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• Gamma model as a new way to explore 
anaerobic digestion kinetics. 

• Gamma model allows mathematising 
the hidden variability of kinetic 
constants. 

• Each substrate displayed a characteristic 
distribution function. 

• Gamma model could model kinetic 
changes related to anaerobic co- 
digestion.  
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A B S T R A C T   

The Gamma model is a novel approach to characterise the complex degradation dynamics taking place during 
anaerobic digestion. This three parameters model results from combining the first-order kinetic model and the 
Gamma distribution function. In contrast to conventional models, where the kinetic constant is considered 
invariant, the Gamma model allows analysing the variability of the kinetic constant using a probability density 
function. The kinetic constant of mono-digestion and co-digestion batch tests of different wastes were modelled 
using the Gamma model and two common first-order models: one-step one-fraction model and one-step two- 
fraction model. The Gamma distribution function approximates three distinct probability density functions, i.e. 
exponential, log-normal, and delta Dirac. Specifically, (i) cattle paunch and pig manure approximated a log- 
normal distribution; (ii) cattle manure and microalgae approximated an exponential distribution, and (iii) pri-
mary sludge and cellulose approximated a delta Dirac distribution. The Gamma model was able to characterise 
two distinct waste activated sludge, one approximated to a log-normal distribution and the other to an expo-
nential distribution. The same cellulose was tested with two different inocula; in both tests, the Gamma distri-
bution function approximated a delta Dirac function but with a different kinetic value. The potential and 
consistency of Gamma model were also evident when analysing pig manure and microalgae co-digestion batch 
tests since (i) the mean k of the co-digestion tests were within the values of the mono-digestion tests, and (ii) the 
profile of the density function transitioned from log-normal to exponential distribution as the percentage of 
microalgae in the mixture increased.  
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1. Introduction 

Anaerobic digestion is a reliable biotechnology for the management 
and valorisation of organic-rich waste such as sewage sludge, animal 
manure, food waste and agri-industrial residues (Chowdhury et al., 
2019; Mata-Alvarez et al., 2014; Stamatelatou and Tsagarakis, 2015; 
van Lier et al., 2008; Varjani et al., 2021). Mathematical models have 
been extensively used to design and control full-scale digesters (Wein-
rich and Nelles, 2021). Most of these models are based on empirical or 
semi-empirical equations (i.e. they reflect the cumulative effect of a 
multistep process) such as the first-order kinetics and the Monod kinetics 
(Batstone et al., 2002; Kythreotou et al., 2014). The anaerobic digestion 
model no. 1 (ADM1) is the common platform to model anaerobic 
digestion systems (Batstone et al., 2002). However, the ADM1 is 
acknowledged to be a highly complex model due to the large number of 
state variables, rate and equilibrium expressions, stoichiometric co-
efficients, and kinetic parameters (Batstone, 2006). Furthermore, the 
ADM1 requires extensions to explain certain phenomena such as sul-
phate reduction, syntrophic acetate oxidation and mineral precipitation 
(Ahmed and Rodríguez, 2018; Batstone, 2006; Capson-Tojo et al., 2021; 
Flores-Alsina et al., 2016; Zhang et al., 2015). In other cases, the 
complexity of the ADM1 needs to be reduced; for instance, to be 
implemented in control systems (Giovannini et al., 2018). Several au-
thors have highlighted the importance of improving anaerobic digestion 
models (Batstone et al., 2015; Mata-Alvarez et al., 2014) since there is no 
reliable strategy to unify theoretical simulations and lab-scale studies 
with full-scale application. 

It is known that kinetic constants of chemical reactions are inde-
pendent of the reactor scale (Fogler, 2005). However, Batstone et al. 
(2009) and Jensen et al. (2011) reported significant discrepancies be-
tween the first-order hydrolysis constants obtained in batch and 
continuous anaerobic digestion reactors. In anaerobic digestion, these 
differences could be attributed to the handling of heterogenous in-
fluents, which chemical and microbial composition is dynamic over 
time, different operation regimes (e.g. hydraulic and organic loading), 
and hydrodynamic differences (Sadino-Riquelme et al., 2018). Segura 
et al. (2017) introduced the idea that inhibition constants in mathe-
matical models of microbially-driven processes are not necessarily 
constant over time. Segura et al. (2017) proposed a time-dependent 
inhibition equation to model the dynamic acclimation of microalgae 
activity to ammonia inhibition. Similarly, Capson-Tojo et al. (2020) 
showed that the ammonia inhibition constant of anaerobic digesters 
depends on the archaeal community. These observations align with the 
use of semi-empirical equations to model biological systems (unlike the 
mechanistic Michaelis-Menten enzymatic model). Accordingly, the 
assumption that kinetic constants are invariant is not justified for 
semi-empirical models. 

