
Noname manuscript No.
(will be inserted by the editor)

Data-driven decision making in Critique-based
Recommenders: from a critique to social media data

David Contreras · Maria Salamó

the date of receipt and acceptance should be inserted later

Abstract In the last decade there have been a large number of proposals in
Critique-based Recommenders. They are data-driven in their nature since they
use a conversational cyclical recommendation process that elicits user feed-
back. In the literature, the proposals mainly differ in two aspects: (1) in the
source of data and how it is mined for providing recommendations to the user;
and (2) they hardly integrate previous enhancements developed in the field.
In this paper, we propose new algorithms that integrate both several sources
of data such as current user preferences (i.e., a critique), product descriptions,
past critiquing sessions of other users, and users’ opinions expressed on social
media web sites and previous enhancements on the recommendation process
such as approaches based on compatibility and weighting scores. The com-
parison of our proposals with well-known state-of-the-art approaches shows
that the new recommendation algorithms significantly outperform previous
proposals.

1 Introduction

Data-driven decision making refers to the practice of basing decisions on the
analysis of data [2,23]. By their nature, recommender systems have the abil-
ity to mine data and use it to provide even the most tentative user1 with
compelling and timely product suggestions [33,15]. These systems have dif-
ferent recommendation techniques, from collaborative filtering technique [16,

D. Contreras
Facultad de Ingenieŕıa y Arquitectura,
Universidad Arturo Prat, Chile E-mail: david.contreras@unap.cl

M. Salamó
Matemàtiques i Informàtica,
Universitat de Barcelona, Spain E-mail: maria@maia.ub.es

1 In this work, we use the term user to refer to: an e-commerce customer/shopper or a
recommender system user.

2 David Contreras, Maria Salamó

13], which compares other users with the active user and recommends items
that were liked by users with similar profiles to the active user’s profile, to
content-based technique [22], which compares the users descriptions about a
desired product against the item descriptions and recommends items that
match. Moreover, most of these recommenders systems operate in a single-
shot fashion as they present users with a single set of recommendations based
on some initial query and the process usually ends; thus the user is engaged
in a single (short-lived) interaction with the system. The single-shot strategy
is appropriate to the recommendation of simple products, but it is not so well
suited for high-risk product domains2 or to recommending in complex prod-
ucts spaces3. In these scenarios, it is more appropriate to engage the user in
a recommendation dialogue so that incremental user feedback can be used to
refine recommendations. A significant amount of the research carried out on
recommender systems has demonstrated the benefits of critique-based recom-
menders4 [28,20,27,6], as they help customers with ill-defined preferences to
both navigate through complex product spaces and to better understand their
own buying preferences.

In particular, critique-based recommenders are data-driven in their nature
as they guide users through a product space in pursuit of suitable products
using a cyclical recommendation process, alternatively making suggestions and
eliciting user feedback, to refine their needs and preferences, based on recent
recommendations. Critiquing is based on the idea that for a user is easier
to critique a product recommendation by saying “like this but cheaper” than
to construct formal queries [21]. Many different critique-based recommenders
have been proposed in the literature. One way to categorize these proposals is
according to the source of data and how it is mined to provide recommenda-
tions. Additionally, most of them never take advantage of the enhancements
(i.e., the source of data used or the process to mine the data to recommend a
product) of previous algorithms.

In this paper, our hypothesis is that some of the previous proposals may
improve their efficiency if their algorithms include new sources of data and
state-of-the-art enhancements in critique-based recommendations. With this
hypothesis in mind, the contribution of this paper is three-fold:

– First, we propose a new algorithm, called History and Opinion Recom-
mender (HOR), which integrates in the recommendation process several
sources of data such as user preferences, product descriptions, past cri-
tiquing sessions of other users, and users’ opinions expressed on social
media web sites.

– Second, we integrate some previous state-of-the-art proposals which are
based on a combination of compatibility and weighting scores in the rec-

2 In high-risk product domains, the task of locating a desired choice among a large set
of options is indeed becoming intimidating for the average customer [6] because there are
many available alternatives.

3 In complex product spaces, users require a good knowledge of the large amount of
characteristics of the products and the relationship with the different available options.

4 It is also referred to as critiquing-based recommendation in the literature.

Title Suppressed Due to Excessive Length 3

ommendation process of both our proposed algorithm (HOR) and a recent
well-known history-based recommender called History-Guided Recommen-
dation (HGR). The new algorithms will be called HOR-I and HGR-I, re-
spectively.

– Third, we carried out an exhaustive evaluation of the proposals to demon-
strate our initial hypothesis. First, our evaluation focuses on a comparison
of our proposals (i.e., the HOR, HGR-I, and HOR-I) against HGR and
the traditional Incremental Critiquing (IC) recommender. The experiments
were conducted through an off-line simulator. With these experiments it
is noted the influence of both the different sources of data (i.e., from the
critiques used in IC to the use of social media data in HOR) and the
data-driven process to recommend products. Second, we evaluate HOR-I
and HGR-I, which are the best ones in the simulator, against IC with a
real-user study in order to demonstrate our initial hypothesis with real
users. To the best of our knowledge, this is the first real-user study of
history-based recommenders. The results of our in-depth evaluation con-
firm our hypothesis and indicate that our proposals significantly improve
on the efficiency, efficacy, and user satisfaction of previous algorithms in
critique-based recommenders.

The rest of this paper is organized as follows: Section 2 presents related
work on critique-based recommenders; Section 3 describes the History and
Opinion Recommender in depth; Section 4 describes the integration of previ-
ous state-of-the-art approaches; Section 5 evaluates the efficiency of our pro-
posals through a simulator; Section 6 evaluates the efficiency, efficacy, and
user satisfaction of our proposals with real users; Finally, Section 7 presents
the conclusions and future directions of our work.

2 Related Work

Critique-based recommenders have been broadly recognized as an effective
preference-based search option using a feedback mechanism called critiquing [28,
20,27,6]. The basic idea of critiquing can be traced back to the seminal work
of the FindMe system [3]. In particular, a critique is a directional preference
over a feature of the current recommended product. An example of a critique
is “a cheaper camera”, when the price of the current recommendation is $300
implies a critique [price < $300]. Note that, in a complex decision situation,
a critique is a form of user feedback that strikes a useful balance between the
information content of the feedback and the required level of user effort or
domain expertise.

In critique-based recommenders, the most common feedback mechanisms
are unit and compound critiques. In the former, users are allowed to critique
a single feature of a product at a time [18,32], whereas in compound critiques,
each critique can be a combination of multiple unit critiques [40,31,25,20,27].
In the literature there are several studies of compound critique approaches,

4 David Contreras, Maria Salamó

such as dynamic critiquing [28], MAUT-based compound critiques [40], prefe-
rence-based organization [5,25], and Example Critiquing [26,4,38]. Consider-
ing that most of the proposed algorithms in critique-based recommenders use
unit critiques, we focus our work on analyzing and evaluating critique-based
recommenders that use a feedback mechanism based on unit critiques.

Fig. 1 Timeline of critique-based recommenders based on unit critiques.

