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1 Introduction

For more than two decades, non-leptonic decays of B mesons have been known to provide
unique information on three fronts: CP violation and the angles of the CKM matrix,
the structure of QCD in the presence of heavy quarks and energetic light particles, and
beyond-the-Standard Model physics in the quark sector.

Experimental information on non-leptonic B decays has been collected progressively
over the years, at CLEO, the B-factories BaBar and Belle [1], the Tevatron, and currently
at the LHC, most prominently at LHCb. Future experimental programs at the upgraded
LHC and at Belle II also include serious plans for analyses of non-leptonic B decays [2, 3].

On the theory side, the calculation of the complicated non-perturbative matrix ele-
ments which are present in the amplitude is the bottleneck to precision predictions. The
most important leap towards the deconstruction of these matrix elements came with the
development of the QCDF/SCET approach [4–7], which allows to factorize the amplitudes
of two-body decays such as B → ππ or B → Dπ and express them in terms of local form
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factors, meson light-cone distribution amplitudes (LCDAs) and perturbative matching co-
efficients (also known as ‘hard kernels’), up to corrections of order ΛQCD/mb. Perturbative
matching coefficients are currently known up to NNLO in QCD [8–22].

The extension of the QCDF/SCET approach beyond two-body decays (i.e. three-
body), although discussed already early on [23, 24], has only been pursued relatively
recently [25]. Contrary to two-body decays, where the phase space merely consists of
a single point, the phase space of the three body decay is two dimensional, and can be
parameterized by the invariant masses of two pairs of final-state particles. The factoriza-
tion properties of the three-body decay amplitude in the heavy-quark limit will depend on
the scaling of these invariant masses with mb, that is, on the region of phase space [25].
The situation that closely resembles the two-body case arises in the edges of phase space,
where two invariant masses are large and the third is small. This includes the resonance
region, containing quasi-two-body decays such as B → πK∗ or B → Dρ, but understanding
these quasi-two-body decays beyond the narrow-width limit requires studying the under-
lying three-body decay (see e.g. [25–31]). The factorization of the three-body amplitude
B → MM1M2 in the region where the invariant mass of the pair (M1M2) is small is in
fact virtually identical to that of the two-body decay, the only difference arising in some
of the form factors and LCDAs appearing in the factorization formula, which must be
generalized to B → M1M2 form factors and dimeson LCDAs. The hard matching coeffi-
cients, on the other hand, are identical and one can use the NNLO calculations available
from two-body decays. The generalized form factors appear in other classes of decays such
as B → ππ`ν [32] or B → Kπ`` [29], and thus significant efforts have been devoted to
their calculation [26, 29, 33, 34]. Dimeson LCDAs are, however, not very well-known (see
e.g. [35]), and it is one of the main purposes of the present paper to further investigate
their role in three-body non-leptonic B decays.

While this framework has been already put to work phenomenologically in decays to
light mesons such as B → πππ (see e.g. [28]), it seems clear that in order to deepen
our insight on the theory of factorization in three-body non-leptonic decays one should
study in detail the simplest of the cases. These are the heavy-to-heavy non-leptonic decays
B → DM1M2 where the flavor of the B-meson spectator is picked up by the D meson,
in the region of low invariant mass of the (M1M2) system. To leading power in ΛQCD/mb

these amplitudes are factorized into well-known B → D form factors, matching coefficients
(known to NNLO in αs [19, 20]), and dimeson M1M2 LCDAs ; schematically,

A(B̄0 → D+K−π0) ∼ FB→D
∫
du T (u, µ) φKπ(u, µ) +O(ΛQCD/mb) . (1.1)

This amplitude is under more theoretical control than other three-body decays to light
mesons where there are two more terms depending on generalized B →M1M2 form factors
and the B-meson LCDA. In this paper we study the heavy-to-heavy three-body decays
such as the one above in the region of low invariant mass of the light dimeson system. We
derive the factorization of the matrix elements, lay out the structure of the amplitudes at
NNLO, and explore phenomenological consequences of these results.

The structure of the paper is the following. We start in section 2 with a general descrip-
tion of the kinematics of the three-body decay. In section 3 we derive the SCET/QCDF
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factorization formula for the matrix elements at NNLO, discussing also the relevant non-
perturbative quantities that appear in the factorization formula (form factors and dimeson
LCDAs), and study the numerical size of NLO and NNLO perturbative corrections. In
section 4 we consider the narrow-width limit and relate in a precise manner the three-body
decays to the quasi-two body B → Dρ and B → DK∗ decays discussed extensively in
the literature, and we compute the relevant corrections to this limit. Section 5 contains a
discussion on the effect of higher order corrections on a class of observables built of ratios
of bins in the Dalitz plot, both for the Dππ and the DKπ case. We conclude in section 6.

2 Kinematics and phase space of the three-body decay

We consider the decays B̄0(p) → D+(q)M−(k1)π0(k2) with M = π,K. In the B-meson
rest frame, and choosing ~k = ~k1 + ~k2 in the +ẑ direction, we have:

pµ = mB v
µ = nµ

2 mB + n̄µ

2 mB ; (2.1)

kµ ≡ kµ1 + kµ2 = nµ

2 k− + n̄µ

2 k+ ; (2.2)

qµ = mD v
′µ = nµ

2 (mB − k−) + n̄µ

2 (mB − k+) ; (2.3)

k
µ ≡

(
1− ∆m2

Mπ

k2

)
kµ1 −

(
1 + ∆m2

Mπ

k2

)
kµ2 = nµ

2 k̄− + n̄µ

2 k
+ + k

µ
⊥ , (2.4)

where v, v′ are the velocities of the B and D mesons respectively. The light-cone vectors
n, n̄ are given in this frame by n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1), and ∆m2

Mπ ≡ k2
1−k2

2 =
m2
M −m2

π, such that k · k = 0. In full generality,

k± = m2
B −m2

D + k2 ∓
√
λBD(k2)

2mB
, (2.5)

k
± = ∓k

±√λMπ(k2) cos θπ
k2 , (2.6)

in terms of kinematic Källén functions λij(k2) = (m2
i −m2

j )2 + k4 − 2(m2
i + m2

j )k2. Here
θπ is defined as the angle between the three-momenta of the neutral pion (~k2) and the
B-meson (~p) in the (Mπ) rest frame, in which ~k = 0 holds. This defines all momenta in
terms of the two kinematic variables (k2, θπ), which parameterize the phase space.

The decay amplitudes are therefore functions of (k2, θπ). The dependence on these two
variables can be factorized by expanding the amplitudes in partial waves,

A(k2, θπ) =
∞∑
`=0
A(`)(k2)P`(cos θπ) , (2.7)

where P`(x) are Legendre polynomials: P0(x) = 1, P1(x) = x, etc. In the caseMπ = π−π0,
the dimeson is an isospin-one state, and therefore the sum runs over odd ` only. In the case
K−π0, even partial waves can contribute significantly, e.g. resonance contributions such as
B̄0 → D+K∗−0 (800) will contribute to the S-wave amplitude A(0). It is worth noting that
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the partial wave expansion cannot converge for values of k2 where cross-channel resonance
contributions such as B → D∗+M− are relevant. This issue may be addressed by the isobar
method, for example, a subject we will not comment on any further (see e.g. [36, 37]).

