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The Fortran program eccpa calculates differential and integrated cross sections for elastic collisions of 
charged particles with atoms by using the classical-trajectory method and several quantum methods 
and approximations. The collisions are described within the framework of the static-field approximation, 
with the interaction between the projectile and the target atom represented by the Coulomb potential 
of the atomic nucleus screened by the atomic electrons. To allow the use of fast and robust calculation 
methods, the interaction is assumed to be the same in the center-of-mass frame and in the laboratory 
frame. Although this assumption neglects the effect of relativity on the interaction, it allows using strict 
relativistic kinematics. The equation of the relative motion in the center-of-mass frame is shown to 
have the same form as in the non-relativistic theory, with a relativistic reduced mass and an effective 
potential. The wave equation for the relative motion, as obtained from the correspondence principle, is 
formally identical to the non-relativistic Schrödinger equation with the reduced mass and the effective 
potential, and it reduces to the familiar Klein-Gordon equation when the mass of the target atom is 
much larger than that of the projectile. Collisions of spin 1/2 projectiles are also described by solving 
the Dirac wave equation. Various approximate solution methods are described and applied to a generic 
potential represented as a sum of Yukawa terms, which allows a good part of the calculations to be 
performed analytically. The program eccpa is useful for assessing the validity and the relative accuracy of 
the various approximations, and as a pedagogical tool.

Program summary
Program Title: eccpa

CPC Library link to program files: https://doi .org /10 .17632 /c3tn9hyfvb .1
Licensing provisions: CC by NC 3.0
Programming language: Fortran 90/95
Nature of problem: The program computes differential cross sections (DCSs) for elastic collisions 
of charged particles (electrons, positrons, muons, antimuons, protons, antiprotons, and alphas) with 
neutral atoms. Calculations are performed within the static-field approximation with screened Coulomb 
potentials expressed as a sum of Yukawa terms with their parameters fitted to approximate the 
atomic electrostatic potentials resulting from the Thomas–Fermi model and from self-consistent Dirac–
Hartree–Fock–Slater calculations. The program eccpa provides DCSs computed with four different 
approaches: the classical trajectory method, the Born approximation, the partial-wave expansion method 
with approximate phase shifts, and the eikonal approximation. The user is allowed to select the 
atomic number of the target atom, the potential model, the kind of projectile and its kinetic energy. 
Calculation results are written in a number of output files with formats suited for visualization with a 
plotting program. A Java graphical user interface allows running the program and visualizing the results 
interactively.
Solution method: A relativistic extension of the classical trajectory method is formulated on the 
assumption that the interaction in the center-of-mass frame is central, which is a fundamental 
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requirement of the adopted calculation schemes; the DCS in the laboratory frame is then obtained 
from the relativistic (Lorentz) transform of the DCS calculated in the center-of-mass frame. This scheme 
qualifies as semi-relativistic, because it accounts for relativistic kinematics in a rigorous way, but 
disregards the differences between the interactions observed from the laboratory and the center-of-
mass frames. We consider the elementary quantum formulation based on the relativistic Schrödinger (or 
Klein–Gordon) wave equation obtained from the correspondence principle. Accurate DCSs for potential 
scattering can be computed by using the partial-wave expansion method, at the expense of considerable 
numerical work. To avoid the difficult calculation of phase shifts from the numerical solution of the radial 
wave equation, we adopt a simplified strategy that combines the (first) Born approximation, for both the 
scattering amplitude and the phase shifts, and the Wentzel–Kramers–Brillouin (WKB) approximation for 
the phase shifts. We also describe the semi-classical eikonal approximation, which is known to yield 
reliable DCSs for collisions with small scattering angles. The case of collisions of electrons and positrons 
is considered on similar grounds, with the scattering amplitudes obtained from the Dirac equation.
The numerical work is simplified by approximating the interaction potential as a sum of Yukawa terms, 
which allows performing a good part of the calculations analytically. Integrals of functions given by 
analytical formulas are calculated by means of an adaptive algorithm that combines the 20-point Gauss-
Legendre quadrature formula with a bisection scheme; this algorithm allows strict control of numerical 
errors and gives results with a relative accuracy better than about 10−10 for well-behaved integrands. The 
whole calculation for a given energy of the projectile takes no longer than a few seconds on a modern 
personal computer, quite irrespectively of the energy and of the atomic number of the target atom.
Additional comments including restrictions and unusual features: The adopted interaction potentials 
correspond to atoms with point nuclei. The use of a parameterization instead of numerical tables of 
the potential (obtained, e.g., from atomic structure calculations) has a minor effect on the calculated 
DCSs. This effect is limited to large scattering angles, where the actual DCS does differ from calculations 
with screened Coulomb potentials due to the effect of the finite size and structure of the atomic nucleus, 
which is disregarded here.
DCSs obtained from the partial-wave expansion method and with the eikonal approximation provide a 
fairly accurate description of collisions with small and moderate deflection angles. They can be used, e.g., 
in Monte Carlo simulations of the transport of fast charged particles in matter. The information generated 
by the program allows assessing the accuracy of calculations with the various approaches, and permits 
identifying the ranges of validity of the classical trajectory method and the Born approximation.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Elastic collisions of charged particles with atoms play a central role in theoretical radiation physics. By definition, elastic collisions 
are interactions that do not cause excitation of the target atom, which usually is in its ground state. These collisions may produce large 
deflections of the projectile and, consequently, have a direct effect on the structure of trajectories of fast charged particles moving in 
material media. In addition, each collision involves an energy transfer from the projectile to the target atom which manifests as the recoil 
of the latter after the interaction and gives rise to the so-called nuclear contribution to the stopping power.

Elastic collisions are usually described by means of the theory of scattering by central potentials. The non-relativistic theory is studied 
in most textbooks of both classical [1,2] and quantum mechanics [3–5]. Calculations normally assume that the potential is central because 
this is the only case that admits practicable formal or numerical solutions. In the case of collisions with a bare point nucleus, the 
interaction reduces to the Coulomb potential and the problem can be solved analytically; the corresponding differential cross section 
(DCS) is given by the famous analytical formula derived by Rutherford [6], which was instrumental in the discovery of the atomic nucleus. 
The calculation of elastic collisions with neutral atoms (i.e., of the scattering by screened Coulomb potentials) is more difficult, because 
it has to be performed numerically. The non-relativistic classical trajectory method [2] allows the calculation of the DCS through a set of 
quadratures [7].

In a quantum formulation, the scattering amplitude is expressed as a partial-wave series, i.e., as a Legendre series with coefficients 
determined by the scattering phase shifts, which represent the effect of the potential on the asymptotic behavior of spherical waves with 
well-defined angular momentum. Numerical calculations with this scheme are feasible for electrons and positrons; the Fortran program
elsepa [8] calculates very accurate DCSs for these particles by using the relativistic (Dirac) partial-wave method with arbitrary screened 
atomic potentials. Unfortunately, similar calculations for heavier projectiles are not doable because the short de Broglie wave lengths of 
these projectiles make the numerical solution of the radial wave equation extremely difficult; in addition, the corresponding partial-wave 
series converge very slowly. Consequently, one must have recourse to approximation methods.

Although the essentials of the theory of scattering by central potentials and of elastic collisions of charged particles are covered in 
graduate courses and textbooks, comparisons of results from different approximations are hard to find in the literature. These compar-
isons are important to illustrate the capabilities and limitations of the theoretical approaches. In the present article we describe several 
approximate methods that allow the fast calculation of DCSs for elastic collisions of charged particles with neutral atoms.

We have written a Fortran program named eccpa that computes elastic collisions of electrons, muons, protons (and the antiparticles of 
the three) and alphas with atoms. This program provides the DCS (in the center-of-mass and the laboratory frames) calculated by using 
the following theoretical approaches:

◦ the method of classical trajectories,
◦ the first Born approximation,
◦ the partial-wave expansion method with phase shifts obtained from the Born and WKB approximations, and
2
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◦ the eikonal approximation.

Both the partial-wave expansion method and the eikonal approximation involve a great deal of numerical work for potentials given 
in numerical form. To alleviate the work without sacrificing the reliability of the calculated DCSs, we consider interaction potentials 
expressed as a sum of Yukawa-like terms, with parameters determined by fitting realistic atomic potentials. Potentials with this analytical 
form allow performing a good part of the calculations analytically, and reduce the evaluation of the DCS to a set of integrals of functions 
of a single variable.

Although eccpa works for projectiles with arbitrary kinetic energies, provided it does not encounter numerical conflicts, the calculated 
DCSs are reliable (i.e., consistent with measurements) only for a limited range of kinetic energies of the projectile, which is determined by 
the simplifications of the underlying model. On one hand, the target atom is considered as a rigid distribution of charge, and the projectile 
is assumed to travel “naked” (i.e., the possible capture of electrons by positively-charged projectiles is disregarded). These simplifications 
are valid only for projectiles with kinetic energies larger than about 2 MeV per unified mass unit. On the other hand, our approximate 
treatment of relativistic effects is expected to be valid only for projectiles with kinetic energy less than about their rest energy.

Combined with a plotting program to visualize the results, eccpa becomes a useful tool for assessing the validity of the classical 
trajectory method and the quantum approximations, and also for illustrating fundamental aspects of the theory. As a matter of fact, eccpa

provides all the information on elastic collisions that is needed for Monte Carlo simulation of the transport of charged particles in matter 
[9,10], where the evolution of individual particles is described as a sequence of random interaction events sampled from the adopted 
DCSs.

The present article is organized as follows. The adopted analytical forms of the atomic potentials are described in Section 2. In Section 3
we derive the relativistic equation of motion in the center-of-mass (CM) frame and we describe the calculation of the DCS by the method 
of classical trajectories. Section 4 deals with the relativistic wave equation for the relative motion of the colliding particles and with 
several methods and approximations for computing the DCS in the CM frame. The transformation of the DCS from the CM frame to the 
laboratory frame, where the target atom is initially at rest, is considered in Section 5. Section 6 deals with collisions of electrons and 
positrons, which are described on the basis of the Dirac wave equation with the aid of the Born and WKB approximations. The Fortran 
program eccpa and its Java graphical interface are described in Section 7. Finally, Section 8 presents example results.