Figure 1 shows a timeline of critique-based recommenders that use unit cri-
tiques. Concretely, the FindMe system [3] was the first unit critiquing recom-
mender, which is known as the standard critiquing (STD) (see the Foundations
square in Figure 1). STD only uses the current critique introduced by the user
to guide the user in the product search space. Later, Incremental Critiquing
(IC) [29] appeared, which increases the recommendation efficiency by means
of recording –as an additional source of data– a list of the user’s critiques dur-
ing the session. Other studies have presented weighting techniques and a set of
compatibility measures for improving the recommendation process with regard
to the foundations approaches: HCS-RL, LW-EMC, and LW-EHL [35,34] (see
the Foundations Improvements square in Figure 1). More recently, researches
have been focused on using a mechanism (called Reviewer Assistant, RA) for
mining product features [12,11] and sentiments [10] from users’ reviews with
the aim to recommend products only based on this information, but without
considering the user preferences in the recommendation (see RA and Senti-
ment in the Opinions-based Recommendation square in Figure 1). In contrast
to these, others use a new source of knowledge (users’ opinions) to enrich the
product descriptions and to define a weight for each feature of the product
in the recommendation process with the aim of improving their efficiency [7]
(see CB-per and W-per techniques in the Opinions-based Recommendations
square in Figure 1). We have not included RA, Sentiment, CB-per and W-
per in our analysis for two main reasons. First, RA and Sentiment use data
that does not bear in mind the user preferences and all the methods we will
evaluate do. In this work, we analyze critique-based recommenders that drive
data for user behavior modeling. Second, CB-per and W-per can be applied

Title Suppressed Due to Excessive Length 5

only to domains with technical and perceptive5 features. It is important to
mention that the new proposal –called HOR– presented in this work addresses
this drawback.

In the last few years, novel approaches have mainly focused on using col-
laboration among users (see the Collaborative Recommendations square in
Figure 1) or on using past critique sessions made by other users (see the
History-based Recommendations square in Figure 1).

In the former, users may collaborate online in the search for a desired prod-
uct as they are immersed in a 3D virtual environment that enhances their buy-
ing experience as well as increasing the interaction elements for eliciting user
feedback [8]. This recommender is called Collaborative Conversational Recom-
mendations (CCR). It is out of the scope of this work to analyze methods that
enable online collaboration between users as several feedback mechanisms can
be used and we are only evaluating those that use critiquing. Nonetheless it
would be interesting to do in some future work.

In the second approach, researches focused on reusing past critiquing ses-
sions from other users as a source of data called history to improve recommen-
dation efficiency. For instance, Experience-Based Critiquing (EBC) [19] uses
the critiquing experiences of other users as a new source of knowledge during
the critiquing process. EBC selects from these critiquing histories the final
accepted products as recommendation candidates (i.e., similar sessions to the
current recommendation session). In EBC, a past critiquing session can be se-
lected if its critiques sufficiently overlap with the critiques so far in the current
session. Another approach, called Nearest Neighbor Compatibility critiquing
(NNC) [17] adopts the approach of EBC but the recommendation candidates
can be the intermediate cases of a session and not necessarily the final pur-
chase decision. Another approach proposed is History-Aware Critiquing-based
conversational recommendation (HAC) [36], in which a past critiquing session
can be selected if it contains similar recommended items to the ones in the
current session and its critiques sufficiently overlap with the critiques so far in
the current session. Later, an improvement of HAC, called the History-Guided
Recommendation (HGR) [37] technique was presented, which uses the pair rec-
ommended product and critique for obtaining similar sessions to the current
recommendation session. In HGR, a past critiquing session can be selected
if its recommendation-critique pairs sufficiently overlap with the ones so far
in the current session. Among all the proposed History-based recommenders,
HGR outperforms the aforementioned recommenders, as denoted in [37]. In
fact, we also did a complete evaluation of all the history-based recommenders
and our results corroborate that HGR in all datasets performed the best.

5 A perceptive feature is a feature that provides an immediate and intuitive recognition
or appreciation of the qualities of a product. For example, in the SMARTPHONE domain,
performance is a perceptive feature that intuitively includes more than one of the technical
features of a product (e.g., storage, RAM, or CPU).

6 David Contreras, Maria Salamó

3 History and Opinion Recommender

We present here a new recommender called History and Opinion Recommender
(HOR), which apart from using other users’ histories of sessions it also inte-
grates as a source of data opinions extracted from e-commerce social media
sites. Next, we define formally the data structures, we present the conceptual
recommendation process and we define in depth the algorithm.

3.1 Definitions

We define all data structures involved in HOR: the case base, the session base,
and the opinion base. In addition, we formally define the user model and what
a critique is in our algorithm.

Definition 1 Case Base. The case base, CB, is a set of products for recom-
mendation, described as CB = {p1, ..., pn}, where pi is the ith product and
the set of features that describes each product is defined as F = {f1, ..., fm}.

We denote a particular feature fs of a case pi as pfsi . For example, pf1i and pf2i
refer to the first and the second features in case pi, respectively.

Definition 2 Session Base. The session base, SB, is a data set of past
critiquing sessions from other users defined as SB = {s1, ..., sl}, where si is a
sequence of recommendation-critique pairs (ri, ci) and each session finishes in
a terminal product, noted by term(si).

Definition 3 Opinion Base. The opinion base, OB, is a set of product
opinions defined as OB = {op1, ..., opn}, where opi is a set of users’ opinions
ui about the ith product obtained from the users through several methods
(e.g., explicit ratings, users reviews, or textual opinions, among others). In
this paper, we concentrate on explicit ratings. Accordinly, each ui is an explicit
rating and the term oi is the average of the opinions’ rating for each product.
Nonetheless, we will consider the use of other sources of social media data in
a future work.

Definition 4 User Model. The user model, U , is a set of recommendation-
critique pairs, defined as U = {u1, ..., uk}, where ui = (ri, ci) is a particular
recommendation-critique pair with ri representing the recommended product
and ci representing the critique (see Definition 5) applied to ri.

Definition 5 Critique. A critique ci, is represented as a triple (fi, typei, vi),
where fi refers to a feature of the recommended product, ri, typei is the type
of the critique ci (i.e., typically <, >, <>), and vi is the current value of fi.

Critiques typically take the form of directional or replacement prefer-
ences [20]. A directional critique effects an increase or decrease in the value
of a numerical feature (i.e., greater or lower than current value). For example,

Title Suppressed Due to Excessive Length 7

“a cheaper camera”, when the price of the current recommendation is $300,
implies a critique (price,<, $300). On the other hand, a replacement critique
substitutes any value (i.e., aside from the critiqued value) for a non-numeric
feature. For example, in a camera domain, (manufacturer,<>, Sony) repre-
sents the user critique “I do not like Sony cameras”.

3.2 HOR Conceptual Recommendation Process

Our proposal uses different sources of data to mine user’s preferences in or-
der to recommend products. On the one hand, HOR stores a history of past
sessions in the session base (see SB in Figure 2), and maintains the current
recommendation session of the user in the user model, shown as U in Figure 2.
On the other hand, HOR maintains the opinion base, OB, which contains ex-
plicit ratings described by the users in an e-commerce social media site (see
OB in Figure 2), and uses the set of products for providing recommendations,
described as CB in Figure 2. Next, we describe the HOR recommendation
process, which is illustrated on the right side of Figure 2.

Fig. 2 HOR conceptual recommendation

First, the recommender identifies a set of relevant sessions based on over-
lapping computation (see letter a in Figure 2), which are history sessions in
the SB that overlap with the user’s current partial critique session, U . To do
so, we first compute the overlap score. The relevant sessions are those that
contain an overlap score greater than zero. In particular, we use the overlap
score defined in [37], described in Equations 1 and 3. In Equation 1, we com-
pute the number of recommendation pairs, ri, ci (recommended product and
critique) in the user model U , that are also present in each past session si.
The matchPair measure is computed as shown in Equation 2.

OverlapPair(U, si) =
∑

∀(ri,ci)∈U

∑
∀(rj ,cj)∈si

matchPair((ri, ci), (rj , cj)) (1)

8 David Contreras, Maria Salamó

matchPair((ri, ci), (rj , cj)) =

{
1 if (ri = rj) and (ci = cj),
0 otherwise

(2)

When there are no overlapped pairs using Equation 1 we compute, using Equa-
tion 3, the number of critiques (i.e., without considering recommended prod-
ucts) in the user model U , which are also present in each past critiquing session,
si. This method has been used in previous studies with satisfactory results,
such as [19]. The matchCritique measure is computed as shown in Equation 4.