The differential decay rate in terms of the two phase-space variables (k2, θπ) is given by

dΓ(B̄ → D+M−π0)
dk2 d cos θπ

=
√
λBD(k2)λMπ(k2)
64(2π)3k2m3

B

|A(B̄ → D+M−π0)|2 , (2.8)

for M = {π,K}. For the quasi-two-body decay rates into “stable” vector mesons
V = {ρ,K∗, . . . } we have, on the other hand,

Γ(B̄ → D+V −) =

√
λBD(m2

V )
16πm3

B

|A(B̄ → D+V −)|2 , (2.9)

which will be useful when checking the narrow-width limit.

3 Decay amplitudes in QCD factorization at NNLO

3.1 Setup

The B̄0 → D+L− amplitudes, with L− = {π−, ρ−, π−π0,K−,K∗−,K−π0, . . . } a light
hadronic state, are mediated by b → cūd and b → cūs effective operators in the effective
weak Lagrangian. In the Standard Model, only two dimension-six operators are relevant,1

L(6)
eff = −4GF√

2
V ∗uxVcb (C1Q1 + C2Q2) + h.c. (3.1)

with x = d, s and2

Q1 = (c̄γµPLT ab) (x̄γµPLT au) , Q2 = (c̄γµPLb) (x̄γµPLu) . (3.2)

The cases x = s, d apply to final states with and without strangeness, respectively, and
thus we will not distinguish between both sets of operators. The decay amplitudes are then
given by

A(B̄0 → D+L−) = 4GF√
2
V ∗uxVcb

[
C1〈Q1〉+ C2〈Q2〉

]
(3.3)

with
〈Qi〉 ≡ 〈D+L−|Qi|B̄0〉 . (3.4)

We are mostly interested in L− = π−π0 and L− = K−π0, but will also reproduce the cases
L− = π−,K− and L− = ρ−,K∗− in order to validate the general approach.

Given that the short-distance coefficients Ci are perturbative and well-known by now
(see [39–41] and references therein), the theoretical challenge is to compute the a priori non-
perturbative hadronic matrix elements 〈Qi〉. While this is an unsolved problem in general,
it is known that if the heavy charmed meson D+ retains the light degrees of freedom from

1For the full set of dimension-six b→ cūx operators beyond the Standard Model see e.g. ref. [38].
2Note that these operators differ by a factor of four from those in ref. [20].
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the parent B meson, and if the hadronic state L− is light (and therefore very energetic
in the B-meson rest frame), the matrix elements can be treated within the Soft-Collinear
Effective Theory (SCET) [6, 42–45], where they factorize at the leading order in the EFT
counting [5, 7].

We thus consider the kinematic region where the pair (M−π0) has small invariant mass,
that is (k1 + k2)2 ≡ k2 ∼ λ2m2

b � m2
b , where λ = ΛQCD/mb � 1 is the power-counting

parameter. From the general kinematic relations in the previous section it follows that
(k+, k−) ∼ mb (λ2, 1), and thus the dimeson (M−π0) has small invariant mass and large
energy in the n direction. In this region the kinematics and the factorization properties are
very similar to the two-body decay B̄0 → D+π− [5, 7], and corrections to the factorization
formulas that we derive below are of order O(k2/m2

B).

3.2 SCET matching at NNLO and factorized matrix elements

We match the QCD operators Qi onto SCET operators Ok(t) via

Qi =
∑
k

∫
dt̂ Cik(t̂)Ok(t) , (3.5)

where t̂ = t k− and the SCET operators read

O1(t) = [h̄v′/nPLhv]
[
χ̄(d)
n (tn̄)

/̄n

2PLχ
(u)
n (0)

]
, (3.6)

O2(t) = [h̄v′/nPRhv]
[
χ̄(d)
n (tn̄)

/̄n

2PLχ
(u)
n (0)

]
. (3.7)

Here hv is an HQET field which satisfies /vhv = hv (and similar for hv′), while χ is a
collinear SCET field with equation of motion /nχ = 0. The SCET operators are non-local
on the light-cone, and in our notation we are suppressing the Wilson lines required to make
the operators gauge invariant. Since at leading order in the SCET power-counting no soft
or collinear gluons can be exchanged between the dimeson and the rest of the system, the
matrix elements can — to all orders in αs — be further decomposed as

〈Qi〉 =
∑
k

∫
dt̂ Cik(t̂) 〈Ok(t)〉

=
∫
dt̂
(
Ci1(t̂) Ci2(t̂)

)(〈D+|h̄v′/nPLhv|B̄0〉
〈D+|h̄v′/nPRhv|B̄0〉

)
〈L−|χ̄(d)

n (tn̄)
/̄n

2PLχ
(u)
n (0)|0〉 . (3.8)

The individual factors in this equation can be expressed in terms of non-perturbative
objects. For the term in the middle one has, in the notation of ref. [20],(

〈D+|h̄v′/nPLhv|B̄0〉
〈D+|h̄v′/nPRhv|B̄0〉

)
=
(
CDFF CNDFF

CNDFF CDFF

)−1(〈D+|c̄/nPLb|B̄0〉
〈D+|c̄/nPRb|B̄0〉

)
, (3.9)

while for the last term we get

〈L−(k)|χ̄(d)
n (tn̄)

/̄n

2PLχ
(u)
n (0)|0〉 = C−1

qq̄ 〈L−(k)|d̄n(tn̄)
/̄n

2PLun(0)|0〉

≡ C−1
qq̄ Φ̂L(k, t) = C−1

qq̄ k
−
∫ 1

0
du eiutk

−Φ̂L(k, u) , (3.10)
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where for the dimeson state we let the variable k represent the pair (k1, k2). The matching
coefficient Cqq̄ accounts for the difference between the QCD and SCET current as discussed
in ref. [16], and we have introduced a Fourier transformation from the variable t̂ = t k− to
the momentum fraction u ∈ [0, 1],

Φ̂L(k, t) ≡ k−
∫ 1

0
du eiutk

−Φ̂L(k, u) . (3.11)

Substituting (3.9) and (3.10) into (3.8) we obtain

〈Qi〉= k−
∫ 1

0
du

∫
dt̂eiutk

−(
Ci1(t̂)Ci2(t̂)

)( CDFF CNDFF

CNDFF CDFF

)−1(〈D+|c̄/nPLb|B̄0〉
〈D+|c̄/nPRb|B̄0〉

)
C−1
qq̄ Φ̂L(k,u).

