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work within the Chiral Perturbation Theory framework where only pseudo-NGB fields are

included, following the external source method. The O(p2) lagrangian is only modified by

constant terms, while the O(p4) one includes new terms proportional to µ25 and new low-

energy constants (LEC), which are renormalized and related to particular observables. In

particular, we analyze the corrections to the pion dispersion relation and observables related

to the vacuum energy density, namely the light quark condensate, the chiral and topological

susceptibilities and the chiral charge density, providing numerical determinations of the

new LEC when possible. In particular, we explore the dependence of the chiral restoration

temperature Tc with µ5. An increasing Tc(µ5) is consistent with our fits to lattice data of the

ChPT-based expressions. Although lattice uncertainties are still large and translate into

the new LEC determination, a consistent physical description of those observables emerges
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heavy-ion collisions.
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1 Introduction

The possibility of the existence of space-time regions where parity is violated locally in QCD

has attracted a lot of attention over recent years, mostly motivated by appealing theoretical

proposals such as the Chiral Magnetic Effect (CME) [1–3]. Thus, local metastable P -

breaking configurations can be created out of the QCD vacuum, still preserving global P

conservation, giving rise to observable effects when coupled to the magnetic field created

in heavy-ion collisions. The same effect can lead to interesting applications in condensed

matter physics [2]. The presence of such local P -breaking configurations can influence

other observables in heavy-ion collisions, such as the dilepton spectrum [4, 5].
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A convenient way to parametrize such a P -breaking source or chiral imbalance is by

means of a constant axial chemical potential µ5 to be added to the QCD action over a

given finite space-time region. The axial current is not conserved at the quantum level due

to the U(1)A axial anomaly equation. However, it is conserved at the lagrangian level in

the massless limit. Thus, from the Atiyah-Singer index theorem, the chiral charge

Q5 =

∫
vol
d3~xJ0

5 (x) (1.1)

satisfies 〈Q5〉 = NL − NR with NL,R the number of left (right) zero modes of the Dirac

operator. The characteristic time of L−R quark oscillations is of order 1/mq [6] which is

much larger than the typical fireball duration at least for mu,d. This supports that for the

light u, d quarks Q5 may remain approximately conserved during the fireball evolution in

a typical heavy-ion collision, giving rise in the light quark sector to a chemical potential

term even for nonzero light quark masses:∫ tf

0
dt

∫
vol
d3~x L0QCD →

∫ tf

0
dt

∫
vol
d3~x L0QCD + µ5

∫ tf

0
dt

∫
vol
d3~xJ0

5 (x) (1.2)

The previous replacement is equivalent to consider an axial source

a0µ = µ5δµ0 (1.3)

in the QCD generating functional ZQCD [v, a, s, p, θ] in the presence of vector, axial, scalar,

pseudoscalar and θ sources [7, 8]. Equivalently, one can perform a U(1)A rotation on the

quark fields q → q′ = exp [iβ(x)γ5] q and choose β(x) = θ(x)
2Nf

, which allows to trade the

axial and θ terms in the absence of additional vector or axial sources:

ZQCD [0, 0,M, 0, θ(x)] = ZQCD

[
0,

1

2Nf
∂µθ(x)1,M cos [θ(x)/Nf ] ,M sin [θ(x)/Nf ] , 0

]
(1.4)

whereM is the quark mass matrix. Thus, in the chiral limitM = 0, the chemical potential

term in (1.2) is equivalent to a non-constant θ source θ(t) = µ5t+ θ0. It is also equivalent

to a chemical potential related to the Chern-Simons topological current [6].

In this context, it is important to provide theoretical support for the behaviour of QCD

and hadronic observables in the presence of chiral imbalanced matter, specially regarding

the finite-temperature and finite-volume dependence around the QCD phase diagram, given

its importance for heavy-ion collisions.

Different models have been considered recently to address this problem, including the

Polyakov loop Linear Sigma Model [9], NJL-like models [10–17] and a generalized sigma

model including all the members of the scalar/pseudoscalar multiplets of isospin I = 0, 1

and the η′ [18]. In those works, several relevant properties have been discussed, such as

phase diagram features, the topological susceptibilty, the chiral density, the quark conden-

sate and the meson dispersion relation. However, the results are not fully in agreement

between different models, as we discuss below, in particular regarding the behaviour of

chiral symmetry restoration with increasing axial chemical potential.
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On the other hand, there have been a few analyses trying to reproduce such parity-

breaking effects in the lattice. Although the pion masses used so far are still large and

the continuum extrapolation is not entirely understood, there are promising results which

may help to disentangle between model predictions if more precision is achieved in the near

future. Thus, in [19] the chiral charge density and the CME have been investigated, while

the dependence of the chiral restoration temperature with µ5 has been studied through the

chiral condensate, scalar susceptibility and Polyakov loop for Nc = 2 [20] and Nc = 3 [21].

The chiral anomaly in the lattice has been also studied in [22] while in more recent lattice

analysis, updated results for Nf = 2 are provided on the chiral charge density, as well as

the topological susceptibility and charge [23].

One of the puzzles which is still not fully understood is that the lattice results clearly

show growing condensate and Tc with µ5 [20, 21] while theoretical analyses yield contra-

dictory results. Thus, within the NJL framework, some works [9–11] found the opposite

behaviour, i.e. a decreasing Tc(µ5) wile others [14, 15] agree with the lattice results. This

contradiction seems to be related to the choice of the regularization scheme [13, 24]. In

addition, the sigma model approach in [9] is also in disagreement with the lattice, while

an analysis based on Schwinger-Dyson equations gives rise also to an increasing Tc(µ5) be-

haviour [25]. The general arguments given in [26] as well as the growing of the constituent

mass with µ5 found in [12] support also a growing quark condensate.

Our purpose here is to provide a model-independent approach, aiming to construct the

most general effective lagrangian for the lightest degrees of freedom in the presence of the µ5
source. Preliminary ideas along this line have been proposed in [27]. Although this requires

by definition that the applicability range is restricted to low µ5 and low temperatures,

which poses certain limits e.g. on chiral restoration, our analysis will serve as a guideline

for models and lattice analyses, which should satisfy the behaviour found here in such low

µ5 regime. In particular, we will derive the main phenomenological consequences in terms of

observables such as the energy density, the meson dispersion relation, the quark condensate

and the topological susceptibilities. As a first step in this direction, we will concentrate

here on the SU(2) effective lagrangian, i.e. only for pion degrees of freedom. The theoretical

tools developed here can be extended to include heavier degrees of freedom, although, as

explained above, the main ideas behind considering the µ5 term are better supported for

two light flavours. For that purpose, we will use effective lagrangian techniques, such as

the external source method in the presence of axial and vector sources including the singlet

components. That will require the inclusion of new operators and therefore low-energy

constants (LEC), which in particular will allow to renormalize the different observables.

The paper is organized as follows. In section 2 we will discuss the general formalism

used to derive the effective chiral lagrangian in the presence of µ5. Sections 3 and 4 will

be devoted, respectively, to the specific O(p2) and O(p4) effective lagrangians, including

the new terms. The analysis of the main phenomenological consequences is carried out in

section 5, where we will analyze the pion dispersion relation, the vacuum energy density,

chiral symmetry restoration observables, the chiral charge density, the topological suscep-

tibility, the pressure and the speed of sound. We will compare our results with previous

works in the literature and we will try to extract as much phenomenological information
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as possible from lattice simulations, as well as providing some numerical determinations

for the new LEC.

2 Construction of the effective lagrangian

We consider the effective low-energy representation of the generating functional

Z[v, a, s, p, θ] in the case v = p = 0, s = M and the axial source given by (1.3). We

will also consider θ = 0 except for the discussion of the topological susceptibility in sec-

tion 5.5. The construction of the most general, model-independent, effective lagrangian can

be carried out within the framework of the external source method, originally introduced

in [7, 8] for the SU(2) and SU(3) chiral lagrangian respectively. Within this formalism, the

building blocks are the meson fields U and the external sources v, a, s, p, θ, which transform

under local transformations of the chiral SUL(Nf )× SUR(Nf ) group so that the action is

invariant, up to anomalies. The use of the equations of motion (EOM) to a given order,

as well as operator identities, allow to express the lagrangian in terms of the minimum

number of operators [7, 8, 28]. The effective lagrangian formalism should be such that the

ultraviolet divergences at a given order can be absorbed by the low-energy constants (LEC)

multiplying the different operators, whose finite part can be fixed by the phenomenological

analysis of lattice or experimental data.

This formalism is well defined around the low-energy limit of the theory. Therefore,

one has to keep a consistent power counting for derivatives of the meson field and for the

external sources in a generic momentum scale p. Thus, dµU, vµ, aµ = O(p), s, p = O(p2).

Therefore, from (1.3), we should keep µ5 formally as an O(p) quantity in the chiral power

counting, so that our present treatment is best suited for low and moderate values of µ5.

Although we shall be more precise below about the numerical range of applicability for

given observables, we emphasize that our main purpose is to define a model-independent

framework as a benchmark for lattice and theoretical model analyses.

Two important additional aspects should be taken into account in the derivation of

the effective lagrangian in the present case: first, in the original works [7, 8], the external

sources v, a, p were considered as traceless SU(Nf ) fields and therefore those results are not

directly applicable to our case in (1.3). The effective lagrangian with those singlet fields

included was derived in [29] for SU(3) and in [30, 31] for SU(2). The main interest of those

works was to apply it to the Electromagnetic (EM) field v0µ = eAµQ with Q the quark

charge matrix, following previous ideas in [32]. To construct the lagrangian in that case,

the so called “spurion” fields QL,R(x) are introduced, so that the diagonal part of the QCD

lagrangian coupled to external fields is written as

LQ = Aµq̄γ
µ [QL(x)PL +QR(x)PR] q (2.1)

with PL,R = (1 ∓ γ5)/2 and where QL,R(x) and Aµ also transform under chiral trans-

formations, which implies that there will be additional terms in the effective lagrangian

depending on QL,R. The EM case corresponds to QL = QR = Q and Aµ the gauge field,

although most of the formalism developed in [29, 31] is developed for arbitrary QL,R and
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Aµ. Therefore, in our present case, from (1.3) we have

QL = −QR =
µ5
F

1, Aµ = Fδµ0. (2.2)

where we have conveniently normalized with F , the pion decay constant in the chiral limit,

for an easier comparison with previous works dealing with the EM case [29, 31]. Note also

that we place the µ5 term in the Q part, to be consistent with the convention of power

counting for the Q fields followed in those works.

The second observation has to do with covariant derivatives, which for the case (2.1)

read

dµU = ∂µU − iQRAµU + iUQLAµ (2.3)

cµIQI = ∂µQI − i[GµI , QI ] (2.4)

with I = L,R and GµI = QIAµ. Using the standard identity tr
(
U †∂µU

)
= 0 for SU(n)

fields [28], for the choice (2.2) we have

tr
(
U †dµU

)
= −tr

(
UdµU

†
)

= 2iδµ0Nfµ5 (2.5)

Therefore, the operator tr
(
U †dµU

)
has to be considered as an additional operator for

constructing the lagrangian to a given order, unlike in standard ChPT or in the EM case

QL = QR = Q where that operator vanishes.

