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How can transforming 
representation of mathematical 
entities help us employ more 
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This article discusses the cognitive process of transforming one representation 
of mathematical entities into another representation. This process, which has 
been called mathematical metaphor, allows us to understand and embody a 
difficult-to-understand mathematical entity in terms of an easy-to-understand 
entity. When one representation of a mathematical entity is transformed into 
another representation, more cognitive resources such as the visual and motor 
systems can come into play to understand the target entity. Because of their 
nature, some curves, which are one group of visual representations, may have a 
great motor strength. It is suggested that directedness, straightness, length, and 
thinness are some possible features that determine degree of motor strength of 
a curve. Another possible factor that can determine motor strength of a curve is 
the strength of association between shape of the curve and past experiences of 
the observer (and her/his prior knowledge). If an individual has had the repetitive 
experience of observing objects moving along a certain curve, the shape of the 
curve may have a great motor strength for her/him. In fact, it can be said that 
some kind of metonymic relationship may be  formed between the shapes of 
some curves and movement experiences.

KEYWORDS

representation, mathematical metaphor, motor system, motor strength, gesture

Introduction

A mathematical concept, idea, or problem may have a variety of representations. When 
we are faced with a mathematical problem, we may represent it in the form of a table, a diagram, 
a graph, words, algebraic symbols, numbers, or other possible channels of representation. Since 
mathematical entities and relations are inherently abstract, we operate on them through their 
representations (Selling, 2016). Throughout this paper, we use the expression mathematical 
entities to generally refer to mathematical concepts, ideas, or problems. For example, in abstract 
algebra, groups and operations defined among elements of groups can be represented through 
tables, diagrams, graphs, or algebraic symbols. Learning how to represent a mathematical entity 
and how to transform one representation into another representation in order to find the best 
way to solve a problem is one of the principal mathematical skills. Dreyfus (1990) suggests that 
the process of learning a multi-representational mathematical problem takes place in four stages: 
the first stage involves the formation of a single representation in the mind of the learner; in the 
second stage, the learner creates several parallel representations in her/his mind; in the third 
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stage, the learner identifies the connections between various 
representations; the fourth stage involves the integration of 
representations and flexible movements between various 
representations. Using multiple mathematical representations is a way 
for enhancing mathematical creativity (Boaler et  al., 2016; Bicer, 
2021a,b) as it enables students to flexibly shift between various 
representations and alternate their solutions when they encounter new 
problems (San Giovanni et  al., 2020). It has been suggested that 
applying multiple mathematical representations can help students 
figure out connections among various concepts and develop their 
mathematical knowledge (Ervynck, 1991; Silver, 1997; Levav-
Waynberg and Leikin, 2012).

Representations are tools through which people construct 
mathematical ideas and think and communicate about them 
(Pickering, 1995; Singh, 1998; Bass, 2011). People can develop a 
deeper understanding of mathematical concepts and ideas by 
examining a variety of representations (Maher et al., 2010). Learning 
to work with parallel representations of the same idea or problem is a 
key factor in the process of mathematics learning (Selling, 2016). This 
has been supported by the findings of some empirical studies that have 
provided evidence showing how learning mathematics can 
be enhanced through working with multiple representations (e.g., 
Brenner et al., 1997; White and Pea, 2011; Boaler, 2015; Boaler et al., 
2016; Selling, 2016; Bicer, 2021a,b). The following sections look at the 
ways through which transforming representations can help learners 
to employ their cognitive resources more effectively in the process of 
learning and the grounding of mathematical concepts into 
concrete environment.