OverlapCritique(U, si) =
∑
∀(ci)∈U

∑
∀(cj)∈si

matchCritique(ci, cj) (3)

matchCritique(ci, cj) =

{
1 if ci = cj ,
0 otherwise

(4)

Second, we analyze the set of relevant sessions obtained in the initial step,
depicted with letter a in Figure 2. On the one hand, if there are relevant
sessions, we rank candidates for the next recommendation (see letter b in Fig-
ure 2). Concretely, each relevant session terminates with an accepted recom-
mendation, term(si) (i.e., a recommendation candidate product in HOR) that
may be associated with more than one relevant session. We store candidates
in a list, rF , and compute a score for each of them. We compute the candidate
score based on both the score of the relevant session where it is an accepted rec-
ommendation, and the average opinion, oi, rating over the candidate product
stored in the Opinion Base, OB. On the other hand, if there are not relevant
sessions we revert to the Incremental Critiquing recommender [29], see letter
c in Figure 2. Finally, the best ranked product, pr, which is obtained using rF
or a critiquing algorithm, is recommended to the user. The full information of
the recommended product is obtained from the case base, CB.

3.3 HOR Algorithm

The History and Opinion Recommender (HOR) is described in Algorithm 1
(see lines 1-12). The algorithm receives the initial product query pq, from a
user and the data for recommending products to the user: the case base, the
session base, and the opinion base, denoted as CB, SB, and OB, respectively.
Note that at the beginning, no critique has yet been provided by the user
and the user model is just initialized (see lines 3 and 4). Next, HOR starts a
cycle that contains 4 phases (see lines 7-10): Recommend Item, User Review,
Query Revise, and Update Model. This cycle is repeated until the user accepts a
product recommendation or explicitly abandons the process. Next, we describe
in depth each phase of Algorithm 1 in Algorithm 2.

In detail, the first phase RecommendItem (see lines 1-15 in Algorithm 2)
is devoted to recommending a new product pr to the user from the case base
CB. This recommendation is based on: the current query pq, past critiquing

Title Suppressed Due to Excessive Length 9

Input: pq : product query, CB: case base, SB: session base, OB: opinion base
1 define HistoryOpinionRecommender (pq , CB, SB, OB)
2 begin
3 Ucq ← null // current critique
4 U ← null // user model
5 repeat
6 // pr: product recommendation
7 pr ← RecommendItem(pq , CB, U , SB, OB)
8 Ucq , CB ← UserReview(pr, CB)
9 pq ← QueryRevise(pr)

10 U ← UpdateModel(U , Ucq , pr)

11 until UserAccepts(pr) or UserAbandon()

12 end

Algorithm 1: History Opinion Recommender Algorithm

sessions of other users SB, other users opinions OB, and considering previous
recommendation-critiques pairs, if there are any stored in the user model U .

The RecommendItem procedure uses the user’s current (partial) critique
session, (r1, c1), ...(rm, cm), stored in the user model U , over the past critiquing
sessions stored in SB, in order to identify a set of relevant sessions, SREL as
shown in the RelevantSessions procedure in lines 16-29. A relevant session is
a past session into SB that at least has some overlap (an overlap score > 0)
with the current user model based on a particular overlap metric. To do so,
we evaluate first of all the overlap using the recommendation-critique pairs.
That is, product and critique in SB that are also present in the user model
(see line 19 and Equation 1). If the OverlapPair score results in an empty
set (i.e., there are not relevant sessions), we evaluate the overlap score only
considering the critiques (see line 21 and Equation 3). Each relevant session
terminates with a terminal and accepted product recommendation term(si)
and it also contains its overlap score, previously computed by means of Equa-
tion 1 or Equation 3. If we obtain relevant sessions from OverlapPair or
OverlapCritique (see line 23), we then filter out incompatible recommenda-
tion candidates, term(si). That is, for each relevant session we eliminate those
products term(si) that fail to satisfy the user model U (see lines 24-26).

Then, the RelevantSessions procedure returns a set of past relevant ses-
sions, SREL (see line 3). When SREL is not empty, the HOR algorithm rec-
ommends an accepted product from SREL (see lines 5-7). Specifically, in line 5
relevant sessions are sorted out in decreasing RecScore (see Equation 5). Next,
we extract the terminal product from each relevant session and it is added to
rF , which is a ranked list of recommendation candidates (see line 6). Finally,
the new recommendation product pr is the top of rF (see line 7).

RecScore(U, si, oj) = α ·OverlapScore(U, si) + (1− α) · oj (5)

Equation 5 averages, with the α parameter, the OverlapScore (computed using
Equations 1 or 3) and the opinion rating oj ∈ OB of the terminal product
pj (i.e., the accepted recommendation in si, pj = term(si)). Note that α is a
parameter that controls the relative weight of the overlap score of the products
and the users’ opinions.

10 David Contreras, Maria Salamó

1 define RecommendItem(pq , CB, U , SB, OB)
2 begin

3 SREL ← RelevantSessions(U, SB)

4 if SREL 6= null then

5 SREL ← sort si ∈SREL in decreasing RecScore(U, si, oj) //see Equation 5

6 rF ← store pj = term(si)/si ∈ SREL

7 pr ← getTopRanked(rF)

8 else
9 Ucq ← getLastCritique(U)

10 CB′ ← {p ∈ CB|δ(p, Ucq)}
11 CB′ ← sort all pi ∈ CB′ in decreasing Q(pi, pq, U) //see Equation 6

12 pr ← most quality product in CB′

13 end
14 return pr
15 end
16 define RelevantSessions (U , SB)
17 begin

18 SREL ← null

19 SREL ← {si ∈ SB : OverlapPair(U, si)>0} //see Equation 1

20 if SREL == null then

21 SREL ← {si ∈ SB : OverlapCritique(U, si)>0} //see Equation 3
22 end

23 if SREL 6= null then

24 for si ∈ SREL do

25 SREL ← SREL− contradict (term(si), U)
26 end

27 end

28 return SREL

29 end
30 define UserReview (pr, CB)
31 begin
32 Ucq ← user critique for some f ∈ pr
33 CB ← CB − pr
34 return Ucq , CB

35 end
36 define QueryRevise (pr)
37 begin
38 pq ← pr
39 return pq

40 end
41 define UpdateModel (U , Ucq , pr)
42 begin
43 U ← U− contradict (U , Ucq , pr)
44 U ← U− refine (U , Ucq , pr)
45 U ← U∪ (< pr,Ucq >)
46 return U

47 end

Algorithm 2: Procedures of HOR

When SREL is empty (i.e., there are no relevant sessions and, hence, no
candidates to recommend, see line 8), we revert to the incremental critiquing
recommendation. To do so, we first of all obtain the last critique, Ucq, with the
getLastCritique procedure from the user model U (see line 9). Once obtained
the last critique, we filter out in CB′ all the products from CB that satisfy this
critique (see line 10). In particular, the satisfaction measure δ(p, Ucq) (see line
10) returns 1 if case pi satisfies the critique Ucq or 0 otherwise. If no critique
has been performed, all the case base is considered (i.e., CB′ ← CB). Next,
we sort out all candidate products from CB′ in decreasing order, based on the
quality score Q (shown in line 11). The quality score combines the compatibility
and similarity measure as shown in Equation 6:

Q(pi, pq, U) = β · Cpi(U) + (1− β) · S(pi, pq) (6)

where pi is the ith candidate product, pq is the current recommended product,
Cpi is the compatibility score that essentially represents the percentage of

Title Suppressed Due to Excessive Length 11

critiques in the user model that the candidate product pi satisfies, S is the
similarity function based on an Euclidean distance (i.e., the similarity between
the candidate product pi and the current recommended product pq), and β
is a parameter that prioritizes the compatibility or the similarity measure.