Summarizing, the most general lagrangian at a given order is constructed out of the

following fields, where we indicate their chiral power counting:

Gµν , χ, cµIQ
I = O(p2), dµU,QI = O(p), U = O(1). (2.6)

where χ = 2B0(s + ip) and GIµν = ∂µGνI − ∂νGµI − i[GµI , GνI ], which transform under

chiral rotations as [29]:

U → gRUg
†
L

QI → gIQIg
†
I (I = L,R)

GµI → gIGµIg
†
I + igI∂µg

†
I

χ → gRχg
†
L

dµU → gRdµUg
†
L

cµIQI → gIcµIQIg
†
I (I = L,R)

GIµν → gIG
I
µνg
†
I (2.7)

where gL,R ∈ SU(Nf ) with Nf = 2, 3 light flavors. The lagrangian is constructed demand-

ing the same invariance properties as the QCD one with external sources, namely under
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chiral rotations, Lorentz covariance and P,C symmetries [29]:

U, χ
P←→ U †, χ†, U, χ

C←→ UT , χT

dµU
P←→ dµU †, dµU

C←→ (dµU)T

QL
P←→ QR, QL

C←→ QTR

GLµ
P←→ GµR, GLµ

C←→
(
GRµ
)T

cµL
P←→ cµR, cµL

C←→ cTµR

(2.8)

Although in our particular case (2.2), we have explicitly broken P and Lorentz covari-

ance in the QCD lagrangian, keeping QL,R arbitrary within the external source method,

transforming according to (2.7) and (2.8) under those transformations, ensures that one is

taking into account all possible terms. After using EOM and operator identities, we will

replace in the end the QL,R fields by (2.2).

In turn, with this procedure, we will be constructing the most general lagrangian

for arbitrary QL,R, which may be useful for other purposes. Such lagrangian will be a

generalization of that considered for the EM case in [29–31], which we will reobtain as a

consistency check in the case QL = QR. In fact, some of the needed new LEC multiplying

the lagrangian terms in our case will be related to the EM LEC in those works. Note that

the same procedure can be followed to incorporate other chemical potentials of interest

for lattice and heavy-ion phenomenology, such as quark baryon number for QL = QR =

(µB/F )1, Aµ = δµ01, charge for QL = QR = (µQ/F ) Q, Aµ = δµ01 or isospin for a

combination of the two, or including strangeness µS for three flavors. Those analyses are

beyond the scope of this work and will be analyzed elsewhere, being complementary to

previous ones in the literature where the low-energy ChPT effective lagrangian framework

has been used for analyzing the effect of those chemical potentials [33–37]. It is clear that a

realistic description of properties relevant to heavy-ion collisions, such as those commented

in section 1 would require eventually to consider those effects, as well as further observables

with respect to the ones studied here. In this respect, although in the present work the only

external field we are considering is the axial abelian field in (2.2) accounting for µ5, other

potentially interesting extension is the inclusion of an external magnetic field through vµ,

which would allow to study the CME in the effective lagrangian context. The modifications

on that case would start from the pion propagator itself which is nontrivially modified [38].

3 The leading order O(p2) lagrangian

It is not difficult to see that the lowest nontrivial order lagrangian that one can construct

for our present case through the previous procedure is the same as in the standard case,

i.e., O(p2). Thus, at O(p0), the only ingredient that we can use is the field U , and then all

possible terms are constants, independent of µ5 and then irrelevant for our purposes, while

at O(p), the only nontrivial operator with the allowed symmetries and arbitrary QL,R is

L1 → tr (QL +QR) (3.1)

which vanishes exactly for the particular choice (2.2).

– 6 –
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To O(p2), we have, on the one hand, the standard lagrangian in terms of the covariant

derivative in (2.3), including the additional term coupling the Q and U fields needed to

explain the electromagnetic mass difference of pions [7, 29, 31]:

L2 →
F 2

4
tr
[
dµU

†dµU + χ†U + χU †
]

+ Ctr
[
QRUQLU

†
]

(3.2)

with F the pion decay constant in the chiral limit and M2 = 2B0m the tree-level neutral

pion mass. We recall that the above equation is valid for arbitrary QL and QR. Taking the

EM limit QL = QR = Q, one can relate the constant C with the EM pion mass difference

as M2
π+ −M2

π = 2Ce2/F 2 at tree level.

On the other hand, according to our discussion in section 2, the following operators

are also allowed to this order:

tr(U †dµU)tr(U †dµU) → −4N2
fµ

2
5

tr[Q2
L +Q2

R] → 2Nfµ
2
5/F

2

tr[QL]2 + tr[QR]2 → 2N2
fµ

2
5/F

2

tr[QL]tr[QR] → −N2
fµ

2
5/F

2 (3.3)

where in the r.h.s. of the above equations we have replaced for those operators our present

choice of QL,R given by (2.2), using (2.5). Replacing in addition the covariant deriva-

tive (2.4) in (3.2) yields finally for Nf = 2:

L2 =
F 2

4
tr
[
∂µU

†∂µU + 2B0M
(
U + U †

)]
+ 2µ25F

2 (1− Z + κ0) (3.4)

where the κ0 constant accounts for the operators in (3.3) and we have denoted Z = C/F 4

following the notation in [31]. Note that numerically Z ∼ 0.8 [31] and therefore we will

keep that contribution in what follows.

Therefore, at this order, the only modification to the chiral lagrangian is a constant

term, which will contribute to the vacuum energy density and to the chiral charge density,

as we discuss below.

Regarding renormalization, it is important to point out that κ0 should be finite, since

there are no loop divergences to cancel out at this order. We will get back to the renor-

malization of the new LEC in the following sections.

Finally, we remark that the equations of motion to O(p2) are µ5-independent. In our

present case they become:

(dµd
µU †)U−U †dµdµU = χ†U−U †χ+

1

Nf
tr
[
U †χ− χ†U

]
− 4C

F 2

(
U †QRUQL −QLU †QRU

)
(3.5)

and one can easily check that the all the µ5 contributions cancel in (3.5).

4 Next to leading order: the O(p4) lagrangian

Before discussing the O(p4) we should check first if there are nonvanishing O(p3) terms.

The list of all possible terms of that order allowed by the symmetries is listed in appendix A.

One can readily check that all of those operators vanish for the choice (2.2).
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Another important comment regards the Wess-Zumino-Witten (WZW) anomalous

part of the lagrangian, which is also O(p4). However, there are no µ5-dependent con-

tributions in SU(2), since the WZW lagrangian in that case is independent of the singlet

axial field [39]. In the presence of nonzero vector fields, such as the magnetic field needed

to study the CME, the WZW would play an essential role [3].

Let us then follow the same procedure as before, now to O(p4). The lagrangian to this

order will consist of the usual SU(2) terms in [7, 8, 31] with the covariant derivative dµ
in (2.3), plus new terms constructed out of the Q operators and the operator tr(U †dµU),

as commented above. The LEC associated to those new terms will be labelled k′i and the

resulting lagrangian is given in eq. (4.2) below. Let us explain the origin of the different

terms in that equation. For that purpose, it is convenient to classify the different operators

contributing according to the number of Q fields.

It is not difficult to see that there are no surviving terms with one or

three Q fields. These include Gdd terms like tr
[
dµU

†dνU
] [

tr
(
GLµν

)
+ tr

(
GRµν

)]
,

tr[U †dµU ]tr[U †dνU ]
[
tr
(
GLµν

)
+ tr

(
GRµν

)]
and so on, which in principle could contribute

after partial integration moving the derivative acting on the Q fields to the other fields and

using the equations of motion (3.5). However, those terms vanish for our choice of GµI

after such partial integration. Terms of the form tr
[
GLµνd

µU †dνU
]
, tr

(
GR,Lµν GµνR,L

)
and

tr
(
GRµνUG

LµνU †
)

do not contribute either for our present case.

Terms without Q fields include the usual chiral lagrangian at this order [7, 8, 31] plus

new terms which will contain tr(U †dµU). In appendix B.2 we list all the possible terms of

this type. Using the equations of motion, all possible terms with two or more derivatives

acting on the same field can be rewritten in terms of those with single derivatives. The

latter holds also for terms with derivatives acting on the χ fields, which after partial

integration and the use of the equations of motion can be reduced to those in (B.23). In

addition, as discussed in appendix B, SU(2) operator identities allow to reduce the number

of independent terms.

After these considerations, the lagrangian without explicit Q fields is the usual one

in [31], where the µ5 corrections are those containing the covariant derivative dµ in (2.3),

namely,

L04 =
l1
4

tr2
[(
∂µ − 2iµ5δ

µ0
)
U † (∂µ + 2iµ5δµ0)U

]
+
l2
4

tr
[(
∂µ − 2iµ5δ

µ0
)
U †
(
∂ν + 2iµ5δ

ν0
)
U
]

tr
[
(∂µ − 2iµ5δµ0)U

† (∂ν + 2iµ5δν0)U
]

+
l3
16

tr2
(
χU † + Uχ†

)
+
l4
8

tr
[
χ†Uχ†U + U †χU †χ

]
+
l4
8

tr
[(
∂µ − 2iµ5δ

µ0
)
U † (∂µ + 2iµ5δµ0)U

]
tr
[
(χ†U + χU †

]
+
l4 − l7

16
tr2
(
χU † − Uχ†

)
+
h1 + h3 − l4

4
tr
(
χ†χ

)
+
h1 − h3

2
Re (detχ) (4.1)

plus the new contributions given by the k′1−5 terms in (4.2). In the l4 term as is custom-

ary [28, 40] we have transformed the l4 contribution from [31] by using partial integration,

the equations of motion (3.5) and the identity (B.5), which give rise to the terms containing
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l4 in (4.1) plus terms to be absorbed in the k′4, k
′
5 and k′16 operators in (4.2). We do not

include in (4.1) the l5, l6, h2 terms in [31], which contain GL,Rµν and do not contribute here

as explained before.

As for terms with two Q fields, the possible contributions are of the form ddQQ and

χQQ. Once again, trace identities can be used to eliminate some of the operators. In

particular, we have used eqs. (B.6)–(B.11) and (B.21). The different operators of this kind

contributing to the lagrangian are those multiplied by the LEC k′6−25 in (4.2). We have

followed [31] as a guide and for notation, although, as explained, new terms appear with

respect to that work which vanish for QL = QR.

Apart from the above, one could in principle have the (cQ)Qd and (cQ)(cQ) operators

appearing in appendix B.3 and B.4 and listed in equations (B.24) and (B.25) respectively.

By partial integration, all those terms can be brought in our present case either to a

vanishing contribution or to some of the ddQQ and χQQ contributions already considered.

Finally, we have to consider terms with four explicit Q fields. The relevant trace identi-

ties to be used are now (B.12)–(B.18) and the operators contributing are those multiplying

the new LEC k′26−37 in (4.2).