Transforming representations and 
embodiment

When one representation of a mathematical entity is 
transformed into another representation, the two representations 
share an underlying structural similarity. In other words, it is the 
superficial representation that is changed not its underlying 
conceptual structure. Therefore, a set of parallel representations of 
a mathematical entity are isomorphic with each other at an abstract 
level. That is, while they share a basic abstract structure, they seem 
to be different concretely. Based on Lakoff and Johnson’s (2003) 
definition of metaphor, transforming one representation of a 
mathematical entity into another representation is basically a 
mathematical metaphor (see also Pim, 1988). It is a metaphor 
because we  structure, understand, and manipulate one 
representation in terms of another representation. According to 
Lakoff and Johnson (2003), the essence of metaphor is describing 
and understanding an unfamiliar abstract concept (target of the 
metaphor) in terms of a familiar concrete concept (base or source of 
the metaphor). The description of numbers in terms of points on a 
line and the description of functions in terms of curves in the 
Cartesian plane are two common mathematical metaphors that have 
been discussed by Lakoff and Núñez (2000). Mathematical 
metaphors are not inherently different from common linguistic 
metaphors. Both types of metaphor describe a concept in terms of 
another concept. Perhaps the only difference between mathematical 
metaphors and linguistic metaphors is that there is a mathematical 
logic behind every mathematical metaphor. This may make 

mathematical metaphors more rigorous and more precise than 
linguistic metaphors.

Mathematical metaphors allow us to embody an entity through 
another entity. From the perspective of the strong version of embodiment 
theories (Gallese and Lakoff, 2005), the same cognitive resources that are 
employed to understand the base (source) domain of a mathematical 
metaphor may also be employed to understand the target domain of that 
metaphor. The weak version of embodiment takes a broader view and 
holds that concepts are understood through a process in which sensory-
motor, emotional, and modality-independent systems are involved (e.g., 
Binder and Desai, 2011; Kiefer and Pulvermüller, 2011; Meteyard et al., 
2012; Hauk and Tschentscher, 2013; Lambon-Ralph, 2013; Zwaan, 2014; 
for reviews, see Tirado et  al., 2018; Khatin-Zadeh et  al., 2021). For 
example, the mathematical metaphor f(x) oscillates between-1 and 1 
describes a function in terms of the movement of an object that oscillates 
between the two extreme points of-1 and 1. The strong version of 
embodiment theories holds that the same cognitive resources that are 
employed during observing the oscillation of a moving object are also 
employed to process the mathematical metaphor f(x) oscillates between-1 
and 1. Therefore, the strong version of embodiment theories predicts that 
processing this metaphor involves the activation of the motor system as 
this metaphor describes a function in terms of a motion domain (Lakoff 
and Núñez, 2000; see also Marghetis and Núñez, 2013). We will return 
to this point in more detail later.

When one representation of a mathematical entity is transformed 
into another representation, new resources can come into play to 
understand the base entity (the first representation) in a more effective 
way (Khatin-Zadeh, 2022). An example is the transformation of 
abstract mathematical entities into visual representations such as 
graphs and diagrams. A curve that represents a mathematical function 
in the Cartesian coordinate system is one of the most common visual 
representations in mathematics. The standard symbolic representation 
of the function is in the form of y = f(x). Transforming abstract 
mathematical entities into visual representations is a very common 
practice in learning mathematics and other fields of science. For 
example, the function f(x) = x2 can be represented by a curve in the 
Cartesian coordinate system (Figure 1). The visual representation of 
this function is much easier to process than its standard symbolic 
representation. This is particularly the case with students at early 
stages of learning the concept of function.

Visual tools have a strong degree of imageability. Therefore, from 
the perspective of strong version of embodiment theories (Gallese and 
Lakoff, 2005), when an abstract mathematical entity is transformed 
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FIGURE 1

Visual representation of the function f(x) = x2 in the Cartesian 
coordinate system.
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into a visual representation and is understood in terms of that visual 
representation, that entity is grounded by the support of the visual 
system. In this way, the sensory-system is employed to ground an 
abstract entity into concrete environment. In Figure 2, a schematic 
diagram of changes that happen when the standard symbolic 
representation of f(x) = x2 is transformed into a visual representation 
in the Cartesian coordinate system. In this figure, a one-to-one 
comparison is made between the features of the two representations.