In particular, the compatibility score is defined as Cpi(U) =
∑|U|

j=1 δ(pi,uj)

|U | ,

where pi is the candidate product given an individual user model (U), δ is the
satisfaction function, and |U | is the number of recommendation-critique pairs
in U . Finally, the new recommendation product pr is the candidate product
with the most quality (see line 12).

In the second phase, UserReview (see lines 30-35), the user reviews the
recommendation by introducing a critique. HOR performs two steps: (1) it
receives feedback from the user in the form of a critique, see line 32; and (2)
it removes current product recommendation, pr, from the case base, CB, see
line 33. At the end, this phase returns the case base and the critique.

The third phase, QueryRevise (see lines 36-40), is focused on the revi-
sion of the product query pq for the next cycle. Basically, the current product
recommendation pr becomes the new product query, pq.

Finally, the UpdateModel phase (see lines 41-47) stores both the prod-
uct recommendation pr and the current user critique Ucq in the user model
U . Maintaining a user model is not as simple as storing a list of previously se-
lected recommendation-critique pair. Some critiques may be inconsistent with
earlier critiques. Hence, HOR assumes that users may refine their requirements
over time because they are learning about the product space during the rec-
ommendation process. In this way, it is essential to update the user model
by adding the latest recommendation-critique pair ({pr, Ucq}), if there is one,
but only after pruning previous critiques so as to eliminate these sorts of in-
consistencies. Pruning means removing all existing recommendation-critique
pair whose critique contradict the latest critique, Ucq (see line 43) and those
for which the new critique is a refinement (see line 44). The contradict pro-
cedure (see line 43) removes any recommendation-critique pair where the cri-
tique contradicts the current critique Ucq. For example, in a camera domain,
if the user model U contains a recommendation-critique pair ({Canon700D,
(price,<, $300)})6 and the user performs the critique (price,>, $400) (i.e., the
current critique, Ucq) over the current recommendation NikonD3300 (pr), the
recommendation-critique pair that contains the critique (price,<, $300) will
be removed as their critique contradicts the current critique, Ucq. Addition-
ally, the refine procedure (see line 44) reformulates those recommendation-
critique pairs for which the new critique is a refinement. For example, consid-
ering the previous example, when the user model contains a recommendation-
critique pair ({Canon700D,(price,<, $300)}). Then, the user performs a cri-
tique (price,<, $200) over the current recommendation NikonD3300. In this
case, the recommendation-critique pair ({Canon700D,(price,<, $300)}) will
be refined to ({NikonD3300,(price,<, $200)}).

6 To simplify the example, we only show the name of the model of the recommended
product ri, but the pair contains all features of the product.

12 David Contreras, Maria Salamó

4 Integrating State-of-the-art Approaches

In this paper we propose to integrate users’ opinions with history recommen-
dations. However, we believe that our proposal (HOR) as well as previous
history-based recommenders may improve their recommendation process by
adding previous advances in critique-based recommendations. We have cho-
sen HGR [37] as it outperforms previous history-based recommenders defined
in the literature (see Figure 1). Therefore, we propose to integrate HOR and
HGR with previous state-of-the-art approaches. The new algorithms will be
called HOR-I and HGR-I, respectively.

Concretely, we focus on the RecommendItem phase when relevant ses-
sions are not found in the history session base (see line 8 in Algorithm 2). In
this situation, HOR and HGR concretely revert to Incremental Critiquing al-
gorithm, shown in the Foundations square in Figure 1. Instead, we propose to
revert to an adapted incremental critiquing algorithm, which modifies the qual-
ity measure Q described in Equation 6. This adapted incremental critiquing
belongs to the Foundations Improvements square in Figure 1. Specifically, we
integrate into the recommendation process a weighting scheme for the simi-
larity measure in Q, called Local User Preference Weighting (LW) [35], and a
new compatibility measure in Q, named Exponential Hit-Loss (EHL) [34]. It
has been demonstrated that these two proposals (i.e., LW and EHL) signif-
icantly improve the recommendation efficiency of the incremental critiquing
algorithm [34].

First, for the similarity measure, we propose to integrate the LW approach
whose aim is to prioritize the similarity of those features that have not yet been
critiqued during a given session. The rationale behind LW is that the most
compatible (see Equation 6) cases are quite similar on their critiqued features
and their differences mainly belong to those features that have not yet been
critiqued. In this way, a feature that has not been critiqued will assume a
weight value of 1.0, and a decrease will be applied when a critique is satisfied
by the product. In particular, we compute the similarity as follows:

S(pi, pq) =

|F |∑
s=1

w(pfsi) · d(pfsi , p
fs
q) (7)

where w(pfsi) is the weight associated to the feature, fs, of the candidate prod-

uct, pi, and d(pfsi , p
fs
q) is the distance between the candidate product, pi, and

the current recommended product pq (the product query). The distance mea-

sure, d(pfsi , p
fs
q) is the Euclidean measure between the current recommendation

and the candidate product.

Second, for the compatibility measure, in other studies, it has been demon-
strated that the use of Reinforcement Learning (RL) in the compatibility en-
hances the retrieval in IC. Specifically, we propose to use Exponential Hit-Loss
(EHL), which considers that users increase their knowledge over cycles and,
accordingly, their last preferences are more important to be satisfied than their

Title Suppressed Due to Excessive Length 13

initial ones. Concretely, the EHL compatibility, it is defined as:

Cpit =

{
Cpit−1 · (1 + α)(ht+t)k, if Rpit = 1
Cpit−1 · (1− α)(`t+t)k, if Rpit = 0

(8)

where ht and `t are the number of times that candidate product pi has satis-
fied (hit) or not (loss) the critiques to time t, respectively (for each product
in the data set these values are initialized to zero at time t=0), and k is a
regularization factor (fixed to k = 1

2 in our experiments, as it was described
in [34]). The regularization parameter k is utilized to change the influence of
the exponent factor depending on the objective of the application and the size
of the data set in terms of products and features.

5 Evaluation through a Simulator

In this section we report experiments with simulated users with the aim of eval-
uating the efficiency of our proposals (HOR, HOR-I, and HGR-I). We compare
them to two related baseline algorithms, IC and HGR. Specifically, we concen-
trate on five different recommenders: (1) Incremental Critiquing (IC); (2) the
History-Guided Recommender (HGR); (3) HGR, which integrates previous
improvements (HGR-I); (4) the History and Opinion Recommender (HOR);
and (5) HOR, which also integrates previous improvements (HOR-I).

5.1 Data sets and Methodology

In our experiments we used two datasets: smartphone7 and restaurant8.
The details of the data sets are shown in Table 1, the smallest being the
smartphone data set with 1721 products. All data sets contain nominal and
ordinal features. For example, in the smartphone data set, the manufacturer
is a nominal feature and the price is one of the ordinal features.

Table 1 Data Sets Characteristics

Data set Products Nominal features Ordinal features

smartphone 1721 5 9
restaurant 9945 25 14

Similarly to previous history-based works, we adopted the methodology
used in [19,36,37] to automatically generate past critiquing sessions based on
the behavior of rational users. Specifically, we select a random product as our
target. From this target we automatically create a query, by selecting from
3 up to 5 features from the target at random, which acts as a starting point
for each session. Each sessions begins by the recommender retrieving a best-
matching product for the query. From here the artificial user must select a

7 This data set is available on demand.
8 This data set has been used in [37] and it was kindly provided by the authors.

14 David Contreras, Maria Salamó

feature to critique. To do this artificial behavior we automatically select one
of the features of the recommended product and critique it in the direction
of the target product. Each session terminates once the target product has
been recommended. This process can be repeated for generating an arbitrary
number of past critiquing sessions. Concretely, we generated five session bases
with different sizes for each domain (see the column Session Bases in Table 2).
Additionally, we divided both data sets into several subsets to evaluate the
recommendation algorithms in search spaces of different sizes, as shown at
third column in Table 2.