Modelling complex systems is a common challenge in different fields 
of knowledge. Continuous-distribution kinetic models have been suc-
cessfully used to facilitate the mathematisation of complex systems. 
Kodera et al. (2000) used a continuous-distribution kinetic model to 
evaluate the kinetics of asphaltene hydrocracking at three different 
temperatures, and Yianatos et al. (2010) used the Gamma distribution 
function to model the flotation rate of minerals in flotation cells. The 
ability of the Gamma distribution function to describe the variability of 
biological kinetic constants has been reported by Haglund et al. (2012), 
who used the Gamma distribution function to describe the folding times 
of the leptin gene. The advantage of continuous-distribution kinetic 
models is their ability to simulate systems with a certain degree of sto-
chasticity including the distribution of a reaction mixture and mixing 
characteristics during the reaction (Kodera et al., 2000; Yianatos et al., 
2010). However, to the best of the authors’ knowledge, a 
continuous-distribution kinetic model has not been used to model 
microbially-driven processes. 

The combination of the first-order kinetic model (the simplest and 
most widely used kinetics to model anaerobic digestion) with the 

Gamma distribution function results in a semi-phenomenological model 
with the advantage that the first-order kinetic constant can follow a 
range of values (distribution) instead of being defined by an invariant 
value. The advantage of the Gamma distribution function over other 
distributions (e.g. Gaussian, Poisson, Weibull) relies on its capability to 
change its shape (from exponential to symmetric probability distribu-
tion) with only two parameters (i.e. λ and r) (Montgomery and Runger, 
2014). This capability is particularly interesting to model anaerobic 
digesters fed with complex substrates and/or subjected to strategies 
aiming to improve their performance such as anaerobic co-digestion or 
waste pre-treatments. The probability density functions allow studying 
the variability of kinetic constants without changing the model that 
predicts the maximum methane potential. The use of simple models with 
parameters that can follow a probability distribution is a new approach 
to model complex microbially-driven processes such as anaerobic 
digestion. 

The objective of this work is to propose a new approach to model the 
complex and diverse biochemical reactions occurring in anaerobic di-
gesters. This approach uses the first-order kinetic model, where the first- 
order kinetic constant model is redefined by adding a Gamma distri-
bution function. The goodness of fit of this approach (namely Gamma 
model) is compared with two commonly used first-order approaches: (i) 
one-step one-fraction model (namely 1k model), and (ii) one-step two- 
fraction model (namely 2k model). These three models have been tested 
on a range of biomethane potential tests results used as case study. 

2. Materials and methods 

2.1. BMP tests 

Biochemical methane potential (BMP) tests were carried out at 
mesophilic conditions following the procedure described by Angelidaki 
et al. (2009) and Holliger et al. (2016). BMP tests were performed in 
triplicate in 160 mL serum bottles sealed with butyl rubber septa and 
aluminium crimp caps. Serum bottles contained inoculum and the 
amount of substrate required to achieve an inoculum-to-substrate ratio 
(ISR) of 2 on volatile solids (VS) basis. Blank assays, containing only 
inoculum, were used to correct for the background methane production 
of the inoculum. The headspace of each bottle was flushed with 99.99% 
N2 for 1 min at 4 l/min. Finally, the bottles were placed in a 
temperature-controlled incubator set at 37 ◦C. The bottles were manu-
ally mixed by swirling before each sampling event. At each sampling 
event, the accumulated volumetric methane production was calculated 
using the headspace gas pressure and biogas composition. Methane 
yields (ml CH4/g VS) are reported as the average of the triplicates at 
standard conditions (i.e. 0 ◦C, 1 atm, and dry). BMP calculations were 
cross-validated with the OBA web application (Hafner et al., 2018). 