According to our previous discussion the SU(2) lagrangian containing the new opera-

tors is finally:

L′4 = k′1tr(U
†dµU)tr(U †dµU)tr(dνU †dνU)+k′2tr(U

†dµU)tr(U †dνU)tr(dµU †dνU)

+k′3tr(U
†dµU)tr(U †dµU)tr(U †dνU)tr(U †dνU)+k′4tr(U

†dµU)tr(U †dµU)tr(χ†U+U †χ)

+k′5tr(U
†dµU)tr

[
U †dµU

(
χ†U+U †χ

)]
+k′6F

2tr
(
dµU †dµU

)[
tr
(
Q2
L

)
+tr

(
Q2
R

)]
+k′7F

2tr
(
dµU †dµU

)
tr
(
QRUQLU

†
)

+k′8F
2
[
tr
(
dµU †QRU

)
tr
(
dµU

†QRU
)

+tr
(
dµUQLU

†
)

tr
(
dµUQLU

†
)]

+k′9F
2tr
(
dµU †QRU

)
tr
(
dµUQLU

†
)

+k′10F
2tr
(
dµU †dµU

)[
tr2(QL)+tr2(QR)

]
+k′11F

2tr
(
dµU †dµU

)
tr(QL)tr(QR)+k′12F

2tr
(
χ†U+U †χ

)[
tr
(
Q2
L

)
+tr

(
Q2
R

)]
+k′13F

2tr
(
χ†U+U †χ

)
tr
(
QRUQLU

†
)

+k′14F
2tr
[(
χU †+Uχ†

)
QL+

(
χ†U+U †χ

)
QR

]
tr(QL+QR)

+k′15F
2tr
[(
χ†U+U †χ

)
QL−

(
χU †+Uχ†

)
QR

]
tr(QL−QR)

+k′16F
2tr
[(
χ†U−U †χ

)
QLU

†QRU+
(
χU †−Uχ†

)
QRUQLU

†
]

+k′17F
2tr
(
χ†U+U †χ

)[
tr2(QL)+tr2(QR)

]
+k′18F

2tr
(
χ†U+U †χ

)
tr(QL)tr(QR)

+k′19F
2tr(U †dµU)tr(UdµU †Q2

R−U †dµUQ2
L)

+k′20F
2tr(U †dµU)tr(U †dµU)tr(Q2

L+Q2
R)+k′21F

2tr(U †dµU)tr(U †dµU)tr(QRUQLU
†)

+k′22F
2tr(U †dµU)tr(U †dµU)

[
tr2(QL)+tr2(QR)

]
+k′23F

2tr(U †dµU)tr(U †dµU)tr(QR)tr(QL)

+k′24F
2tr(U †dµU)

[
tr(QRUd

µU †)tr(QR)−tr(QLU
†dµU)tr(QL)

]
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+k′25F
2tr(U †dµU)

[
tr(QRUd

µU †)tr(QL)−tr(QLU
†dµU)tr(QR)

]
+k′26F

4
[
tr2
(
Q2
L

)
+tr2

(
Q2
R

)]
+k′27F

4tr
(
Q2
L

)
tr
(
Q2
R

)
+k′28F

4tr
(
Q2
L+Q2

R

)
tr(QL)tr(QR)

+k′29F
4tr
(
Q2
L+Q2

R

)(
tr2QL+tr2QR

)
+k′30F

4tr
(
Q2
R−Q2

L

)(
tr2QL−tr2QR

)
+k′31F

4
[
tr3(QL)+tr3(QR)

]
tr(QL+QR)+k′32F

4
[
tr3(QL)−tr3(QR)

]
tr(QL−QR)

+k′33F
4
[
tr2(QL)tr(QR)+tr2(QR)tr(QL)

]
tr(QL+QR)

+k′34F
4tr
(
QRUQLU

†
)[

tr2(QL)+tr2(QR)
]
+k′35F

4tr
(
QRUQLU

†
)

tr(QR)tr(QL)

+k′36F
4tr
(
QRUQLU

†
)

tr
(
Q2
R+Q2

L

)
+k′37F

4tr2
(
QRUQLU

†
)

(4.2)

so that the full O(p4) lagrangian relevant for our analysis at this order reads L4 = L04 +L′4
with L04 in (4.1).

The k′i constants above are dimensionless and can be compared with the EM LEC ki by

taking from the general expressions above QL = QR = Q with Q = e diag(2/3,−1/3), with

e the electric charge, as considered in [31], which implies in particular (tr Q)2 = (1/5)tr(Q2),

tr(Q)tr(Q3) = (9/25)tr2(Q2), tr(Q4) = (17/25)tr2(Q2). Thus, we get:

2k′6 +
1

5

(
2k′10 + k′11

)
= k1 2k′12 +

1

5

(
2k′17 + k′18

)
= k5

k′7 = k2 k′13 = k6

k′8 = k3 k′14 =
k7
2

k′9 = k4 k′16 = k8

2k′26 + k′27 +
2

5
k′28 +

4

5
k′29 +

4

25
k′31 +

4

25
k′33 = k12

2

5
k′34 +

1

5
k′35 + 2k′36 = k13

k′37 = k14 (4.3)

Note that since the trace condition used in [31] is different from our choice (2.2), the

combinations of k′i constants that will appear in the different observables in our case will

be different in general than those in (4.3). Therefore, we will not be able to determine all

the LEC appearing in the µ5-dependent terms in terms of previously known ones. As we

will explain below, one can use recent lattice analysis to estimate some of those constants,

which one would expect that remain within the same order of magnitude than the ki ones,

from the previous expression (4.3).

Next, let us replace the choice (2.2) in the above lagrangian, namely in (4.1) and (4.2),

in order to get the form of the explicit µ5-corrections. We obtain

L4(µ5)=L04(µ5=0)+κ1µ
2
5tr
(
∂µU †∂µU

)
+κ2µ

2
5tr
(
∂0U

†∂0U
)

+κ3µ
2
5tr
(
χ†U+U †χ

)
+κ4µ

4
5

(4.4)
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with L04(µ5) in (4.1) and

κ1 = 4l1−16k′1+4k′6−2k′7+8k′10−4k′11 (4.5)

κ2 = 4l2−16k′2 (4.6)

κ3 = l4−16k′4−8k′5+4k′12−2k′13+8k′15+8k′17−4k′18 (4.7)

κ4 = −128k′1−128k′2+256k′3+32k′6−16k′7−32k′8−16k′9+64k′10−32k′11+32k′19−64k′20

+32k′21+32k′22−128k′23+64k′24−64k′25+8k′26+4k′27−16k′28+32k′29+64k′32−16k′34

+8k′35−8k′36+4k′37 (4.8)

The method we have followed here to derive the lagrangian (4.4)–(4.8) is equivalent

to that followed in [27], where only the leading LEC in the large-Nc limit are considered,

once the proper operator identities for µ5 6= 0 are taken into account, i.e, those we have

used here and collected in appendix B.1.

A word about renormalization is also in order here: the k′i or the κi LEC have to be

renormalized in order to absorb the divergences coming from loops, in the same way as the

li and the ki [7, 31], namely:

κi = κri (µ) + βiλ (4.9)

in dimensional regularization (DR), where the superscript “r” denotes the finite part and

λ =
µD−4

32π2

[
2

D − 4
−
(
log 4π + Γ′(1) + 1

)]
(4.10)

with µ the renormalization scale.

The values of the βi coefficients will be determined through the analysis of the various

observables in the sections below and will imply then conditions on the renormalization

of the k′i showing up in the combinations (4.5)–(4.8). In the case of κ0 in (3.4), since it

shows up at O(p2), there is no counterterm associated to that constant, so that β0 = 0 as

emphasized in section 3.

5 Physical consequences

5.1 Pion dispersion relation

Let us start by analyzing the corrections to the kinetic part of the lagrangian coming from

the O(p4) µ5-dependent corrections in (4.4). The O(π2) part of L4 in (4.1) and (4.4) is

given by:

Lπ2

4 =
2l4M

2 + 4(κ1 + κ2)µ
2
5

F 2

1

2
∂0π

a∂0πa − 2l4M
2 + 4κ1µ

2
5

F 2

1

2
∂jπ

a∂jπ
a

−2(l3 + l4)M
2 + 4κ3µ

2
5

F 2

1

2
M2πaπa (5.1)

with M2 = 2B0m. The different coefficient for the tr(∂0U∂0U
†) and tr(∂iU∂iU

†) terms

translate into different values for the spatial and time components of the pion decay con-

stant, as would be generally expected in a Lorentz covariance breaking scenario [41]. In
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our present case we have, up to NLO in ChPT,(
F tπ
)2

(µ5) = F 2
π (0) + 4(κ1 + κ2)µ

2
5 (5.2)

(F sπ)2 (µ5) = F 2
π (0) + 4κ1µ

2
5, (5.3)

F tπ and F sπ being respectively the generalization of Fπ for the timelike and spacelike com-

ponents of the axial current through the PCAC theorem [41]. At tree level, they arise

directly from the coefficients of the tr(∂0U∂0U
†) and tr(∂iU∂iU

†) terms in the lagrangian.

In the above equation we are including in F 2
π (0) the one-loop and li standard ChPT cor-

rections [7]. Here, it is important to remark that F tπ/F
s
π 6= 1 implies a reduction of the

velocity of propagation of pions [41] as we are about to see.

When taking into account the above corrections to the derivative terms together with

the κ3 correction to the mass term in (4.4), one ends up with the following dispersion

relation to this order:

p20 − (1 + δs − δt) |~p|2 − (1 + δM − δt)M2 = 0 (5.4)

where

δt = 2l4
M2

F 2
+A∆ + 4(κ1 + κ2)

µ25
F 2

(5.5)

δs = 2l4
M2

F 2
+A∆ + 4κ1

µ25
F 2

(5.6)

δM = 2(l3 + l4)
M2

F 2
−B∆ + 4κ3

µ25
F 2

(5.7)

Here, A,B are the coefficients of the loop contributions renormalizing the p2 and M2

terms of the dispersion relation at µ5 = 0, where ∆ = G(0)/F 2 is the tadpole contribution

with G(x) the leading-order pion propagator. The divergent part of ∆ is absorbed in DR

in the standard renormalization of the li [7].

The two main physical consequences of the above dispersion relation are, on the one

hand, a modification of the relativistic pion velocity for massless pions, which at this order

is purely a µ5 effect, namely,

vπ(µ5) =
|~p|
p0

∣∣∣∣
M=0

= 1− 1

2
(δs − δt) = 1 + 2κ2

µ25
F 2

(5.8)

On the other hand, the loss of Lorentz covariance implies also a different result for the

pion mass, depending on whether we take |~p| = 0 (static/pole mass) or p0 = 0 (screening

mass):

[
M2
π

]pole
(µ5) = M2(1 + δM − δt) = M2

π(0)− 4(κ1 + κ2 − κ3)
µ25
F 2

M2 (5.9)[
M2
π

]scr
(µ5) = M2(1 + δM − δs) = M2

π(0)− 4(κ1 − κ3)
µ25
F 2

M2 (5.10)

where M2
π is the µ5 = 0 mass at this order including one-loop and li terms.
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Regarding renormalization, the finiteness of the observables (5.2), (5.3), (5.8), (5.9),

(5.10) require

β1 = β2 = β3 = 0 (5.11)

The above renormalization conditions highlight the importance of including properly

the new terms in the lagrangian (4.2). For instance, the presence of the k′2 term is crucial

to guarantee β2 = 0 once the relation with l2 in (4.6) is taken into account, since that

condition would not be fulfilled by l2 only, whose renormalization is given in [8].

As for the numerical values of the LEC κ1, κ2, κ3 involved, there is no information

available from the lattice regarding the pion dispersion relation at µ5 6= 0. Measuring

screening masses for light mesons is, in principle, feasible in the lattice, so it would be

useful to have such measurements for µ5 6= 0 available in the near future. However, we

can have some insight from physical requirements. Hence, requiring that the pion velocity

in (5.8) remains smaller than the speed of light for any µ5 yields

κ2 < 0. (5.12)

The additional requirement that the two squared pion masses in (5.9) and (5.10) remain

positive would lead to κ1−κ3 < 0. However, that may be a too restrictive condition, since

a decreasing pion mass for low and moderate values of µ5 does not necessarily imply a

tachyonic mode, given that higher order corrections may change this behaviour. In any

case, a tachyonic mode is not necessarily related to an unphysical spectrum [18] and it

could indicate for instance phases of pion condensation [34, 35]. We will actually come

back to the issue of the sign of that particular LEC combination below, in connection with

chiral restoration (section 5.3) and the chiral charge density (section 5.4).

Just to obtain a rough estimate of the above results, we plot in figure 1 the dependence

of vπ and M2
π with µ5 expected within the numerical range of LEC around their so-called

natural values 1/(16π2) which is their expected size from loop corrections [29, 31]. For the

numerical values of the standard low-energy parameters, we will take the recent results

quoted in [42] and references therein. Thus, we take Fπ(0) = 92.2 MeV, its physical value,

F = 85.93 MeV, Mπ(0) = 140 MeV, M = 130.96 MeV. For the results showed in this figure,

we have replaced for simplicity F 2 → F 2
π (0) in the right hand side of (5.2)and (5.3), and

M2 →M2
π(0) in (5.9) and (5.10), which is perturbatively equivalent to this order. Thus, as

long as we remain within natural values for the corresponding LEC involved, the estimated

band for
[
M2
π

]pole,scr
(µ5)/M

2
π(0) and

[
F 2
π

]t,s
(µ5)/F

2
π (0) look the same.