Table 2 Data sets configuration for the experiments

Data set Session Bases Search Spaces

smartphone 500, 1000, 3000, 5000, and 10000 1000, 1300, and 1721
restaurant 500, 1000, 3000, 5000, and 10000 6000, 8000, and 9945

In our evaluation, we also used the leave-one-out methodology previously
used in [29,34], which takes a set of products randomly selected from the search
space (original base) and uses each of them as a test case. Each selected test
case is temporarily removed from the data set and used in two ways. First,
the test case serves as a basis for generating a set of (simulated) initial user
queries, initial queries set, by taking random subsets of its features. Second,
the test case is used to select, from the original base, the case that is most
similar to it. This case represents the recommendation target product for the
experiments. That is, the product that the simulator’s “artificial user” reaches
through a series of (random) critiques. A set of random critiques is generated
in each recommendation cycle and they are all compatible with the known
target case. The “artificial user” randomly selects one of the critiques from
this set. Thus, when the remaining set of cases are filtered according to the
last critique selected randomly by the “artificial user”, it results in the target
case being left in the filtered set of cases. In addition, we used three type of
initial queries (i.e., hard, moderate, and easy), by selecting one, three or five
features respectively from a random target product, which act as a starting
point for each evaluated session [30,34].

Finally, we set up the α parameter as α = 0.6 in the OverlapScore measure
(see Equation 5), based on better results in our empirical experiments with
several α values. In addition, the β parameter in Equation 6 is set to 0.75
based on previous empirical experiments [29], with the aim to prioritize the
candidate product that satisfy the current critique.

5.2 Experimental Results

In this section, we will begin by analyzing the recommendation efficiency of
all algorithms by means of the average session length ASL9 (from now on

9 The session length measures the number of cycles that a user must work through before
being presented with their ideal target product.

Title Suppressed Due to Excessive Length 15

ASL) and then we will evaluate the benefit10 of the algorithms (i.e., HGR,
HGR-I, HOR, and HOR-I) in comparison to the IC algorithm, which is used
as baseline. It is important to remark that the ASL measure has been widely
used in evaluations of critique-based recommenders, such as [29,34,36,39].

First, in Figure 3 we present several figures with the results of analyzing
the ASL to reach a target of algorithms with different size of session base in
relation to the size of the search space for both smartphone and restaurant
domains. In these figures, each of the lines shows the average of ASL obtained
in all the queries (hard, moderate, and easy) for each particular algorithm
described above. It is important to recall that IC does not make use of past
critiquing sessions from other users. For this reason, its results are the same
for all session bases.

In Figures 3(a), 3(c), and 3(e), we show the results using 1721, 1300, and
1000 smartphones as a case base of products, respectively. This case base is
the search space where users are looking for their desired product. The largest
the case base, the more difficult to locate a product. Note in Figure 3(a), that
is the largest case base, with 1721 smartphones, the IC algorithm reached an
ASL of 13.96 whereas HGR, HGR-I, HOR, and HOR-I achieved the best re-
sults when increasing the history-session base size (i.e., 10000), obtaining in
a history-session base of 10000 an ASL of 10.51, 9.63, 9.18, and 8.64, respec-
tively. Moreover, in Figures 3(c) and 3(e), that we used a case base of 1300
and 1000 smartphones, the best results were also for the largest history-session
base. Thus showing that the larger the history-session base, the more chances
the recommender for finding sessions that are similar to the current session.
Specifically, in Figure 3(c) IC achieves 12.48 cycles while in contrast HGR,
HGR-I, HOR, and HOR-I achieve an ASL of 10.42, 9.08, 8.97, and 8.67, re-
spectively. Finally, in Figure 3(e) for the smallest case base, which contains
only 1000 products, the ASL of IC was 11.47 and the other algorithms results
in an ASL of 8.92 in the case of HGR, 7.98 for HGR-I, 7.88 for HOR, and 7.58
in HOR-I.

In Figures 3(b), 3(d), and 3(f), we show the results using 9945, 8000, and
6000 restaurants as a case base of products. Note that the search space of this
data set is larger than the smartphone data set, in which the largest case
base size is 1721 smartphones. In the restaurant data set, IC reaches an
ASL of 18.81, 18.10, and 17.57 for each size of the case base (i.e., 9945, 8000,
and 6000), respectively. Furthermore, in this data set the best results were
also for the largest history-session base as in the smartphone data set. As we
can see in Figure 3(b) HGR, HGR-I, HOR, and HOR-I achieve an averaged
ASL of 14.02, 13.55, 12.08, and 11.68, respectively. These results are better
than the ones obtained with IC. In Figure 3(d), which shows the results for
the medium case base size, HGR, HGR-I, HOR, and HOR-I obtain an ASL
of 13.94, 13.44, 12.40, and 11.50. Finally, in Figure 3(f) for the smallest case

10 We computed the percentage of benefit as Benefit(x, y) = (1− y
x

) · 100, where y and x
stand for the ASL of the compared algorithm and the base line, respectively.

16 David Contreras, Maria Salamó

(a) Using 1721 smartphones (b) Using 9945 restaurants

(c) Using 1300 smartphones (d) Using 8000 restaurants

(e) Using 1000 smartphones (f) Using 6000 restaurants

Fig. 3 The ASL of the proposed algorithms compared to IC and HGR algorithms in a
smartphone and restaurant domains

base the ASL is 13.03 for HGR, is 11.80 for HGR-I, is 10.72 for HOR, and is
10.66 for HOR-I.

Analyzing the results in both data sets we can observe that the curve of
our proposals (i.e., the HOR algorithm and the ones that integrate previous
improvements —the HOR-I and the HGR-I algorithms) are less dependent of
the size of history-session base than HGR. Note that in all graphs depicted in
Figure 3 the ASL is lower in our proposals (HOR, HOR-I, and HGR-I) than
in IC and HGR. Moreover, our proposals result in the greatest reduction of
the ASL for the largest history-session bases.

Secondly, we will address attention to the benefit of history-based algo-
rithms in comparison to the baseline IC algorithm. Figure 4 shows the average
benefit of the defined algorithms in comparison to the IC algorithm using dif-
ferent history-session base sizes –i.e., from 500 to 10000 sessions– for both
smartphone and restaurant data sets as well as the benefit of the defined

Title Suppressed Due to Excessive Length 17

(a) smartphone case base (b) restaurant case base

Fig. 4 Benefits of our proposals in comparison to the IC algorithm

algorithms using each type of query (i.e., hard, moderate, and easy). First of
all, analyzing both data sets, it can be seen that the benefit depends on the
size of the history-session base (i.e., the benefit is the greatest for the largest
history-session base) and it also depends on the type of the query. For example,
in most of cases, easy queries obtained the greatest benefit.