2. Interaction potential

We consider the collisions of charged particles with atoms from the standpoint of the static-field approximation, i.e., as scattering 
of the projectile by the electrostatic field of the target atom, suitably averaged over directions [11,12]. It should be mentioned that 
this approximation gives results in good agreement with measurements only for particles with sufficiently high energies, higher than 
about 1 keV in the case of electrons and positrons, � 2 MeV for protons. The static-field approximation disregards the effect of the 
dipole polarizability of the target atom, that is, the fact that the electric field of the projectile shifts the atomic charges and the induced 
dipole moment acts back on the projectile. This polarizability effect is appreciable only for slow projectiles and at small scattering angles 
(corresponding to large impact parameters), because atomic polarization is effective only under slowly-varying electric fields. In addition, 
results from measurements of elastic collisions are affected by inelastic interactions, which remove projectiles from the “elastic channel”. 
Finally, in the case of projectile electrons, elastic collisions are altered by exchange effects, which result from the indistinguishability of the 
projectile and the electrons in the target atom. In the so-called optical-potential models the effects of polarization and inelastic absorption, 
and exchange in the case of electrons, are described approximately by means of effective local potentials with an absorptive imaginary 
part (see, e.g., Ref. [13] and references therein).

We assume a neutral target atom of atomic number Z , with a point nucleus of charge Ze (e denotes the elementary charge) at the 
origin of coordinates, and a spherically symmetric cloud of Z electrons in its ground state. The interaction potential energy between the 
projectile (of charge Z1e) at r and the target atom is

V (r) = Z1e ϕes(r) , (1)

where ϕes(r) is the electrostatic potential of the atomic charge distribution,

ϕes(r) = Ze

r
− e

⎛
⎝1

r

r∫
0

ρ(r′)4πr′2 dr′ +
∞∫

r

ρ(r′)4πr′ dr′
⎞
⎠ , (2)

and ρ(r) is the atomic electron density. It is customary to write

ϕes(r) = Ze

r
�(r), (3)

where �(r), the screening function, describes the electrostatic shielding of the nuclear charge by the atomic electrons.
To facilitate calculations, we use approximate screening functions given by the following analytical expression

�(r) =
3∑

i=1

Ai exp(−air) (4)

with parameters determined by fitting the numerical screening functions obtained from different atomic structure calculations. The corre-
sponding interaction potential is

V (r) = Z1 Ze2

r

3∑
Ai exp(−air). (5)
i=1
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Analytical potentials of this type (a sum of Yukawa-like terms) have been used by many authors in studies of particle collisions [14,15]. 
In the calculations described below we consider the following screening function models and sets of parameters.

◦ Thomas–Fermi–Molière (TFM) screening function

The simplest theoretical framework to obtain approximate atomic electron densities is the Thomas–Fermi model in which the electron 
cloud is considered as a locally homogeneous electron gas bound by the screened Coulomb field of the nucleus. This model yields a 
“universal” screening function, applicable to all elements, that is determined by a differential equation. Because this equation needs to be 
solved numerically [16], Molière [17] used the form (4) as an approximation to the numerical Thomas–Fermi screening function with the 
set of parameters

A1 = 0.10, A2 = 0.55, A3 = 0.35,

a1 = 6.0/b, a2 = 1.2/b, a3 = 0.3/b, (6)

where

b ≡ (3π)2/3

27/3

h̄2

mee2
Z−1/3 = 0.88534Z−1/3a0 (7)

is a radial scale parameter known as the Thomas–Fermi radius, and a0 = h̄2/(mee2) is the Bohr radius, h̄ is the reduced Planck constant. 
The approximation (6) agrees closely with the Thomas–Fermi screening function in the region r � 6b where the latter takes appreciable 
values.

◦ Dirac–Hartree–Fock–Slater (DHFS) screening function

In general, screening functions obtained from self-consistent atomic electron densities are given numerically. In the present calculations 
we use the analytical approximation (4) with the set of parameters given by Salvat et al. [18], which were obtained by fitting the Dirac–
Hartree–Fock–Slater self-consistent electron densities of neutral atoms [19,20]. With these parameters, the analytical approximation and 
the numerical DHFS potential yield the same DCSs for scattering of charged particles at small angles when calculated within the Born 
approximation [18], which is expected to be accurate for projectiles with sufficiently high energies (see Section 4.2).

◦ The Wentzel potential

In an early calculation of elastic scattering with the Born approximation, Wentzel [21] used a potential of the generic form (5) with the 
one-term screening function �W(r) = exp(−ar),

V W(r) = Z1 Ze2

r
exp(−ar), a = 1/R, (8)

where R is the “atomic radius” or “screening length”, which is frequently approximated as

R = 0.88534Z−1/3a0, (9)

to comply with the Thomas–Fermi scaling.

3. Classical elastic collisions

Let us start with the classical calculation of collisions of a projectile particle (1) (of mass M1 and charge Z1e) and a target atom (2) of 
atomic number Z (and mass M2), which interact through the potential V (r). To cover the energy range of interest in radiation transport, 
we use relativistic kinematics. We recall that the linear momentum p, the kinetic energy E , and the total energy W of a particle of mass 
M are related by

(cp)2 + M2c4 = (E + Mc2)2 = W 2. (10)

These quantities are conveniently expressed as

p = β γ Mc p̂ , E = (γ − 1)Mc2 , and W = γ Mc2 , (11)

where

β = v

c
=

[
1 +

(
Mc

p

)2
]−1/2

=
√

E(E + 2Mc2)

E + Mc2
(12)

is the velocity of the particle in units of the speed of light c, and

γ =
√

1

1 − β2
=

√
1 +

( p

Mc

)2 = E + Mc2

Mc2
(13)
4
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is its total energy in units of the rest energy Mc2.
In practical transport studies, collisions are described in the laboratory (L) reference frame, where initially (i.e., before the collision) the 

target atom is at rest and the projectile moves in the direction of the z axis with linear momentum p1i. Because the interaction is central, 
trajectories of the colliding particles lie in a plane, the scattering plane. We set the direction of the x axis so that the z-y plane coincides 
with the scattering plane. Then, in the L frame, the energy-momentum four-vectors of the projectile and the target before the collision 
are, respectively,

P1i = (W1ic
−1,0,0, p1i) and P2i = (W2ic

−1,0,0,0), (14)

where W ji denotes the initial energy of particle j,

W1i = E1i + M1c2 and W2i = M2c2, (15)

where E1i is the kinetic energy of the incident projectile. The four-momenta of the two particles after the collision are

P1f = (W1fc
−1,0, p1f sin θ1, p1f cos θ1) (16a)

and

P2f = (W2fc
−1,0, p2f sin θ2,−p2f cos θ2). (16b)

The kinematics of elastic collisions is simpler in the center-of-mass (CM) frame, in which the total linear momentum of the colliding 
particles vanishes. In CM the two particles have opposite linear momenta of equal magnitude, and the collision causes only a rotation of 
their linear momentum vectors. In the non-relativistic formulation, the interaction in CM is the same as in the L frame, and the motion 
of the projectile relative to the target is that of a single particle having the reduced mass of the pair under the action of the interaction 
force [2].

We shall calculate the DCS in the CM frame by solving the relativistic equation for the relative motion, assuming a central potential in 
the CM frame, and we shall infer the DCS in the L frame by means of a Lorentz boost. Specifically, we consider that the interaction in CM is 
the same as in the L frame, that is, we disregard the transformation properties of the electromagnetic field under Lorentz transformations 
(see, e.g., Ref. [22]). The assumption of a central potential, which is essential to render the calculations doable, is correct for non-relativistic 
projectiles but it becomes inconsistent for projectiles with high energies, such that the velocity of the CM frame becomes comparable to 
c (partly because the FitzGerald-Lorentz contraction destroys the spherical symmetry of the interaction). Our approach qualifies as semi-
relativistic, because it implements strict relativistic kinematics but disregards the effects of relativity on the interaction.

We consider that the potential V (r) tends to zero at large distances, so that the four-momenta of the particles before and after 
the interaction are completely defined by their masses and linear momenta. We use primes to designate quantities in the CM frame. 
The initial four-momenta of the two particles in CM are P ′

ji = (W ′
jic

−1, p′
ji). The CM moves with respect to the L frame with constant 

velocity vCM = vCMẑ. The transformation from the CM to the L frame is a boost in the z direction. The four-momenta P = (W c−1, p) and 
P ′ = (W ′c−1, p′) of a particle in the L and CM frames are related by

W = γCM(W ′ + βCMcp′
z),

pz = γCM(p′
z + βCMW ′c−1),

px = p′
x, p y = p′

y,

(17)

where

βCM = vCM

c
, γCM = 1√

1 − β2
CM

. (18)

The velocity vCM of the CM frame is determined by applying the transformation (17) to the total initial four-momentum in CM, P ′
i =

P ′
1i + P ′

2i = (W ′
1ic

−1 + W ′
2ic

−1, 0), which gives

p1i = γCMβCM(W ′
1i + W ′

2i)c−1, W1i + W2i = γCM(W ′
1i + W ′

2i). (19)

These equations imply that

βCM = cp1i

W1i + W2i
. (20)

The square of the total four-momentum of the particles,

s2 ≡ c2 (P1 + P2)
2 = (W1 + W2)

2 − c2 (p1 + p2)
2 , (21)

is a Lorentz invariant. In the CM frame, s equals the total energy of the particles, s = W ′
1 + W ′

2. Before the interaction we have

s2 = (W1i + W2i)
2 − c2 p2

1i = (M1c2 + M2c2)2 + 2M2c2 E1i. (22)