(3.12)

The Fourier transform of the matching coefficients Cik(t̂) can be identified with the quan-
tities H(′)

i1 (u) defined in ref. [20],(
Hi1(u) H ′i1(u)

)
=
∫
dt̂ eiutk

−(
Ci1(t̂) Ci2(t̂)

)
. (3.13)

The entire calculation in ref. [20] was performed in momentum space and therefore the
H

(′)
i1 (and T̂

(′)
i below) were directly obtained as a function of u, see also the discussion

in ref. [46]. Together with the form-factor relation

〈D+|c̄/nPLb|B̄0〉 = 〈D+|c̄/nPRb|B̄0〉 = FB→Dn (k2) ≡ FB→Dn , (3.14)

eq. (3.12) becomes

〈Qi〉 = k− FB→Dn

∫ 1

0
du
(
Hi1(u) H ′i1(u)

)( CDFF CNDFF

CNDFF CDFF

)−1(1
1

)
C−1
qq̄ Φ̂L(k, u). (3.15)

Following again ref. [20] we see that (3.15) contains the hard functions T̂ (′)
i (u) which are

related to the H(′)
i1 (u) via

(
T̂i(u) T̂ ′i (u)

)
=
(
Hi1(u) H ′i1(u)

)( CDFF CNDFF

CNDFF CDFF

)−1

C−1
qq̄ . (3.16)

Therefore,

〈Qi〉 = k− FB→Dn

∫ 1

0
du
(
T̂i(u) T̂ ′i (u)

)(1
1

)
Φ̂L(k, u) . (3.17)

In other words, the hard functions in the factorization formula are universal for all
B̄0 → D+L− decays since they are Wilson coefficients of SCET. As expected, they en-
ter the B̄0 → D+L− transition only in the combination Ti(u) = T̂i(u) + T̂ ′i (u) and we
arrive at the factorization formula for the matrix element:

〈Qi〉 = k− FB→Dn

∫ 1

0
du Ti(u) Φ̂L(k, u) . (3.18)

– 6 –



J
H
E
P
1
1
(
2
0
2
0
)
1
0
3

At order α0
s, the hard functions are given by

T1(u) = O(αs) , T2(u) = 1 +O(αs) , (3.19)

and, in particular, the matrix elements depend only on the local limit of the LCDAs, i.e.
decay constants for L = meson or timelike form factors for L = dimeson. The functions
Ti(u) have been computed up to O(α2

s) in ref. [20], and we will use these results to produce
NNLO predictions for the amplitudes.

3.3 Form factors and generalized LCDAs

The form factor FB→Dn as defined in eq. (3.14) can be easily related to the traditional form
factors FB→D0,+ (e.g. [47]):

〈D+(q)|c̄γµb|B̄0(p)〉 = F+(k2)
[
(p+ q)µ − m2

B −m2
D

k2 kµ
]

+ F0(k2) m
2
B −m2

D

k2 kµ . (3.20)

Contracting this matrix element with nµ/2, one finds

k−FB→Dn = m2
B −m2

D

2
[
F+(k2) +F0(k2)

]
+O(k2/m2

B) = (m2
B −m2

D)F0(k2) +O(k2/m2
B) ,

(3.21)
where the second equality results from the kinematic constraint F+(0) = F0(0).

The LCDAs Φ̂L(k, u) have been defined in eq. (3.10), but for reasons that will become
clear below we choose to express them in terms of “unhatted” LCDAs in the following way:

Φ̂P (k, u) = ifP
4 ΦP (u) , (3.22)

Φ̂V (k, u) = fV
4 ΦV (u) , (3.23)

Φ̂ππ(k1, k2, u) = − 1
2
√

2
Φππ(u, k2, θπ) , (3.24)

Φ̂Kπ(k1, k2, u) = − 1
2
√

2
ΦKπ(u, k2, θπ) , (3.25)

where P = {π,K} and V = {ρ,K∗}. The decay constants fP,V are defined by:

〈P (k)|x̄γµγ5u|0〉 = −ifPkµ , 〈V (k, ε)|x̄γµu|0〉 = fVmV ε
∗
µ , (3.26)

and thus,3

〈P (k)|x̄ /̄n γ5u|0〉 = −ifPk− , 〈V (k, ε‖)|x̄ /̄n u|0〉 = f
‖
V k
− . (3.27)

For vector mesons we have adopted the phase convention of refs. [26, 29], which differs
from [47] but is more convenient when regarding the vector meson as a resonance. The
light-meson LCDAs ΦP (u) and ΦV (u) defined in this way coincide with the ones used
in refs. [5, 47],4 satisfying the normalization∫ 1

0
duΦP (u) =

∫ 1

0
duΦV (u) = 1 . (3.28)

3For vector mesons and vector resonances R, we use the fact that ε‖ · n̄ = k−/mR and εt · n̄ = ε0 · n̄ =
ε⊥ · n̄ = 0. Thus the decay constant appearing really is fV = f

‖
V .

4In [47] the notation φp(u) and φ‖(u) is used, while ΦV = Φ‖ in [5]. See appendix A of [47] and
section 2.3.2 of [5].
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Concerning the dimeson LCDAs, their local limit is given by the pion and Kπ timelike
form factors:

〈π−(k1)π0(k2)|d̄γµu|0〉 = −
√

2Fπ(k2) kµ , (3.29)

〈K−(k1)π0(k2)|s̄γµu|0〉 = −
fKπ+ (k2)√

2
kµ −

∆m2
Kπ√

2k2 fKπ0 (k2) kµ , (3.30)

where Fπ(k2) denotes the electromagnetic form factor with Fπ(0) = 1, and fKπ0,+ (k2) denote
the scalar and vector K̄0π− form factors, respectively. Thus the various signs and factors
of
√

2 are isospin coefficients. These form factors in the timelike region can be extracted
directly from data (see e.g. [26, 29, 48, 49]).

These local limits determine that the “unhatted” LCDAs in the right-hand side of
eqs. (3.24) and (3.25) are normalized to:∫ 1

0
duΦππ(u, k2, θπ) = cos θπ βπ(k2)Fπ(k2) , (3.31)∫ 1

0
duΦKπ(u, k2, θπ) = cos θπ

√
λKπ(k2)

2k2 fKπ+ (k2) + ∆m2
Kπ

2k2 fKπ0 (k2) , (3.32)

where βπ(k2) ≡
√

1− 4m2
π/k

2. One can see that in the ππ case, only a P -wave compo-
nent arises, while in the Kπ case there is also an S-wave component proportional to the
mass difference ∆m2

Kπ = m2
K − m2

π. We also see that in the limit mK → mπ, where√
λKπ(k2)→ k2βπ(k2), the Kπ case reduces to that of ππ up to isospin factors. The defi-

nition of the dipion LCDA Φππ used here thus agrees with the ones used in refs. [25, 34, 35].
The Kπ LCDA ΦKπ, however, has not been discussed in the literature in any depth.

The LCDAs can be expanded in Gegenbauer coefficients:

ΦL(u) = 6uū
∞∑
n=0

αLn C
3/2
n (u− ū) , (3.33)

where C3/2
0 (x) = 1, C3/2

1 (x) = 3x, C3/2
2 (x) = 3(5x2 − 1)/2, etc. The normalization of

the LCDAs determines αL0 =
∫ 1

0 duΦL(u), such that αP0 = αV0 = 1 and αMπ
0 are given

by eqs. (3.31) and (3.32). For L = {ρ, ππ}, αLn odd = 0 due to C-parity in the isospin limit.
In the dimeson case the Gegenbauer coefficients depend on (k2, θπ), and can be expanded
in partial waves. For L = ππ,

αππn (k2, θπ) =
n+1∑

`=1,3,···
Bππ
n` (k2)P`(cos θπ) (n even) , (3.34)

where the normalization fixes

Bππ
01 (k2) = βπ(k2)Fπ(k2) . (3.35)

This definition for the coefficients Bππ
n` differs from refs. [34, 35]5 by the factor βπ(k2). We

choose this definition in order to have a homogeneous notation between the ππ and Kπ

5In these references the notation Bππn` = B
‖
n` is used.
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cases. For L = Kπ, we write:

αKπn (k2, θπ) =
n+1∑
`=0

BKπ
n` (k2)P`(cos θπ) (all n) . (3.36)

In this case the normalization fixes

BKπ
00 (k2) = ∆m2

Kπ

2k2 fKπ0 (k2) , BKπ
01 (k2) =

√
λKπ(k2)

2k2 fKπ+ (k2) . (3.37)

We will only consider Gegenbauer expansions up to n = 2, as in ref. [20].