It is worth mentioning also the comparison of our results with previous model analysis.

The results in [18] within a generalized sigma model, show a decreasing behaviour of the

pion mass with µ5 after diagonalizing a π−a0 µ5-dependent interaction. Actually, tachyonic

modes appear in that work for high enough µ5 and pion momentum. The results of that

paper are compatible with ours for the µ5 range showed in figure 1. In addition, the increase

in F 2
π found in [18] would correspond to positive κ1 according to our present analysis and is

also numerically compatible with our results in figure 1. Our analysis for other observables

below will show that the lattice results support κ1 > 0, κ1 + κ2 > 0, κ1 − κ3 > 0, hence

compatible with the results in [18] , although the sign of κ1 + κ2 − κ3 is not determined.
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Figure 1. µ5 dependence of pion velocity, pion mass and pion decay constant, to leading order in

ChPT. The grey bands correspond to the uncertainties of the LEC within natural values, namely

0 ≤ κ2 ≤ 1
16π2 in (5.8), and |κ1 + κ2| ≤ 1

16π2 , |κ1| ≤ 1
16π2 , |κ1 + κ2 − κ3| ≤ 1

16π2 , |κ1 − κ3| ≤ 1
16π2 ,

in (5.2), (5.3), (5.9) and (5.10) respectively.

4 4 6

4

4 4 4 6 8

2 4a 4b 6a 6b 6c

8a 8b 8c 8d

8e 8f 8g 8h

2 2 

Figure 2. Diagrams contributing to the energy density up to O(p6).

5.2 The vacuum energy density

Let us analyze the vacuum energy density defined as

ε(T, µ5) = −(βV )−1 logZ(T, µ5) (5.13)

where Z(T, µ5) = Z(0, a0 = µ51,M, 0, 0) is the Euclidean QCD partition function after the

replacement i
∫
dx0 →

∫ β
0 dτ with τ = ix0 and β = 1/T the inverse temperature. Relevant

global observables can be derived from ε, such as the light quark condensate and the scalar

susceptibilty signaling chiral symmetry restoration, as well as the chiral charge density

corresponding to the chiral charge (1.1). The µ5 corrections come from the lagrangian up

to O(p4) given in sections 3 and 4 within ChPT. As customary, let us write ε = ε2+ε4+ · · ·
where εk denotes the O(pk) contribution.

At O(p2), it only contributes the constant (field-independent) part of the L2 lagrangian

in (3.4). This is symbolized by the first contribution in figure 2 labelled “2” (we follow a

similar notation as [43]) which yields the following contribution independent of temperature

and volume:

ε2(µ5) = −F 2M2 − 2µ25F
2 (1− Z + κ0) (5.14)

The O(p4) includes, on the one hand, the contribution from the kinetic O(π2) part

in (3.4), which is nothing but the energy density of a free pion gas. This is the closed

loop diagram labelled “4a” in figure 2, which is µ5-independent. On the other hand, the
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diagram “4b” refers to the field-independent terms from L4 in (4.1) and (4.4). Up to an

irrelevant constant, we have in the isospin limit mu = md

ε4a(T ) =
3

2

T

V

∑
n

∑
ki

log
[
ω2
n + ω2

k

]
= 3

T

V

∑
ki

log
[
1− e−ωk/T

]
+M4ε4div −→

V→∞
−3

2
g0(M,T ) +M4ε4div, (5.15)

ε4b(µ5) = −(l3 + h1)M
4 − 4κ3µ

2
5M

2 − κ4µ45, (5.16)

where we have displayed explicitly the volume and temperature dependence of ε4a as well

as its temperature dependence in the infinite volume limit, with ωn = 2πnT (n ∈ Z),

ω2
k = k2 + M2, k2 = (2π/L)

∑3
i=1 k

2
i (ki ∈ Z). The contribution ε4div in (5.15) contains a

divergent part proportional to λ in (4.10). In particular, using (C.2) in appendix C,

ε4div −→
V→∞

3

2

[
λ+

1

32π2
log

M2

µ2
− 1

64π2

]
(5.17)

which is T -independent and whose divergent part is also V independent. The divergent λ

contribution in ε4div cancels with that of the LEC combination in (5.16) with the renor-

malization of those LEC provided in [8], namely, l3 = lr3(µ)− 1
2λ, h1 = hr1(µ) + 2λ.

The functions gk(M,T ) above are characteristic of the meson gas. They are defined

in [43] and satisfy the recurrence relation gk = −dgk−1/dM2. Specifically,

g0(M,T ) =
T 4

3π2

∫ ∞
M/T

dx

[
x2 − (M/T )2

]3/2
ex − 1

(5.18)

g1(M,T ) =
T 2

2π2

∫ ∞
M/T

dx

[
x2 − (M/T )2

]1/2
ex − 1

(5.19)

g2(M,T ) =
1

4π2

∫ ∞
M/T

dx

[
x2 − (M/T )2

]−1/2
ex − 1

(5.20)

The above three functions are positive, vanish for T = 0 and increase with T for any

mass M . In the chiral limit g0(0, T ) = π2T 4/45, g1(0, T ) = T 2/12 and g2(M → 0+, T ) →
T/(8πM) +O(logM2), g3(M → 0+, T )→ T/(16πM) +O(logM2).

Up to O(p4), the only temperature (and volume) dependence of the energy density is

contained in the µ5 = 0 part, namely in the free pion gas contribution (5.15). For some of

our subsequent analysis it will be interesting to analyze the nontrivial T and V dependence

arising at the O(p6), although the price will be to introduce more unknown LEC.

The diagrams contributing to ε6 are also depicted in figure 2. The “6a” contribution

stands for the two-loop closed diagram with four-pion vertices coming from L2, which is

therefore µ5 independent and has been calculated in [43]:

ε6a(T ) =
3M2

8F 2
[G(x = 0)]2 (5.21)

with G the euclidean free pion propagator, i.e,

G(x = 0) =
T

V

∑
n

∑
k

1

ω2
n + ω2

k

−→
V→∞

G(x = 0, T = 0) + g1(M,T ) (5.22)
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where the divergent part is contained in the T = 0 contribution, which for V → ∞ it is

given in (C.1).

The contribution from diagram “6b” stands for the O(π2) part of the L4 lagrangian

given in (5.1) and is the one containing the combined µ5 and T dependence. Following

similar steps as above, the sum of diagrams 4a and 6b is written in terms of

3

2

T

V

∑
n

∑
ki

log
[
aω2

n + bk2 + cM2
]

(5.23)

with

a = 1 +
2l4M

2 + 4(κ1 + κ2)µ
2
5

F 2
; b = 1 +

2l4M
2 + 4κ1µ

2
5

F 2
; c = 1 +

2(l3 + l4)M
2 + 4κ3µ

2
5

F 2

(5.24)

Up to order O(p6) in the energy density, we can expand the expression in (5.23) up to

first order in a−1, b−1, c−1, or, equivalently up to first order in 1/F 2. Thus, performing

the Matsubara sums
∑

n, we get

ε6b(T,µ5) =
3

2

T

V

∑
n

∑
ki

(a−1)ω2
n+(b−1)k2+(c−1)M2

ω2
n+ω2

k

= ε
(0)
6bdiv+ε

(2)
6bdivµ

2
5+

3

2

1

V

∑
ki

1

ωk

1

eωk/T−1

[
(b−a)k2+(c−a)M2

]
−→
V→∞

ε
(0)
6bdiv+ε

(2)
6bdivµ

2
5+

9

4
(b−a)g0(M,T )+

3

2
(c−a)M2g1(M,T ) (5.25)

= ε
(0)
6bdiv+ε

(2)
6bdivµ

2
5−9κ2

µ25
F 2

g0(M,T )+
3
[
l3M

2+2(κ3−κ1−κ2)µ25
]

F 2
M2g1(M,T )

where ε
(0)
6bdiv and ε

(2)
6bdiv are µ5 and T independent divergent contributions in DR. In the

V →∞ limit they can be obtained from the integral (C.3) in appendix C. We get

ε
(0)
6bdiv −→V→∞

6
M6

F 2
l3

[
λ+

1

32π2
log

M2

µ2

]
(5.26)

ε
(2)
6bdiv −→V→∞

−3
M4

F 2
µ25

[
(4(κ1 − κ3) + κ2)

(
λ+

1

32π2
log

M2

µ2

)
− κ2

64π2

]
(5.27)

Finally, the “6c” contribution collects the field-independent contributions coming from

L6, which involves three new LEC for the µ5-dependent part, namely

ε6c(µ5) = c
M6

F 2
+ γ0

µ65
F 2

+ γ1
µ45M

2

F 2
+ γ2

µ25M
4

F 2
(5.28)

Note that the divergent part coming from the crossed G(x = 0, T = 0)g1 term in ε6a
in eq. (5.21) cancels with the l3 contribution in (5.25), while the G(x = 0, T = 0)2 term

in (5.21) and the ε
(0)
6bdiv term in (5.25) cancel with the c contribution in (5.28) with the

renormalization c = cr(µ)− 6lr3(µ)λ+ (3/2)λ2.

As for the µ5-dependent contributions, the ε
(2)
6bdivµ

2
5 contribution in (5.25) is absorbed

in the renormalization of γ2 in (5.28) with

γ2 = γr2(µ) + 3 [4(κ1 − κ3) + κ2]λ. (5.29)
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The energy density up to the order calculated here is therefore finite and scale-

independent with the renormalization of the LEC that we have just explained, which is a

welcomed consistency check. One immediate conclusion is that the LEC γ0, γ1 in (5.28)

are not renormalized. Also, since the energy density has to remain finite for any M , the

κ4 contribution in (5.16) does not get renormalized either, so that

β4 = 0 (5.30)

In addition, we have checked that the µ5 = 0 part of the energy density as given here

agrees with [43] up to O(p6).

In the following sections we will consider different observables that can be obtained

from the energy density, and comment on their determination in lattice analysis, which

will allow us to gain some information about the κi LEC involved.

5.3 Chiral symmetry restoration: the quark condensate and the scalar sus-

ceptibility

The main features of chiral symmetry restoration can be read from the quark condensate

and the scalar susceptibility, derived from the vacuum energy density as

〈q̄q〉l (T, µ5) = 〈ūu+ d̄d〉 =
∂ε(T, µ5)

∂m
= 2B0

∂ε(T, µ5)

∂M2
(5.31)

χS(T, µ5) = −
∂ 〈q̄q〉l (T, µ5)

∂m
= −2B0

∂ 〈q̄q〉l (T, µ5)
∂M2

(5.32)

with m = mu = md in the isospin limit.

The chiral crossover transition would be characterized by the quark condensate

developing a sharp inflection point at the transition temperature Tc and the scalar

susceptibility developing a peak at Tc, as confirmed by lattice analyses [44, 45]. In

the chiral limit, a second-order transition takes place with vanishing condensate and

divergent susceptibility [46, 47]. The ChPT expansion is adequate to provide the low

and intermediate temperature behaviour for those quantities, i.e, in the T region where

the hadron gas is dominated by the lightest states. More accurate predictions need the

inclusion of higher mass states [48]. However, the pion gas may still provide a valid

qualitative picture of chiral restoration close to the chiral (or infrared) limit M → 0+

which can be formally understood as T � M , and where the pions are meant to be the

main component responsible for the melting of the quark condensate [43, 47]. In addition,

near the chiral limit, the transition temperature determined in ChPT as the vanishing

of the quark condensate coincides with other determinations such as the degeneration

temperature of the scalar and pseudoscalar susceptibilities [49].