Another example is the transformation of arithmetic operations 
into finger-based representations. Some finger counting studies have 
provided evidence that supports this idea (e.g., Lindemann et al., 2011; 
Wasner et al., 2014; Barrocas et al., 2020). For example, Sato et al. (2007) 
used transcranial magnetic stimulation to examine excitability changes 
in hand muscles when a group of people were performing a visual parity 
judgment task. The results showed an increase in amplitude of motor-
evoked potentials in right hand muscles. This supports the embodied 
representation of numbers and arithmetic operations in hands/fingers. 
In a recent study, Artemenko et al. (2022) used a finger-based method 
for teaching arithmetic operations to a group of children. After 1 year of 
training, this group of children showed finger-related arithmetic effects 
accompanied by activation in the sensorimotor cortex during 
performing mental arithmetic operations. This suggested that after 
training, children used finger-based numerical representations to 
perform mental arithmetic operations.

The extent to which the abstract entity can be grounded through 
sensory system depends on perceptual strength of the base entity. If 
the base entity has a high visual strength, the visual system is 
effectively employed to ground and understand the abstract entity. In 
recent years, a number of studies have examined degree of perceptual 
strength of concepts in a variety of languages (e.g., Filipović Đurđević 
et al., 2016; Speed and Majid, 2017; Miklashevsky, 2018; Chen et al., 
2019). These studies have shown degree of visual strength or 
imageability of concepts varies across a broad range. While some 
concepts have a very low degree of visual strength, others have a very 
high degree of visual strength. Between these two extreme points of 
visual strength, concepts may have a wide range of visual strength. 
Those concepts which have a high degree of visual strength can 
effectively be  used to ground and understand abstract concepts 
through the visual system. Since diagrams, graphs, tables, coordinate 
systems, and vectors have a high degree of visual strength, they are 
effective tools for grounding abstract mathematical entities. Here, the 

main job of the learner is to transform the abstract representation of 
a mathematical entity into a strongly visual representation. In this way, 
a wider range of cognitive and perceptual resources are employed to 
process the abstract mathematical entity.

A recent comprehensive study (Lynott et  al., 2019) examined 
degree of perceptual and action strength of a large set of concepts. 
Results obtained in this study indicated that some concepts have a 
high degree of action or motor strength, while some other concepts 
have a very low degree of action or motor strength. Between these two 
extreme points, concepts may have a wide range of motor strength. 
Even words which do not directly refer to a motion event may have 
some degree of motor strength. This could have some implications for 
transforming one representation of a mathematical entity into another 
representation. When the abstract representation of a mathematical 
entity is transformed into a visual representation, the abstract 
representation is understood through a representation that has a high 
degree of visual strength. As mentioned, in this way, the visual system 
contributes to the process of grounding and understanding. 
Furthermore, the motor system may also come into play. Since even 
some non-motion concepts may have some degree of motor strength, 
the visual representations of abstract mathematical entities may have 
some degree of motor strength. If this is the case, it can be said that 
the motor system may play at least a partial role in the processing of 
abstract mathematical entities. A question that may be raised here is 
how it is possible for a static visual representation to have some degree 
of motor strength. Discussing several evidence from a number of past 
studies, the following two sections try to answer this question.

Motor system activation during visual 
perception

Findings of some studies suggest that static pictorial stimuli 
showing implied motion can be the cause of motor system activation 
(e.g., Winawer et al., 2008; Williams and Wright, 2009; Osaka et al., 
2010; Lorteije et al., 2011). Some neuroimaging studies have provided 
evidence suggesting cortical areas involved in real motion processing 
are activated by pictorial stimuli showing implied motion (e.g., 
Kourtzi and Kanwisher, 2000; Senior et  al., 2000; Kim and Blake, 
2007). Some studies have gone beyond this and have found evidence 
suggesting even visual stimuli that do not contain implied motion can 