The equality (20) implies that

γCM = W1i + W2i
. (23)
s

5
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Before the collision, in the CM frame the colliding particles have opposite linear momenta

p′
1i = −p′

2i ≡ p′
i (24)

with magnitude

p′
i = βCMγCMM2c = M2c2

s
p1i . (25)

The initial total energies of the particles are given by

W ′
1i =

√
M2

1c4 + p′2
i c2 and W ′

1i =
√

M2
1c4 + p′2

i c2. (26)

After the collision, when the interaction energy has vanished, the particles move away with linear momenta of the same magnitude p′
i

and with the same total energies, that is,

W ′
1f = W ′

1i and W ′
2f = W ′

2i . (27)

3.1. Relative motion in the CM frame

Let us now consider the equations of motion of the colliding particles in the CM frame,

ṗ′
1 = F and ṗ′

2 = −F (28)

where

F = −dV

dr′ r̂′, (29)

with r′ = r′
1 − r′

2. Dotted quantities represent time derivatives. The relative velocity, v′ = ṙ′ , is

v′ = v′
1 − v′

2 = c2p′
1

W ′
1

− c2p′
2

W ′
2

=
(

c2

W ′
1

+ c2

W ′
2

)
p′, (30)

where p′ = p′
1 is the linear momentum of the projectile. Hence, the equation for the relative motion reads

v̇′ = d

dt

[(
c2

W ′
1

+ c2

W ′
2

)
p′
]

. (31)

By virtue of a vis viva theorem, the quantity

S ≡ W ′
1 + W ′

2 + V (r′) (32)

is a constant of the motion. In addition, for central forces, the angular momentum L′ = r′ × p′ is conserved. Because

r′ × v′ =
(

c2

W ′
1

+ c2

W ′
2

)
L′, (33)

the conservation of angular momentum implies that the trajectories of the particles lie in the plane of scattering. The values of the 
constants L′ and S are determined by the initial conditions; L′ = bp′

i , where b is the impact parameter (which takes the same values in 
L and CM), and S = s is given by Eq. (22). With the aid of these constants of motion, the deflection angle of a projectile with a given 
impact parameter can be obtained by quadrature, in strict analogy with the classical non-relativistic formulation [2].

The equality

S − V (r′) =
√

M2
1c4 + p′2c2 +

√
M2

2c4 + p′2c2 (34)

implies that

p′2(r′) = 1

4c2

{[
S − V (r′)

]2 +
(
M2

1 − M2
2

)2
c8

[S − V (r′)]2

}
− (M2

1 + M2
2)c2

2
. (35)

With some rearrangements, this expression can be reduced to the familiar non-relativistic form of the equation of motion

p′2(r′) = p′2
i − 2μr V ef(r

′) (36)

where

μr = c−2 W ′
1iW

′
2i

W ′
1i + W ′

2i
, (37)

is the relativistic reduced mass of the colliding particles and V ef(r′) is an effective potential given by
6
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V ef(r
′) = V (r′) + V r1(r

′) + V r2(r
′), (38)

with

V r1(r
′) = − V 2(r′)

2μrc2

(
1 − 3μrc2

S

)
(39a)

and

V r2(r
′) = (M2

1 − M2
2)2c6

8μrS2

([
1 − V (r′)

S

]−2

− 1 − 2
V (r′)
S

− 3
V 2(r′)
S2

)
. (39b)

The terms V r1(r′) and V r2(r′) are corrections to the interaction potential that account for the effect of relativistic kinematics. The first 
one is proportional to V 2(r′); when V (r′) is a screened Coulomb potential, V r1(r′) diverges as r′−2 at the origin. Considering the Taylor 
expansion of the function (1 − x)−2, the second correction term, V r2(r), is seen to be of order (V /S)3, and it vanishes when the projectile 
and the target particles have the same mass.

It is worth observing that when the mass M2 of the target tends to infinity, βCM = 0 and the CM frame coincides with the L frame. 
Under these circumstances, p′

i = p1i, s � ∞, and

μr � W1c−2 = γ1iM1. (40)

That is, the reduced mass equals the relativistic mass of the projectile, which increases with p1i .

3.2. Classical DCS in the CM frame

Since Eq. (36) has the same form as the corresponding non-relativistic equation, the calculation of the DCS can be performed by 
following the same steps as in the classical non-relativistic theory (see, e.g., Ref. [2]). The deflection angle (i.e., the total angle swept by 
the vector p′) is a function of the impact parameter b, or of the angular momentum L′ = p′b. It can be calculated as

ϑ ′(L′) = π − 2

∞∫
r′

0

L′r′−2√
p′2

i − 2μr V ef(r′) − L′2r′−2
dr′, (41)

where r′
0 is the distance of closest approach, that is, the largest root of the equation

p′2
i − 2μr V ef(r

′
0) − L′2

r′2
0

= 0 . (42)

It is worth recalling that if V ef(r) is the Coulomb potential

V C(r) = Z1 Ze2

r
(43)

the deflection angle is given by [2]

ϑ ′
C(L′) = π − 2

∞∫
r′

0

L′r′−1√
r′2 p′2

i − 2μr Z1 Ze2r′ − L′2
dr′ = 2 arctan

(
μr Z1 Ze2

L′p′
i

)
. (44)

The numerical calculation of the angular deflection for the screened Coulomb potential (5) faces the same difficulties as in the non-
relativistic case [23], namely, the divergence of the integrand at the distance of closest approach and, in the case of relatively large angular 
momenta, the near cancellation of the two terms on the right-hand side of Eq. (41). It is expedient to introduce the function


(r′) = r′V ef(r′)
Z1 Ze2

(45)

which plays a role similar to the screening function. Subtracting and adding, respectively, the second and third quantities in the equalities 
(44) after replacing Z with Z
(r′

0), and changing the integration variable to u = (1 − r′
0/r′)1/2, we have

ϑ ′(L′) = 2 arctan

(
M Z1 Ze2
(r′

0)

L′ p′
i

)
+ 4

1∫
0

{
1√

C
(r′
0) + 2 − u2

− 1√
C
(r′

0) + 2 − u2 − C f (u)

}
du , (46)

where

C = 2μr Z1 Ze2r′
0

L′2
, (47)

and
7
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f (u) = r′
0


(r′) − 
(r′
0)

r′ − r′
0

. (48)

The function f (u) is approximately constant for u < 0.001, which corresponds to radii between r′
0 and r′

1 = (1 + 10−6)r′
0, where f (u) �

r′
0[d
(r′

0)/dr′
0]. For radii larger than r′

1, f (u) can be calculated directly from the expression (48). Thus, the integrand in Eq. (46) is finite 
and varies smoothly over the integration interval, and the integral can be calculated numerically.

While the deflection angle ϑ ′ may take arbitrarily large positive or negative values, the polar scattering angle θ ′ is, by definition, 
limited to the interval [0, π ]. The two angles are related by

cos θ ′ = cosϑ ′. (49)

If the function L′(θ ′) is single-valued, the classical DCS in CM is

dσ ′

d�′ = 2πb db

d�′ = 1

2 sin θ ′

∣∣∣∣db2

dθ ′

∣∣∣∣ = 1

2p′2
i sin θ ′

∣∣∣∣dL′2

dθ ′

∣∣∣∣ . (50)

When the function L′(θ ′) is multi-valued, the DCS is the sum of contributions from the various branches of that function,

dσ ′

d�′ = 1

2p′2
i sin θ ′

∑
j

∣∣∣∣dL′2

dθ ′

∣∣∣∣
L′=L′

j

, (51)

where the summation extends over the values L′
j of the angular momentum that give deflection angles corresponding to the scattering 

angle θ ′ . In the case of the unscreened Coulomb potential, with the deflection function (44), the DCS is given by the Rutherford formula

dσ ′
Ruth

d�′ =
(

μr Z1 Ze2

2p′2
i

)2
1

sin4(θ ′/2)
. (52)

Bohr [24] used qualitative diffraction arguments to analyze the validity of the classical trajectory method. Assuming that the function 
L′(θ ′) is singly-valued, his reasoning leads to the conclusion that the classical method is valid (i.e., it yields the same DCS as a quantum 
calculation) when

Tclass(θ) = 1

θ ′

√
h̄

∣∣∣∣dθ ′
dL′

∣∣∣∣ � 1. (53)

In the case of a Coulomb potential, this condition implies that the classical method is valid for all angles if the absolute value of the 
Sommerfeld parameter

η ≡ μr Z1 Ze2

h̄p′
i

(54)

is much larger than unity. In the case of screened Coulomb fields, Bohr’s criterion is satisfied for scattering angles larger than about

θ ′
clas = h̄

p′
i R

, (55)

where R is the atomic radius, Eq. (9). When the classical method is valid, we may associate each impact parameter (or angular momentum) 
to a well defined scattering angle. Generally, small angles correspond to large impact parameters.

The relativistic corrections (39) to the potential V (r), Eq. (38), are appreciable only for small radii, at which the actual interaction 
potential departs from the screened Coulomb potential due to the finite size of the nucleus. These correction terms have an influence on 
the DCS only for relatively fast projectiles, with wavelengths of the order of the nuclear radius,

Rnuc � 1.2 A1/3 fm = 2.3 × 10−5 A1/3a0, (56)

where A is the mass number of the nucleus. In addition, the effect of the correction terms is limited to relatively large angles, where the 
DCS is several orders of magnitude smaller than at forward directions, and it is outmatched by the effects of the finite size and structure 
of the nucleus [25], which are disregarded here. For the purposes of particle transport calculations, which are mostly determined by the 
DCS at small and intermediate angles, it is justified to neglect the relativistic corrections to the potential when their consideration largely 
complicates the calculations.