Our main purpose in this section will be to study the evolution of chiral restoration for

nonzero µ5, and hence of the quark condensate and the scalar susceptibility and for such

purpose the ChPT treatment will be enough to reach the main conclusions, in particular

regarding the role of the κi LEC and the comparison with lattice analyses.

From the results in the previous section, we see that the first µ5 correction to the quark

condensate is temperature independent and changes the T = 0 value of 〈q̄q〉l with the term
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coming from the κ3 contribution in (5.16), so that the leading and next-to-leading orders

for the ChPT quark condensate are given by,1

〈q̄q〉LOl = −2B0F
2 (5.33)

〈q̄q〉NLOl (T, µ5) = −4B0M
2

[
lr3(µ) + hr1(µ)− 3

64π2
log

M2

µ2

+2κ3
µ25
M2
− 3

4M2
g1(M,T )

]
(5.34)

That is, up to this order, the sign of κ3 determines whether the quark condensate

| 〈q̄q〉l | increases (κ3 > 0) or decreases (κ3 < 0) with µ5 and so on for the transition tem-

perature Tc estimated from the vanishing of the condensate at this order. As commented

in the introduction, lattice analyses at finite temperature favor an increasing behaviour.

As for the scalar susceptibility, since the µ5 corrections to the condensate in (5.34) are

mass independent, χS is independent of µ5 at this order. The latter is consistent with the

smooth µ5 dependence observed in the lattice [20].

The modification to the T = 0 condensate value at nonzero µ5 provided by (5.33) allows

us to make a rough estimate of a typical µ5 validity range for the present analysis. Actually,

such modification is of the same order as those considered for the pion masses in section 5.1,

so we expect typically that corrections remain below 20% for up to µ5 ' 300− 400 MeV.

Nevertheless, in order to improve the precision in the T and µ5 range, we consider

the next to next to leading order (NNLO) in the energy density, by including the ε6
contributions derived in section 5.2. The full result for the quark condensate up to that

order is given by:

〈q̄q〉NNLOl (T,µ5) = 〈q̄q〉NNLOl (T,µ5 = 0)+
B0

F 2
µ25

{
M2

4π2
[
3(κ3−κ1)+16π2γr2(µ)

]
−3M2

8π2
[4(κ1−κ3)+κ2] log

M2

µ2
(5.35)

−6[2(κ1−κ3)−κ2]g1(M,T )+12M2 (κ1−κ3+κ2)g2(M,T )+2γ1µ
2
5

}
with

〈q̄q〉NNLOl (T, µ5 = 0) =
3B0M

4

1024π4F 2

{
128π2

[
16π2cr(µ) + lr3(µ)

]
+
(
384π2lr3(µ) + 2

)
log

M2

µ2
+ 3 log2

M2

µ2

}
+
B0

F 2

{
3

4
[g1(M,T )]2 − 3

2
M2g1(M,T )g2(M,T )

+
3M2

32π2

[
1 + 128lr3(µ)π2 + 2 log

M2

µ2

]
g1(M,T )

− 3M4

32π2

[
64lr3(µ)π2 + log

M2

µ2

]
g2(M,T )

}
(5.36)

1Throughout this and the following sections we will consider for simplicity the V → ∞ limit. The

finite volume corrections can be introduced along similar lines, replacing the gk functions by their finite-V

counterparts [50].

– 18 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
2

We have checked that the previous expression for µ5 = 0 coincides with that given

in [51, 52], where the renormalization convention for the LEC is slightly different.

We see that the leading T and µ5 dependent corrections to the condensate show up

in the g1 and g2 terms in the r.h.s. of (5.35), multiplied by different combinations of the

κ1,2,3 constants, whose sign will determine the condensate evolution with µ5. Recall that

the µ5 = 0 condensate is negative, g1,2 are positive increasing functions of T and κ2 < 0

according to our discussion in section 5.1.

Although, as we have stated above, the ChPT series for the quark condensate cannot

provide quantitative reliable predictions around chiral restoration, we expect it to show its

main features, especially near the chiral limit, which would correspond to the high temper-

ature T �M of the previous expressions. Thus, in order to provide more quantitative con-

clusions, let us focus on Tc(µ5) determined as the value for which the light quark condensate

vanishes. For that purpose, it is very conveniente to consider the chiral series for the ratio

〈q̄q〉l (T,µ5)
〈q̄q〉l (0,µ5)

= 1− 3

2F 2
g1(M,T )− 1

4B0F 4

{
3g1(M,T )〈q̄q〉NLOl (0,µ5)

+2F 2
[
〈q̄q〉NNLOl (T,µ5)−〈q̄q〉NNLOl (0,µ5)

]}
+O

(
1

F 6

)
= 1− 3

2F 2
g1(M,T )− 3

4F 4

{
1

2
[g1(M,T )]2−M2g1(M,T )g2(M,T )

−
[
M2

16π2

[
−1+64π2 (hr1(µ)− lr3(µ))−5log

M2

µ2

]
+4µ25(2κ1−κ2)

]
g1(M,T )

−
[
M2

16π2

[
64π2lr3(µ)+log

M2

µ2

]
−8µ25(κ1+κ2−κ3)

]
M2g2(M,T )

}
+O

(
1

F 6

)
(5.37)

since the dependence on the O(p6) condensate at T = 0 cancels, in particular the constants

cr and γr2 drop out. Note also that for the above ratio, the κi dependence reduces to the

combinations

κa = 2κ1 − κ2, κb = κ1 + κ2 − κ3, (5.38)

where κb latter is precisely the combination renormalizing the pion pole mass in (5.9).

Noter also that the µ5 dependence is just quadratic, which in particular implies a quadratic

dependence also for Tc(µ5) = Tc(0)
[
1 + kµ25/F

2
]

for small µ5, in accordance with what is

found in lattice analysis [20, 21].

In the chiral limit, the previous condensate ratio becomes particularly simple, depend-

ing only on κa, namely,

〈q̄q〉l (T, µ5)
〈q̄q〉l (0, µ5)

∣∣∣∣
M=0

= 1− T 2

8F 2

[
1− 2κa

µ25
F 2

]
− T 4

384F 4
+O

(
1

F 6

)
(5.39)

which yields the following Tc(µ5) dependence:

[Tc(µ5)]
2 = 24F 2

√2

3
+

[
1− 2κa

µ25
F 2

]2
− 1 + 2κa

µ25
F 2

 (M = 0) (5.40)
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which for small µ5 reduces to

Tc(µ5) = Tc(0)

[
1 +

√
3

5
κa
µ25
F 2

]
(M = 0) (5.41)

with Tc(0) = 2
√

2(
√

15− 3)F in the chiral limit.

In figure 3 we plot on the one hand, the expected uncertainty band for Tc(µ5)/Tc(0)

within the range of natural values for κa,b. We take lr3(µ = 770) = 0.21 × 10−3 [42] while

for the contact LEC hr1, which cannot be determined from direct fits, we use the resonance

saturation approximation [32] Hr
2 = 2Lr8 for those SU(3) LEC, together with the conversion

between SU(2) and SU(3) LEC in [8] and the Lr6, L
r
8 and kaon and eta tree-level masses

extracted from [42]. That gives hr1(µ = 770) = 6.8 × 10−3. The same approximation has

been used in [51, 52]. We show also in that figure the lattice points corresponding to the

Nc = 2 analysis in [20] (with Mπ = 330 MeV) and the Nc = 3 one in [21] (with Mπ =

550 MeV) which follow similar trends.

Once we normalize Tc to the corresponding Tc(0) for each case, we see that ChPT curve

for the physical pion mass lies very close to the chiral limit one and that the lattice points

clearly fall into the uncertainty given by the natural values range of κa,b. This confirms that

the main features are captured by the ChPT approach for the ratio Tc(µ5)/Tc(0). Actually,

we have performed some fits of the lattice results in order to try to pin down the value of

the involved κa,b constants. The results of those fits are given in figure 4 and in table 1.

The uncertainty bands and parameter errors correspond to the 95% confidence level of the

fits. We have chosen the set of points obtained in [20] since they provide more points in the

low µ5 regime, where our approach is meant to be more applicable. We see that the chiral

limit approach in (5.40), as commented already, yields a very good description of those

lattice data for the ratio Tc(µ5)/Tc(0). A fit with only two µ5 6= 0 points in the chiral limit

is shown (fit 1) while for three points (fit 2) we get a smaller error and still a very good fit.

When compared to the massive case (fit 3) fixing the κa parameter to that of fit 2, we get

little sensitivity to κb (which is compatible with zero) showing again that the chiral limit

approach with just one parameter κa is a robust approximation, at least for this particular

observable. Actually, setting the two parameters κa, κb free does not improve over the

results we present here. Finally, we also show a fit wit only the parabolic chiral limit µ25
expression in (5.41) (fit 4) which provides a very decent approximation for this µ5 range.

The values quoted for the κa parameter in table 1 are all compatible within errors and

constitute a rather solid prediction of our present analysis, while for κb the error quoted in

fit 3 is narrower than the natural values range but shows a larger uncertainty than κa.

We end this section by providing the result for the scalar susceptibilty as defined

in (5.32). The leading nonvanishing order O(1) for χS comes from the mass derivative of

〈q̄q〉NLOl in (5.34) which, as stated, above, is µ5 independent. The next to leading order in
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Figure 3. µ5 dependence of the chiral transition temperature extracted from the vanishing of the

quark condensate. We show the uncertainty bands corresponding to |κa| ≤ 1
16π2 and |κb| ≤ 1

16π2

with κa,b defined in (5.38) and where only κacontributes in the chiral limit. We include the lattice

points from [20] (Nc = 2) and [21] (Nc = 3), as explained in the main text. The corresponding

Tc(0) values are 227.1 MeV, and 301.0 MeV for the chiral limit and physical mass curves, and

Tc(0) = 195.8 MeV for [20].

Tc (μ5)
Tc (0)

FIT 1

0 100 200 300 400 500

1.00

1.02

1.04

1.06

1.08

1.10

μ5(MeV)

Tc (μ5)
Tc (0)

FIT 2

0 100 200 300 400 500

1.00

1.02

1.04

1.06

1.08

1.10

μ5(MeV)

Tc (μ5)
Tc (0)

FIT 3

0 100 200 300 400 500

1.00

1.02

1.04

1.06

1.08

1.10

μ5(MeV)

Tc (μ5)
Tc (0)

FIT 4

0 100 200 300 400 500

1.00

1.02

1.04

1.06

1.08

1.10

μ5(MeV)

Figure 4. Fits of Tc(µ5)/Tc(0) from the ChPT framework. The lattice points used for the fit are

those for Nc = 2 in [20] while those for Nc = 3 in [21] are showed for reference. The Tc(0) values

are the same as in figure 3.
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FIT κa × 103 κb × 103 χ2/dof R2 # points µ5 6= 0

Fit 1 (M = 0) 1.7 ± 0.6 — 0.01 1.00 2

Fit 2 (M = 0) 2.3 ± 0.4 — 1.41 0.99 3

Fit 3 2.3 (fixed) 0 ± 1 1.36 0.99 3

Fit 4 (M = 0 O(µ25)) 2.5 ± 0.4 — 1.85 0.99 3

Table 1. Numerical values of the parameters corresponding to the fits in figure 4. The last column

indicates the number of lower µ5 points considered.