Standard symbolic representation f(x)=x2 Visual representation of the function

1. Represented in terms of abstract 
symbols

2. Abstract

3. Less sensorimotor information

4. Grounded in abstract symbols

5. Low involvement of sensorimotor 
systems

1. Represented in terms of an image

2. Concrete, imageable, visual

3. More sensorimotor information

4. Grounded in an image

5. High involvement of sensorimotor 
systems

FIGURE 2

A one-to-one comparison between the features of standard symbolic representation of a function and its visual representation standard symbolic 
representation f(x) = x2 visual representation of the function.
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be the cause of activation in the motor system. Among these studies, 
one group has specifically focused on visual perception of letters. It 
has been found that looking at static letters can activate cortical motor 
areas (Longcamp et al., 2003; James and Gauthier, 2006). Longcamp 
et al. (2011) compared the neural correlates of perceiving handwritten 
letters vs. printed letters. They found that visual perception of 
handwritten letters involves a stronger activation in left primary 
motor cortex and the supplementary motor area. The strong activation 
of motor areas during perceiving handwritten letters could be the 
result of simulating those hand actions that produce the handwritten 
letters. It has been shown that observing some static visual stimuli 
such as a cut in a canvas activates cortical motor system (Gallese and 
Sinigaglia, 2011). Umilta’ et al. (2012) examined the neural activities 
during observing static images of abstract paintings produced by 
Lucio Fontana. They found that cortical motor system is involved in 
the processing of static abstract art works.

If motor areas are activated during visual perception of 
handwritten letters and abstract art works, they may also be activated 
during processing a curve. In fact, if a simulation of hand movements 
takes place during observing handwritten letters and visual art works, 
it may also take place during observing a curve that visually represents 
an abstract mathematical concept. When an observer processes a 
curve, a simulation of hand movements that produces that curve 
could take place. For example, when an observer looks at the hand-
drawn curve of the mathematical function of f(x) = −x2, the hand 
movements that are involved in drawing this visual representation can 
be simulated (Figure 3).

In mathematics, many abstract concepts are transformed into a 
graphic representation such as a curve. This transformation 
significantly facilitates the process of understanding highly abstract 
mathematical concepts. In this process, the body movements that 
produce the graphic representations of abstract concepts can 
be  simulated. Here, abstract mathematical concepts are grounded 
through their visual representations and the body movements that 
produce the visual representations. In this way, motor system can 
contribute to the grounding of abstract mathematical concepts. 
We will return to this in the following section when discussing visual 
representations of mathematical functions.

Motor strength of visual 
representations

As mentioned, transforming one representation of a concept into 
another representation may allow us to use a wider range of cognitive 

and perceptual resources to understand that concept. The strong 
version of embodiment assumes that the motor system is involved in 
the understanding of those metaphors in which a concept is 
understood in terms of an action (Gallese and Lakoff, 2005). For 
example, during processing the metaphor grasp an idea, those regions 
of the motor system that are involved in actual doing of grasping are 
activated. This has been supported by the findings of some 
neuroimaging studies that have investigated the neural activations 
when people process metaphorical sentences describing abstract 
concepts in terms of body actions such as grasp an idea and kick a 
habit (e.g., Glenberg et al., 2008; Boulenger et al., 2009; Desai et al., 
2011; Desai, 2021). Here, some sensory-motor resources are employed 
to understand a metaphor that describes a highly abstract event. This 
could happen in many linguistic metaphors in which an abstract event 
is understood in terms of a concept that has a high degree of sensory-
motor strength. In these metaphors, sensory-motor resources may 
play a key role in the grounding of abstract concepts.

Fictive motion sentences are one group of metaphors in which a 
static concept is understood as a motion concept (Talmy, 1996). The 
sentence The road passes through the desert is a fictive motion sentence 
that describes the static concept of road as a moving object. The ways 
through which these sentences are processed have been the subject of 
a large number of works from a variety of perspectives (e.g., Lakoff 
and Núñez, 2000; Matlock et al., 2005; Richardson and Matlock, 2007; 
Blomberg and Zlatev, 2014; for a review, see Huette and Matlock, 
2016). A number of behavioral studies have provided evidence that 
suggests understanding fictive motion sentences involves a mentally 
simulated motion (e.g., Boroditsky and Ramscar, 2002; Matlock, 2004, 
2006; Núñez et al., 2006; Matlock et al., 2011). Reviewing a number of 
studies conducted on fictive motion sentences, Matlock (2010) 
suggests that people experience a fleeting sense of motion when 
processing such sentences. Also, the findings of a neuroimaging study 
suggest that understanding fictive motion sentences involves the 
activation of a region of the motor system that responds to perceived 
motion (Saygin et al., 2010).