4. Quantum theory of elastic collisions

The wave equation for the motion of the projectile relative to the target atom can be obtained by following the familiar heuristic 
procedure based on the correspondence principle [26]. We start from the relativistic equation of motion in the CM frame of reference, 
Eq. (36) (for typographic simplicity, here we remove the prime in the relative position vector, i.e., we set r = r′

1 − r′
2),

p′2(r) = p′2
i − 2μr V ef(r). (57)

The time-independent wave equation for free states (i.e., states with positive energy, E > 0) is obtained from the classical equation by 
making the replacement p′ → −ih̄∇ and by considering that the resulting operators act on the wave function ψ(r) (see, e.g., Ref. [26])
8
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(
− h̄2

2μr
∇2 + V ef(r)

)
ψ(r) = p′2

i

2μr
ψ(r) . (58)

This wave equation has the same form as the non-relativistic Schrödinger equation that describes the scattering of a particle with the 
relativistic reduced mass μr and initial momentum p′

i by the potential V ef(r). Hence, the wave function ψ(r) and the scattering DCS can 
be evaluated by using the methods and approximations of non-relativistic quantum theory.

It is interesting to consider the limiting form of Eq. (58) when the mass M2 of the target atom tends to infinity, so that βCM � 0 and 
the CM frame coincides with the L frame. Under these circumstances, p′

i = p1i, s � ∞,

μr � c−2W1i = γ1iM1, with γ1i =
√

1 +
(

p1i

M1c

)2

, (59)

V ef(r) = V (r)

[
1 − V (r)

2γ1iM1c2

]
, (60)

and the wave equation becomes(
− h̄2

2γ1iM1
∇2 + V (r)

[
1 − V (r)

2γ1iM1c2

])
ψ(r) = p2

1i

2γ1iM1
ψ(r), (61)

which, as expected, coincides with the Klein-Gordon (or relativistic Schrödinger) equation for free states of a particle with mass M1 and 
initial momentum p1i in the electrostatic potential V (r) [3]. Indeed, our derivation shows that the second term in the effective Klein-
Gordon potential (60) has a purely kinematic origin.

4.1. Partial-wave expansion method

The DCS for elastic collisions is determined by the asymptotic behavior of a distorted plane wave, i.e., a solution of the wave equation 
that at large r behaves as a plane wave plus an outgoing spherical wave. For potentials such that rV ef(r) vanishes at r = ∞, the distorted 
plane wave can be expressed in the form of a partial-wave series

ψk(r) = (2π)−3/2 1

kr

∑
�

(2� + 1) i� exp (iδ�) Fk�(r) P�(cos θ ′), (62)

where k = p′
i/h̄ is the wave vector of the incident projectile, θ ′ = cos−1(k̂ · r̂) is the scattering angle (in CM), P�(cos θ ′) are the Legendre 

polynomials, and the functions Fk�(r) are solutions of the radial equation[
− h̄2

2μr

d2

dr2
+ V ef(r) + h̄2

2μr

�(� + 1)

r2

]
Fk�(r) = p′2

i

2μr
Fk�(r) (63)

normalized so that

Fk�(r) ∼r→∞ sin
[
kr − �

π

2
+ δ�

]
, (64)

where δ� are the scattering phase-shifts. Purely attractive (repulsive) potentials give positive (negative) phase shifts. The asymptotic form 
of the distorted plane wave,

ψk(r) ∼r→∞ (2π)−3/2 exp(ik · r) + (2π)−3/2 exp(ikr)

r
f (θ ′), (65)

defines the scattering amplitude, f (θ ′), which admits the following partial-wave expansion

f (θ ′) = 1

2ik

∑
�

(2� + 1) [exp(2iδ�) − 1] P�(cos θ ′). (66)

The DCS (in CM) is given by

dσ ′

d�′ = ∣∣ f (θ ′)
∣∣2 . (67)

The case of scattering by the Coulomb potential, Eq. (43), is of fundamental importance to understand global properties of atomic 
collisions. The wave equation (58) for this potential can be solved analytically by using parabolic coordinates [12]. The Coulomb scattering 
amplitude is given by

fC(θ ′) = −η
�(1 + iη)

�(1 − iη)

exp[−iη ln(sin2(θ ′/2))]
2k sin2(θ ′/2)

, (68)

where �(x) is the complex Gamma function and η is the Sommerfeld parameter, Eq. (54). The DCS for scattering by the Coulomb potential 
is
9
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dσ ′
C

d�′ = ∣∣ fC(θ ′)
∣∣2 =

(
μr Z1 Ze2

2p′2
i

)2
1

sin4(θ ′/2)
. (69)

Interestingly, this expression is identical to the classical Rutherford DCS, Eq. (52). This is a fortunate peculiarity of the Coulomb potential; 
for other potentials the classical and quantum theories yield different DCSs, except when the classical approximation is valid.

4.2. The plane-wave Born approximation

The simplest approach for describing elastic collisions is provided by the plane-wave Born approximation, which is studied in most 
textbooks on quantum mechanics. Within this approximation, the states of the projectile before and after the collision are represented as 
plane waves,

φk(r) = (2π)−3/2 exp(ik · r), (70)

with respective linear momenta p′
i = h̄k ̂z and p′

f = h̄k ̂kf , where the unit vector k̂f is at an angle θ ′ from the z axis. The DCS is obtained 
by considering the potential V ef(r) as a perturbation to first order, as dictated by Fermi’s golden rule [27]. It is given by

dσ ′ (B)

d�′ =
∣∣∣ f (B)(θ ′)

∣∣∣2 (71)

with the Born scattering amplitude

f (B)(θ ′) = − μr

2π h̄2

∫
exp(iq · r/h̄)V ef(r)dr = −2μr

h̄2

∞∫
0

sin(qr/h̄)

qr/h̄
V ef(r) r2dr, (72)

where q ≡ p′
i − p′

f is the momentum transfer, and

q = 2p′
i sin(θ ′/2), (73)

is its magnitude. In the case of screened atomic potentials, the Born approximation is valid for projectiles with sufficiently high energies 
[12].

Introducing the expansion of the plane wave in spherical harmonics [Eq. (4.31) in Ref. [12]], the Born scattering amplitude can be 
expressed in the form of a partial-wave series as

f (B)(θ ′) = 1

2ik

∑
�

(2� + 1) (2iδ(B)
� ) P�(cos θ ′) , (74)

where

δ
(B)
� = −2μr

h̄2
k

∞∫
0

j2
�(kr)V ef(r)r

2 dr (75)

is the Born approximation for the phase shifts.
Although the Born scattering amplitude with the effective potential (38) can be calculated numerically, to obtain simple analytical 

results we disregard here the relativistic correction terms. In fact, our motivation for considering screened atomic potentials of the form 
(5) is that they lead to the following simple expressions for the Born scattering amplitude,

f (B)(θ ′) = −2μr

h̄2
Z1 Ze2

∑
i

Ai
1

α2
i + q2

, (76)

and the Born DCS,

dσ ′ (B)

d�′ =
∣∣∣ f (B)(θ ′)

∣∣∣2 =
(

2μr

h̄2
Z1 Ze2

)2
(∑

i

Ai
1

α2
i + q2

)2

. (77)

If we set αi = 0, we obtain the DCS for Coulomb scattering within the plane-wave Born approximation,

dσ
′ (B)
C

d�′ =
(

2μr

h̄2
Z1 Ze2

)2 1

q2
=

(
μr Z1 Ze2

2p′2
i

)2
1

sin4(θ ′/2)
, (78)

which, again, coincides with the classical Rutherford DCS, Eq. (52).
A further advantage of using the analytical atomic potentials (5) is that their Born phase shifts can be calculated easily with the aid of 

the equality [Ref. [28], Eq. 6.612.3]

∞∫
exp(−αr) j2

�(kr)r dr = 1

2k2
Q �

(
1 + α2

2k2

)
, (79)
0

10
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Table 1
Phase shifts for scattering of 10 keV electrons by the DHFS potential of gold atoms (Z = 79). WKB 
phase shifts were calculated for orders � ≤ L = 51. The eikonal phase shifts, δ(eik)

� = χ(b)/2, were 
calculated from Eq. (91) with b = (� + 1/2)/k.

δ�

� numerical Eqs. (84) WKB Born eikonal
0 6.25076E+0 6.26033E+0 6.26033E+0 7.09519E+0 1.03652E+1
1 4.85210E+0 4.86682E+0 4.86682E+0 4.45239E+0 5.57539E+0
2 3.72213E+0 3.73702E+0 3.73702E+0 3.27638E+0 3.86014E+0
3 2.90479E+0 2.91414E+0 2.91414E+0 2.56871E+0 2.92794E+0
4 2.32614E+0 2.33168E+0 2.33168E+0 2.08362E+0 2.32516E+0
5 1.90282E+0 1.90641E+0 1.90641E+0 1.72640E+0 1.89705E+0
6 1.58154E+0 1.58402E+0 1.58402E+0 1.45153E+0 1.57569E+0
7 1.33066E+0 1.33243E+0 1.33243E+0 1.23382E+0 1.32587E+0
8 1.13061E+0 1.13189E+0 1.13189E+0 1.05782E+0 1.12698E+0
9 9.68531E-1 9.69443E-1 9.69443E-1 9.13385E-1 9.65866E-1
10 8.35528E-1 8.36179E-1 8.36179E-1 7.93454E-1 8.33608E-1
15 4.32699E-1 4.32795E-1 4.32795E-1 4.20759E-1 4.32321E-1
20 2.46941E-1 2.46926E-1 2.46926E-1 2.43066E-1 2.46832E-1
25 1.50843E-1 1.50813E-1 1.50813E-1 1.49433E-1 1.50792E-1
30 9.68752E-2 9.68507E-2 9.68507E-2 9.63097E-2 9.68454E-2
35 6.45745E-2 6.45571E-2 6.45571E-2 6.43283E-2 6.45556E-2
40 4.42433E-2 4.42315E-2 4.42315E-2 4.41288E-2 4.42310E-2
50 2.19469E-2 2.19412E-2 2.19412E-2 2.19184E-2 2.19412E-2
75 4.44078E-3 4.43988E-3 - - - - - 4.43947E-3 4.43932E-3
100 9.76997E-4 9.76935E-4 - - - - - 9.76927E-4 9.76527E-4
150 5.15943E-5 5.15950E-5 - - - - - 5.15950E-5 5.15523E-5
200 2.88128E-6 2.88181E-6 - - - - - 2.88181E-6 2.87841E-6
250 1.65537E-7 1.65995E-7 - - - - - 1.65996E-7 1.65742E-7

where Q �(x) are the Legendre functions of the second kind [29]. We have

δ
(B)
� = − μr

h̄2k
Z1 Ze2

∑
i

Ai Q �

(
1 + α2

i

2k2

)
. (80)

The functions Q �(r) are calculated by using the strategy described by Fernández-Varea et al. [30].