3.4 Factorized B̄ → D+L− amplitudes

We can now write down the amplitudes

A(B̄ → D+L−) = 4GF√
2
V ∗uxVcb k

− FB→Dn

∫ 1

0
du
(
C1T1(u) + C2T2(u)

)
Φ̂L(k, u) . (3.38)

With the previous considerations, we have:

A(B̄ → D+P−) = i
GF√

2
V ∗uxVcb (m2

B −m2
D) FB→D0 (m2

P )fP a1(D+P−) , (3.39)

A(B̄ → D+V −) = GF√
2
V ∗uxVcb (m2

B −m2
D) FB→D0 (m2

V )f‖V a1(D+V −) , (3.40)

A(B̄ → D+M−π0) = −GF V ∗uxVcb (m2
B −m2

D) FB→D0 (k2) a1(D+M−π0) . (3.41)

The coefficients a1(D+L−) correspond to the same coefficients as in refs. [5, 20] for the
cases L = P, V , which we generalize here,

a1(D+L−) =
∫ 1

0
du
(
C1T1(u) + C2T2(u)

)
ΦL(u) , (3.42)

noting that in the cases L = Mπ the dipion LCDAs ΦL(u, k2, θπ) depend on the two
kinematic variables k1 and k2. The amplitudes for B → DP and B → DV in eqs. (3.39)
and (3.40) agree with the literature [5, 20], after accounting for the phase redefinition in
the vector-meson state.

After expanding the LCDAs in Gegenbauer coefficients, only the convolutions of the
hard coefficients Ti(u) with the Gegenbauer polynomials are needed. We denote these by∫ 1

0
duTi(u, µ) 6uūC3/2

n (u− ū) = Vin(µ) . (3.43)

In the notation of ref. [20], with zc = m2
c/m

2
b and with the masses in the pole scheme,6

Vin(µ) =
∑
m≥0

(
αs(µ)

4π

)m[
V

(m)
in (µ) + V

′(m)
in (µ)

√
zc
]
, (3.44)

6Expressions in the MS scheme and a discussion on the scheme dependence can be found in ref. [20].
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where

V
(0)

10 (µ) = V
′(0)

10 (µ) = V
′(0)

20 (µ) = 0 , V
(0)

20 (µ) = 1 , (3.45)

V
(0)
in (µ) = V

′(0)
in (µ) = 0 for n ≥ 1 . (3.46)

With these definitions, the amplitudes a1(D+L−) in eq. (3.42) are written as

a1(D+L−) =
∑
n≥0

αLn
[
C1(µ)V1n(µ) + C2(µ)V2n(µ)

]
≡
∑
n≥0

αLn Gn(µ) . (3.47)

Inserting this form of the amplitudes a1 into eq. (3.41) gives the B → DMπ amplitudes in
terms of the coefficients αMπ

n (k2, θπ).
Finally, adopting the partial-wave decompositions for the Gegenbauer coefficients given

in eqs. (3.34) and (3.36), one obtains the partial-wave amplitudes from eq. (2.7),

A(`)(k2) = −GF V ∗uxVcb (m2
B −m2

D) FB→D0
∑

n≥max(`−1,0)
BL
n`(k2)Gn(µ) . (3.48)

With the coefficients Vin known at two loops, eqs. (3.41) [together with (3.47)] and (3.48)
[with the normalizations of BMπ

0` (k2) from eqs. (3.35) and (3.37)] give the leading-power
amplitude for the B → DMπ decay at NNLO in QCD, in the region of small k2. This
constitutes one of the main results of the present paper.

3.5 Numerical size of NLO and NNLO terms

Perturbative corrections to the hard functions in the leading-power amplitude are contained
in the quantities

Gn(µ) ≡
[
C1(µ)V1n(µ) + C2(µ)V2n(µ)

]
(3.49)

in e.g. eq. (3.47), with n referring to the Gegenbauer expansion. These quantities contain
all the short-distance information available from the decay amplitude. At tree-level, there
are no contributions for n > 0, and thus the information from higher Gegenbauer moments
enters through αs(mb) corrections. In order to gauge the importance of higher Gegenbauer
contributions and thus to establish how sensitive these amplitudes are to the hadronic
structure of the dimeson systems beyond the asymptotic limit, one needs to pay attention
to perturbative effects. Hence here we recollect briefly the numerical size of the quantities
in eq. (3.49).

In the calculation of the Wilson coefficients Ci(µ) we take the two-loop SM match-
ing conditions and running from ref. [39] and set the electroweak matching scale to
µ0 = 160 GeV. We then set µb = mb,pole = 4.78 GeV for the SCET matching scale, and
mc,pole = 1.67 GeV. We then have

C1(µb) = −0.59 + 16.8 α̃s + 145.4 α̃2
s = −0.26 , (3.50)

C2(µb) = 1.03− 1.70 α̃s + 9.06 α̃2
s = 1.01 , (3.51)

where
α̃s ≡ αs(µb)/(4π) = 0.01726 . (3.52)
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The QCDF coefficients Vin up to NNLO are taken from ref. [20]. We find,

V10 = (−5.36− i 1.91) α̃s + (−59.41− i 80.13) α̃2
s = −0.1103− i 0.0569 (3.53)

V11 = (1.25− i 2.93) α̃s + (182.63− i 87.94) α̃2
s = 0.076− i 0.077 (3.54)

V12 = (−0.22 + i 0.16) α̃s + (−28.99− i 2.48) α̃2
s = −0.0124 + i 0.0021 (3.55)

V20 = 1 + (87.85 + i 73.93) α̃2
s = 1.0262 + i 0.0220 (3.56)

V21 = (−59.58 + i 56.62) α̃2
s = −0.018 + i 0.017 (3.57)

V22 = (−7.49− i 21.57) α̃2
s = −0.0022− i 0.0064 (3.58)

Combining the Wilson coefficients with the QCDF coefficients order by order in αs, the
relevant short-distance quantities in the QCDF amplitude are given by

G0(µb) = 1.034 + (1.488 + i 1.134) α̃s + (45.15 + i 91.96) α̃2
s

= 1.034LO + (0.026 + i 0.020)NLO + (0.013 + i 0.027)NNLO

= 1.07 + i 0.047 , (3.59)

G1(µb) = (−0.74 + i 1.74) α̃s + (−149.1 + i 61.5) α̃2
s

= (−0.013 + i 0.030)NLO + (−0.044 + i 0.018)NNLO

= −0.057 + i 0.048 , (3.60)

G2(µb) = (0.132− i 0.096) α̃s + (5.73− i 18.12) α̃2
s

= (0.0023− i 0.0017)NLO + (0.0017− i 0.0054)NNLO

= 0.0040− i 0.0071 . (3.61)

One can see that, while NLO corrections are typically tiny (around 3%) and characteristic
of a tree-level decay amplitude, NNLO corrections are large relative to the NLO. The
reason for this behaviour is the vanishing colour factor of V2n at order O(αs), leaving only
the contribution of the smaller Wilson coefficient C1 at this order. Thus, when considering
contributions from the higher Gegenbauer moments (which are genuinely NLO), NNLO
contributions happen to be very important. This is especially relevant for the DKπ case,
which receives contributions from α1. Let us also note that the large NNLO corrections
(relative to the NLO) do not indicate a breakdown of perturbation theory since at higher
loop-orders all colour factors appear and these terms are therefore expected to be natural
in size. A similar pattern occurs for the color-suppressed tree amplitude, as discussed
in ref. [16].