If fictive motion sentences create a sense of fleeting motion in the 
mind of the comprehender and activate the motor system, it may 
be said that visual tools that show such sentences can also have a 
similar effect on the comprehender. For example, when an observer 
looks at a photo that shows a road passing through a forest, s/he may 
experience a fleeting sense of motion. In the same way that the fictive 
motion sentence The road passes through the forest can be the cause of 
some degree of activation in the motor system, the experience of 
looking at the photo can be the cause of some degree of activation in 
the motor system. Here, the sensory (visual) and motor systems are 
employed to process the photo. The same thing can happen when the 
abstract representation of a mathematical entity is transformed into a 
visual representation. Visual representation of a function in a 
Cartesian plane is an example in which a mathematical entity is 
transformed into a visual representation. The visual representation of 
a function could be a curve in a Cartesian plane. The curve has a high 
degree of visual strength. Furthermore, it may have some degree of 
motor strength as well. Shape of a curve may be a key factor in the 
degree of activation of the motor system. The experience of observing 
some curves may involve a greater degree of motor activation 
compared to other curves. In other words, some curves may have a 
greater motor strength. In Figure 4, the visual representations of three 
functions in the Cartesian plane have been shown. Compared to visual 

FIGURE 3

Hand-drawn graphical representation of the function f(x) = − x2.

https://doi.org/10.3389/fpsyg.2023.1091678
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Khatin-Zadeh et al. 10.3389/fpsyg.2023.1091678

Frontiers in Psychology 05 frontiersin.org

representations of functions g(x) and h(x), the visual representation of 
f(x) may have a greater degree of motor strength. Also, g(x) may have 
a greater degree of motor strength than h(x).

A question that may be raised here is that what factors may affect 
degree of motor strength of the visual representation of a function. 
Findings of several studies can help us provide an answer for this 
question. In one of these studies, Pavan et  al. (2011) found that 
photographs depicting different inferred speeds activate different 
speed-tuned neural populations. Williams and Wright (2009) 
examined the relationship between inferred speed in static images 
and patterns of activation in V5/MT. Their findings indicated a 
stronger activation for higher inferred speeds. Such findings suggest 
that some static images may have a stronger motor strength compared 
to other images. This could also be the case with visual representations 
of mathematical concepts such as curves. It is suggested that at least 
two features of a curve may be involved in determining the degree of 
motor strength of a curve (or a visual representation of a mathematical 
concept). The first feature is the degree of straightness and 
directedness. Those curves whose shapes are closer to a directed 
straight line (directed vector) may have a stronger motor strength 
compared to those curves whose shapes have a higher degree of 
in-directedness and curvature. Movement on a straight line with a 
certain direction is usually easier and all of us have the experience of 
moving with high speeds on a directed straight line. Also, the time 
that is needed to draw a directed straight line is usually shorter than 

the time that is needed to draw a curve with a high degree of 
curvature and in-directedness. It is easier for us to draw a directed 
straight line or a curve close to a straight line in a very short period 
of time, while it takes a longer period of time to draw a curve with a 
high degree of curvature and in-directedness. In fact, body 
movements that produce a directed straight line are usually faster and 
thus have a higher degree of motor strength. Those curves whose 
shapes are closer to a straight line may have a stronger motor strength 
because they are associated with movements with higher speeds and 
body movements that are produced in a shorter period of time. A 
comparison between the three visual representations in Figure  5 
could make the point clearer. The left one is a straight vector with a 
clear direction. In many scientific discussions, such vectors are used 
to show the movements of objects. The middle one is not straight, but 
it has direction. When we say a curve has direction, it means that it 
does not have any complete backward point. It has some degree of 
motor strength, but its motor strength is weaker than the left one. The 
right one is not straight and does not have a certain direction. It has 
several backward points. Since backward points involve a moment of 
stop followed by a complete change of direction, they can reduce 
degree of motor strength. The right one has the weakest degree of 
motor strength.

