi-indefinite integrals
are the same in both settings. In the ATR case, the continued fraction algorithm
over number fields had been used for computing ATR points on curves with trivial
conductor (cf. [DL03], [GM13]). Using a method analogous to that of Section
3.2, Theorem 2.3 also allows for the computation of ATR points on curves with
non-trivial conductor.

To be more precise, let F be a real quadratic number field of narrow class number
1 and let O denote its ring of integers. Let E be an elliptic curve over F of conductor
N, and let Γ be the congruence subgroup consisting of matrices in SL2(O) that are
upper triangular modulo N. Assuming that E is modular, there is a Hilbert modular
form f of parallel weight two and level N whose L-series coincides with that of E.
Let ωf denote the corresponding Γ-invariant differential 2-form on H×H (with Γ
acting on it via the product of the two embeddings of F into R).

The following is analogous to Assumption 3.2.

Assumption 4.1. There exists an ideal D | N such that f has eigenvalue 1 for the
Atkin–Lehner operator WD.

Let Γ̃ be the subgroup of PGL2(F ) generated by Γ and the Atkin–Lehner matrix
corresponding to WD. The previous assumption guarantees that 0,∞ ∈ P1(F ) are

Γ̃-related.
Let K be a quadratic almost totally real (ATR) extension of F ; i.e., a quadratic

extension of F that has exactly one non-real archimedean place. Suppose that all
primes dividing N are split in K. We refer the reader to [DL03] and [Dar04, §8] for
the definition of the semi-indefinite integrals in this setting. We will just mention
that they are expressions of the form∫ τ ∫ y

x

ω+
f ∈ C/Λf ,

where τ ∈ H, x, y ∈ P1(F ) are in the same Γ̃-orbit, Λf is a certain period lattice that
depends on f , and ω+

f is a non-holomorphic differential easily related to ωf . They
satisfy analogous properties to those of p-adic semi-indefinite integrals; namely

(i)
∫ γτ ∫ γs

γr
ω+
f =

∫ τ ∫ s
r
ω+
f for all γ ∈ Γ̃, r, s ∈ Γ̃x,

(ii)
∫ τ ∫ s

r
ω+
f +

∫ τ ∫ s
r
ω+
f =

∫ τ ∫ s
r
ω+
f , for all τ ∈ H, r, s ∈ Γ̃x,

(iii)
∫ τ2 ∫ s

r
ω+
f −

∫ τ1 ∫ s
r
ω+
f =

∫ τ2
τ1

∫ s
r
ω+
f , for all τ1, τ2 ∈ H, r, s ∈ Γ̃x.

ATR Darmon points are given by expressions of the form Pτ = Φ(λ
∫ τ ∫ γτ∞

∞ ω+
f ),

where γτ belongs to Γ, Φ is the complex uniformization map Φ: C/ΛE → E(C),
and λ is a period conjecturally relating ΛE and Λf . At the cost of replacing Pτ by
a multiple of it, we can assume that γτ actually belongs to Γ1(N) (the notation is
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as in (2.3), with S equal to the archimedean places of F ). Then the algorithm of
Theorem 2.3 computes a decomposition of γτ of the form

(4.1) γτ = U1L1U2L2U3,

where the matrices Ui and Li are of the form

Ui =

(
1 xi
0 1

)
for some xi ∈ O, Li =

(
1 0
yi 1

)
for some yi ∈ N.

In particular, they belong to Γ and the same expressions of (3.6) and (3.7) (changing
the multiplicative by the additive notation) express

∫ τ ∫ γτ∞
∞ ω+

f in terms of usual

double integrals of the form
∫ τ2
τ1

∫∞
0
ω+
f , which in principle can be evaluated by

integrating the Fourier expansion of ω+
f .

It is worth remarking that, although the method described above certainly ex-
presses the semi-indefinite integrals in terms of definite ones, the running time to
directly compute the resulting double integrals to a useful accuracy often turns out
to be too high. The problem is that if the limits of integration are too close to the
real axis, then the number of Fourier coefficients needed to sum the series to an
accurate precision is too high.

These kind of computational difficulties seem to be inherent to the ATR setting,
as they were also to some extent present in the initial work of Darmon and Lo-
gan [DL03]. In [GM13] some methods for accelerating the computation of double
integrals in the trivial level case were introduced. The authors believe that simi-
lar techniques can be applied to the non-trivial level setting in order to perform a
systematical calculation similar to the one of Section 3.4.

In spite of this, in some simple examples it is possible to directly compute the
integrals provided by Theorem 2.3, and hence to compute approximations to the
ATR points. The following is an example of this, which we detail because it provides
numerical evidence of the validity of Darmon’s conjecture in elliptic curves of non-
prime conductor.

Example 4.2. Let F = Q(
√

5) and let E be the curve

y2 + xy + ωy = x3 − (ω + 1)x2 − (30ω + 45)x− (111ω + 117), ω =
1 +
√

5

2
.

The conductor of E is N = (
√

5+6), which has norm 31. This curve was previously
considered in [Gre06] and [Gär11] (but note the typo in the displayed equation in

both references). Let α = 1 −
√

5 and let K = F (
√
α). The embedding ϕ : K ↪→

M2(F ) sending ω to the matrix

W =

(
3− ω −1
8− 3ω −3 + ω

)
is an optimal embedding of level N. Under the embedding F ↪→ R sending

√
5 to

the positive square root of 5, the fixed point of W acting on C× is

τ = 0.439291418991 + i · 0.353408129753,

and the image of the unit (−3 + 2ω)ω + 4− 3ω ∈ O×K under ϕ is

γτ =

(
−4 + 3ω 2− 2ω
−22 + 16ω 12− 9ω

)
.
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The ATR point attached to (the maximal order of) K is Jτ =
∫ τ ∫ γτ∞

∞ ω+
f . The

determinant of γτ is ω + 1, which is a unit. However its upper left entry is not
congruent to 1 modulo N. If we let u = −

√
5 − 2, which is a fundamental unit of

F , then −4 + 3ω ≡ u (mod N). This implies that the matrix γ′τ =
(
u−1 0

0 u

)
γτ has

its upper left entry congruent to 1 modulo N. We can work with γ′τ because

(4.2) Jτ =

∫ u−2τ ∫ γ′τ∞

∞
ω+
f .

Observe that det(γ′τ ) = w+1, which is a unit. The algorithm of Theorem 2.3 works
for invertible matrices, not just determinant 1 matrices, and it gives the following
decomposition of γ′τ :(

1 1−w
0 1

) (
1 0

118739−73384ω 1

) (
1 46368+75025ω
0 1

) (
1 0

−5431444+ω3356817 1

) (
1 −37268−60300ω
0 1+w

)
.

We use this decomposition to transform (4.2) into a sum of usual double integrals.
The resulting integrals have limits not too close to the real axis (the smallest imagi-
nary part is ' 0.011). Integrating the Fourier series with coefficients am with norm
of m up to 180, 000 gives Jτ to an accuracy of approximately 12 digits:

Jτ ' −4.828954817077 + i · 4.534696532333.

There is a point P of infinite order in E(K) having x-coordinate equal to 18883/2420α−
16127/2420 (this was found using naive search algorithms); let J denote its corre-
sponding image in C/ΛE . Then the equality

Jτ = −2J (mod ΛE)

holds up to the computed accuracy, giving numerical evidence of the equality Pτ =
−2P and, therefore, of the rationality of Pτ .
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