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Abstract
The ability to control the generation of spins in arbitrary directions is a long-sought goal in
spintronics. Charge to spin interconversion (CSI) phenomena depend strongly on symmetry.
Systems with reduced crystal symmetry allow anisotropic CSI with unconventional components,
where charge and spin currents and the spin polarization are not mutually perpendicular to each
other. Here, we demonstrate experimentally that the CSI in graphene-WTe2 induces spins with
components in all three spatial directions. By performing multi-terminal nonlocal spin precession
experiments, with specific magnetic fields orientations, we discuss how to disentangle the CSI from
the spin Hall and inverse spin galvanic effects.

1. Introduction

In condensed matter, spin orbit coupling (SOC)
and (broken) crystal and temporal symmetries play
a fundamental role, strongly modifying the elec-
tronic states and connecting spin and orbital angu-
lar momentum degrees of freedom [1]. Their action
leads to novel physical states, such as topological
phases [2–5], and technologically relevant electron-
spin transport phenomena, such as charge-spin inter-
conversion (CSI) [6–9]. The spin Hall effect (SHE)
[7, 10–12] and inverse spin galvanic effect (ISGE)
[13] (and the corresponding reciprocal effects accord-
ing to the Onsager relationships [14, 15]) are fun-
damental CSI phenomena that have been broadly
investigated as spin generators and detectors [6–8]. In
the conventional SHE, an electrical current induces
a transverse spin current. The basic mechanism can
have extrinsic or intrinsic origin [7]; the former
involves Mott scattering with impurities, while the

latter is closely connected to the Berry curvature
[5, 16, 17]. In the ISGE, also known as Rashba-
Edelstein effect [18], an electrical current induces a
non-equilibrium spin density. The ISGE results from
a redistribution of charge carriers on the Fermi sur-
face in systems having amomentum-asymmetric spin
texture, which derives from broken inversion sym-
metry, either structural (e.g. surface or interface) or
in the bulk (i.e. crystal lattice) [19, 20].

Experimental observations of the SHE and
ISGE were originally obtained in semiconductors
[13, 21, 22] and metals [23–25]. Even though it was
known that, given their SOC-related origin, the SHE
and ISGE are often concomitant, those early works
usually focused on either the SHE or the ISGE (and
their reciprocals). However, understanding the rela-
tion between the SHE and ISGE has become essential
in light of their potential technological relevance,
in particular for electrically reorienting magnets for
memory applications [7, 26]. Research on SHE and
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ISGE has been further stimulated by recent results
in van der Waals heterostructures [27] and, more
specifically, in graphene in proximity with high-SOC
materials, in which the CSI efficiency is found to be
relatively large [28–30].

In some cases, it is possible to discriminate
between the SHE and ISGE as, for instance, when
graphene is modified by the proximity of a semicon-
ducting transition metal dichalcogenide (TMDC) in
high-symmetry heterostructures. There, the SHE and
ISGE are driven by valley-Zeeman and conventional
Rashba SOC, respectively, leading to spin populations
that are orthogonal to each other [31, 32] and, there-
fore, that can be easily disentangled [28, 30, 33]. This
is not the case when the TMDC is conducting, as sep-
arating contributions deriving from currents in the
TMDC bulk and in the interface or in proximitized
graphene is not straightforward [27, 29]. In addition,
if the TMDC is a low-symmetry material, such as
MoTe2 or WTe2, or twisting between graphene and
the TMDC results in a heterostructure with reduced-
symmetry, CSI with unconventional spin orienta-
tions can be expected [34–37].

Spin-torque experiments have proposed the pres-
ence of unconventional torques compatible with the
WTe2 symmetries [38]. However, recent studies in
graphene-MoTe2 and graphene-WTe2 nonlocal spin
devices, not only have not observed the new CSI con-
tribution but found instead a component of unknown
origin [34, 36], which was ascribed to broken sym-
metries due to uncontrolled strain during device
fabrication. These measurements were carried out
without characterization of the strain or direct know-
ledge of the crystal orientation, although it has been
argued that the crystals typically cleave in a favored
direction [34]. Furthermore, a recent study sug-
gests that a widespread method to identify the ISGE
(SGE) by rotating the magnetization of the ferro-
magnetic (FM) detector (injector) is unreliable [39].
These observations demonstrate that it is necessary
to carry out additional experiments and to estab-
lish nonlocal measurement schemes to identify and
quantify competing CSI effects in combination with
crystal-orientation and strain characterization in the
same device.