The second feature that may be involved in determining degree of 
strength of a curve is the strength of association between shape of the 
curve and past experiences of the observer. For example, many of us 

y=f(x)                                        y=g(x)                                           y=h(x)
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FIGURE 4

Three visual representations with different degrees of motor strength.

FIGURE 5

Different degrees of straightness and directedness.
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may have had the experience of looking at moving objects along paths 
that were similar to the visual representation of the function f(x) in 
Figure 4. Therefore, when we  look at this graph, we can expect a 
relatively strong degree of the motor system activation. On the other 
hand, we rarely have had the experience of looking at objects moving 
along a curve similar to visual representation of h(x). Therefore, 
observing this curve may lead to a small degree of motor system 
activation or even no activation at all. In fact, it can be said that some 
kind of metonymic relationship is formed between the shapes of some 
curves and movement experiences. The strength of metonymic 
relationship is greater for some types of curves depending on past 
experiences of the observer. However, it should be noted that the way 
that a mathematical representation is viewed by a person depends on 
the person’s prior knowledge of the representation (e.g., Fletcher and 
Tobias, 2014; Van Gog, 2014; Schüler et al., 2015; Richter et al., 2018; 
Seufert, 2019; Vogt et al., 2020). Novice mathematics learners, adults, 
and experts view various representations differently. Prior 
mathematical knowledge may have a significant effect on reasoning 
and working with various representations. Therefore, for a certain 
individual, degree of motor strength of the visual representation of a 
function may be  affected by her/his prior knowledge of 
that representation.

This association may be reliant on just pure shape of the curve. 
This is consistent with the findings of a drawing study conducted by 
Matlock (2006). Results of this study showed that people drew longer, 
straighter, thinner lines to visually describe abstract motion sentences 
that included fast manner verbs such as “race.” This is another 
indication that suggest some feature of the pure shape of a curve are 
associated with degree of motor strength of the curve. Therefore, it 
may be concluded that that pure shape of visual representation of a 
mathematical entity can be a key factor in the extent to which the 
motor system comes into play in the processing of that concept.

The idea that some visual representations or images have strong 
degrees of motor strength is supported even by some of our daily 
experiences. All of us have had the experience of having a fleeting 
sense of movement or a fleeting tendency to move when looking at 
some images. This phenomenon is so common in our daily 
experiences that most of the times we may not be aware of it. The 
image of a sprinter who is ready to run, a winding track, a map, or a 
vector are some examples of static images that may cause a sense of 
motion in the observer. On the other hand, the image of a closed door 
(preventing people from entering a place) or a blockage may create an 
opposite sense (being static and immobile). In fact, even very common 
daily experiences support this idea that some static visual 
representations or images cause a sense of motion in the observer, 
while others create a sense of being static. This phenomenon is not 
limited to our visual experiences. Even some of our aural experiences 
may cause a sense of motion in us. For example, some types of music 
cause a sense of movement in people (e.g., dance music, marching 
music), while others may create an opposite sense. In this case, it may 
be  said that the first type of music has a stronger degree of 
motor strength.

The activation of the motor system may happen in mental imagery 
and in the absence of the object in the environment. Reviewing a 
number of works on mental imagery (e.g., Grush, 2004; Gallese, 2009; 
Delevoye-Turrell et  al., 2010), Palmiero et  al. (2019) suggest that 
spatial imagery may be reliant on perceptual and motor processes. 
They add that motor components may play a key role in mental 

imagery. The role of the motor system in the understanding of abstract 
concepts has been emphasized in a large number of works (e.g., 
Glenberg and Kaschak, 2002; Nathan and Walkington, 2017; Khatin-
Zadeh et al., 2019, 2022a,b,c,d,e; Macedonia, 2019; Harpaintner et al., 
2020). The following section discusses several examples in which 
mathematical entities are described in terms of visual representations 
and motion domains.