Analyzing each of the algorithms in depth, as shown in Figure 4(a), the
greatest benefit is obtained by the HOR-I algorithm with a benefit of between
20% and 41%. Moreover, HOR obtained a benefit in the range of 18% and
37% whereas the benefit obtained by HGR-I ranges from 16% to 34% in com-
parison to IC. Using the restaurant case base we obtained similar results to
the smartphone data set. As we can see in Figure 4(b), HOR obtained good
benefits, which are in the range of 23% to 37%. It is worth noting that the
benefit in recommendation efficiency is also improved when integrating previ-
ous techniques, such as LW and EHL with HGR. That is, HGR-I achieved a
percentage of benefit over IC that ranges from 18% to 32%, while in contrast
HGR obtained a benefit of between 14% and 27%. The same applies to HOR-I,
which obtained a benefit in the range of 25% to 41%.

We also analyzed how often the history-based recommenders are unable to
find relevant sessions from the session base (SB) and, thus, revert back to the
Incremental Critiquing algorithm. In our experiments, both HGR and HOR
algorithms revert to IC the same number of times that HGR-I and HOR-I,
respectively. In the smartphone domain, with a sessions base of size 500,
HGR-I reverts with a 52% of times to the improved IC algorithm. Reversions
decreases until 1.7% at the largest session base size. In the case of HOR-I al-
gorithm, it reverts to the improved IC algorithm in 45% of occasions with 500
history sessions and this value is reduced to 1.2% with 10000 past critiquing
sessions. In the restaurant domain, we obtained similar results, HGR-I re-
verts to the critiquing algorithm in 46% of occasions using 500 history sessions
and this percentage is decreased until 0.8% for a history session base of size
10000. In the case of HOR-I algorithm, it reverts in 40.2% and 0.7% of in-
stances using 500 and 10000 past critiquing sessions, respectively.

To sum up, the results highlight that the benefit in recommendation effi-
ciency of all our proposals (i.e., the HOR algorithm and the ones that integrate
previous improvements —the HOR-I and HGR-I algorithms) are greater than

18 David Contreras, Maria Salamó

the IC and HGR algorithms, using both the smartphone and restaurant
case bases. This suggests that our initial hypothesis in this paper is true.
Recall that the hypothesis was that the integration of some of the previous
proposals in state-of-the-art of critique-based recommendation may improve
their performance.

Additionally, in order to demonstrate that the hypothesis about the in-
tegration of previous proposals significantly outperforms previous algorithms,
we apply the Friedman and Nemenyi tests [14] to analyze whether the differ-
ence between the tested algorithms and the baseline is statistically significant
in both data sets. These tests, as stated by [9], are specialized procedures
for testing the significance of differences between multiple means and they
also control the multiple hypothesis testing problem that is usually present in
a pair t-test. For this reason, given that we are testing multiple11 recom-
mender systems, the use of Friedman and its corresponding Nemenyi post-hoc
test is more appropriate.

First of all, we compute the mean rank (r) of each algorithm considering
all the experiments. In particular, the evaluation considers k = 5 algorithms
(i.e., IC, HGR, HOR, HOR-I, and HGR-I) and N = 45 different experiments
for each test. The experiments depend on three different case base sizes, three
different queries (i.e., hard, moderate, and easy), and five different history-
session bases. We ranked alternative algorithms, for each experiment, following
the practice of [14]. The one that attains the best performance is ranked 1,
the second best ranked 2, so on and so forth. Then, an algorithm’s mean rank
is obtained by averaging its rank across all experiments.

Secondly, we apply the Friedman and Nemenyi tests to analyze whether
the difference between algorithms is statistically significant. In particular, we
applied the Friedman test, FF is distributed according to the F distribution
with (5− 1) = 4 and (5− 1) · (45− 1) = 176 degrees of freedom. The critical
value of F (4, 176) is equal to 2.42 at the 0.05 critical value. For our efficiency
comparison we obtained the values of XF= 145.65 and FF = 186.58 for the
efficiency rankings. As the value of FF is higher than 2.42 we rejected the
null hypothesis. Once we have checked for the non-randomness of the results,
we computed the Nemenyi test to find out which algorithms are significantly
different. In our case, when comparing five algorithms with a critical value
α = 0.05, q0.05 = 2.569 for a two-tailed Nemenyi test. We obtained a critical
difference value CD = 0.699. The Nemenyi results are shown in Figures 5(a)
and 5(b), for the smartphone and restaurant data sets, respectively. In
these graphs, diamonds represent the mean ranks of each algorithm and verti-
cal lines across diamonds indicate the ‘critical difference’, CD. Basically, the
efficiency of two algorithms is significantly different if their vertical lines are
not overlapping. For example, it can be seen that in both domains all tested
algorithms are significantly better than the baseline (IC). In fact, the best al-
gorithm (i.e., the one with the shortest mean rank) is HOR-I, which is better

11 It is considered multiple five or more algorithms.

Title Suppressed Due to Excessive Length 19

than the others. In addition, we can see that our proposals –HGR-I, HOR,
and HOR-I– are also significantly better than HGR with a confidence of 95%.

(a) smartphone case base (b) restaurant case base

Fig. 5 Application of the Nemenyi test to alternative algorithms’ mean rank of ASL

In summary, from our significance analysis, we conclude that: (1) HOR
algorithm is significantly better than IC and HGR; and (2) the integration
of previous improvements on the field of critique-based recommenders, HGR-
I and HOR-I, enhances significantly the recommendation efficiency of well-
known state-of-the-art algorithms (IC and HGR), which confirms our initial
hypothesis.

6 Real-user evaluation

Considering that the results with the simulator has shown that the best al-
gorithms are respectively HOR-I and HGR-I, in this section, we evaluate the
efficiency, efficacy, and user satisfaction of these proposals in comparison to the
IC algorithm, with real users. History-based recommenders have been always
evaluated with a simulator. To the best of our knowledge, this is the first time
history-based recommenders have been evaluated with real users.

6.1 Methodology

We developed a wizard-like online web application12 that contains all instruc-
tions, interfaces and questionnaires so that participants could remotely per-
form the evaluation. The experiment was designed as a between-subject test.
That is, a participant only evaluates a couple of algorithms and for each algo-
rithm the participant is asked to fill in a post-test questionnaire. We recruited
50 participants, diverse in features such as age, gender, and computer skills.
The test was performed using the smartphone data set, which is detailed in
Table 1. In addition, we used as SB the largest session base with 10000 past
critiquing sessions obtained from the simulator.

The online evaluation procedure consists of the following phases:

12 The application is available in http://164.77.134.92:8081/WebRec/signin.htm

20 David Contreras, Maria Salamó

1. Pre-test: In this phase participants were asked to input their background
information and their previous experience with recommender systems.

2. Training: In this phase participants performed a training task where they
had to find a predefined target product, which was randomly selected from
the case base.

3. Efficiency Test: In this phase users performed two tasks with a predefined
target product with the aim of evaluating the recommendation efficiency
of the algorithms by means of the ASL measure. To do so, the online
web application randomly chooses one algorithm for each task between IC,
HGR-I, and HOR-I. The randomly selection is to equilibrate any potential
bias.

4. Efficacy Test: In this phase users performed one task without a prede-
fined target product with the aim of evaluating the decision accuracy. We
apply the same methodology described in [4]. Concretely, the decision ac-
curacy was quantitatively measured by the fraction of participants that
switched to a different, better option when, once finished the recommenda-
tion session, they browsed all alternatives in the data set. A lower switching
fraction means that the algorithm allows a higher decision accuracy since
most of users are able to find their target choice with it. In this phase we
evaluated the baseline IC and our algorithms HOR-I and HGR-I. Since
smartphone data set is too large (1722 products) we selected a subset of
90 products. Note that this reduced size is not a limitation of our system
but a way of facilitating users’ searching task, being enough for validating
decision accuracy.

5. User Satisfaction: For each task in the efficiency test participants an-
swered a questionnaire, which consists of 5 questions using a seven-point
likert scale, where 1 corresponded to “strongly disagree” and 7 to “strongly
agree”. In addition, in the efficacy test participants also answered a ques-
tionnaire which consists of 7 questions. It is important to remark that both
questionnaires are based in previous works [32,24].