In this work, we present a measurement protocol
based on spin precession for resolving the contribu-
tions of SHE and ISGE [30, 39, 40]. We then imple-
ment a graphene-WTe2 device and demonstrate the
generation of spins oriented within and perpendicu-
lar to the graphene plane. Although an out-of-plane
spin polarization by CSI is expected due to the crys-
tal symmetry in thin WTe2 layers, it has never been
observed in hybrid graphene-WTe2 heterostructures.
Here, we detect it for the first time, demonstrating
that this system enables spin generation with all three
spatial orientations. The WTe2 crystal orientation
is determined by means of polarized Raman spec-
troscopy, which also characterizes the crystal strain.

Based on these observations, the possible origins of
the observed CSI components are discussed.

2. Results and discussion

2.1. CSI and crystal symmetries
The character of the CSI is dictated by crystal sym-
metries. The SHE is described by linear response the-
ory [41] as jki = σk

ijEj, where Ej is the external elec-

tric field in the ĵ direction that generates a charge
current jc, jki the spin current in the î direction with

spin polarization s in the k̂ direction and σk
ij the

spin conductivity tensor. In a high-symmetry crys-
tal only off-diagonal σk

ij terms with i ̸= j ̸= k are
non-zero, resulting in (jc ⊥ js ⊥ s). Reduced symmet-
ries allow additional σk

ij elements that can break the
mutual perpendicular relationship between jc, js and s
[41, 42]. For example, in a crystal with a single mirror
plane, as depicted in figure 1(a), a jc perpendicular
to the plane can lead to s parallel to the transverse
js (figure 1(b)) but mirror symmetry still precludes
a transverse js with an s component along jc. The
latter restriction disappears if the mirror symmetry
is broken. The ISGE depends directly on the elec-
tronic band structure polarization but it is governed
by the same symmetry considerations [19, 20]. In a
high symmetry crystal, non-zero spin density could
only arise at a boundary or interface, leading to the
conventional Rashba effect [43, 44]. In figure 1(a),
the mirror symmetry imposes that the spin polar-
ization must be contained in the mirror plane
(figure 1(c)).

2.2. Resolving SHE and ISGE in nonlocal devices
Nonlocal spin-dependent measurements have been
widely used to investigate CSI phenomena [7, 23] and
extract the polarization of the generated spins. There,
a charge current I is applied along the CSI region
and the nonlocal voltage ∆VNL is measured between
a FM detector and a reference outer metallic contact
as a function of the orientation and magnitude of an
applied magnetic field B [23, 40, 45]. When the spins
originating from the SHE and the ISGE are perpen-
dicular to each other, they can be fully resolved by
investigating spin precession with in-plane and per-
pendicularmagnetic fields [30] or bymeans of a sym-
metry analysis under obliquemagnetic fields [28, 33].
These approaches are not sufficient in graphene-
WTe2 or graphene-MoTe2 heterostructures, where the
TMDC is conducting and has low-symmetry [34, 36,
46]. However, in such systems the ISGE induces a
local spin density, whereas the SHE induces a direc-
ted spin current. Therefore, it is possible to discern
between the SHE and ISGE generated spins by sim-
ultaneously measuring the spin accumulation along
the spin-current direction at opposite sides of the CSI
region, as illustrated in figure 1(d).

When the current I is applied along x̂ in the
CSI region (not shown in the figure 1(d)), the
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Figure 1. Charge spin interconversion (CSI) in low symmetry structures. (a) Representation of a crystal structure with a mirror
plane perpendicular to x̂ and allowed spin polarizations in the spin Hall (b) and the inverse spin galvanic (c) effects (SHE, ISGE).
The electric field Ex (or charge current) is applied in the x̂ direction. The spin polarizations (si) are represented with arrows. The
circles show the planes where spin polarization is allowed by symmetry. The spin Hall current in (b) has components in ẑ (Jshz)
and ŷ (Jshy). In (c) a sketch of a parabolic band structure shows the out of the equilibrium electron population distribution under
Ex . (d) Sketch of the device geometry and generated spin currents (top) and spin electrochemical potential s (bottom). The
high-SOC material region at the center of the diagram, where the CSI occurs owing to a current in x̂, is not shown for clarity. The
spins generated in the CSI region diffuse in the spin channel towards±y and are detected by the FM electrodes (orange). The spin
currents Jsc and Jsd originate, respectively, from the spin Hall current Jshy (b) and the uniform spin accumulation in the CSI region
associated to Jshz (b) and the spin density due to ISGE (c). Because of the Jsc contribution, the orientation of the spins flowing
towards the right (+) and left (−) of the CSI region can be different. (e) Representation of the CSI spin polarization orientation
with angles ϕ and θ.