Describing concepts in terms of visual 
representations and motion domains

When a function is transformed into a graph as its visual 
representation, the graph and motor systems come into play and help 
us to process that function in a more effective way. The graphical 
representation of a function reveals some features of the function that 
cannot be easily discovered through non-visual representations. The 
graphical representation of a function clearly shows where the local 
maximum and minimum points are, where the function is ascending, 
where it is descending, and many other features that are much more 
difficult to discover through non-visual representations. As mentioned 
in the second section, transforming one representation of a 
mathematical entity into a visual representation is in fact a 
mathematical metaphor. Mathematical metaphors allow us to employ 
a wider range of cognitive resources to ground and understand 
mathematical entities. Among these resources, the visual and motor 
systems were discussed.

Lakoff and Núñez (2000) discussed a number of mathematical 
metaphors that are based on fictive motion. The metaphor f(x) never 
goes beyond 1 is an example of such metaphors. When the algebraic 
representation of the function y = f(x) is transformed into a visual 
representation and the metaphor f(x) never goes beyond 1 is used, the 
visual and motor systems are employed to process the behavior of this 
function. As mentioned, shape of the visual representation could play 
an important role in determining the extent to which the motor 
system is employed to process the behavior of this function. Núñez 
(2005, 2008) discussed several mathematical metaphors whose visual 
representations were expressed by gestures in a mathematics 
classroom. In one example, the visual representation of a sequence 
that oscillates between two values was described by gestures. The 
sequence included a series of numbers, which are highly abstract in 
nature. However, the visual representation of a sequence could 
be described in terms of a curve and a fictive motion in the form of an 
oscillation. Here, a mathematical concept was transformed into a 
visual representation shown by gestures. Both sensory and motor 
systems were employed to process the behavior of a highly abstract 
mathematical concept. The visual representation of such a sequence 
have been shown in Figure 6.

Since many of us have the experience of observing movement of 
objects along curves similar to the curve shown in Figure 4 [f(x)], it 
may be said that this curve has a great motor strength. Therefore, 
when we observe or even imagine this curve, our motor system may 
be activated. For more complex cases of curves, the past experiences 
of the comprehender may play an equally important role. If the 
comprehender has had the experience of observing complex 
movement of objects, that experience may help her/him to acquire a 
better understanding of those mathematical concepts whose visual 
and gestural representations are similar to those complex movements. 
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This could have some implications for mathematics teaching 
classroom. We will return to this point in the following section.

A perhaps more complex example is the curve of a function that 
has an asymptote. The distance between the curve of a function and 
its asymptote approaches zero as one or both x and y coordinates tends 
to infinity. The asymptote of the function y= 1

x
 has been shown in 

Figure 7. The line x = 0 is the asymptote of the curve of this function. 
As x approaches zero, the curve of the function approaches the line 
x = 0, and the distance between the curve and the line approaches zero. 
The behavior of this function and its asymptote line can be effectively 
understood through its visual representation and a fictive motion that 
shows the visual representation. In the definition of asymptote, the 
word ‘approach’ is used, which indicates this behavior of the function 
and its asymptote is understood in terms of a fictive motion.

The following section discusses pedagogical implications of using 
visual representations of mathematical entities and motion-based 
mathematical metaphors in mathematics teaching classroom.

Pedagogical implications

Results of past studies have demonstrated how gestures could 
enhance the process of understanding mathematical concepts (e.g., 
Singer et al., 2008; Radford, 2009; Alibali and Nathan, 2012; Johnson-
Glenberg and Megowan-Romanowicz, 2017; Nathan and Walkington, 
2017; Yeo et al., 2017; Macedonia, 2019; Khatin-Zadeh et al., 2022f). 
It has been shown that describing concepts in terms of actions and 
gestures can facilitate speaking by organizing ideas into suitable units 
(Kita and Davies, 2009) and by lexical priming (Krauss et al., 2000). 
Also, gestures can contribute to the process of thinking by activating 
and maintaining mental images (Wesp et al., 2001). Result of a study 
conducted by Ravizza (2003) indicated that even meaningless gestures, 
which have no logical relationship with the meanings of words, may 
contribute to the process of retrieving lexical items in some cases. She 
attributed this to the activation of neural regions that are shared by 
speech and body movements.