After the test, we collected data from logs and questionnaires. Then, we
analyzed these data to extract relevant information concerning test objectives.

6.2 Experimental results

In this section, we show results related to efficiency, efficacy, and user satis-
faction.

Figure 6(a) shows that the ASL in both HGR-I (17.58) and HOR-I (15.35)
is lower than IC (22.35). In addition, the red line in this figure shows the
benefit10 of both HGR-I and HOR-I over IC. Concretely, HGR-I reaches a
benefit over IC of 21.37% and in HOR-I this benefit is 31.35%. Note that the
real-user evaluation confirms the simulation results and the best efficiency in
these experiments is obtained by HOR-I again.

We apply the anova statistical method to analyze whether the differences
in efficiency between HOR-I and HGR-I with respect to the IC are statis-

Title Suppressed Due to Excessive Length 21

tically significant. As denoted in [9] when the number of algorithms in the
comparison is lower than five, it is more convenient to use t-test or anova.
Therefore, we apply the anova in three algorithms, k = 3, with k − 1 = 2
degrees of freedom. The anova results show that the differences are significant
among the algorithms, p-value of 0.02421, that is lower than the critical value,
α = 0.05. Additionally, to denote that the efficiencies of HOR-I and HGR-I
are significantly better than IC separately, we apply the multiple significance
Bonferroni test [1]. We obtained a p-value of 0.041 between IC and HGR-I
and 0.022 between IC and HOR-I.

(a) Recommendation efficiency (b) Recommendation efficacy

Fig. 6 Efficiency and efficacy results in the real-user evaluation

Figure 6(b) shows the results of the recommendation efficacy (i.e., decision
accuracy), where HOR-I obtained a relatively higher decision accuracy than
HGR-I (61% and 52% respectively). This measurement means that, in average,
in the HOR-I recommender the final accepted product is 61% similar to the
final selection when users browsed the full set of products. Moreover, the IC
algorithm obtained the lower decision accuracy (50%).

To collect user satisfaction measurements we designed two post-test ques-
tionnaires based on previous studies [32,24], for evaluating the user perception
in two different scenarios: (1) when users navigate to locate a predefined target
product (see questions in Table 3); (2) when users navigate to locate a desired
product without a target (see questions in Table 4).

Results are shown in Figures 7(a) and 7(b). Notice that, in average for our
proposals HGR-I and HOR-I, all answers in both figures are higher than 4.62
in a 7 point likert scale with the exception of the Q2 in Table 3 and Q4 in
Table 4, which by the own nature of these questions lower values represent
better results.

Figure 7(a) shows that participants positively evaluated the efficiency of
the proposals (Q1 and Q2). In particular, they evaluated Q1 with an average
of 4.83 for HGR-I and 5.01 for HOR-I. Moreover, Q2 responses (with an av-
erage of 3.11 for HGR-I and 3.05 for HOR-I) show that our proposals provide
adequate recommendations in a short period of time. In addition, participants
positively evaluated the privacy of their information (Q3) in the recommender
(4.85 in HGR-I and 5.1 in HOR-I). Finally, Q4 responses (with an average

22 David Contreras, Maria Salamó

Table 3 Efficiency Post-test questionnaire

Question Number Statement

Q1 In general, I perceived that the recommender followed my pref-
erences.

Q2 It takes too much time before the system provides adequate
recommendations.

Q3 I feel confident that the system respects my privacy.
Q4 Using the system is a pleasant experience.
Q5 I would use this recommendation system for buying products

in the future.

Table 4 Efficacy Post-test questionnaire

Question Number Statement

Q1 I liked the items recommended by the system.
Q2 I believe that the final selected product was the best for me.
Q3 Each of the recommended products was relevant.
Q4 It takes too much time before the system provides adequate

recommendations.
Q5 I feel confident that the system respects my privacy.
Q6 Using the system is a pleasant experience.
Q7 I would use this recommendation system for buying products

in the future.

(a) Average responses value for efficiency
post-test questionnaire.

(b) Average responses value for efficacy
post-test questionnaire.

Fig. 7 User perception on the efficiency and efficacy of the proposals

of 4.62 for HGR-I and 4.78 for HOR-I) and Q5 responses (with an average of
5.44 HGR-I and 5.62 HOR-I) show a high level of user satisfaction regarding to
the use of the recommender. Notice that our proposals obtained better results
than the baseline IC in all questions.

Figure 7(b) depicts that the results with respect to the efficacy of the
proposals are very satisfactory as shown in Q1 responses (with a value of 6.10
for HGR-I and 6.45 for HOR-I) and Q2 (with a value of 5.21 for HGR-I and 5.89
for HOR-I). With respect to the efficiency of the proposals, Figure 7(b) shows
a high level of user satisfaction in Q3 and Q4. In the former HGR-I and HOR-
I reach an average of 5.32 and 5.68, respectively. In Q4, both HGR-I (2.89)
and HOR-I (2.70) show that participants perceived that the proposals provide

Title Suppressed Due to Excessive Length 23

adequate recommendation in a short period of time. Moreover, participants
positively evaluated the privacy (Q5) of their information in the recommender
(4.98 in HGR-I and 5.02 in HOR-I). Finally, Q6 and Q7 responses show that
users had a positive perception about the usefulness of the recommender.
Concretely, Q6 obtain an average of 4.83 for HGR-I and 5.23 for HOR-I and
Q7 an average of 5.32 HGR-I and 5.54 HOR-I. Moreover, Figure 7(b) shows
that the user perceived efficacy of the IC algorithm is lower than our proposals.

Summarizing, our experiments with real-users show satisfactory results
when we analyze the behaviour and perception of the users. Concretely, our
proposals reduce the ASL in the recommendation and show a high level of
recommendation efficacy. Moreover, responses to the post-test questionnaires
depict a positive user perception with respect to the efficiency, efficacy, and
user satisfaction.

7 Conclusions and Future Work

Critique-based recommenders are data-driven in their nature since they use
a conversational cyclical recommendation process that elicits user feedback.
Considering that most of the state-of-the-art approaches in the literature differ
in the source of data (i.e., from a critique to social media data) and how
this data is mined to recommend products, in this paper we concentrate on
evaluating these two aspects that influence data-driven decision making in
critique-based recommenders.

In this paper we hypothesize that the integration of several sources of data
and previous enhancements in the field may improve the performance of both
existing proposals and new proposals in the future. To this end, first of all we
have presented a novel critique-based recommender, called HOR, which uses
critiquing as feedback mechanism, a history of sessions and also integrates the
users’ opinions extracted from e-commerce social media sites. Next, we have
integrated previous enhancements (i.e., a weighting measure, called LW, and
a reinforcement learning compatibility measure, called EHL) on the field of
critique-based recommenders to the new proposal (HOR) and to one of the
best and well-known critique-based algorithm, called HGR, that also uses as
source of data a history of sessions. The resulting algorithms that integrate
previous state-of-the-art enhancements are: HGR-I and HOR-I. Finally, we
have evaluated all these algorithms in two different domains in order to con-
firm our initial hypothesis. Our results not only support the hypothesis that
the integration of different sources of data as well as previous state-of-the-art
improvements for mining this data (HGR-I and HOR-I) improves the recom-
mendation efficiency in front of HGR and the traditional IC algorithms, but
they also confirm with an statistical analysis that this integration significantly
benefits the efficiency and efficacy of previous approaches.