χS is O(1/F 2) and corresponds to the derivative of 〈q̄q〉NNLOl in (5.35). We get

χS(T, µ5) = χS(T, 0) +B2
0

µ25
π2F 2

×
{

3

4
[6(κ1 − κ3) + κ2]− 8π2γr2(µ) + 24π2M2 [κ1 − κ3 + κ2] g3(M,T )

+
1

4
[4(κ1 − κ3) + κ2]

[
−48π2g2(M,T ) + 3 log

M2

µ2

]}
+O

(
1

F 4

)
(5.42)

with χS(T, 0) given in [51, 52]. As explained above, it is not obvious how to extract useful

information about the transition from χS calculated in ChPT , since the ChPT approach

solely does not reproduce the expected maximum around Tc. However, retaining only the

leading terms in the chiral or infrared limit M → 0+, the divergent contribution for χS is

meant to carry the essential information regarding chiral restoration [47]. In that limit, we

obtain

χS(T, µ5) =
3B2

0

4

T

πM

{
1 +

1

F 2

[
T 2

16
− 6 (κ1 − κ3)µ25

]}
+O(logM2) +O

(
1

F 4

)
(5.43)

Interestingly, the coefficient that regulates the dependence of χS with µ5 near the chiral

limit is precisely κ1−κ3, appearing in the pole and screening pion mass corrections in (5.9)

and (5.10). The lattice data indicate that χS decreases with µ5 below the transition [20],

consistently with the peak of χS signaling the transition moving towards higher values of T .

This favors the sign κ1−κ3 > 0, in agreement with the results in [18] on the pion mass. Once

more, it becomes clear that lattice measurements on the pion masses would be important

to determine at least the sign of the µ5 corrections, connected as we have just seen with

the chiral restoring behaviour. The temperatures considered in [20] are too high to trust a

fit based on our previous ChPT chiral susceptibility for a pion gas, as commented above.

5.4 The chiral charge density and µ5 = 0 stability

Another quantity whose µ5 dependence has been studied in the lattice is the chiral charge

density [19, 23], defined as

ρ5(T, µ5) = 〈J0
5 〉 = 〈q̄γ0γ5q〉 = −∂ε(T, µ5)

∂µ5
(5.44)

– 22 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
2

From our expressions in section 5.2 we get, up to O(p6) in the free energy,

ρ5(T, µ5) = ρ
(1)
5 (T )µ5 + ρ

(3)
5 µ35 + ρ

(5)
5 µ55 +O(1/F 4), (5.45)

with

ρ
(1)
5 (T ) = 4F 2

(
1− Z + κ0 + 2κ3

M2

F 2

)
+

1

32π2F 2

×
{

6 [4(κ1 − κ3) + κ2]M
4 log

M2

µ2
+ 576π2κ2g0(M,T )

+384π2 (κ1 − κ3 + κ2)M
2g1(M,T )−M4

[
3κ2 + 64π2γr2(µ)

]}
, (5.46)

ρ
(3)
5 = 4

(
κ4 −

M2

F 2
γ1

)
, (5.47)

ρ
(5)
5 = −6

γ0
F 2

(5.48)

The above expressions provide the ChPT prediction for the chiral charge density, which

as in the previous observables discussed, should be applicable at low and moderate values

of T and µ5. Note that the thermal functions above are multiplied by precisely the same κi
combinations showing up in the pion dispersion relation analysis in section 5.1 and that, ac-

cording to our analysis in that section and in section 5.3, κ2 < 0, and therefore the thermal

contribution increases the coefficient of the linear term above in the chiral limit. The sign

of κb = κ1 + κ2 − κ3 is not clear, as we have discussed in section 5.3. Note that the chiral

charge density satisfies ρ5(µ5 = 0) = 0, which is consistent with the Vafa-Witten theorem

stating that parity cannot be spontaneously broken in the absence of axial sources [53]. A

way out of this theorem is to consider for instance nonzero baryon density [12, 54].

From the recent lattice analysis in [23] performed for Nf = 2, one concludes that

for low and moderate values of µ5, ρ5(µ5) is very insensitive to the quark masses and its

behaviour is pretty much dominated by the linear term ρ5 ∝ µ5. This is consistent with

our results above since the dominant O(F 2) term shows up only in the linear term (5.46)

and is mass independent. Actually, in [23], that term is estimated simply as 4f2π , which is

adequate regarding its order of magnitude, but as we have seen in detail here, at that order

the contributions from the Z and κ0 terms have to be considered in addition to that of the

pion decay constant. Another relevant comment in this context is that the temperature

and volume corrections might have to be considered in future lattice analyses. Actually,

in [23] the total four-volume of the lattice is fixed at around (1.7 fm)4 which would amount

to an effective temperature T ∼ 116 MeV. According to our expressions above, that would

affect mostly the linear term ρ
(1)
5 , although we expect that the corrections are small at

those temperatures since they appear at the NNLO O(1/F 2) (see below). The lattice

analysis in [19] is performed at very high temperatures T > 400 MeV and then our present

ChPT-based analysis is less appropriate to describe those results. Nevertheless, the almost

linear growth of ρ5(µ5) also holds in [19].

Let us then perform a fit of ρ5(µ5) to the lowest values of µ5 provided in [23], similarly

to what we did in section 5.3 for the critical temperature ratio. For that purpose, and
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Figure 5. Fits of ρ5(µ5) using the chiral limit expression (5.49) for κ2 = 0. The lattice points used

for the fit are those in [23].

FIT κ0 κ4 × 103 γ0 × 105 R2 # points µ5 6= 0

Fit 1 3.2 ± 0.1 0 (fixed) 0 (fixed) 0.99 3

Fit 2 3.1 ± 0.1 7.1 ± 3.6 4.6 ± 2.4 0.99 4

Table 2. Numerical values of the parameters corresponding to the fits in figure 5. The last column

indicates the number of lower µ5 points considered.

in view of our previous discussion, it makes sense to consider only the chiral limit of our

previous expressions for ρ5, since we do not expect to extract any useful information about

the constants multiplying the mass terms, to which ρ5 is much less sensitive. We get

ρ5(T, µ5)|M=0 = 4F 2µ5

(
1− Z + κ0 + κ2

π2T 4

10F 4

)
+ 4κ4µ

3
5 − 6

γ0
F 2

µ55 +O(1/F 4). (5.49)

With the previous expression, we have performed the fits showed in figure 5 and table 2,

for which the uncertainty bands and parameter errors correspond to the 95% confidence

level and we have used the estimate Z ∼ 0.8 in [31]. Lattice errors are not provided in [23]

for ρ5. In both fits, we have not included the temperature dependent term proportional to

κ2 in (5.49). Actually, we get κ2
π2T 4

10F 4 ∼ 6 × 10−3(1 − Z + κ0) with the κ0 values quoted

in table 2 and setting the natural value κ2 = 1/(16π2) and T = 116 MeV (as corresponds

to [23]). Thus, for these fits it is completely justified to ignore the volume or temperature

dependence, as expected. That contribution is relatively much smaller than the typical

error quoted in table 2 and therefore no useful conclusion about that value of κ2 can be

inferred from this analysis.

The results show that the simple linear dependence setting κ4 = γ0 = 0 (fit 1) already

fits very well the lowest µ5 lattice points. The prediction for κ0 is consistent with the

fit allowing the three parameters κ0, κ4, γ0 to be free (fit 2) which allow to include an

additional point, expected to be more sensitive to the nonlinear dependence. Recall that

the numerical value for κ0 is not expected to lie within natural values 1/(16π2) since it

is a low-energy constant of the L2 lagrangian. As a consequence of the dominance of the

linear term, for the numerical values of κ2 and γ0 in fit 2 are affected by larger errors. Our

ChPT-based approach essentially captures then the main features of the lattice results.
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A relevant issue related to the previous ρ5 analysis has to do with the stability of the

µ5 = 0 solution. One may wonder whether the free energy admits minima with µ5 6= 0,

which would define a characteristic “expected” value for the axial chemical potential, at

least within the present low-energy approach. The temperature and volume dependence

of such solution is relevant since it could be achieved within a heavy-ion collision and/or

lattice environment.

Thus, writing the free energy as ε(µ5) = ε(0) − 1
2ρ

(1)
5 µ25 − 1

4ρ
(3)
5 µ45 + · · · with the ρ

(i)
5

coefficients defined in our previous analysis of the chiral charge density, the behaviour of

ε(µ5) around µ5 = 0 is controlled by the coefficient of the µ25 term, which according to our

previous discussion satisfies ρ
(1)
5 > 0 to ensure the growing behaviour of ρ5(µ5) observed in

the lattice, which appears to be pretty independent of the temperature and volume.

Therefore, ε(µ5) would have a maximum at µ5 = 0, which opens up the interesting

possibility that the energy density develops a minimum at a nonzero (and not very large)

value of µ5, which would require ρ
(3)
5 < 0 and would be given by

[
µ25
]
min

= −ρ(1)5 /ρ
(3)
5 . At

the order we are calculating here, ρ
(3)
5 is dominated by κ4 in (5.47) since the γ1 contribution

is expected to be suppressed, as well as the γ0 O(µ65) term in the free energy given by (5.48).

On the other hand, our previous fits to lattice data suggest κ4 > 0. In any case, even setting

a negative value for κ4 of the expected size 10−3, would give [µ5]min ' 30F ' 2600 MeV,

much higher than the typical applicability range of our present approach. Therefore, our

present analysis does not favor a µ5 6= 0 minimum for the free energy for low and moderate

values of µ5. This conclusion is independent of temperature and volume, at least at the

order considered here.

5.5 The topological susceptibility

The topological susceptibility for µ5 6= 0 has also been recently analyzed in the lattice [23]

and it might provide additional information about the κi LEC. it is defined as

χtop =
∂2ε(θ)

∂2θ

∣∣∣∣
θ=0

(5.50)

where ε(θ) is the vacuum energy defined through (5.13) when the θ-term is included in

the QCD lagrangian. From our µ5-dependent effective lagrangian, we can calculate the

topological susceptibility by noting that a constant θ term amounts to a complex quark

mass matrix according to (1.4). This is actually the way that χtop has been calculated

within the effective theory ChPT framework for SU(2) and SU(3) [55, 56] . A systematic

study within U(3) ChPT including the η′ has been recently carried out in [57]. It is

important to remark that the quark mass dependence of χtop favors the dominance of light

quarks, being proportional to M2
π in the SU(2) limit mu,d � ms. Actually, this would

explain why the ChPT predictions remain close to the lattice analysis.

Following then the procedure in [55, 56], one considers a nontrivial unitary vacuum

configuration different from U = 1 where U is the Goldstone boson matrix field, namely

U0 = diag
(
eiϕ, e−iϕ

)
where ϕ minimizes ε(θ) with mu 6= md. Now, the only µ5-dependent

term up to L4 proportional to the quark mass is the κ3 contribution in (4.4), which has

precisely the same form as the mass term in L2 in (3.2). Therefore, at this order this
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Figure 6. µ5 dependence of the topological susceptibility chiral transition temperature extracted

from the vanishing of the quark condensate. We show the uncertainty bands corresponding to

|κ3| ≤ 1
16π2 . We include the lattice points from [23] for a = 0.0856.

amounts to a redefinition F 2 → F 2 + 4µ25κ3 in ε2(θ) = −F 2M2
[
1 + 1

8(ε̂2 − 1)θ2 +O(θ4)
]

with ε̂ = (mu −md)/(mu +md) [56] so that we get

χtop(µ5) = χtop(0) + κ3µ
2
5M

2(1− ε̂2) +O(p6/F 2) (5.51)

with χtop(0) given in [55, 56].

Note that the above results imply in particular that for θ = 0 the solution ϕ = 0 is

still the vacuum energy minimum at µ5 6= 0, which is compatible with the absence of a

pion condensate at the order we are calculating here.

Therefore, the dependence of χtop with low and moderate µ5 is controlled by the κ3
constant. We could try to fix it with lattice data as in previous sections. However, the only

available results in [23] lack of a solid continuum limit and are therefore quite noisy. The

effect of heavy pion masses in the lattice is also expected to be more distorting for χtop

than for other observables, due to its mass dependence commented above, and actually

there is a high sensitivity to mπ in the results in [23]. At most, one can infer from those

results a growing tendency χtop(µ5) for large µ5, which is not so clear for lower values.