4.3. Approximate phase shifts

Generally, the Born phase shifts (75) provide a good approximation to the actual phase shifts that are small in magnitude, even when 
the Born approximation for the scattering amplitude is not accurate. To allow the calculation of the scattering amplitude from the partial-
wave series (66) we need an alternative method to obtain those phase shifts that are not small. We use the Wentzel-Kramers-Brillouin 
(WKB) approximation, with the Langer correction, which leads to the following formula for the phase shifts [12]

δ
(WKB)
� = 1

2

(
� + 1

2

)
π − kr0 +

∞∫
r0

[√
F�(r) − k

]
dr (81)

where

F�(r) = k2 − 2μr

h̄2
V ef(r) − (� + 1/2)2

r2
, (82)

and r0 is the largest zero of F�(r). The WKB approximation is accurate when the potential V ef(r) is practically constant over many 
wavelengths or, more precisely, when [3]∣∣∣∣ 1

2F�(r)

d

dr

√
F�(r)

∣∣∣∣ � 1 for r > r0. (83)

It is convenient to have a feel of the accuracy of the WKB and Born approximations for the phase shifts. In the case of electrons or 
positrons, the program radial [20] gives accurate phase shifts obtained from the numerical solution of the radial equation (63), which 
is integrated by using a robust power-series solution method. The accuracy of WKB and Born phase shifts can then be estimated by 
comparison with the numerical values generated by radial. A similar comparison of approximate and numerical phase shifts for projectiles 
heavier than the electron is not possible because the small wavelengths of these particles make the numerical calculation of phase shifts 
very lengthy. As a matter of fact, the study for electrons is sufficient for our purposes because the WKB approximation at a given energy 
is more accurate for the heavier particles, due to their shorter wave lengths.

Table 1 shows phase-shifts obtained from the WKB and Born approximations (as given by the program eccpa) and “exact” phase 
shifts given by the code radial, for the case of scattering of 10 keV electrons by gold atoms (Z = 79), with all phase shifts calculated 
by using the analytical DHFS potential (Section 2), i.e., by neglecting the relativistic corrections (39). To be consistent with the radial

calculation, the approximate phase shifts were calculated with the reduced mass equal to the electron mass me and a linear momentum 
pi = (2me E)1/2. The WKB phase shifts are in fairly good agreement with the numerical values; relative differences are of the order of 
1% for � = 0, and generally the differences are smaller for larger �. The Born phase-shifts of small angular momenta � are less accurate 
11
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than the WKB phase shifts; the relative differences between the WKB and Born phases decrease progressively when � increases. Beyond a 
certain �, the Born phase shifts give an acceptable approximation to the actual phase shifts. For projectiles with higher energies we find 
the same tendencies, except that the phase shifts decrease in magnitude more slowly with �. That is, the convergence of the partial-wave 
series slows down when the energy increases.

The differences between numerical and approximate phase shifts of low orders are the most relevant, because they amount to adding or 
subtracting a smooth component to the DCS, whose effect is magnified at large angles, where the actual DCS is smaller. Indeed, since the 
Legendre polynomial P�(cos θ ′) has � zeros nearly uniformly spaced, an error in the �-th order phase shift will manifest as an oscillation 
of the calculated DCS with respect to the “correct” DCS with nearly � crests and troughs of similar amplitude.

Guided by these observations, and considering that the coefficients in the Legendre series of the actual scattering amplitude vary 
smoothly with �, we set

δ� =
⎧⎨
⎩

δ
(WKB)
� if � < L,

C�δ
(B)
� otherwise,

(84a)

where the cutoff order L is the lowest value of � for which either δ(B)
� < 0.001 or the relative difference between the WKB and Born phase 

shifts is less than 0.001. Evidently, this prescription implies that only WKB phase shifts of orders � ≤ L need to be computed. The factor

C� ≡ 1 +
(

δ
(WKB)
L

δ
(B)
L

− 1

)
exp

(
−a

� − L

L

)
(84b)

is introduced to ensure that the approximate phase shifts δ� vary smoothly with � near the cutoff L. The form of this factor, which 
has been decided on the basis of the observed variation of the difference between the WKB and Born phase shifts with �, is practically 
irrelevant as long as it ensures “continuity” at � = L and tends to unity at large �, where the Born approximation to the phase shifts is 
expected to be valid. The parameter a is obtained by requiring that δ(WKB)

L−1 = CL−1δ
(B)
L−1, with the proviso that the relative difference of δ�

and δ(B)
� effectively decreases with �. Omission of the factor C� may cause the scattering amplitude to oscillate about its “average” shape 

with a frequency depending on the cutoff order L and an amplitude proportional to the magnitude of the “discontinuity” between WKB 
and Born phase shifts.

As mentioned above, the convergence of the partial-wave series may be very slow. We can alleviate the numerical work by adding the 
Born scattering amplitude and subtracting its partial-wave expansion,

f (θ ′) = f (B)(θ ′) + 1

2ik

∞∑
�=0

(2� + 1)
[

exp (2iδ�) − 1 − 2iδ(B)
�

]
P�(cos θ ′) (85)

Since the phase shifts δ� approximate the Born phase shifts when � � L, this series converges more rapidly than the original series (66). 
For scattering angles larger than about 1 degree, convergence is further improved by applying the “reduced series” method [31,32], which 
exploits the fact that, if a function f (θ ′) is strongly peaked at θ ′ = 0, the function (1 − cos θ ′) f (θ ′) is smoother than f (θ ′) and, hence, its 
Legendre expansion is expected to converge more rapidly.

4.4. The eikonal approximation

An alternative description of elastic collisions, valid for projectiles with sufficiently high energies and at small angles, is provided by 
the so-called eikonal approximation [3,17], in which the phase of the scattered wave is obtained from a semi-classical approach under 
the assumption of small trajectory deflections. A detailed derivation of the wave function within the eikonal approximation and the 
corresponding scattering amplitude is given in Joachain’s book [12]. Here we present an alternative derivation based on Molière’s [17]
observation that the eikonal scattering amplitude can be obtained as the small-angle limit of the partial-wave expansion (66) with the 
phase shifts calculated from the WKB approximation, Eq. (81). To determine the small-angle limit of the partial-wave expansion, we notice 
that the WKB phase shifts vanish for V ef(r) = 0 because

1

2

(
� + 1

2

)
π − kb = −

∞∫
b

⎡
⎣
√

k2 − (� + 1/2)2

r2
− k

⎤
⎦ dr, (86)

where

b = � + 1/2

k
(87)

is the classical impact parameter corresponding to the angular momentum � + 1
2 ; the additional 1

2 in the WKB formulas occurs as a 
consequence of the fact that the radial motion is limited to positive values of r [33]. We can then write

δ
(WKB)
� =

∞∫
r0

⎡
⎣
√

k2 − 2μr

h̄2
V ef(r) − (� + 1/2)2

r2
− k

⎤
⎦ dr −

∞∫
b

⎡
⎣
√

k2 − (� + 1/2)2

r2
− k

⎤
⎦ dr

=
∞∫ [√

K 2(r) − 2μr

h̄2
V ef(r) − K (r)

]
dr −

b∫ ⎡
⎣
√

k2 − 2μr

h̄2
V ef(r) − (� + 1/2)2

r2
− k

⎤
⎦ dr (88)
b r0

12
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with

K 2(r) = k2 − (� + 1/2)2

r2
= k2

(
1 − b2

r2

)
. (89)

Small angles generally correspond to relatively large impact parameters b so that V ef(r) is much smaller than K (r) for r > b and r0 tends 
to b when � increases. Consequently, for sufficiently large b or �, we can neglect the second integral in Eq. (88), and approximate the first 
term in that expression by expanding the square root in powers of V ef/K 2. Neglecting terms of second and higher orders, we obtain the 
eikonal approximation for the phase shifts,

δ
(eik)
� = −μr

h̄2

∞∫
b

V ef(r)

K (r)
dr = − μr

h̄2k

∞∫
b

V ef(r)
r dr√

r2 − b2
≡ 1

2χ(b), (90)

where χ(b) is the eikonal phase function. The foregoing derivation indicates that this formula is expected to be valid (i.e., to give results 
close to the exact values of the phase shifts) for large �’s.

Wallace [34] derived systematic corrections of order k−n to the eikonal phase. With the first-order Wallace correction included, the 
eikonal phase is

χ(b) = − 2μr

h̄2k

∞∫
b

V ef(r)

{
1 + μr

h̄2k2

[
V ef(r) + r

dV ef(r)

dr

]}
r dr√

r2 − b2
. (91)

In the limit of high energies, the factor in curly braces, the Wallace correction, tends to unity and the expression (91) reduces to the form 
(90). Byron and Joachain [35] have analyzed the reliability of the eikonal approximation for screened atomic potentials, and concluded 
that Wallace’s correction does improve the accuracy of the method. The eikonal phase shifts for 10 keV electrons scattered by the DHFS 
potential of the free gold atom (with the Wallace correction and V ef = V ) are shown in Table 1. Notice that the relative difference be-
tween phase shifts calculated with the WKB method and with the eikonal approximation decreases rapidly when the angular momentum 
increases.