Substituting these results into the amplitude a1, we find (up to n = 2):

a1(D+L−) =
[
1.034αL0

]
LO

+
[
(0.026+i0.020)αL0 +(−0.013+i0.030)αL1 +(0.0023−i0.0017)αL2

]
NLO

+
[
(0.013+i0.027)αL0 +(−0.044+i0.018)αL1 +(0.0017−i0.0054)αL2

]
NNLO

= (1.073+i0.047)αL0 +(−0.057+i0.048)αL1 +(0.0040−i0.0071)αL2 . (3.62)
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For the squared amplitude appearing in the differential rate we have, normalizing to the
leading Gegenbauer contribution and defining α̂Li ≡ αLi /αL0 ,

|a1(D+L−)|2 = |αL0 |2
{

1.07LO

+
[
0.053−0.026Re α̂L1 −0.062Im α̂L1 +0.0047Re α̂L2 +0.0034Im α̂L2

]
NLO

+
[
0.029−0.091Re α̂L1 −0.040Im α̂L1 +0.0036Re α̂L2 +0.011Im α̂L2

]
NNLO

}
= 1.15|αL0 |2

{
1−0.10Re α̂L1 −0.09Im α̂L1 +0.007Re α̂L2 +0.014Im α̂L2

}
. (3.63)

One can see that n = 1 corrections are of the order of 10% compared to the leading n = 0
terms, while n = 2 corrections are one order of magnitude smaller. In each case, NNLO
corrections are essential, to the point that the Re α̂L1 term is dominated by the NNLO
contribution. Since for the Dππ channel α̂ππ1 = 0, this decay should be well approximated
by the asymptotic term:

|a1(D+π−π0)|2 ' 1.15|αππ0 |2 , (3.64)

up to corrections at the 1% level, and with perturbative NLO and NNLO corrections
accounting for ∼ 7% of the numerical coefficient 1.15. However, for the DKπ channel,
corrections from α1 are at the level of 10% (depending on the size of the nonperturbative
Gegenbauer coefficients α̂1), and possibly more important than perturbative corrections to
the leading asymptotic contribution from α0. For this channel, we will write,

|a1(D+K−π0)|2 ' 1.15(1 + ξKπ)|αKπ0 |2 , (3.65)

with

ξKπ ≡ −0.10 Re α̂Kπ1 − 0.09 Im α̂Kπ1 + 0.007 Re α̂Kπ2 + 0.014 Im α̂Kπ2 ∼ O(0.1) . (3.66)

These simplified expressions might be useful to understand the importance of higher-order
effects in observables.

While this section deals with perturbative corrections and contributions from higher
Gegenbauer moments, power-suppressed terms of O(Λ/mb,c) are an important — but sep-
arate — issue. Discussions on the size of power-corrections can be found in [20] and in the
very recent analysis [50], to which we refer the inclined reader.

3.6 Modeling the dimeson system

The coefficients BL
n`(k2) determine the k2 spectrum of each partial-wave amplitude, and can

eventually be extracted from data. For example, the n = 0 coefficients Bππ
01 (k2), BKπ

00 (k2)
and BKπ

01 (k2) are given by the timelike form factors in eqs. (3.29) and (3.30), which can be
extracted from τ -decay spectra [26, 29, 48, 49]. Still, modeling these functions is necessary
and useful. For instance, data extractions are essentially fits to the parameters of a model,
and a model that fits well the data then becomes a proxy for the data itself.

The most common models are those where it is assumed that the dimeson is produced
through a coupling to a resonance created via the weak current. We will use a class of
such models, in particular the one employed in refs. [26, 29], which contains the models
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used in the experimental analyses of refs. [48, 49], and which describe the form factor data
very well. In the case of ππ the data is well described with inclusion of only JP = 1−

resonances (ρ, ρ′, ρ′′) [26, 48], while in the case of Kπ, both JP = 1− (K∗(892), K∗(1410))
and JP = 0+ (K∗0 (800), K∗0 (1430)) may be required [29, 49].

Thus it seems to suffice to consider ` = {0, 1} only. Following the same derivation as
in ref. [29], we find:

BMπ
n0 (s) =

∑
R0

mR0 fR0 gR0Mπ e
iϕR0

√
2[m2

R0
− s− i

√
sΓR0(s)]

αR0
n , (3.67)

BMπ
n1 (s) =

√
λMπ(s)
s

∑
R

mR fR gRMπ e
iϕR

√
2[m2

R − s− i
√
sΓR(s)]

αRn . (3.68)

The sums run over R0 = 0+ and R = 1− resonances. The decay constants fR correspond
to that of vector mesons defined above, while fR0 are defined analogously:

〈R0(k)|x̄γµu|0〉 = fR0 kµ . (3.69)

The quantities αR,R0
n correspond (as the notation suggests) to the Gegenbauer moments of

the LCDAs of the resonances. The strong couplings gRMπ and gR0Mπ are defined by

〈M−π0|R(k, ε)〉 = gRMπ e
iϕR k̄ · ε ; 〈M−π0|R0〉 = mR0 gR0Mπ e

iϕR0 , (3.70)

and determine the partial widths of the resonances:

Γtot
R = g2

RMπ

48π
λ

3/2
Mπ(m2

R)
m5
R

1
B(R→M−π0) ; Γtot

R0 =
g2
R0Mπ

48π
λ

1/2
Mπ(m2

R0
)

m3
R0

1
B(R0 →M−π0) .

(3.71)
Finally, the s-dependent widths are given by

ΓR(s) = Γtot
R

[
λMπ(s)
λMπ(m2

R)

]3/2 m5
R

s5/2 θ(s−sth) ; ΓR0(s) = Γtot
R0

[
λMπ(s)

λMπ(m2
R0

)

]1/2m3
R0

s3/2 θ(s−sth) .