Nevertheless, the previous uncertainties reduce considerably by considering the ratio

χtop(µ5)/χtop(0) for which the M2 dependence is expected to cancel out, as can be seen

in figure 6, where the lattice data for different masses are compatible within errors. Also,

the band of natural values for κ3 covers widely the lattice points, so it is meaningful to fit

the lowest data points with the ChPT curve, which at this order is given by

χtop(µ5)

χtop(0)
= 1 + 4

κ3µ
2
5

F 2
+O(1/F 4) (5.52)

for mu = md, where we have used that χtop(0) = M2F 2/4 +O(F 0) in SU(2) [55–57].

The results of the best fits are showed in figure 7 and table 3, where we have selected

two sets for the lowest masses in [23]. The results for κ3 are compatible with zero but the
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Figure 7. Fits of χtop(µ5)/χtop(0) using the ChPT expression (5.52). The lattice points used for

the fit are those in [23].

FIT κ3 × 103 R2 χ2/dof # points µ5 6= 0

Fit 1 0.1 ± 1.4 0.99 1.20 2 (mπ = 410 MeV)+2 (mπ = 580 MeV)

Fit 2 0.5 ± 0.9 0.99 1.13 3 (mπ = 410 MeV)+3 (mπ = 580 MeV)

Table 3. Numerical values of the parameters corresponding to the fits in figure 7. The last column

indicates the number of lower µ5 points considered.

error bands corresponding to the 95% confidence level of the fits are much narrower than

the natural values showed in figure 6.

5.6 Pressure and speed of sound

It is interesting to explore the consequences of the µ5 corrections and the new LEC involved,

as far as other thermodynamical quantities are concerned. The thermodynamic pressure

P , the entropy density s, the specific heat cv, and the speed of sound squared c2s can be

obtained from the energy density (5.13) as customary. In the infinite volume limit,

P (T, µ5) = lim
V→∞

[ε(0, µ5)− ε(T, µ5)] ,

s(T, µ5) =
∂P (T, µ5)

∂T
, cv(T, µ5) = T

∂s

∂T
, c2s(T, µ5) =

∂P

∂ε
=

s

cv
(5.53)

From our expressions from the energy density in section (5.2), we obtain for the pressure

P (T, µ5) =
3

2
g0(M,T )

(
1 + 6κ2

µ25
F 2

)
− 3M2

8F 2

{
[g1(M,T )]2

+8g1(M,T )

[
M2

(
lr3(µ) +

1

64π2
log

M2

µ2

)
− 2µ25κb

]}
+O

(
1

F 4

)
(5.54)

which in the chiral limit reduces to

P (T, µ5)|M=0 =
π2T 4

15

(
1 + 6κ2

µ25
F 2

)
(5.55)

Thus, the µ5 corrections to the pressure are parametrized by κ2 and the combination

κb in (5.38), only the first one surviving in the chiral limit, which corresponds to the
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Figure 8. Pressure for µ5 = 150 MeV and µ5 = 300 MeV compared to the µ5 = 0 case. The

uncertainty bands correspond to 0 ≤ κ2 ≤ 1
16π2 , |κb| ≤ 1

16π2 .

ultrarelativistic free pion gas corrected by the κ2 term. In figure 8 we represent the pressure

for two reference values of µ5 = 150 MeV and µ5 = 300 MeV for which our approach can

be considered valid, with the bands corresponding to natural values for κ2, κb, keeping

κ2 > 0 as explained in section 5.1. The main source of uncertainty in the pressure comes

actually from the κ2 term, the result remaining almost unchanged if using for instance the

uncertainty for κb given in table 1.

It is particularly interesting to study the speed of sound and whether the µ5 corrections

may affect the physical limitations for this quantity. The analytic result for M 6= 0 is given

by

c2s(T, µ5) =
1

Tg′′0(M,T )

{
g′0(M,T ) +

M2

2F 2g′′0(M,T )

[ (
g′1(M,T )

)2
g′0(M,T )

+

(
g1(M,T ) + 4M2

(
lr3(µ) +

1

64π2
log

M2

µ2

)
− 8κbµ

2
5

)
×
(
g′0(M,T )g′′1(M,T )− g′1(M,T )g′′0(M,T )

) ]}
+O

(
1

F 4

)
(5.56)

where g′i(M,T ) and g′′i (M,T ) denote derivatives with respect to T . Note that the κ2 contri-

bution cancels in c2s which then depends only on µ5 upon the κb combination. In addition,

at this order in the chiral limit one just gets c2s → 1/3, i.e, the ultrarelativistic limit of a

free boson gas, which is meant to be reached asymptotically as the temperature increases,

i.e., for T � M . This is clearly seen in figure 9 where c2s remains below 1/3 with the µ5
corrections included. The uncertainty band for κb actually narrows as T increases, consis-

tent with the chiral limit being µ5-independent for this quantity at this order. Therefore,

having no lattice results available to compare with, the analysis of pressure and the speed

of sound poses no extra requirements on the κi LEC.
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Figure 9. Speed of sound squared for µ5 = 150 MeV and µ5 = 300 MeV compared to the µ5 = 0

case. The uncertainty bands correspond to |κb| ≤ 1
16π2 .

6 Conclusions

In this work we have analyzed the effective chiral lagrangian for nonzero chiral imbalance

for two light flavours, through its dependence with the axial chemical potential µ5. Our

analysis provides a consistent framework for the behaviour at low and moderate values of

µ5, which would be useful for physical systems where local parity breaking is at work, as in

relativistic heavy ion collisions. Thus, we have constructed the most general lagrangian up

to fourth order, following the technique of external sources extended to include their singlet

components. We have also explored the main phenomenological consequences, paying

special attention to the comparison with existing lattice results.

In the lagrangian construction, two different types of operators arise: those coming

from the covariant derivative with a singlet axial field a0µ incorporated, which are propor-

tional to standard low-energy constants, and new terms allowed by the symmetry in the

presence of a0µ, carrying new LEC. The second-order lagrangian L2 only receives a constant

(field independent) µ5-dependent contribution, which affects the free energy. It contains

a new low-energy constant κ0. At fourth order, there are two derivative-like terms in L4,
one of them breaking Lorentz covariance (broken by the choice of a0µ), a mass term and

a constant term. All of them are multiplied by combinations of standard and new LEC,

giving rise to four undetermined constants κ1,...,4, whose renormalization ensures that the

µ5-dependent corrections to observables are finite.

Regarding the phenomenological consequences, we have analyzed several observables

and the dependence of their µ5 corrections with the κi constants. The main results are the

following:

• The pion dispersion relation is modified through a reduction in the pion velocity due

to the Lorentz breaking effect. The same effect implies that the screening and pole

pion masses become different, both receiving µ5 corrections. The LEC involved are

κ2 for the pion velocity, which should be negative to ensure that pions do not become

tachyonic, and both κ2 and κ1−κ3 for the masses. At present, there are no available

lattice data to confront here, the screening mass being the most feasible one, which

we leave here as a suggestion for future lattice analysis.

– 29 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
2

• We have calculated the µ5 corrections to the vacuum energy density up to sixth or-

der, which includes three new LEC coming from the sixth-order lagrangian. We have

shown that the energy density is finite and scale independent once the LEC renormal-

ization is properly accounted for. From the energy density, several observables can

be extracted, such as the quark condensate, the scalar susceptibility and the chiral

charge density.

• Chiral restoration properties at finite temperature have been explored through the

light quark condensate and the scalar susceptibility. The transition temperature

approximated from the vanishing of the quark condensate turns out to behave quite

according to lattice analysis when the ratio Tc(µ5)/Tc(0) is considered in the chiral

limit. Actually, this allows to provide a rather trustable numerical value for the

combination κa = 2κ1 − κ2 by fitting lattice data. That ratio is pretty insensitive

to mass corrections. Actually, including those corrections in the fit gives a worse

determined numerical value for the combination κb = κ1 + κ2 − κ3, appearing for

M 6= 0. The analysis of the scalar susceptibilty χS shows that for low µ5 it is

controlled by the same combination κ1 − κ3 appearing in the screening mass. A

positive sign for that combination would be consistent with the lattice observation of

χS decreasing with µ5 below the transition.

• The chiral charge density ρ5 follows essentially a linear behaviour with µ5, consistently

with lattice data. The constant κ0 appearing in the linear term can actually be well

fixed by fitting the lattice points with the chiral limit ChPT expression, since lattice

data for Nf = 2 are almost insensitive to the pion mass. Thermal corrections are

small here and reduce the size of the linear term in the chiral limit. The fourth-

order constant κ4 and the sixth-order one γ0 enter in the cubic and fifth-order terms

respectively, and can also be reasonably determined. This observed behaviour of ρ5
in the lattice is at odds with the possibility of a µ5 6= 0 minimum for the free energy

for low and moderate values of µ5.

• The topological susceptibility χtop dependence with µ5 has also been determined

recently in the lattice, although it is subject to more uncertainties than the previously

considered observables. Our ChPT analysis predicts that the lowest order corrections

to χtop are of order µ25 controlled by the κ3 constant. The pion mass dependence

uncertainty of lattice points is reduced by taking the ratio χtop(µ5)/χtop(0), which

allows to obtain a decent determination of κ3, albeit with larger errors than other

combinations.

• The pressure and the speed of sound are also affected by µ5 corrections, which at

the order considered depend on κ2 and κb for the pressure, while for the speed of

sound the κ2 dependence disapears. The ultrarelativistic limit T �M is reached for

both quantities as temperature increases and corresponds to the chiral limit. In the

case of the speed of sound, that limit is the 1/3 value independent of µ5 which is not

violated by the µ5 corrections at nonzero M .
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From the previous analysis, a consistent picture with lattice data emerges, allowing to

determine some LEC combinations with acceptable precision. Taking the average values

of the κa and κ3 fits performed here in sections 5.3 and 5.5, one gets κ1 ' 0.8 × 10−3,

κ2 ' −0.5×10−3, κ3 ' 0.3×10−3 although with uncertainties of order 10−3, i.e., larger than

for particular combinations such as κa, inherited from the uncertainty in κb. Nevertheless,

it is remarkable to observe that those mean values obey the expected sign conditions

discussed above, namely κ2 < 0 and κ1 − κ3 > 0. Apart from describing the observed

lattice trends for the observables mentioned above, our analysis points to decreasing pion

mass and increasing pion decay constant consistently with recent model analyses. Further

lattice observables, such as the screening masses, or improving the precision over existing

determinations, would certainly help to narrow this picture.

Summarizing, our present study provides a solid setup for the analysis of chirally

imbalanced matter for two light flavours, at low and moderate values of µ5, typically

µ5 . 500 MeV. A rigorous construction of the efective lagrangian has been developed and

the main physical effects have been analyzed and compared to existing lattice data, which

allows for a first determination of the new low-energy constants involved. Thus, within its

applicability range, the present analysis is meant to provide a useful benchmark for model

and lattice analysis.
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A O(p3) operators

Here, we list all the possible O(p3) terms for arbitrary QL and QR, compatible with the

symmetries. Those terms can be of the following types:

• χQ-like terms:

tr
[
QL(U †χ+ χ†U) +QR(Uχ† + χU †)

]
tr
[
χ†U + χU †

]
tr[QL +QR] (A.1)

• QQQ terms:

tr[Q2
RUQLU

† +Q2
LU
†QRU ]

tr[Q3
R +Q3

L]
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tr[QL +QR]tr
[
QRUQLU

†
]

tr[QL +QR]tr[Q2
R +Q2

L]

tr(QL −QR)tr(Q2
L −Q3

R)

tr2[QL]tr(QR) + tr2[QR]tr(QL)

tr3[QL] + tr3[QR] (A.2)

• Qdd terms

tr[QL +QR]tr[dµU
†dµU ]

tr[QLdµU
†dµU +QRdµUd

µU †]

tr[QL +QR]tr(U †dµU)tr(U †dµU) (A.3)

• cQd terms: terms of the form tr[(cµLQL)U †dµU ], tr[(cµR)QRUd
µU †] are not possible

since there is no combination of them which can be made P and C invariant (using

UdµU
† = −dµUU † ) and so on for terms tr[cµL,RQL,R]tr[U †dµU ].