The following approximation to the Legendre polynomials [17]

P�(cos θ ′) �
√

θ ′
sin θ ′ J0

(
2� + 1

2
θ ′
)

(92)

is valid for any θ ′ < π in the limit for large �, and for all values of � in the limit for small θ ′ . Inserting the approximations (90) and (92)
into the partial-wave expansion (66) of the scattering amplitude, and replacing the summation over � = kb − 1

2 with an integral, we have

f (θ ′) � 1

2ik

∞∫
0

d(kb) 2kb {exp[iχ(b)] − 1}
√

θ ′
sin θ ′ J0

(
kb θ ′) .

Hence, for small angles (such that sin θ ′ � θ ′ , q � h̄kθ ′) we can write

f (θ ′) � −ik

∞∫
0

{exp[iχ(b)] − 1} J0(qb/h̄)b db, (93)

which is the eikonal scattering amplitude [12,17].
For atomic potentials of the form (5), the eikonal phase (91) can be calculated analytically as [36,37]

χ(b) = − 2μr Z1 Ze2

h̄2k

∑
i

Ai

⎧⎨
⎩K0(aib) − μr Z1 Ze2

h̄2k2

∑
j

A ja j K0[(ai + a j)b]
⎫⎬
⎭ , (94)

where K0(x) is the modified Bessel function of the second kind and zeroth order. The evaluation of the expression (93) thus reduces to a 
single quadrature, which must be performed numerically. To ease the calculation we follow Zeitler and Olsen [38] and, instead of directly 
evaluating the integral (93), we use the equivalent expression

f (eik)(θ ′) = − h̄k

q

∞∫
0

J1(qb/h̄)
dχ(b)

db
exp [iχ(b)] b db. (95)

The derivative of the eikonal phase (94) is

dχ(b)

db
= 2μr Z1 Ze2

h̄2k

∑
i

Ai

{
ai K1(aib) − μr Z1 Ze2

h̄2k2

∑
j

A ja j(ai + a j)K1[(ai + a j)b]
}

, (96)

where K1(x) is the modified Bessel function of the second kind and first order. The integral (95) converges rapidly for large values of 
b because of the exponentially decaying K1(aib), and the fast oscillations of the exponential at small b are suppressed by the J1(qb)

function, which vanishes at b = 0. The DCS is given by
13
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dσ ′ (eik)

d�′ = | f (eik)(θ ′)|2. (97)

The eikonal approximation is expected to be accurate for scattering angles up to about (kR)−1 [17], where R is the atomic radius, 
Eq. (9). However, numerical calculations indicate that for protons and heavier particles the approximation yields fairly accurate DCSs, 
practically coincident with those obtained from classical and partial-wave calculations up to much larger angles, of the order of

θ ′
eik = min

{
200

kR
,0.1π

}
. (98)

For angles somewhat larger than θ ′
eik, the calculation presents numerical instabilities and must be discontinued. In the computer program

eccpa the DCS for θ ′ > θ ′
eik is estimated by extrapolation using the empirical formula proposed by Salvat [37],

dσ ′ (eik)

d�′ =
(

2μr

h̄2
Z1 Ze2

)2 1[
A + Bq2/3 + Cq4/3 + q2

]2
, (99)

with the coefficients A, B and C determined by matching the calculated numerical values of the eikonal DCS and its first and second 
derivatives at θ ′ = θ ′

eik. In the case of proton collisions, the extrapolated DCS differs by less than about 1% from the classical DCS, which is 
expected to be accurate for large scattering angles. Note that for momentum transfers that are large enough, both the Born DCS and the 
extrapolated eikonal DCS tend to the Rutherford DCS (52), which decreases rapidly with the scattering angle (∝ q−4).

5. Cross sections in the L frame

In the foregoing Sections, the DCS is calculated in the CM frame. The total cross section,

σ ′ =
∫

dσ ′

d�′ d�′, (100)

and the momentum transfer cross section, also called the first transport cross section,

σmt =
∫

(1 − cos θ ′) dσ ′

d�′ d�′, (101)

can be calculated numerically as integrals of the DCS. Alternatively, they can evaluated from the partial-wave expansion of the scattering 
amplitude, by using the orthogonality properties of the Legendre polynomials,

σ ′ = 4π

k2

∞∑
�=0

(2� + 1) sin2(δ�), (102)

and

σmt = 4π

k2

∑
�

(� + 1) sin2(δ� − δ�+1). (103)

It is worth mentioning that the results from partial-wave calculations (and from the eikonal approximation) satisfy the optical theorem 
(see, e.g., Refs. [3], [12]),

σ ′ = 4π

k
Im f (0). (104)

This equality is a direct consequence of the conservation of probability (collisions neither produce nor absorb projectiles).
The four-momenta of a particle in the L and CM frames are related by the Lorentz transformation equations (17). The polar and 

azimuthal angles of its directions of motion in the two frames are related by [see, e.g., Ref. [22], Eq. (11.32)]

φ = φ′, tan θ = 1

γCM

sin θ ′

τ + cos θ ′ (105)

with τ = vCM/v ′ , where vCM and v ′ = c2 p′/W ′ are, respectively, the velocities of the CM and of the particle in CM. The second equality 
in (105) may be expressed in the equivalent form

cos θ = τ + cos θ ′√
(τ + cos θ ′)2 + γ −2

CM sin2 θ ′
. (106)

The inverse relation is

cos θ ′ =
−τ1γ

2
CM sin2 θ1 ± cos θ1

√
cos2 θ1 + γ 2

CM(1 − τ 2
1 ) sin2 θ1

γ 2
CM sin2 θ1 + cos2 θ1

. (107)

When τ < 1 only the plus sign is valid and θ increases monotonically with θ ′ , that is, there is a unique correspondence between θ and 
θ ′ . When τ ≥ 1, the angle θ in the L frame can only take values in the interval from 0 to the value
14
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θmax = arccos

⎛
⎜⎝ 1√

1 + γ −2
CM (τ 2 − 1)−1

⎞
⎟⎠ . (108)

In addition, if τ ≥ 1 each angle θ ≤ θmax corresponds to two different angles in CM, which are given by the formula (107) with the plus 
and minus signs.

The DCS in the L frame is

dσ

d�
=

∣∣∣∣ d(cos θ ′)
d(cos θ1)

∣∣∣∣ dσ ′

d�′ =
γ 2

CM

[
τ cos θ ±

√
cos2 θ + γ 2

CM(1 − τ 2) sin2 θ

]2

(
γ 2

CM sin2 θ + cos2 θ
)2 √

cos2 θ1 + γ 2
CM(1 − τ 2) sin2 θ

dσ ′
1

d�′ , (109)

with

τ = vCM

v ′
1

= βCMW ′
1

cp′
1

(110)

If τ < 1 only the plus sign is valid and the scattering angle θ varies from 0 to π . When τ ≥ 1 the DCS vanishes for θ > θmax; for angles θ
less than θmax, Eq. (108) yields two values of θ ′ in (0, π), the expression on the right-hand side of Eq. (109) must then be evaluated for 
these two angles, and the resulting values added up to give the DCS in L. Evidently, the total cross section in L is the same as in CM.

In calculations of stopping of charged particles in matter, it is natural to consider the DCS differential in the energy loss of the projectile, 
�E = E1i − E1f. Energy-momentum conservation implies that

�E = (�E)max
1 − cos θ ′

2
(111)

with

(�E)max = M2c4 p2
1i

S2
= 2M2c2 E1i(E1i + 2M1c2)

(M1c2 + M2c2)2 + 2M2c2 E1i
. (112)

Hence

dσ

d(�E)
= dσ ′

d�′ 2π

∣∣∣∣ d(�E)

d(cos θ ′)

∣∣∣∣
−1

= 4π

(�E)max

dσ ′

d�′ . (113)

The stopping cross section is

σst ≡
(�E)max∫

0

�E
dσ

d(�E)
d(�E) = (�E)max

2
2π

1∫
−1

(1 − cos θ ′) dσ ′

d�′ d(cos θ ′)

= (�E)max

2
σmt , (114)

where σmt is the momentum-transfer cross section, Eq. (101). The average energy transfer in a collision is

〈�E〉 = σst

σ
= (�E)max

2

σmt

σ
. (115)

6. Collisions of electrons and positrons

Electrons and positrons (mass M1 = me and charge Z1e, Z1 = ±1) are peculiar in that they have spin 1/2 and their mass is much 
smaller than those of other charged particles. The relativistic wave equation of the electron and the positron in an external potential 
is the Dirac equation [11,26,39]. Although elastic scattering of these particles can be accurately calculated by means of numerical Dirac 
partial-wave analysis using available computer codes [8,20], the process provides a unique benchmark to assess the accuracy of the Born 
and WKB approximations for the phase shifts. Because of the small mass of the electron, the recoil of the target atom is negligible, and 
calculations can be performed in the L frame. Here we consider collisions of a spin 1/2 projectile with momentum p = h̄k with a target 
atom, assumed to be at rest at the origin of the L frame.