Ten different BMP tests using common anaerobic digestion sub-
strates have been used in this research. The substrates include (i) cattle 
manure (this study), (ii) cattle paunch waste (cattle stomach content 
comprised of partially digested feed) (this study), (iii) primary sludge 
(Peces et al., 2020), (iv) two waste activated sludge (WAS_1 and WAS_2) 
from different municipal wastewater treatment plants (Peces et al. 
(2020), this study), (v) microcrystalline cellulose tested two indepen-
dent times with inoculum from the same full-scale digester (Hafner 
et al., 2020), and (vi) a co-digestion experiment including pig manure 
mono-digestion, microalgae mono-digestion and three co-digestion 
mixtures between pig manure and microalgae (Astals et al., 2015). 

2.2. Mathematical models for anaerobic digestion 

2.2.1. One-step one-fraction first-order model (1k model) 
The biochemical conversion of an organic substrate to methane can 

be described by a single first-order kinetic model (one-step one-fraction, 
Equation (1)) (Angelidaki et al., 2009; Gavala et al., 2003; Li et al., 
2016); where k is the first-order kinetic constant (d− 1), S is the organic 
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substrate concentration (g COD/l), and t is time (d). 

Substrate (S)→Methane(B)

dS
dt

= − kS Eq. 1 

For a batch reactor, such as BMP tests, the substrate mass balance is 
shown in Equation (2). 

S= S0e− kt Eq. 2 

In BMP assays, methane production (B) is the measured variable 
instead of substrate consumption. Therefore, Equation (2) is commonly 
expressed in terms of methane production (Equation (3)). 

B(t)= αVreactor(S0 − S) Eq. 3  

where α is the yield of the volumetric methane produced by the mass of 
substrate consumed (e.g. 350 ml CH4/g COD at 0 ◦C and 1 atm), Vreactor 
is the volume of liquid phase (l), and S0 is the initial substrate concen-
tration (g COD/l). When all the substrate is consumed, Equation (3) 
expresses the maximum amount of methane that can be produced (B0) 
(Equation (4)). 

B0 = αVreactorS0 Eq. 4 

Combining Equations (2)–(4), the first-order model equation for 
methane production is obtained (Equation (5)). 

B(t)=B0
(
1 − e− kt) Eq. 5  

where B is the methane production (ml CH4/g VS), B0 is the maximum 
methane potential (ml CH4/g VS), k is the first-order kinetic constant 
(d− 1), and t is time (d). 

2.2.2. One-step two-fractions first-order model (2k model) 
Some authors have modified Equation (5) by dividing the substrate 

into two fractions, a rapidly and slowly biodegradable fraction, a.k.a. 
one-step two-fraction model (Equation (6)) (Astals et al., 2015; Gar-
cía-Gen et al., 2015; Wang et al., 2013; Weinrich et al., 2020). 

Substrate (S1 + S2)→
{

S1→Methane1
S2→Methane2

}

→Methane(B)

B(t)=B0
(
ffraction

(
1 − e− k1 t)+

(
1 − ffraction

)(
1 − e− k2 t)) Eq. 6 

In the 2k model, the substrate is characterised by two fractions 
(ffraction) and a distinct first-order kinetic constant for each fraction, i.e. 
k1 and k2. In Equation (6), B is the methane production (ml CH4/g VS), 
B0 is the maximum methane potential (ml CH4/g VS), ffraction splits the 
substrate into rapidly and slowly biodegradable fraction, k1 and k2 are 
the first-order kinetic constants for each fraction (d− 1), and t is time (d). 

2.2.3. Gamma model 
Most anaerobic digestion mathematical models consider kinetic pa-

rameters a constant value, i.e. a delta Dirac distribution (Batstone et al., 
2002; Donoso-Bravo et al., 2010; Gavala et al., 2003). For the first-order 
kinetic model, the delta Dirac distribution is written as δk-value(k-kvalue) 
(Yianatos et al., 2010). 

Equation (7) shows the general equation to express the expected 
value (mean) of a mathematical function [h(x)] for any given random 
variable (x) with a probability density function [f(x)] (Montgomery and 
Runger, 2014). For the methane production function (B) with the 
random variable as kinetic constant (k), Equation (7) is expressed as 
Equation (8). 

E[h(x)] =
∫∞

− ∞

h(x)f (x)dx Eq. 7  

E[B(k, t)]=B(t) =
∫∞

− ∞

B(k, t)f (k)dk Eq. 8 

When the kinetic constant (k) follows a Dirac distribution, the first- 
order model is obtained (Equation (9)). 