B O(p4) operators

B.1 SU(2) operator identities

For arbitrary two-dimensional matrices A1, A2, A3, Cayley-Hamilton theorem implies [28]:

tr(A3{A1, A2}) = tr(A1)tr(A2A3) + tr(A2)tr(A1A3) + tr(A3)tr(A1A2)− tr(A1)tr(A2)tr(A3)

(B.1)

Using (B.1) we can eliminate single traces of operators in terms of double or triple

traces. In particular, the following identities hold:

tr(dµU
†dµUdνU

†dνU) = −tr(U †dµU)tr(U †dµUdνU †dνU)

+
1

2

[
tr(U †dµU)tr(U †dµU)tr(dνU †dνU)

+tr2(dµU
†dµU)

]
(B.2)

tr(dµU
†dνUd

µU †dνU) = −tr(U †dµU)tr(U †dµUdνU †dνU)

+tr(U †dµU)tr(U †dνU)tr(dµU †dνU)

−1

2

[
tr(U †dµU)tr(U †dµU)tr(dνU †dνU)

+tr2(dµU
†dµU)

]
+tr(dµU

†dνU)tr(dµU †dνU) (B.3)

2 tr(U †dµUdνU †dνU) = 2 tr(U †dνU)tr(dµU
†dνU)+tr(U †dµU)tr(dνU

†dνU)

+tr(U †dµU)tr(U †dνU)tr(U †dνU) (B.4)

tr
[
dµU

†dµU
(
χ†U+U †χ

)]
=

1

2
tr(dµU

†dµU)tr(χ†U+U †χ)

−tr(U †dµU)tr
[
U †dµU

(
χ†U+U †χ

)]

– 32 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
2

+
1

2
tr(U †dµU)tr(U †dµU)tr(χ†U+U †χ) (B.5)

tr
(
dµU †dµUQ

2
L+dµUdµU

†Q2
R

)
=

1

2
tr
(
dµU †dµU

)
tr
(
Q2
R+Q2

L

)
−tr

(
dµU †U

)
tr
(
UdµU

†Q2
R−U †dµUQ2

L

)
−1

2
tr
(
dµU †U

)
tr
(
U †dµU

)
tr
(
Q2
R+Q2

L

)
(B.6)

tr
(
dµU †dµUQL+dµUdµU

†QR

)
=

1

2
tr
(
dµU †dµU

)
tr(QR+QL)

−tr
(
dµU †U

)
tr
(
UdµU

†QR−U †dµUQL
)

−1

2
tr
(
dµU †U

)
tr
(
U †dµU

)
tr(QR+QL) (B.7)

tr
(
dµU †dµUQLU

†QRU

+dµUd
µU †QRUQLU

†
)

= tr
(
dµU †dµU

)
tr
(
QLU

†QRU
)

+tr
(
dµU †U

)
tr
(
dµUQLU

†QR−dµU †QRUQL
)

−tr
(
dµU †U

)
tr
(
U †dµU

)
tr
(
QRUQLU

†
)

(B.8)

2 tr(dµUQLU
†QR−dµU †QRUQL) = tr(U †dµU)tr(QLU

†QRU)+tr(dµUU
†QR)tr(QL)

+tr(U †dµUQL)tr(QR)

−tr(U †dµU)tr(QL)tr(QR) (B.9)

tr
[(
χU †+Uχ†

)
Q2
R

+
(
χ†U+U †χ

)
Q2
L

]
=

1

2
tr
(
χ†U+U †χ

)
tr
[(
Q2
R

)
+
(
Q2
L

)]
+tr

[(
χU †+Uχ†

)
QR

]
tr(QR)

+tr
[(
χ†U+U †χ

)
QL

]
tr(QL)

−1

2

[
tr2 (QL)+tr2 (QR)

]
tr
(
χ†U+U †χ

)
(B.10)

tr
[(
χ†U+U †χ

)
QLU

†QRU

+
(
χU †+Uχ†

)
QRUQLU

†
]

= tr
(
χU †+Uχ†

)
tr
(
QRUQLU

†
)

+tr
[(
χU †+Uχ†

)
QR

]
tr(QL)

+tr
[(
χ†U+U †χ

)
QL

]
tr(QR)

−tr(QR)tr(QL)tr
(
χU †+Uχ†

)
(B.11)

tr

[(
QRUQLU

†
)2]

= tr2
(
QRUQLU

†
)

+
1

2

[
tr(QR)tr

(
QRUQ

2
LU
†
)

+tr(QL)tr
(
Q2
RUQLU

†
)]

−tr(QR)tr(QL)tr
(
QRUQLU

†
)
− 1

2
tr
(
Q2
R

)
tr
(
Q2
L

)
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+
1

4
tr
(
Q2
R

)
tr2 (QL)+

1

4
tr
(
Q2
L

)
tr2 (QR) (B.12)

tr
(
Q2
RUQ

2
LU
†
)

=
1

2
tr
(
Q2
R

)
tr
(
Q2
L

)
+

1

2

[
tr(QR)tr

(
QRUQ

2
LU
†
)

+tr(QL)tr
(
Q2
RUQLU

†
)]

−1

4
tr
(
Q2
R

)
tr2 (QL)− 1

4
tr
(
Q2
L

)
tr2 (QR) (B.13)

tr(QR)tr
(
QRUQ

2
LU
†
)

+tr(QL)tr
(
Q2
RUQLU

†
)

= 2 tr(QR)tr(QL)tr
(
QRUQLU

†
)

−tr2 (QL)tr2 (QR)+
1

2
tr
(
Q2
R

)
tr2 (QL)

+
1

2
tr
(
Q2
L

)
tr2 (QR) (B.14)

tr(Q3
R) =

3

2
tr(QR)tr(Q2

R)− 1

2
tr3(QR) (B.15)

tr(Q3
L) =

3

2
tr(QL)tr(Q2

L)− 1

2
tr3(QL) (B.16)

tr(Q4
R) =

3

2
tr2(QR)tr(Q2

R)−tr4(QR)+
1

2
tr2(Q2

R) (B.17)

tr(Q4
L) =

3

2
tr2(QL)tr(Q2

L)−tr4(QL)+
1

2
tr2(Q2

L) (B.18)

Two useful additional relations are

tr
[
dµ

(
dµU †UQLU

†QRU
)]

= tr
(
dµd

µU †UQLU
†QRU

)
+ 2 tr

(
dµU †dµUQLU

†QRU
)

−tr
(
dµUQLdµU

†QR

)
− tr

(
dµU∂µQLU

†QR

)
−tr

(
dµUQLU

†∂µQR

)
(B.19)

tr
[
dµ

(
U †dµUQLU

†QRU
)]

= tr
(
U †dµdµUQLU

†QRU
)

+ tr
(
dµUQLdµU

†QR

)
+tr

(
dµU∂µQLU

†QR

)
+ tr

(
dµUQLU

†∂µQR

)
(B.20)

Using that and the equation of motion we obtain

tr
(
dµU

†QRd
µUQL

)
=

1

2
tr
(
dµU

†dµUQLU
†QRU + dµUd

µU †QRUQLU
†
)

+
1

4
tr
[(
χ†U − U †χ

)
QLU

†QRU +
(
χU † − Uχ†

)
QRUQLU

†
]

− 2Ztr
(
Q2
RUQ

2
LU
†
)

+ 2Ztr

[(
QRUQLU

†
)2]

− 1

2
tr
[
dµU∂

µQLU
†QR + dµUQLU

†∂µQR

+dµU
†∂µQRUQL + dµU

†QRU∂
µQL

]
+

1

2
dµtr

[
dµUQLU

†QR + dµU †QRUQL

]
(B.21)
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B.2 Terms with no Q fields

We begin by considering four-derivative operators. The possible terms are:[
tr
(
dµU

†dµU
)]2

tr
(
dµU

†dνU
)

tr
(
dµU †dνU

)
tr
(
dµU

†dµUdνU
†dνU

)
tr
(
dµU

†dνUd
µU †dνU

)
tr(U †dµU)tr(U †dµUdνU †dνU)

tr(U †dµU)tr(U †dµU)tr(dνU †dνU)

tr(U †dµU)tr(U †dνU)tr(dµU †dνU)

tr(U †dµU)tr(U †dµU)tr(U †dνU)tr(U †dνU) (B.22)

As customary, one can use SU(2) identities to eliminate some of these operators in favor

of the rest. In particular, using the identities (B.2), (B.3) and (B.4) one can eliminate the

third, four and fifth terms in (B.22).

As for operators including the χ field, the following terms are allowed for constant χ:

tr
[
dµU

†dµU
(
χU † + Uχ†

)]
tr
(
dµU

†dµU
)

tr
(
χU † + Uχ†

)
tr
(
U †dµU

)
tr
[
U †dµU

(
χU † + Uχ†

)]
tr
(
U †dµU

)
tr
(
U †dµU

)
tr
(
χU † + Uχ†

)
tr
[
χ†Uχ†U + U †χU †χ

]
tr2
(
χU † + Uχ†

)
tr2
(
χU † − Uχ†

)
tr
(
χ†χ

)
Re (detχ) (B.23)

Using (B.5), the first operator on (B.23) can be eliminated.

B.3 (cQ) Qd terms

tr
(
dµU

† [(cµRQR) ,QR]U+dµU
[(
cµLQL

)
,QL

]
U †
)

tr
[
dµU

†QRU
(
cµLQL

)
+dµUQLU

† (cµRQR)]+tr
[
U †QRdµU

(
cµLQL

)
+UQLdµU

† (cµRQR)]
tr(U †dµU)(tr

[
QL
(
cµLQL

)]
−tr

[
QR
(
cµRQR

)]
)

tr(U †dµU)(tr
[(
cµLQL

)
U †QRU

]
−tr

[(
cµRQR

)
UQLU

†
]
)
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tr(U †dµU)(tr(QL)tr
(
cµLQL

)
−tr(QR)tr

(
cµRQR

)
)

tr(U †dµU)(tr(QL)tr
(
cµRQR

)
−tr(QR)tr

(
cµLQL

)
) (B.24)

B.4 (cQ) (cQ) terms

tr
[(
cµRQR

)
U (cµLQL)U †

]
tr
[(
cµRQR

)
(cµRQR) +

(
cµLQL

)
(cµLQL)

]
tr
(
cµRQR

)
tr (cµRQR) + tr

(
cµLQL

)
tr (cµLQL) (B.25)

C Useful integrals in dimensional regularization

We quote here the integrals needed for the renormalization of the vacuum energy density:∫
dD−1k

(2π)D−1
(k2 +M2)−1 = G(x = 0, T = 0) = 2M2

[
λ+

1

32π2
log

M2

µ2

]
(C.1)∫

dD−1k

(2π)D−1
(k2 +M2)1/2 = M4

[
λ+

1

32π2
log

M2

µ2
− 1

64π2

]
(C.2)∫

dD−1k

(2π)D−1
(k2 +M2)−1/2

×
(
Ak2 +BM2

)
= −M4

[
(3A− 4B)

(
λ+

1

32π2
log

M2

µ2

)
+

A

64π2

]
(C.3)

with λ defined in (4.10).
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[57] A. Gómez Nicola, J. Ruiz De Elvira and A. Vioque-Rodŕıguez, The QCD topological charge
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