(3.72)
It will also be useful to write the strong couplings in terms of the s-dependent widths,

g2
RMπ = 48πs5/2ΓR(s)

λ
3/2
Mπ(s)

B(R→M−π0) , g2
R0Mπ = 48πs3/2ΓR0(s)

λ
1/2
Mπ(s)

B(R0→M−π0) . (3.73)

Thus, in these models the amplitudes are determined by a few parameters: the masses
and partial widths of the resonances (taken, e.g. from the PDG [51]), and the Gegenbauer
moments αR,R0

n , which are to be regarded as the free parameters of the model. As will be
shown below, these will correspond, in the narrow width limit, to the Gegenbauer moments
of stable vector and scalar mesons. Since the normalization of LCDAs for stable mesons
has been chosen such that αM0 = 1 (see text below eq. (3.33)), with this identification we
have from eqs. (3.35), (3.37) and (3.68) that:

Bππ
01 (s) = βπ(s)Fπ(s) = βπ(s)

∑
R

mR fR gRππ e
iϕR

√
2[m2

R − s− i
√
sΓR(s)]

, (3.74)

BKπ
01 (s) =

√
λKπ(s)

2s fKπ+ (s) =
√
λKπ(s)
s

∑
R

mR fR gRKπ e
iϕR

√
2[m2

R − s− i
√
sΓR(s)]

, (3.75)
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which agrees with the model expressions for Fπ(s) and f+(s) in refs. [26, 29].7 In the case
of the S-wave,

BKπ
00 (s) = ∆m2

Kπ

2k2 fKπ0 (s) =
∑
R0

mR0 fR0 gR0Kπ e
iϕR0

√
2[m2

R0
− s− i

√
sΓR0(s)]

, (3.76)

which agrees with refs. [29, 49] when

f+(0) ξR0 = −
√

2mR0 fR0 gR0Kπ e
iϕR0

∆m2
Kπ

, (3.77)

with f+ and ξR0 given in [29, 49].

4 Narrow-width limit and finite-width effects

One possible application of the result for the B → DMπ decay amplitude derived in the
previous section is to regard the three-body decay as a correction to B → DV in the
presence of a finite width of the vector meson, that is, considering the three-body decay as
proceeding resonantly through B → DV (→Mπ). The integral of the P-wave contribution
to the differential decay rate in a window around k2 = m2

V will be equal to the B → DV

decay rate (for the case of a stable V ), up to corrections of O(ΓV /mV ). This can be shown
analytically within the model described in the previous section (see below). In addition,
knowing the total width of the vector resonance V , one can estimate the corrections to the
narrow width limit.

4.1 Narrow-width limit

As a first step, one can derive the narrow-width limit of the B̄ → D+M−π0 decay in the
single pole approximation, and check that one recovers the known B → DV result. We
start plugging the model for the LCDA coefficients BMπ

n1 (s) of eq. (3.68) into the QCDF
amplitude a1(D+M−π0) to find

a1
(
D+V −(→M−π0)

)
=
√
λMπ(s) cos θπ

s

mV fV gVMπ e
iϕV

√
2[m2

V − s− i
√
sΓV (s)]

a1(D+V −) , (4.1)

where it has been assumed that the M−π0 pair arises from the strong decay of a vector
resonance V , and thus it is purely on a P -wave. The squared of the amplitude is then
given by

∣∣a1
(
D+V −(→M−π0)

)∣∣2 = λMπ(s) cos2 θπ
2s2

[
g2
VMπ f

2
V m

2
V

(m2
V − s)2 + sΓV (s)2

]
|a1(D+V −)|2 . (4.2)

7The notation obscures somewhat the agreement with f+ in ref. [29]. Note that:

fK
−π+

+ (s) = −f K̄
0π−

+ (s) ≡ −fKπ+ (s) = −
∑
R

√
2mR fR gRKπ e

iϕR

[m2
R − s− i

√
sΓR(s)]

= −
∑
R

mR fR gRK−π+ eiϕR

[m2
R − s− i

√
sΓR(s)]

,

where gRK−π+ =
√

2 gRKπ is the strong coupling of the R→ K−π+ decay appearing in ref. [29].
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Using the expression for the strong coupling gVMπ in terms of the width of the vector
resonance given in eq. (3.73), one has that

g2
VMπf

2
Vm

2
V

(m2
V − s)2 + sΓV (s)2 = 48π2f2

Vm
2
V s

2

λ
3/2
Mπ(s)

B(V →Mπ)
[ 1
π

√
sΓV (s)

(m2
V − s)2 + sΓV (s)2

]
Γtot
V →0

−−−−−→ 48π2f2
Vm

6
V

λ
3/2
Mπ(m2

V )
B(V →Mπ) δ(s−m2

V ) , (4.3)

where we have used the fact that the term in square brackets goes to a delta function in
the limit where the total width of V goes to zero. Thus, the narrow-width limit of the
QCDF amplitude becomes

∣∣a1
(
D+V −(→M−π0)

)∣∣2 Γtot
V →0

−−−−−→ 24π2f2
Vm

2
V cos2 θπ√

λMπ(m2
V )

|a1(D+V −)|2B(V →Mπ)δ(k2−m2
V ) ,

(4.4)
which leads to the following narrow-width limit for the differential decay rate (cf. eq. (2.8)),

dΓ(B̄→V −(→M−π0))
dsdcosθπ

Γtot
V →0

−−−−−→ G2
F |V ∗uxVcb|2 (m2

B−m2
D)2 |FB→D0 |2 |a1(D+V −)|2 cos2 θπ

×
3f2
V

√
λBD(m2

V )
64πm3

B

B(V →Mπ)δ(s−m2
V ) . (4.5)

Now, integrating over the angle θπ and over the invariant squared mass of the dimeson
we have

Γ(B̄ → D+M−π0)
Γtot
V →0

−−−−−→ G2
F |V ∗uxVcb|2 (m2

B −m2
D)2 |FB→D0 |2 |a1(D+V −)|2

×
f2
V

√
λBD(m2

V )
32πm3

B

B(V →Mπ)

=

√
λBD(m2

V )
32πm3

B

2 |A(B̄ → D+V −)|2 B(V →Mπ)

= Γ(B̄ → D+V −) B(V →Mπ) . (4.6)

Since the differential decay rate in the narrow-width limit contains a delta function, the
integral over the invariant mass of the dimeson can be actually be restricted to a narrow
window around the mass of the resonance. This result proves that the narrow-width limit
coincides with the two-body decay rate multiplied by the branching ratio of the vector
meson to the final dimeson state. This is just a check that the model has the correct
narrow-width limit, however the formalism now allows us to compute corrections to this
limit: either finite-width or “non-resonant” effects.

4.2 Leading corrections to the narrow-width limit

We now consider the decay rate integrated in a region around a resonance:

Γ[R] ≡
∫ (mR+δ)2

(mR−δ)2
ds
dΓ(B̄ → D+M−π0)

ds
, (4.7)
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where the bin-size δ is understood to be large enough to contain most of the contribution
from the resonance R. Since we have integrated over the angle θπ, the interference terms
among different partial waves cancel, and thus:

Γ[R] =
∑
`

c`

∫ (mR+δ)2

(mR−δ)2
ds

√
λBD(s)λMπ(s)
64(2π)3sm3

B

|A(`)(s)|2 =
∑
`

Γ(`)
[R] (4.8)

with c` =
∫ 1
−1 dxP`(x)2 = 2/(2`+ 1). We now define the ratio (see also [52]):

W(`)
R =

Γ(`)
[R]

Γ(`)
[R] ,NWL

, (4.9)

where Γ(`)
[R] ,NWL denotes Γ(`)

[R] in the narrow-width limit, which according to the previous sec-
tion is given by Γ(`)

[R] ,NWL =Γ(B̄→D+R−)B(R→Mπ). For example, for the ρ contribution
to the B → Dππ rate we have, neglecting Bn1 for n ≥ 2, and using B01(k2) = βπ(k2)Fπ(k2):

W(1)
ρ =

∫ (mρ+δ)2

(mρ−δ)2
ds

λ
1/2
BD(s)

λ
1/2
BD(m2

ρ)
[βπ(s)]3 |Fπ(s)|2

24π2f2
ρ B(ρ→ ππ) . (4.10)

Taking for Fπ the model specified in eq. (3.74) gives W(1)
ρ

Γtot
ρ →0

−−−−−→ 1, and thus reproduces
the narrow-width limit. This is also obvious from the discussion in the previous section.