B(t)=
∫∞

− ∞

B0
(
1 − e− kt) δkvalue (k − kvalue) dk=B0

(
1 − e− kvalue t) Eq. 9 

To include a probabilistic behaviour to the first-order kinetic con-
stant, a different probability distribution must be used. Among the 
different probability distribution functions, the Gamma distribution 
function (Equation (10)) offers greater flexibility without a complex 
mathematical expression (Montgomery and Runger, 2014). The Gamma 
distribution function can approximate other probability density func-
tions depending on the values taken by its characteristic parameters (i.e. 
λ and r). 

f (x)=
λrxr− 1e− λx

Γ(r)
; x > 0 Eq. 10 

When the Gamma distribution parameters are determined, the ex-
pected value (mean) of the random variable can be calculated using 
Equation (11). In this study, the random variable is the first-order kinetic 
constant (k, units of d− 1). The variance of the first-order kinetic constant 
is calculated using Equation (12) (units of d− 2). 

E(k)=mean k =
r
λ

Eq. 11  

variance k=
r
λ2 Eq. 12 

Combining Equation (8) and the Gamma distribution function 
(Equation (10)), a new methane production model is obtained (Equation 
(13)); hereafter referred as the Gamma model. Equation (13) develop-
ment is provided in the supplementary material Note S1. 

B(t)=B0

(

1 −
(

λ
λ + t

)r)

Eq. 13 

In the Gamma model (Equation (13)), B is the methane production 
(ml CH4/g VS), B0 is the maximum methane potential (ml CH4/g VS), λ 
(d) and r (− ) are the characteristic constants of the Gamma distribution, 
and t is time (d). 

2.3. Parameters estimation 

The model parameters were obtained by the least squares method 
implemented in Matlab® (R2016a). The function lsqcurvefit using the 
‘trust-region-reflective’ optimisation algorithm was used to carry out the 
non-linear regression of the 1k model, 2k model, and Gamma model. 
This function minimises the mean squared differences between the 
experimental data and the model predictions. The function nlparci was 
used to calculate the 95% confidence interval of each parameter. This 
function retourn the confident interval using the residuals and jabobian 
matrix reported by lsqcurvefit (details about both functions are freely 
available at MathWorks webpage). The m-scripts are available in the 
supplementary data Note S2. The goodness of fit was evaluated by the 
coefficient of determination (R2), the adjusted coefficient of determi-
nation (R2

adj), and the root mean squared error (RMSE). The mean and 
variance of the Gamma distribution function are also reported (Equa-
tions (11) and (12), respectively). 
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3. Results 

3.1. Mono-digestion BMP modelling 

Fig. 1 shows the experimental cumulative methane production 
curves of the mono-digestion experiments, the methane production 

curves predicted by each model, and the probability density function of 
the first-order constant from the Gamma distribution function (Equation 
(10)). All experimental methane production curves showed an expo-
nential behaviour without lag-time, except for cellulose. Table 1 sum-
marises the estimated parameters from the 1k model, the 2k model, and 
the Gamma model. The 2k model and the Gamma model provided a 

Fig. 1. (right column) Mono-digestion cumulative methane production curves: experimental data (dots), 1k model (black line), 2k model (blue line), and Gamma 
model (orange line). (left column) Gamma distribution function. The delta Dirac distribution is plotted as an arrow. 
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Fig. 1. (continued). 

Table 1 
Model parameters and their 95% confidence interval (in brackets), and goodness of fit parameters (R2, R2

adj, RMSE) for mono-digestion BMP curves using the 1k, 2k, 
and Gamma models.   

Parameters Cattle manure Cattle paunch Primary sludge WAS_1 WAS_2 Cellulose_1 Cellulose_2 

1k model B0 (ml CH4/g VS) 271.0 (44.1) 354.9 (15.5) 436.2 (38.1) 226.2 (15.8) 252.9 (21.9) 352.2 (35.3) 340.1 (35.5) 
k (d− 1) 0.25 (0.17) 0.08 (0.01) 0.28 (0.09) 0.19 (0.04) 0.23 (0.07) 0.36 (0.13) 0.27 (0.11) 
R2 0.941 0.996 0.978 0.989 0.978 0.977 0.972 
R2

adj 0.936 0.996 0.976 0.989 0.976 0.975 0.971 
RMSE 24.92 8.76 23.25 8.11 12.41 20.81 22.13 