SHE creates spin currents along ŷ (Jshy) and ẑ (Jshz)
(figure 1(b)), which coexist with the spin dens-
ity induced by the ISGE (figure 1(c)). A direct

comparison between ∆VNL at ±y, ∆V (±y)
NL , differ-

entiates the spins associated to the spin current
Jshy from those associated to the ISGE and Jshz
(figure 1(d)). Indeed, the spin current component Jsc
diffusing away from the CSI region, which origin-
ates from Jshy, generates opposite spin accumulation
at ±y, while the spin current Jsd, associated to the
ISGE and Jshz, generates equal spin accumulation at

±y. Therefore, (∆V (+y)
NL +∆V (−y)

NL )/2 ∝ Jsd whereas

(∆V (+y)
NL −∆V (−y)

NL )/2 ∝ Jsc. Suchmeasurements do
not distinguish between the ISGE and Jshz, since both
induce a spin accumulation whose orientation does
not vary in the CSI region [29]. Nevertheless, these
components can in principle be disentangled by ana-

lyzing (∆V (+y)
NL +∆V (−y)

NL )/2 as a function of the
SOC-material thickness [7]. In particular, when the
thickness is much smaller than the spin relaxation
length along ẑ, Jshz vanishes [47, 48], and only ISGE
contributes to the nonlocal signal.

With the previous considerations, we focus on
fully characterizing the spins generated by Jsc and
Jsd by means of spin precession using spin detectors
located at ±yd. The steady-state spin diffusion and
precession in the spin channel are governed by the
Bloch diffusion equation [49–51]:

D
∂2 s

∂y2
+ γcs×B− s ·Γ

−1
= 0, (1)

where s= (sx, sy, sz) and si is the spin electrochem-
ical potential for spins along i, γc is electron gyro-
magnetic ratio,D= (Dx,Dy,Dz) is the diffusion con-

stant, and Γ characterizes the spin lifetime τ i. In the
most general case, the injected spins have an arbit-
rary spin orientation. The CSI spin injection effi-
ciency into the spin channel can be quantified using
effective spin-polarization factors P= (Px,Py,Pz) =
( jx/I, jy/I, jz/I)w, with ji the corresponding spin cur-
rents with contributions from Jsc and Jsd, and w
the width of the channel. Assuming isotropic spin
transport in the channel and that the FM detector
is characterized by a magnetization along the +x̂

3



2D Mater. 9 (2022) 035014 L Camosi et al

Figure 2. (a), (b) Crystal structure of WTe2 in the Td phase. The W (Te) atoms and the atomic bonds are represented by blue
(orange) circles and black lines, respectively. Green lines enclose the crystal unit cell. (a), (b) View along the crystal a and c axes,
respectively. The mirror plane perpendicular to a, Ma, is shown in (b). (c) Optical image of the measured device. The graphene
flake is highlighted in orange whereas the 8 nm thick WTe2 has magenta contrast on the SiOx(440 nm)/Si substrate. The FM
contacts are bordered with a blue line. For the CSI measurements, a current I= 7.5 µA is applied along the WTe2 flake while

measuring the nonlocal voltages∆V
(±y)
NL . The distance of the FM detectors from the WTe2 crystal is yd = 3 µm. (d) Polarized

Raman spectra as a function of the WTe2 flake orientation with respect to the laser polarization, given by the angle α (inset). The
spectra are normalized with the intensity of the A2

1 peak. (e) Polar plot of the intensity ratio A5
1/A

2
1 vs α. The red line indicates the

maximum of the A5
1/A

2
1 intensity, which corresponds to the â crystallographic direction.

direction and by a polarization efficiency PFM , the
nonlocal resistance RNL ≡∆VNL/I for B along ŷ and
ẑ takes the respective general forms:

RNL(By) =
R□PFM
4 w

Re

 ie−
√

1−iτω
Dτ yd(Px + iPz)√

1−iτω
Dτ

+ h.c.