In addition to these, priming mathematical concepts and ideas 
by their visual representations, by gestures that describe their visual 
representations, or by gestures that show a fictive motion related to 
their visual representations may facilitate the process of 

understanding mathematical concepts and ideas. This is particularly 
the case with those mathematical concepts and ideas which have 
components with great motor strength. Results of a study by Wilson 
and Gibbs (2007), which was conducted outside mathematics 
teaching, indicated that real and imagined gestures related to a 
metaphorical statement could facilitate comprehenders’ immediate 
comprehension of that metaphorical statement. In other words, real 
and imagined gestures related to a metaphorical statement could have 
a priming effect on the understanding of that metaphor. A similar 
thing can be applied in teaching and explaining mathematical ideas. 
Priming mathematical ideas by their visual and gestural 
representations could activate cognitive resources of the 
comprehender and enhance her/his understanding of those ideas. 
Gestural representations of concepts can be  their literal or 
metaphorical representations. In explaining concepts related to 
vectors in the three-dimensional space, gestures could be used to 
literally represent concepts, as vectors are essentially movements in 
the three-dimensional space. However, in describing concepts such 
as limit and continuity, gestures can be  used to metaphorically 
represent concepts. Although limit and continuity are algebraic and 
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FIGURE 6

Visual representation of a sequence that oscillates between two values.

FIGURE 7

Visual representation of the function y= 
1
x
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highly abstract concepts, they have visual and concrete 
representations. These two concepts can be  effectively described 
through their visual and gestural representations. Using both literal 
and metaphorical gestures can be an effective technique in teaching 
mathematics as they help comprehenders employ a wider range of 
cognitive resources in the process of understanding.

Summary

This article discussed the cognitive process of transforming one 
representation of mathematical entities into another representation. 
Various representations of the same mathematical entity have an 
underlying structural similarity. Therefore, parallel representations of 
a mathematical entity are inherently isomorphic with each other. That 
is, while parallel representations of a mathematical entity share an 
abstract underlying structure, they seem to be  different in their 
concrete forms. The process of transforming one representation of a 
mathematical entity into another representation can be seen as a kind 
of metaphor. Mathematical metaphors allow us to understand and 
embody a difficult-to-understand mathematical entity in terms of an 
easy-to-understand entity. When one representation of a mathematical 
entity is transformed into another representation, more cognitive 
resources can come into play to understand the base entity in a more 
effective way.

Fictive motions are one special group of metaphors that are 
used to describe some important mathematical concepts such as 
limit and continuity. As mentioned, fictive motion sentences may 
create a sense of fleeting motion in the mind of the comprehender 
and activate the motor system. Therefore, visual tools that show 
such sentences can also have a similar effect on the comprehender, 
as visual tools can be seen as the visual translations of those fictive 
motion sentences. A similar process may take place when the 
abstract representation of a mathematical entity is transformed into 
a visual representation. Visual representation of a function in a 
Cartesian plane, which can be in the form of a curve, is an example 
in which a mathematical entity is transformed into a visual 
representation. The curve is a visual representation that may have 
some degree of motor strength. The experience of observing some 
curves may involve a greater degree of motor activation compared 
to other curves. In other words, some curves may have a greater 
motor strength. It was suggested that directed, straighter, thinner, 
longer curves have a higher degree of motor strength. These features 
of visual representation (curve) of a mathematical entity can 
enhance our understanding of that concept, as visual and motor 
resources are employed to process that concept. Another possible 
factor that determines motor strength of a curve is the strength of 
association between shape of the curve and past experiences of the 

observer. If an individual has had the repetitive experience of 
observing objects moving along a certain curve, the shape of the 
curve may have a great strength for her/him. Having more 
experience of observing moving objects along a certain curve could 
mean that the curve has a greater motor strength for the observer/
comprehender. In fact, it can be said that some kind of metonymic 
relationship is formed between the shapes of some curves and 
movement experiences. The strength of metonymic relationship is 
greater for some types of curves depending on past experiences of 
the observer. Identifying other factors that may have a role in the 
degree of motor strength of visual representation is a question that 
can be investigated in future research.
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