2k model B0 (ml CH4/g VS) 299.8 (19.6) 370.1 (14.3) 432.8 (0.1) 272.2 (237.1) 280.7 (12.8) 420.5 (7.7⋅105) 442.3 (6.0⋅109) 
ffraction (− ) 0.60 (0.12) 0.55 (0.38) 0.83 (1.2⋅107) 0.65 (0.25) 0.50 (0.09) 0.83 (1.5⋅103) 0.77 (1.1⋅107) 
k1 (d− 1) 0.54 (0.22) 0.14 (0.06) 0.28 (3.0⋅103) 0.27 (0.16) 0.53 (0.14) 0.36 (0.01) 0.27 (0.01) 
k2 (d− 1) 0.04 (0.03) 0.04 (0.03) 0.28 (1.3⋅104) 0.03 (0.15) 0.08 (0.03) 1.2⋅10− 3 (10) 0.01 (0.01) 
R2 0.998 0.999 0.977 0.997 0.999 0.977 0.972 
R2

adj 0.997 0.999 0.972 0.996 0.999 0.971 0.966 
RMSE 4.68 3.06 23.36 4.41 1.89 20.80 22.13 

Gamma model B0 (ml CH4/g VS) 339.9 (95.8) 375.2 (15.2) 436.0 (0.1) 248.8 (43.7) 324.1 (25.9) 352.0 (0.1) 340.0 (0.1) 
λ (d) 1.06 (1.44) 24.33 (14.00) 5.5⋅104 (1.9⋅108) 7.96 (13.33) 2.07 (0.09) 3.6⋅104 (1.7⋅108) 3.3⋅104 (1.9⋅108) 
r (− ) 0.44 (0.47) 2.28 (1.22) 1.5⋅104 (5.4⋅107) 1.71 (2.68) 0.62 (0.18) 1.3⋅104 (6.1⋅107) 9.1⋅103 (5.3⋅107) 
mean k (d− 1) 0.418 0.094 0.278 0.215 0.300 0.359 0.273 
variance k (d− 2) 0.395 0.004 0.001 0.027 0.145 0.001 0.001 
R2 0.996 0.999 0.978 0.996 0.999 0.977 0.971 
R2

adj 0.996 0.999 0.975 0.995 0.999 0.973 0.968 
RMSE 6.78 3.13 23.25 5.30 1.34 19.99 21.32  
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better fit of the experimental data than the 1k model as shown by the R2, 
R2

adj and RSME values. The estimated first-order kinetic constant (1k 
model) and the mean k (Gamma model) were quite similar (Table 1), 
except for cattle manure and WAS_2. This difference can be related to 
the tailing present in their methane production curves, i.e. a non- 
asymptotic deviation from the first-order exponential ideal behaviour 
(see discussion in Section 4.2). 

The Gamma distribution function of cattle manure and WAS_2 fol-
lowed an exponential distribution (Fig. 1) which is characterised by a 
large variance of the kinetic constant (Table 1). In contrast, the Gamma 
distribution function of primary sludge, cellulose_1 and cellulose_2 
approximated a delta Dirac distribution which is characterised by a 
variance of the kinetic constant close to zero (i.e. the methane produc-
tion curves display an almost ideal first-order exponential behaviour). 

For cattle paunch and WAS_1, the Gamma model approximated a log- 
normal distribution. 

3.2. Co-digestion BMP modelling 

Fig. 2 illustrates the cumulative methane production curves of pig 
manure and microalgae mono- and co-digestion as well as the proba-
bility density function of the first-order constant from the Gamma dis-
tribution function. The mono-digestion of these two substrates was 
characterised by a distinct probability density function. Pig manure 
approximated a log-normal distribution, while microalgae followed an 
exponential distribution. The probability density functions from co- 
digesting pig manure and microalgae transitioned from log-normal to 
exponential distribution as the percentage of microalgae in the mixture 

Fig. 2. (right column) Pig manure and microalgae mono- and co-digestion cumulative methane production curves: experimental data (dots), 1k model (black line), 
2k model (blue line), and Gamma model (orange line). (left column) Gamma distribution function. 

C. Da Silva et al.                                                                                                                                                                                                                                



Chemosphere 306 (2022) 135579

7

increased. The mean k of the Gamma model for the co-digestion mix-
tures progressively increased from 0.17 to 0.23 d− 1 as the percentage of 
microalgae in the mixture increased (Table 2). These values are between 
the calculated mean k from pig manure (0.15 d− 1) and microalgae (0.47 
d− 1), which shows the consistency of the Gamma model. 

4. Discussion 

4.1. Models fitting quality 

All the methane production curves modelled in this study had an R2
adj 

close to one. The R2
adj and the R2 were very similar, indicating that the 

Fig. 2. (continued). 