(2)

RNL(Bz)=
R□PFM
4 w

Re

ie−√ 1−iτω
Dτ yd(Px − iPy)√

1−iτω
Dτ

+ h.c.

,
(3)

whereω = γcB andR□ is the channel sheet resistance.
Fitting the spin precession response to equations

(2) and (3) determines P. The spin-injection
angles for spins moving towards ±ŷ, defined

as θ± ≡ arctan(P±z /
√
(P±x )2 +(P±y )2) and ϕ± ≡

arctan(P±y /P
±
x ), fully characterize the orientation

of the injected spins on both sides of the CSI region
(figure 1(e)). Therefore, comparing θ+ with θ− and
ϕ+ with ϕ− provides direct information on Jsc and
Jsd. In addition, focusing on θ± and ϕ±, rather than
P±, eliminates errors deriving from potential differ-
ences in the FM detector polarizations.

2.3. CSI in graphene-WTe2
WTe2 is a layered TMDC, which is stable in the
orthorhombic Td(Pmn21) phase. It is characterized
by a lack of bulk inversion symmetry (figures 2(a)
and (b)), a glide mirror plane Mb, an out-of-plane
two-fold screw rotational symmetry C2c and a mir-
ror plane Ma perpendicular to the â crystallographic
direction (figure 2(b)). Multilayer Td-WTe2 is a type-
II Weyl semimetal [52, 53] while in monolayer form
it is a 2D topological insulator [54–56]. Considering
the mirror crystal symmetries, in the SHE, jc ⊥ js ⊥ s

while, in the ISGE, jc along â can induce a spin dens-
ity with spins oriented along b̂ and vice versa, but no
spin density parallel to ĉ.

The graphene-WTe2 device fabrication follows
the protocols established with other TMDCs [30]
(see supplementary information (available online at
stacks.iop.org/TDM/9/035014/mmedia)). The WTe2
crystals were grown by chemical vapor transport,
using bromine as a transport agent [57]. Their
electronic and crystalline structure was investigated
by x-ray photoelectron spectroscopy, angle-resolved
photoemission spectroscopy, and Raman spectro-
scopy, all of them demonstrating high quality and
confirming the Td phase (see supplementary mater-
ial). The crystallographic orientation of the WTe2
crystal in the actual device (figure 2(c)) is obtained
by means of linearly polarized Raman spectroscopy.
Figure 3(d) shows the Raman spectra when the laser
polarization is rotated at angle α relative to the long-
axis of the WTe2 flake (figure 2(c)). The intensity of
the Raman modes A5

1 (164 cm
−1) and A2

1 (212 cm
−1)

are known to change as a function of crystal ori-
entation. As the ratio A5

1/A
2
1 is maximum at α= 0

(figure 2(e)) then, in our device, â ∥ x̂ [58].
As the spin transport in graphene on SiO2 is iso-

tropic [59], the parameters τ and D (as well as PFM)
in equations (2) and (3) are extracted by measuring
spin precession with out-of-plane B in the two ref-
erence graphene devices at both sides of WTe2. The
CSI is then investigated by applying a charge current I
along theWTe2 crystal (â ∥ x̂ direction). All measure-
ments are carried out at room temperature.

Figure 3 shows the nonlocal resistances R(+yd)
NL

and R(−yd)
NL as a function of By and Bz. The signals

have been acquired with the FM magnetizations sat-
urated along both the ±x̂ directions to remove con-
tributions that are unrelated to spin and associated to
the magnetization rotation of the FM detector (see
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Figure 3. Nonlocal resistance R(±yd)
NL at−yd and+yd for magnetic field Bz (a), (b) and By (c), (d). Open circles show the

experimental data and the blue lines the corresponding fit to equation (2) or (3). The insets represent the magnetic field direction
and the correspondent spin precession plane. The odd and even parts in the precession response for both Bz and By demonstrates
that the spin polarization generated in the CSI region has components in all three axis. The coincidence in the measurements with
Bz shows that there is no net spin current flowing along ŷ with polarization in the xy plane. The stark difference in the
measurements with By highlights the presence of both a large spin density and spin current flowing along ŷ, with polarization in
the xz plane. Combining Bz and By results, the spin polarized current can only be polarized in ẑ. (e), (f) CSI angles extracted from

the fits of R
(±yd)
NL .

supplementary material). Remarkably, R(+yd)
NL and

R(−yd)
NL present nearly undistinguishable lineshapes

for Bz (figures 3(a) and (b)), while this is clearly not
the case for By (figures 3(c) and (d)).