One thing to note from the outset is that the way the resonance model is constructed,
whenever we are considering the case that only the resonance R contributes to the quantity
Γ(`)

[R], the ratio W(`)
R does not depend on the matching coefficients in the QCDF amplitude,

but only on the properties of the dimeson system (e.g. eq. (4.10)). Nevertheless, it is
instructive to consider this case and study the interplay between the width of the single
resonance R and the bin-width δ. We consider the “ρ-model”, defined in eq. (3.74) keeping
only the ρ resonance and leaving its width Γρ as a free parameter. In the left panel of
figure 1, we show the ratio W(1)

ρ for this model for different values of δ. The deviation
from W(1)

ρ = 1 shows the effect of the finite width and can be understood as the correction
to the narrow-width limit. Due to the relatively large width of the ρ meson, we observe
an effect of 20% for typical bin sizes of a few times the physical width. In this case,
the fact that we have to integrate over a specific bin size makes it more challenging to
quantify the finite-width effect. This is different from QCD sum rules for B → ππ form
factors, where this effect can be parametrized by a “universal” constant cR, defined by
W(`)
R = 1 + cR

ΓR
mR

[29]. We may also study a more realistic model for Fπ by including
also the ρ′ and ρ′′ resonances, for example by considering the model obtained by the Belle
Collaboration [48] (see also [26]). We note that this model does not obey the narrow-width
limit for the ρ meson. Setting Γρ at its physical value, we can study the effects of the ρ
width onW(`)

R depending on the bin size δ. This is illustrated in the right panel of figure 1.
Compared to the single ρ model, the effect of the heavier resonances in fact slightly reduces
the correction to the narrow-width limit. This shows the non-trivial interplay between the
different resonances (already when considering only P wave resonances) and underlines the
importance of taking such effects into account.
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Figure 1. Study of finite-width and bin-size effects on Wρ. Left: corrections to the narrow-
width limit of the ρ model in eq. (4.10). The vertical band indicates the physical width
Γρ = (149.1± 0.8)MeV [51]. Right: ρ model as specified in the text and the Belle model [48]
as function of the bin size δ.
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Figure 2. Study of finite-width and bin-size effects on WK∗ . Left: corrections to the narrow-
width limit of the K∗ model in eq. (4.11). The vertical band indicates the physical width
ΓK∗ = (50.8± 0.9)MeV [51]. Right: K∗ model and the Belle model [49] as specified in the text as
a function of the bin size δ.

In the Kπ system, we can perform a similar study considering the P -wave K∗(892)
resonance. This resonance is much narrower than the ρ and hence the finite width-effects
are expected to be somewhat smaller. Explicitly, we find

W(1)
K∗ =

∫ (mK∗+δ)2

(mK∗−δ)2
ds

λ
1/2
BD(s)

λ
1/2
BD(m2

K∗)
[λKπ(s)]3/2 |fKπ+ (s)|2

96π2 s3f2
K∗ B(K∗ → πK)

. (4.11)

Repeating the analysis, we consider the contribution of the K∗ ≡ K∗(892) resonance to the
form factor fKπ+ , following eq. (3.75) while keeping ΓK∗ as a free parameter. The finite-
width effect is shown in figure 2, which is typically around the 10% level. In addition, we
may consider a more realistic model containing several resonances. For example, the Belle
Collaboration discusses two models obtained by fitting the τ → KSπν decay including
both scalar and vector resonances [49] (see also [29]). By definition, W(1)

K∗ only includes
the P wave resonances, and we assume a perfect experimental separation of the different
partial waves. Therefore, we consider only the Belle model including the vector resonances
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K∗(892) and K∗(1410). The effect of the bin size δ for this model is also shown in figure 2.
We emphasize that besides the effect of heavier P wave resonances, also S wave resonances
may still influence or at the least introduce a model dependence in the determination of
observables containing a K∗. Our simple analysis shows that these effects may be sizeable
and should be carefully considered in experimental and theoretical analyses.

5 Probing higher-order QCD effects

Of interest is also the study of the higher-order QCD effects to which the discussion of the
finite-width effects in the previous section was insensitive. To this end it is instructive to
look at ratios of differential rates, evaluated at the same value of k2 but integrated over
different ranges of z ≡ cos θπ. For ease of writing we define the following notation for
integrals

I[z1, z2, f ] ≡
∫ z2

z1
dz f(z) , (5.1)

and will use again the combination Gn(µ) defined in eq. (3.49). The ratios that we consider
are the following:

RMM ′ [z1, z2; z′1, z′2](k2) ≡

∫ z2

z1
dz

dΓ(B̄ → D+M−π0)
dk2 dz∫ z′2

z′1

dz
dΓ(B̄ → D+M ′−π0)

dk2 dz

. (5.2)

For M = M ′, these ratios have the virtue that all prefactors (like the B → D form factor
and CKM elements) cancel, such that:

RMM [z1, z2; z′1, z′2](k2) =

∫ z2

z1
dz
∣∣∣a1(D+M−π0)

∣∣∣2∫ z′2

z′1

dz
∣∣∣a1(D+M−π0)

∣∣∣2 . (5.3)

For the di-pion system alone, M = M ′ = π, we will study the effect of higher Gegenbauer
moments (i.e. aππ2 ) and higher-partial waves (i.e. B23 at ` = 3). In addition we will
investigate the interplay between S and P wave contributions in the ratio of Kπ final
states, M = M ′ = K.

5.1 Di-pion system

In the isospin limit, only odd partial waves contribute to the dipion wave function. Thus
the squared amplitude |a1(Dππ)|2 contains no interference terms between even and odd
partial waves, and it is symmetric under z → −z. As a result, the ratios Rππ satisfy
relations such as

Rππ[0, z;−z, z](k2) = Rππ[−z, 0;−z, z](k2) = 1
2 . (5.4)

A simple corollary is that the “forward-backward” asymmetry vanishes,

AππFB(k2) = Rππ[0, 1;−1, 1](k2)−Rππ[−1, 0;−1, 1](k2) = 0 . (5.5)
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The above observables thus constitute a simple test for isospin-violating corrections, which
are typically a few-percent effect. A large forward-backward asymmetry would point to-
wards large isospin-violating effects and the need to include even partial waves to describe
the data.