Table 2 
Model parameters and their 95% confidence interval (in brackets and goodness of fit parameters (R2, R2

adj, RMSE) for the pig manure (PM) and microalgae (MA) mono- 
and co-digestion BMP curves using the 1k, 2k, and Gamma models.   

Parameters Pig manure (PM) 85%PM + 15%MA 70%PM + 30%MA 50%PM + 50%MA Microalgae (MA) 

1k model B0 (ml CH4/g VS) 306.8 (16.2) 278.8 (15.6) 278.4 (14.6) 239.2 (15.1) 140.4 (12.1) 
k (d− 1) 0.14 (0.02) 0.15 (0.03) 0.16 (0.03) 0.19 (0.04) 0.31 (0.12) 
R2 0.992 0.990 0.991 0.984 0.954 
R2

adj 0.992 0.990 0.990 0.984 0.953 
RMSE 9.57 9.53 9.19 10.08 9.39 

2k model B0 (ml CH4/g VS) 358.0 (141.7) 313.2 (39.1) 311.1 (68.2) 269.6 (17.9) 164.3 (12.1) 
ffraction (− ) 0.69 (0.12) 0.66 (0.11) 0.71 (0.14) 0.66 (0.06) 0.64 (0.04) 
k1 (d− 1) 0.18 (0.05) 0.21 (0.05) 0.22 (0.07) 0.29 (0.04) 0.54 (0.04) 
k2 (d− 1) 0.02 (0.06) 0.03 (0.04) 0.03 (0.07) 0.03 (0.02) 0.03 (0.02) 
R2 0.999 0.999 0.998 0.999 0.999 
R2

adj 0.999 0.999 0.998 0.999 0.999 
RMSE 3.66 2.50 3.82 1.64 1.40 

Gamma model B0 (ml CH4/g VS) 334.4 (33.9) 308.3 (26.6) 299.2 (27.1) 268.9 (26.1) 170.3 (37.8) 
λ (d) 11.32 (11.74) 8.68 (6.61) 10.36 (11.40) 4.87 (3.72) 1.24 (1.54) 
r (− ) 1.76 (1.70) 1.47 (1.04) 1.88 (1.89) 1.13 (0.76) 0.59 (0.58) 
mean k (d− 1) 0.155 0.170 0.182 0.232 0.475 
variance k (d− 2) 0.014 0.020 0.018 0.048 0.383 
R2 0.998 0.998 0.997 0.998 0.993 
R2

adj 0.997 0.998 0.997 0.998 0.992 
RMSE 5.30 3.78 5.19 3.66 3.75  
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models were not over-parametrised (Montgomery, 2012). Therefore, the 
three models were suitable to describe the methane production of BMP 
tests. However, the highest R2 of the Gamma model (3 parameters) and 
the 2k model (4 parameters) shows that they provide a better fit of the 
experimental data than the 1k model (2 parameters). The advantage of 
the Gamma model and the 2k model is particularly evident in the 
methane production curves that showed tailing (e.g. cattle manure, 
WAS_2 and microalgae mono-digestion) since the first-order model is 
not able to follow the non-asymptotic deviation from the first-order 
exponential behaviour. This deviation causes the 1k model to underes-
timate the maximum methane potential (Figs. 1 and 2). 

4.2. Advantages of the Gamma model 

The Gamma model provides a good estimate of ultimate methane 
production (Figs. 1 and 2) regardless of the distribution of k (f(k)), a 
minimum requirement for any BMP test modelling approach. In contrast 
to the 1k model, the Gamma model and the 2k model can represent the 
tailing of the methane production curve frequently observed in BMP 
tests. However, this limitation does not apply for those substrates where 
the Gamma distribution function approximated a delta Dirac distribu-
tion (e.g. primary sludge and cellulose). A delta Dirac distribution in-
dicates that the methane production curve can be described by an ideal 
first-order model (i.e. there is no k distribution). The Gamma distribu-
tion function (Equation (10)) is not able to plot a probability function 
distribution with zero variance (i.e. delta Dirac distribution). However, 
when the Gamma function approximates a delta Dirac distribution (i) 
the mean k is very similar to the kinetic constant obtained by the 1k 
model, (ii) the variance of k is close to zero, and (iii) the λ and r pa-
rameters show large confidence intervals (see primary sludge or cellu-
lose in Table 1). The large confidence intervals make sense since the 
methane production curve is represented by a single k value. Therefore, 
one advantage of the Gamma distribution function is its ability to 
mathematically differentiate between substrates that follow an ideal 
first-order behaviour (the process is represented by a single kinetic 
constant) from those that deviate from the ideal behaviour (the process 
is represented by a kinetic constant distribution). 