The scattering of Dirac particles by a central potential V (r) is completely described by the direct scattering amplitude, f (θ), and the 
spin-flip scattering amplitude, g(θ). These are complex functions of the polar scattering angle θ determined from the large-r behavior 
of the Dirac distorted waves, i.e., the solutions of the Dirac equation for the central potential V (r) that behave asymptotically as a plane 
wave plus an outgoing spherical wave [11,39]. The scattering amplitudes admit the following partial-wave expansions

f (D)(θ) = 1

2ik

∞∑
�=0

{
(� + 1) [exp (2iδκ=−�−1) − 1] + � [exp (2iδκ=�) − 1]

}
P�(cos θ) (116a)

and
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g(D)(θ) = 1

2ik

∞∑
�=0

[exp (2iδκ=−�−1) − exp (2iδκ=�)] P 1
� (cos θ), (116b)

where P�(cos θ) and P 1
� (cos θ) are Legendre polynomials and associated Legendre functions, respectively. The DCS for elastic collisions of 

spin-unpolarized projectiles is given by [11,40]

dσ (D)

d�
= | f (D)(θ)|2 + |g(D)(θ)|2. (117)

The phase shifts δκ are determined by the large-r behavior of the radial wave functions P Eκ (r) and Q Eκ (r), which satisfy the radial 
Dirac equations [39]

dP Eκ

dr
= −κ

r
P Eκ + E − V + 2M1c2

ch̄
Q Eκ ,

dQ Eκ

dr
= − E − V

ch̄
P Eκ + κ

r
Q Eκ , (118)

where E is the kinetic energy of the projectile,

E = M1c2

⎡
⎣
√

1 +
(

p

M1c

)2

− 1

⎤
⎦ . (119)

The upper-component radial function P Eκ (r) oscillates asymptotically as

P Eκ (r) � sin
(

kr − �
π

2
+ δκ

)
, (120)

where δκ is the phase shift. As in the case of spinless particles, attractive (repulsive) potentials give positive (negative) phase shifts.

6.1. The Dirac–Born approximation

The simplest approach for computing scattering DCSs of Dirac particles is provided by the plane-wave Born approximation, which 
yields the following expressions of the scattering amplitudes for scattering by a central potential V (r) [32,41],

f (DB)(θ) =
(

γ + 1

2
+ γ − 1

2
cos θ

)
f (B)(θ), (121a)

g(DB)(θ) = γ − 1

2
sin θ f (B)(θ), (121b)

where

γ = E + M1c2

M1c2
(122)

and f (B)(θ) is the non-relativistic Born scattering amplitude, Eq. (72). The Dirac–Born DCS for spin-unpolarized projectiles is

dσ (DB)

d�
= | f (DB)(θ)|2 + |g(DB)(θ)|2 =

[
1 − β2 sin2(θ/2)

]
γ 2

∣∣∣ f (B)(θ)

∣∣∣2 , (123)

with β2 = 1 − γ −2. The factor 1 − β2 sin2(θ/2) accounts for the effect of spin, which is mostly caused by the spin-orbit interaction (see, 
e.g., [42]), and the factor γ 2 accounts for the relativistic increase of the projectile mass.

The DCS for spin 1/2 projectiles can also be calculated by using the classical trajectory method and the eikonal approximation. These 
approaches disregard the spin of the projectile. To account, at least partially, for the effect of spin, the calculated DCSs are multiplied by 
the spin factor 1 − β2 sin2(θ/2).

The Dirac–Born scattering amplitudes (121) can be expressed in the form of Legendre series,

f (DB)(θ) = 1

k

∞∑
�=0

[
(� + 1)δ

(DB)
κ=−�−1 + �δ

(DB)
κ=�

]
P�(cos θ), (124a)

g(DB)(θ) = 1

k

∞∑
�=0

[
δ
(DB)
κ=−�−1 − δ

(DB)
κ=�

]
P 1

� (cos θ), (124b)

with the Dirac–Born phase shifts

δ
(DB)
κ=−�−1 = γ + 1

2
δ
(B)
� + γ − 1

2
δ
(B)
�+1, (125a)

δ
(DB)
κ=� = γ + 1

δ
(B)
� + γ − 1

δ
(B)
�−1, (125b)
2 2
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where δ(B)
� are the non-relativistic Born phase shifts, Eq. (75). For potentials of the form (5) these phase shifts can be readily evaluated by 

means of the analytical formula (80). The values so obtained provide a good approximation to the actual phase shifts that are small (i.e., 
those of large orders |κ |), even when the Born approximation for the scattering amplitudes is not accurate.

6.2. Approximate Dirac phase shifts

To estimate the phase shifts with relatively large absolute values (those of small orders), we take advantage of the fact that the radial 
Dirac Eqs. (118) may be reduced to Schrödinger form by introducing the substitution [11,40]

P Eκ (r) = A1/2(r)P(r), (126)

with

A(r) ≡ E − V (r) + 2M1c2

2M1c2
, (127)

and eliminating the small-component radial function Q Eκ (r). The resulting equation is[
− h̄2

2M1

d2

dr2
+ V (D)

ef (r) + h̄2

2M1

�(� + 1)

r2

]
P(r) = p2

2M1
P(r), (128)

where � = κ if κ > 0 and � = −κ − 1 if κ < 0, and the effective Dirac potential,

V (D)

ef (r) = V + 1

2M1c2

{
V (2E − V ) + (h̄c)2

[
κ

r

A′

A
+ 3

4

(
A′

A

)2

− 1

2

A′′

A

]}
, (129)

depends on the energy and the relativistic quantum number κ . For large r values, A(r) becomes a constant, i.e., P becomes proportional 
to P Eκ , and therefore the phase shifts may be computed by solving the radial Schrödinger equation (128) as in the non-relativistic case. 
In particular, the WKB approximation with the Langer correction yields [cf. Eq. (81)]

δ
(WKB)
κ = 1

2

(
� + 1

2

)
π − kr0 +

∞∫
r0

[√
Fκ (r) − k

]
dr, (130)

where

Fκ (r) = k2 − 2M1

h̄2
V (D)

ef (r) − (� + 1/2)2

r2
(131)

and r0 is the largest zero of Fκ (r).
The accuracy of WKB and Born approximate phase shifts can be readily assessed by comparison with numerical phase shifts calculated 

by the computer program radial [20]. Such a comparison shows general trends similar to the case of spinless particles (see Table 1). The 
WKB phase shifts are in fairly good agreement with the numerical phases; the relative differences are about 1% for � = 0 and decrease 
when the order � increases. The Born phase shifts are less accurate than the WKB phases for low �, but they tend progressively to the 
numerical values when � increases. Consequently, we use the recipe given in Eqs. (84) to define the approximate phase shifts. Thus, for 
the set of phase shifts with κ < 0, we define

δκ=−�−1 =
⎧⎨
⎩

δ
(WKB)
−�−1 if � < L,

C−�−1δ
(DB)
−�−1 otherwise,

(132a)

where the cutoff value L is the lowest value of � for which either δ(B)
−�−1 < 0.001 or the relative difference between the WKB and Born 

phase shifts is less than 0.001. The factor

C−�−1 = 1 +
(

δ
(WKB)
−L−1

δ
(DB)
−L−1

− 1

)
exp

(
−a

� − L

L

)
, (132b)

with the parameter a determined so that the phase shifts δκ=−�−1 vary smoothly with �, as described in Section 4.3. Phase shifts with 
positive κ are defined similarly.

The DCS and the scattering amplitudes for high-energy projectiles are sharply peaked at θ = 0 and, consequently, the convergence 
of the partial-wave series is quite slow. As in the case of spinless projectiles, convergence is speeded up by adding the Born scattering 
amplitudes, Eq. (121) and subtracting their partial-wave expansions, Eq. (124). We thus obtain

f (D)(θ) = f (DB)(θ) +
∞∑

�=0

F� P�(cos θ) (133a)

and
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g(D)(θ) = g(DB)(θ) +
∞∑

�=0

G� P 1
� (cos θ), (133b)

where

F� = 1

2ik

{
(� + 1) [exp (2iδκ=−�−1) − 1] + � [exp (2iδκ=�) − 1]

}
− 1

k

[
(� + 1)δ

(DB)
κ=−�−1 + �δ

(DB)
κ=�

]
(134a)

and

G� = 1

2ik

[
exp (2iδκ=−�−1) − exp (2iδκ=�)

]
− 1

k

[
δ
(DB)
κ=−�−1 − δ

(DB)
κ=−�

]
. (134b)

For angles larger than about 1 degree, the convergence can be accelerated further by means of the reduced series method [31,32].

7. The program ECCPA

The Fortran program eccpa calculates DCSs for elastic collisions of charged particles with atoms by using the theory and approximations 
presented in the previous Sections. The program delivers the DCSs obtained from the classical trajectory method (Section 3.2), the Born 
approximation (Section 4.2), the eikonal approximation (Section 4.4), and the partial-wave expansion method with Born and WKB phase 
shifts (Section 4.3). In the case of electrons and muons, the program can use the Born approximation and the partial-wave expansion 
method that result from the Dirac wave equation (Sections 6.1 and 6.2).

The program utilizes robust numerical methods. In particular, integrals of functions defined by an analytical formula are calculated by 
using the Fortran external function sumga [10], which implements an adaptive algorithm, based on the 20-point Gauss-Legendre quadra-
ture formula and a bisection scheme, and allows a strict control of integration errors. Continuous functions that occur at intermediate 
steps of the calculation, are first tabulated at the points of a non-uniform grid of the variable, which is determined adaptively by placing 
more points in regions where the function varies more rapidly. Subsequently, function values are calculated by linear or logarithmic nat-
ural cubic spline interpolation [43,44]. Bessel functions of integer orders are calculated by using the Fortran double-precision subroutines 
of Takuya Ooura (http://www.kurims .kyoto -u .ac .jp /~ooura/).

The calculation of the classical DCS starts by setting a table of the deflection function ϑ ′(L′), Eq. (46), which is computed by means of 
function sumga to a relative accuracy of about ∼ 10−7 for a dense grid of angular momenta. This table extends to very small and very 
large angular momenta, from ∼ 10−7h̄ to ∼ 108h̄, to ensure accuracy of the calculated DCS at small and large angles. When the sumga
function cannot attain a required accuracy of at least three decimal places, the program issues a warning message. The program produces a 
table of the classical DCS, Eq. (51), and of the quantity Tclass(θ

′), Eq. (53), which allows verifying whether the classical calculation satisfies 
the Bohr validity criterion. At small angles, when the classical calculation does not comply with the validity criterion or when the DCS 
differs from the eikonal DCS by more than 10%, the classical DCS is set to zero.