In general, and keeping terms up to n = 2 in the Gegenbauer expansion, we have

Rππ[z1, z2, z
′
1, z
′
2](k2) =

∫ z2

z1
dz
∣∣∣αππ0 (k2, θπ)G0(µb) + αππ2 (k2, θπ)G2(µb)

∣∣∣2∫ z′2

z′1

dz
∣∣∣αππ0 (k2, θπ)G0(µb) + αππ2 (k2, θπ)G2(µb)

∣∣∣2 , (5.6)

and expanding eq. (5.6) for small G2 (respectively small αππ2 ) one finds

Rππ[z1, z2, z
′
1, z
′
2](k2) = I[z1, z2, |αππ0 |2]

I[z′1, z′2, |αππ0 |2]
+

2 Re
(
I[z1, z2, α

ππ
0 αππ ∗2 ] I[z′1, z′2, |αππ0 |2]G0 G∗2

)
|G0(µb)|2 (I[z′1, z′2, |αππ0 |2])2

−
2 Re

(
I[z′1, z′2, αππ0 αππ ∗2 ] I[z1, z2, |αππ0 |2]G0 G∗2

)
|G0(µb)|2 (I[z′1, z′2, |αππ0 |2])2 . (5.7)

The leading part can be rewritten as I[z1, z2, (P1(z))2]/I[z′1, z′2, (P1(z))2] and hence only
depends on angular variables. The dependence of the correction term on quantities of
interest (k2, higher Gegenbauer moments, QCD corrections) is, however, quite involved. It
is therefore instructive to study the effect of higher partial waves, for which we substitute

αππ0 (k2, θπ) = Bππ
01 (k2)P1(z) ,

αππ2 (k2, θπ) = Bππ
21 (k2)P1(z) +Bππ

23 (k2)P3(z), (5.8)

into (5.6), assume P -wave dominance and thus treat B23 at ` = 3 as a correction. Eq. (5.6)
then becomes

Rππ[z1,z2,z
′
1,z
′
2](k2) = I[z1,z2,P

2
1 ]

I[z′1,z′2,P 2
1 ]

+ I[z1,z2,P1P3]I[z′1,z′2,P 2
1 ]−I[z′1,z′2,P1P3]I[z1,z2,P

2
1 ](

I[z′1,z′2,P 2
1 ]
)2

×
2Re

(
Bππ

01 (k2)Bππ∗
23 (k2)G0(µb)G∗2(µb)

)
+2Re

(
Bππ

21 (k2)Bππ∗
23 (k2)

)
|G2(µb)|2∣∣∣Bππ

01 (k2)G0(µb)+Bππ
21 (k2)G2(µb)

∣∣∣2 . (5.9)

We observe that the leading term is again given by (the same) angular integrals. However,
the angular dependence now factorises at each order , and hence the sensitivity of the
correction term to k2, higher Gegenbauer moments and the NNLO QCD corrections is
more transparent. The actual size of the correction depends on the value of k2 and the
bins in z = cos θπ under consideration. For instance,

Rππ[−1/2, 1/2,−1, 1](k2) ≈ 1
8 − 0.28 Re

[
Bππ

23 (k2)
Bππ

01 (k2)
G2(µb)
G0(µb)

]
, (5.10)

where we have again used that G2/G0 ' 0.4% is small. The ratio in (5.9) is an example of
how the effects of higher partial waves can be probed, giving access to currently unknown
distributions such as Bππ

23 in eq. (5.10).
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5.2 Kπ system

The main differences between the Kπ and ππ final states are the presence of the first
Gegenbauer moment αKπ1 and the appearance of partial waves of even `. The ratio in this
case reads

RKK [z1,z2,z
′
1,z
′
2](k2)=

∫ z2

z1
dz
∣∣∣αKπ0 (k2,θπ)G0(µb)+αKπ1 (k2,θπ)G1(µb)+αKπ2 (k2,θπ)G2(µb)

∣∣∣2∫ z′2

z′1

dz
∣∣∣αKπ0 (k2,θπ)G0(µb)+αKπ1 (k2,θπ)G1(µb)+αKπ2 (k2,θπ)G2(µb)

∣∣∣2 .
(5.11)

The general structure of this expression is rather complicated, but a simple observable that
can be studied in this case is the forward-backward asymmetry

AKπFB (k2) = RKπ[0, 1;−1, 1](k2)−RKπ[−1, 0;−1, 1](k2) . (5.12)

In this case, the numerator is sensitive to interference of even and odd partial waves,
whereas in the denominator all partial waves are separated. If we furthermore expand
in the small quantities G1 and G2 and work under the assumption that S and P -wave
dominate, we arrive at the simplified expression

AKπFB (k2)' 2Re(B00B
∗
01)

2|B00|2+2/3|B01|2

+ 2Re
[(

2(B∗00)2−2/3(B∗01)2)G∗0 (B00(B11G1+B21G2)−B01(B10G1+B20G2))
]

|G0|2 (2|B00|2+2/3|B01|2)2 ,

(5.13)

where we have omitted the Kπ superscripts on the coefficients BKπ
n` . To leading order

in αs, AKπFB is proportional to the real part of B00B
∗
01 ∼ ∆m2

Kπ f
Kπ
0 fKπ ∗+ , and vanishes

in the limit mK = mπ. This corresponds to the vanishing of AππFB in the isospin limit,
and in fact this is true to all orders if Bn0 is proportional to ∆m2

Kπ for all n. Starting
at NLO, one starts probing the higher Gegenbauer coefficients B11, B20 and B21. It is
straightforward to generalise the expression (5.13) to the case of including higher partial
waves: one separately expands numerator and denominator of (5.11), performs the angular
integrations and subsequently expands the entire expression to linear order in G1 and G2.

We observe from (5.13) that the forward-backward asymmetry is sensitive to the in-
terference between S and P wave contributions. The leading-order term contains the S-
and P -wave Kπ form factors which can be obtained e.g. from dispersive methods. There-
fore, such measurements can serve as an important cross-check for the available S and P
wave form factor models. Such models are also used in charmless three-body decays like
B → ππK and B → KKπ and in the study of B → πK form factors using QCD sum
rules [29].

6 Discussion and conclusions

After two decades of intense work on the theory of two-body non-leptonic B decays, leading-
power factorization has been established at NNLO in QCD (see [22] for the most recent
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work). The extension to three-body decays has been pursued more recently, with their share
of phenomenological virtues and theoretical complications. Here we have studied what
might be the simplest of such three-body decays from the point of view of factorization:
the heavy-to-heavy B → DMπ decays (M = π,K) in the kinematic region where the Mπ

dimeson system has small invariant mass compared to the available energy. The result
is a factorized amplitude, given in eqs. (3.41) and (3.47), which includes NNLO αs(mb)
corrections, and which generalizes in a simple way the formula for the two-body decay.

One particularity of the three-body decay amplitude is that it reproduces analytically
the corresponding well-known amplitudes for the quasi-two body decays B → Dρ and
B → DK∗ in the case where the decay occurs through an intermediate infinitely-narrow
resonance. This allows to study corrections to the narrow-width limit and to interpret
measurements of quasi-two-body decays. We have introduced a quantity, W(`)

R , which
quantifies the departure from the narrow-width limit of a particular measurement of a
decay rate in the region around a resonance. We find that both for the ρ and for the K∗, a
typical value for this quantity isW(1)

R ∼ 0.8, meaning that interpreting these measurements
in the narrow-width limit, the missing finite-width effect is of the order of 20%.

Beyond the study of finite-width effects in quasi-two-body decays, we have consid-
ered ratios of Dalitz-plot bins with equal values for the dimeson invariant mass, for both
B → Dππ and B → DKπ. These ratios are interesting because many quantities cancel out
(such as form factors and CKM elements), and probe directly a product of higher-order
αs corrections and higher Gegenbauer moments of the dimeson LCDAs. One particular
example is the forward-backward asymmetry. We believe that these sort of observables
might be interesting phenomenologically once experimental data accumulates.
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