Most waste are complex and heterogeneous, therefore, it is expected 
that the Gamma distribution function will not approximate a delta Dirac 
distribution. Indeed, primary sludge was the only waste that approxi-
mated a delta Dirac distribution (microcrystalline cellulose is a pure 
substrate used as a positive control in BMP tests (Holliger et al., 2016)). 
When the calculated variance is not close to zero, the Gamma distribu-
tion function does not approximate a delta Dirac distribution; instead, 
the kinetic constant follows a distribution density function. The shape of 
the Gamma distribution function varies from an exponential distribution 
(e.g. cattle manure, WAS_2, microalgae) to an approximated log-normal 
distribution (e.g. cattle paunch, WAS_1, pig manure). An exponential 
distribution indicates that the substrate comprises a wide range of ki-
netic constants from easily to slowly biodegradable, while a log-normal 
distribution indicates that there is a cluster of kinetic constants around a 
mean k value but with a marked bias. Another advantage of the Gamma 
distribution function is its capability to represent the distribution of the 
first-order kinetic constants of a waste instead of the traditional 
invariant value. This represents a new approach to characterise the 
heterogeneous degradation of organic waste during anaerobic digestion 
(Figs. 1 and 2). 

The 2k model, where the substrate degradation is defined by two 
kinetic constants, could be inferred as an in-between solution between 
the 1k model (one kinetic constant) and the Gamma model (multiple 
kinetic constants). However, the phenomenological representation of 
the 2k model is debatable when analysing the BMP results from the 
cellulose tests. The 2k model predicts that about 80% of the cellulose is 
easily biodegradable (k1) and that the other 20% is slowly biodegrad-
able (k2). However, microcrystalline cellulose is a pure substrate. 
Accordingly, the estimation that about 20% of cellulose is slowly 

biodegradable does not seem logical and it may be related to an 
improvement of the data fitting. The advantage of the 2k model relates 
to its capability to model methane production curves with tailing (e.g. 
cattle manure and microalgae) where the slowly biodegradable fraction 
is able to describe the slow but steady methane production after the first 
days. Despite its limitations, the 2k model could be used to describe the 
methane production curves of substrates where the Gamma distribution 
function follows an exponential distribution. The 2k model approxi-
mates the exponential distribution to two invariant kinetic constants, k1 
representing the easily biodegradable fraction and k2 representing the 
slowly biodegradable fraction. However, the Gamma distribution func-
tion is more flexible and represents the distribution of the first-order 
kinetic constants with higher definition. 

4.3. Consistency of the Gamma model: Co-digestion as a case study 

The Gamma model allowed a detailed evaluation of the impact of co- 
digestion on anaerobic digestion performance. The Gamma distribution 
function for pig manure and microalgae mono-digestion tests were very 
different, which facilitated studying the kinetics distribution changes 
due to co-digestion (Table 2, Fig. 2). Specifically, pig manure had a mean 
k of 0.155 d− 1 and a log-normal distribution, while microalgae had a 
mean k of 0.475 d− 1 and an exponential distribution. The mean k for the 
co-digestion tests were within the values of the mono-digestion tests 
(Table 2), which indicates that the Gamma model results are consistent. 
These results support the conclusions from Astals et al. (2015), who 
despite using a 2k model, observed that the co-digestion experiments 
could be modelled using the kinetic constants obtained from modelling 
the mono-digestion experiments (i.e. the change in degradation rate 
could be explained by the change in substrate composition). It is 
hypothesised that by analysing the shape and mean k of probability 
density distribution, the Gamma model could be used to identify mix-
tures where there is a synergistic kinetic improvement, i.e. an 
improvement of the degradation kinetics compared to the proportional 
one. 

The probability density functions (f(k)) of pig manure and micro-
algae co-digestion transitioned from log-normal to exponential distri-
bution as the percentage of microalgae in the mixture increased (Fig. 2). 
This is particularly evident in the probability density function of the 
50% manure +50% microalgae mixture, where (i) there is higher fre-
quency (f(k)) of kinetic constants closer to 0 than in the other mixtures, 
and (ii) there is a higher frequency of kinetic constants above 0.4 d− 1 

than in the other mixtures (similar to the microalgae probability density 
function). The probability density function of the 70% manure +30% 
microalgae and 85% manure +15% microalgae mixtures resembled the 
pig manure log-normal distribution, which is consistent with the higher 
percentage of pig manure in these mixtures (mixtures were performed 
on a VS basis). 