The eikonal scattering amplitude is evaluated from the Zeitler and Olsen formula (95) by using the sumga function. The result is 
generally accurate to four or more digits for scattering angles less than the practical cutoff θeik, Eq. (98). For larger angles, the analytical 
extrapolation (99) is used. The WKB phase shifts, Eq. (81) and (130) are also calculated by means of the sumga function to a relative 
accuracy of about 10−10. In the summation of partial-wave series, Eqs. (85) and (133), the reduced-series method is applied for scattering 
angles larger than 1 degree. For projectiles with very high energies, it may be impossible to achieve convergence of the partial-wave 
series at angles less than 1 degree because of the limited memory storage allowed and the accumulated round-off errors. In such case, 
the program replaces the partial-wave DCS with the eikonal approximation, which is generally accurate at small angles. When the kinetic 
energy of the projectile is too low for the eikonal approximation to be valid, the eikonal DCS is set to zero.

The user can select the projectile particle (the allowed options are electrons, positrons, muons, antimuons, protons, antiprotons, and 
alphas), the atomic number of the target atom (from Z = 1 to 99), and the parameterization of the atomic potential (see Section 2). To 
allow studying the effect of the relativistic terms of the effective potential, Eq. (38), classical trajectories and WKB phase shifts may be 
evaluated by using either of the following potentials:

1) the bare electrostatic potential V (r),
2) the potential with the second-order correction given by Eq. (39a),

V (r) − V 2(r)

2μrc2

(
1 − 3μrc2

S

)
, (135)

which reduces to the Klein-Gordon potential for a target atom with infinite mass, or
3) the full effective potential (38).

However, the Born DCS and phase shifts and the eikonal DCS are always calculated with only the electrostatic potential V (r) because their 
calculation algorithms rest on the assumed analytical form of the potential [sum of Yukawa terms, Eq. (5)].

The program eccpa generates a main output file, named dcs.dat, that contains a global description of the considered collision process 
and a table of calculated DCSs with the various theoretical approaches for a predefined grid of 1,000 scattering angles in CM. This file also 
includes the corresponding values of the total cross section, Eq. (100), the momentum transfer cross section, Eq. (101), and the second 
transport cross section,

σ2 =
∫ [

1 − P2(cos θ ′)
] dσ ′

d�′ d�′ =
∫

3

2
(1 − cos2 θ ′) dσ ′

d�′ d�′. (136)

Because the classical and partial-wave DCSs may present calculation artifacts in difficult cases, these integrals are calculated by linear log-
log interpolation of the DCS tables, a method that is not highly accurate but is generally robust against numerical fluctuations. Additionally, 
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Table 2
Example of input data file for the eccpa program. The scale lines are not part of the file.

C...+....1....+....2....+....3....+....4....+....5....+....6....+..
6 Projectile (1=e-, 2=e+, 3=mu-, 4=mu+, 5=p+, 6=p-, 7=alpha)
1 Wave equation (1=Schrod, 2=Schrod M=infty, 3=Dirac)
3 Potential (1=V(r), 2=+1st corr, 3=+1st+2nd corrs)
1 Screening model (1=DHFS, 2=TFM, 3=Wentzel)
80 Atomic number
1e8 Kinetic energy in LAB, as many lines as needed...
1e9
C...+....1....+....2....+....3....+....4....+....5....+....6....+..

the program produces several output files with results from intermediate stages of the calculation and with complementary information. 
The calculation of the set of DCSs for each specific case (i.e., target atom, projectile type, and kinetic energy of the projectile in L) takes 
only a few seconds on an Intel i7 processor, quite independently of the details of the case.

The eccpa program is devised to run interactively. The user may enter the parameters of the problem directly from the keyboard, in 
response to prompts from the program, which are self-explanatory. The distribution bundle includes scripts for visualizing the contents of 
output files by means of the plotting software gnuplot (http://www.gnuplot .info/). Alternatively the program can read data from an input 
file and be run in batch mode, allowing the calculation of cross sections for multiple energies of the projectile in a single run.

The input file provides the same information that would be entered from the keyboard. Each line in this file contains numerical values 
(in free format) followed by a brief text description (a reminder to the user, not read by the program). Table 2 shows an example of input 
file for antiprotons colliding with mercury atoms. The information in the file is the following:

◦ 1st line. Kind of projectile, an integer, with the possible values 1 (electron), 2 (positron), 3 (muon), 4 (antimuon), 5 (proton), 6 
(antiproton), and 7 (alpha particle).

◦ 2nd line. Considered wave equation, identified by the integer parameter IWEQ

IWEQ= 1, Schrodinger equation,

= 2, Schrodinger equation with M2 = ∞,

= 3, Dirac equation with M2 = ∞ (for electrons and muons only),

◦ 3rd line. Potential type used in the calculations, defined by the integer parameter IVEF

IVEF= 1, the atomic potential, V (r),

= 2, the sum V (r) + V r1(r),

= 3, the full effective potential, V eff = V (r) + V r1(r) + V r2(r).

◦ 4th line. Screening function parameterization: 1 (DHFS), 2 (TFM), and 3 (Wentzel).
◦ 5th line. Atomic number Z (from 1 to 99) of the target atom.
◦ 6th and following lines. Kinetic energy of the projectile in the L frame, in eV. A single value in each line, as many lines as needed.

To facilitate the use of the program in interactive mode, the distribution bundle includes the Java graphical user interface (GUI) ec-

cpa.jar, which runs under Microsoft Windows 10, Linux, and macOS operating systems. This GUI not only simplifies the writing of input 
data but also provides a plotting tool for visualizing the calculation results. The container window of the GUI consists of a menu with two 
tabs, a left control panel with a series of buttons and tabs, a pair of buttons to inspect the calculation report and to produce a screenshot 
in png format, a status bar, and a plotting area that is active only at the end of a calculation. The menu tab “select&compute” opens 
the input panel to display four buttons that allow defining the desired calculation (projectile kind, wave equation, potential model, and 
electronic screening model) through context menus, a button that opens a periodic table of the elements to select the target atom, a text 
tab to enter the kinetic energy of the projectile, and a button to run the eccpa code with the selected options. When the calculation 
is completed, the “plot” menu tab is automatically activated and the left control panel allows selecting the results to be plotted. The 
details of a plot can be changed through context menus and windows that are opened with the right bottom of the mouse when the 
pointer is in specific areas. Fig. 1 shows the container window just before starting the calculation, with the input data entered in the left 
panel (the same as in Table 2) and the active periodic table. Fig. 2 shows the plot window of the GUI with the DCS obtained from that 
calculation.

8. Sample calculation results

To illustrate the reliability of the different calculation approaches, Figs. 3 and 4 display calculated DCSs for collisions of various projec-
tiles with mercury atoms. For projectiles heavier than the electron, Fig. 3, the Born approximation is seen to fail for projectiles with low 
energies and at small angles. The classical calculation for antiprotons and alphas is valid for the whole angular range covered in the plots 
(although it fails at small angles), and it is in close agreement with the DCS computed by the partial-wave method with approximate 
phase shifts and by the eikonal approximation. Calculation results indicate that the eikonal approximation provides a reliable description 
of collisions with scattering angles less than about 30 degrees.
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Fig. 1. Container window of the GUI, showing entered input data and the active periodic table.

Fig. 2. Plot window of the GUI eccpa.jar, displaying the calculated DCS in CM for scattering angles larger than 10 degrees.

It is worth mentioning that the actual DCS for elastic collisions of protons and heavier charged particles with atoms is sensitive to 
the size and structure of the atomic nucleus, which determines the DCS at angles larger than about 10 degrees (see, e.g., [25]). The total 
probability P (θ > 10◦) of scattering angles larger than 10 degrees in a collision increases with the atomic number of the target atom. In 
the case of protons colliding with mercury atoms, P (θ > 10◦) is about 10−6, 10−8, and 10−11, for E = 10 MeV, 103 MeV, and 105 MeV, 
respectively. Consequently, in transport calculations of protons and heavier particles, it is generally justified to utilize DCSs calculated with 
only the electrostatic potential, disregarding both the relativistic correction terms and the size of the nucleus.

Results of eccpa calculations for electrons and positrons using the Dirac equation with the DHFS potential are displayed in Fig. 4. For 
comparison purposes, the plots include the DCSs calculated numerically with the program electronscat of the radial package [20] for the 
same potential. That program implements a partial-wave calculation with highly accurate phase-shifts, combined with the reduced-series 
method to accelerate the convergence of the partial-wave series for the scattering amplitudes. Results from our partial-wave calculation 
with approximate phase shifts are seen to agree closely with the numerical results calculated by electronscat except at large angles, 
reflecting the limitations of the WKB approximation for phase shifts with small |κ | values. The close agreement between the eikonal and 
partial-wave results at small angles (up to ∼30 degrees) is noteworthy. For collisions of positrons and electrons, the eikonal approximation 
is better than acceptable, except for projectile energies less than about 10 keV.
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Fig. 3. DCSs (in CM) for collisions of antiprotons and alphas with mercury atoms, calculated for the DHFS potential by using the approximations indicated in the legend: 
eikonal approximation (solid curves), classical trajectory method (dotted), partial-wave analysis with approximate phase shifts (dashed) and Born approximation (dot-dashed). 
The labels indicate the kinetic energy of the projectile (in L). Notice the logarithmic scale for θ < 10◦ .

Fig. 4. Calculated DCS for elastic collisions of electrons and positrons with mercury atoms. Solid curves represent the results from the program electronscat [20]. The dashed 
curves represent DCSs calculated with the present partial-wave method with approximate (WKB and Born) phase shifts. The dotted curves are DCSs obtained from the eikonal 
approximation. Notice the logarithmic scale for θ < 10◦ .
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