Finally, as future work, we consider that more sophisticated approaches
can be proposed. Note that from all the algorithms analyzed in this work, the
best one is the proposed HOR-I, which integrates critiquing, past recommen-

24 David Contreras, Maria Salamó

dation sessions from other users, user’s opinions from social media sites and
previous state-of-the-art proposals for improving the recommendation process
in critique-based recommenders. Accordingly to our results, we plan to extend
the use of social media data such as reviews. In addition, we will address the
analysis of using different sources of data into a Collaborative and Conversa-
tional Recommender, which integrates several feedback mechanisms.

Acknowledgements This research has also received support from the projects SGR-2014-
623 and TIN2015-71147-C2-2 from the Spanish Ministry of Science and Innovation.

References

1. Bland, J.M., Altman, D.G.: Multiple significance tests: the bonferroni method. Bmj
310(6973), 170 (1995)

2. Brynjolfsson, E., Hitt, L.M., Kim, H.H.: Strength in numbers: How does
data-driven decision making affect firm performance? Available at SSRN:
https://ssrn.com/abstract=1819486 or http://dx.doi.org/10.2139/ssrn.1819486 (2011)

3. Burke, R., Hammond, K., Yound, B.: The FindMe approach to assisted browsing. IEEE
Expert (1997)

4. Chen, L., Pu, P.: Evaluating critiquing-based recommender agents. In: Proceedings of
the National Conference on Artificial Intelligence, vol. 21, pp. 157–162 (2006)

5. Chen, L., Pu, P.: Preference-based organization interfaces: aiding user critiques in rec-
ommender systems. In: User Modeling 2007, pp. 77–86. Springer (2007)

6. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User
Modeling and User-Adapted Interaction 22(1-2), 125–150 (2012)

7. Contreras, D., Salamó: On the Use of User-generated Content in Critiquing Recommen-
dation. In: Proceedings of the XVIII International Conference of the Catalan Association
for Articial Intelligence, pp. (195–204) (2015)

8. Contreras, D., Salamó, M., Rodŕıguez, I., Puig, A.: A 3d visual interface for critiquing-
based recommenders: Architecture and interaction. International Journal of Artificial
Intelligence and Interactive Multimedia 3(3), 7–15 (2015)

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine Learning Research 7, 1–30 (2006)

10. Dong, R., O’Mahony, M., Schaal, M., McCarthy, K., Smyth, B.: Sentimental product
recommendation. In: Proceedings of the 7th ACM Conference on Recommender Sys-
tems, pp. 411–414. ACM (2013)

11. Dong, R., Schaal, M., O’Mahony, M., McCarthy, K., Smyth, B.: Opinionated Product
Recommendation. In: Case-Based Reasoning Research and Development, LNCS, vol.
7969, pp. 44–58. Springer (2013)

12. Dong, R., Schaal, M., OMahony, M., McCarthy, K., Smyth, B.: Mining features and sen-
timent from review experiences. In: Case-Based Reasoning Research and Development,
pp. 59–73. Springer (2013)

13. Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in
collaborative filtering: A system-wide perspective. ACM Trans. Intell. Syst. Technol.
5(1), 13:1–13:33 (2014)

14. Friedman, M.: A comparison of alternative tests of significance for the problem of m
rankings. The Annals of Mathematical Statistics 11(1), 86–92 (1940)

15. Konstan, J., Riedl, J.: Recommender systems: from algorithms to user experience. User
Modeling and User-Adapted Interaction 22(1-2), 101–123 (2012)

16. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems
Handbook, pp. 145–186. Springer (2011)

17. Mandl, M., Felfernig, A.: Improving the performance of unit critiquing. In: User Mod-
eling, Adaptation, and Personalization, vol. 7379, pp. 176–187. Springer (2012)

Title Suppressed Due to Excessive Length 25

18. McCarthy, K., Salamó, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recom-
mender systems: A critiquing based approach. In: Proceedings of the 11th International
Conference on Intelligent User Interfaces, IUI ’06, pp. 267–269. ACM Press (2006)

19. McCarthy, K., Salem, Y., Smyth, B.: Experience-based critiquing: Reusing critiquing
experiences to improve conversational recommendation. In: Proceedings of the Interna-
tional Conference on Case Base Reasoning, pp. 480–494. Springer (2010)

20. McGinty, L., Reilly, J.: On the evolution of critiquing recommenders. In: Recommender
Systems Handbook, pp. 419–453. Springer (2011)

21. McSherry, D., Aha: The Ins and Outs of Critiquing. In: Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 962–967 (2007)

22. Pazzani, M., Billsus, D.: The Adaptive Web: Methods and Strategies of Web Personal-
ization, chap. Content-Based Recommendation Systems, pp. 325–341 (2007)

23. Provost, F., Fawcett, T.: Data Science and its Relationship to Big Data and Data-Driven
Decision Making. Big Data 1(1), 51–59 (2013). DOI 10.1089/big.2013.1508

24. Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems.
In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 157–164
(2011)

25. Pu, P., Chen, L., Kumar, P.: Evaluating product search and recommender systems for
e-commerce environments. Electronic Commerce Research 8(1-2), 1–27 (2008)

26. Pu, P., Faltings, B.: Decision Tradeoff Using Example-Critiquing and Constraint Pro-
gramming. Constraints 9(4), 289–310 (2004)

27. Pu, P., Faltings, B., Chen, L., Zhang, J., Viappiani, P.: Usability guidelines for prod-
uct recommenders based on example critiquing research. In: Recommender Systems
Handbook. Springer (2011)

28. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Advances
in Case-Based Reasoning, Lecture Notes in Computer Science, vol. 3155, pp. 763–777.
Springer (2004)

29. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental critiquing. Knowledge-
Based Systems 18(4-5), 143–151 (2005)

30. Reilly, J., Smyth, B., McGinty, L., McCarthy, K.: Critiquing with confidence. In: Case-
Based Reasoning Research and Development, Lecture Notes in Computer Science, vol.
3620, pp. 436–450. Springer (2005)

31. Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: A comparison of two compound
critiquing systems. In: Proceedings of the 12th Int. Conf. on Intelligent User Interfaces,
pp. 317–320. ACM, USA (2007)

32. Ricci, F., Nguyen, Q.: Acquiring and Revising Preferences in a Critique-Based Mobile
Recommender System. IEEE Intelligent Systems 22(3), 22–29 (2007)

33. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Hand-
book. Springer (2011). DOI 10.1007/978-0-387-85820-3

34. Salamó, M., Escalera, S.: Increasing retrieval quality in conversational recommenders.
IEEE Transactions on Knowledge and Data Engineering 24(10), 1–14 (2012)

35. Salamó, M., Reilly, J., McGinty, L., Smyth, B.: Improving Incremental Critiquing. In:
Proceedings of the 16th Artificial Intelligence and Cognitive Science, pp. 379–388 (2005)

36. Salem, Y., Hong, J.: History-aware critiquing-based conversational recommendation. In:
Proceedings of the 22Nd International Conference on WWW Companion, pp. 63–64.
Switzerland (2013)

37. Salem, Y., Hong, J., Liu, W.: History-guided conversational recommendation. In: Pro-
ceedings of the 23rd International Conference on WWW Companion, pp. 999–1004
(2014)

38. Viappiani, P., Faltings, B., Pu, P.: Preference-based search using example-critiquing
with suggestions. Journal Artificial Intelligence Research 27, 465–503 (2006)

39. Zhang, J., Jones, N., Pu, P.: A Visual Interface for Critiquing-based Recommender
Systems. Proceedings of the 9th ACM conference on Electronic commerce pp. 230–239
(2008)

40. Zhang, J., Pu, P.: A comparative study of compound critique generation in conver-
sational recommender systems. In: Adaptive Hypermedia and Adaptive Web-Based
Systems, Lecture Notes in Computer Science, vol. 4018, pp. 234–243. Springer (2006)