4.4. Implications of the Gamma model and future research 

The growing importance of anaerobic digestion in circular economy 
and biorefinery schemes makes anaerobic digestion modelling a valu-
able task despite its complexity. A major constraint for anaerobic 
digestion models is the inability to quantify the amount of active 
biomass for each reaction rate (van Lier et al., 2008). This constraint 
could explain the lack of reproducibility in BMP kinetics and the kinetic 
discrepancy between anaerobic digestion experiments carried out with 
different reactor types (Batstone et al., 2009; Hafner et al., 2020; Jensen 
et al., 2011). In consequence, full-scale digesters sizing is typically based 
on heuristic values such as hydraulic retention time and organic loading 
rate. Therefore, it is necessary to continue developing mathematical 
strategies that allow improving the complex task of sizing biological 
reactors. 

For the first time in the field of study, a model that considers the 
distribution of the first-order kinetic constant has been evaluated. This is 
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a new approach compared to conventional empirical and semi-empirical 
models where kinetic constants are invariant (e.g. first-order kinetics, 
Gompertz, Monod, Cone). The main advantage of the Gamma model is 
its capability to describe the distribution of the kinetic constant using a 
probability density function. Several phenomena could explain the dis-
tribution of the kinetic constant. For instance, it could be related to the 
heterogeneous composition of the substrate where each fraction is 
characterised by a different degradation kinetic constant. This distri-
bution could also be related to organic particles with the same compo-
sition but with different geometries since the observed kinetic constant 
is affected by the bioavailable surface area (Aldin et al., 2011; Elmitwalli 
et al., 2001; Levenspiel, 1999). Changes in surface area do not affect the 
maximum methane yield but they change the methane production dy-
namics (Krause et al., 2018). Finally, the distribution of the kinetic 
constant could be related to changes in microbial structure and 
composition during the BMP test (Li et al., 2015; Vrieze et al., 2015; 
Zhang et al., 2009). Lv et al. (2020) showed the dynamic behaviour of 
the microbial communities during BMP tests. The impact of the micro-
bial community in the Gamma distribution function can be observed by 
comparing the two independent BMP tests using cellulose since these 
tests were carried out with the same substrate but two different inocula. 
Both tests approximated a delta Dirac function, but the mean k was 0.36 
and 0.27 d− 1 for cellulose_1 and cellulose_2, respectively. 

The Gamma model is a novel and complementary approach to 
describe and to understand the complex biochemical degradation dy-
namics taking place during anaerobic digestion. In co-digestion experi-
ments, the distribution function allowed visualising how mixing 
substrates affects the degradation dynamics (Table 2 and Fig. 2). Simi-
larly, the Gamma model could be used to analyse the impact of other 
strategies to improve anaerobic digesters performance, e.g. pre- 
treatments, bioaugmentation, additives. Future research should inves-
tigate how to combine the Gamma model (and stochastic model) with 
the deterministic model ADM1, which is the most used model in appli-
cation and research. 

5. Conclusions 

The Gamma model (a three parameters model) was able to describe 
the variability of the first-order kinetic constant of ten BMP tests, 
including mono-digestion and co-digestion experiments. This opposes 
conventional model approaches where the kinetic constant is considered 
invariant. The Gamma distribution function can approximate three 
distinct probability density functions, i.e. exponential, log-normal, and 
delta Dirac. Specifically, (i) cattle paunch, WAS_1, and pig manure 
approximated a log-normal distribution function; (ii) cattle manure, 
WAS_2, and microalgae approximated an exponential distribution 
function, and (iii) primary sludge and cellulose approximated a delta 
Dirac distribution function. In contrast to the common first-order kinetic 
model, the Gamma model could represent the tailing of the methane 
production curve frequently observed in BMP tests. The consistency of 
Gamma model was evident when analysing pig manure and microalgae 
co-digestion BMP tests since (i) the mean k for the co-digestion tests 
were within the values of the mono-digestion tests, and (ii) the profile of 
the density function transitioned from log-normal to exponential dis-
tribution as the percentage of microalgae in the mixture increased. 
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