For Bz, only the in-plane (xy) components of the
injected spins contribute to the precession lineshape.

Therefore, the fact that R(+yd)
NL ∼ R(−yd)

NL demonstrates
that the spins diffusing towards −ŷ and +ŷ have the
same in-plane spin polarization, which is an indic-
ation of a uniform in-plane polarization in the CSI
region (associated to Jsd in figure 1(d)). Moreover,

because R(±yd)
NL are neither fully symmetric nor fully

antisymmetric aboutBz = 0, the spin polarization has
nonzero components along both x̂ and ŷ.

In contrast, for By only the spin components in
the xz plane contribute to the precession lineshape.

The marked difference between R(+yd)
NL and R(−yd)

NL

demonstrates that the spins diffusing towards −ŷ
and +ŷ have different spin polarization orientation
in the xz plane. Combined with the results for Bz,
this observation is an unambiguous indication of
a spin polarized current in the CSI region with a

polarization along ẑ (associated to Jsc in figure 1(d)).

Furthermore, R(+yd)
NL being rather symmetric about

By = 0 (figure 3(d)) also demonstrates the presence
of a uniform spin density along ẑ, originating from
Jsd, which partially compensates the contribution
from Jsc.

To quantify the relative magnitudes of each CSI
component, we fit the measurements in figure 3
to equation (2) or (3). The fittings are shown
with blue lines, from which the spin-polarization
angles θ± and ϕ± are extracted: (ϕ−,θ−) =
(−40◦ ± 5◦,−34◦ ± 4◦) and (ϕ+,θ+) = (−41◦ ±
3◦,−10◦ ± 6◦) (see figures 3(e) and (f) for a schem-
atic representation). The spins originating from
Jsd and Jsc relate to (ϕs,θs) = [(ϕ+ +ϕ−)/2,(θ+ +
θ−)/2] = (−41◦ ± 4◦,−22◦ ± 5◦) and (ϕas,θas) =
[(ϕ+ −ϕ−)/2,(θ+ − θ−)/2] = (0± 4◦,−12◦ ± 5◦),
respectively. The presence of non-zero symmetric
and antisymmetric angular components confirms
the coexistence in the CSI region of spin-Hall cur-
rents along ŷ with polarization in ẑ and uniform
spin densities with polarizations components on
x̂, ŷ and ẑ.
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2.4. Origin of the observed CSI in graphene-WTe2
Although our experiments establish the presence of
CSI with different symmetries, unequivocally identi-
fying the underlying CSI mechanisms requires fur-
ther analysis. The CSI can originate from either
the ISGE or the SHE, in the bulk of WTe2, at the
graphene-WTe2 interface or in graphene by proximity
effects [27].

The spin density in the CSI region has compon-
ents in all three directions (figure 3). According to the
Td-WTe2 crystal symmetries, for a current in a (x̂)
only the spin-polarization component along b (ŷ) is
allowed: the ISGE can generate a spin density in ŷ,
while the spin Hall current flowing in ẑ should also
be polarized along ŷ [60]. Therefore, the x̂ and ẑ com-
ponents are not expected in the bulk of Td-WTe2,
which indicates that both originate from interfacial
or proximity-induced effects in graphene considering
the reduced symmetry of the heterostructure [60].

The symmetry of an heterostructure or thin crys-
tal can be equal or lower than its bulk constitu-
ents, permitting additional non-zero spin polariz-
ation components. Indeed, in the graphene-WTe2
interface, the glide symmetry is absent, leaving pos-
sibly only the single mirror symmetry plane Ma. As
discussed in figure 1, the generation of a spin dens-
ity in c (ẑ), when jc is along a (x̂), would then be
allowed.

The spin density along x̂ was previously observed
in graphene-MoTe2 and graphene-WTe2 and was
ascribed to the presence of an additional bulk mir-
ror symmetry breaking induced by strain in the
TMDC [34, 36]. In our experiments, Raman spec-
troscopy demonstrates that WTe2 is not under strain
(see supplementary material), making this explana-
tion implausible. Alternatively, the spin density in x̂
could be generated by a current component along ŷ.
Recent theoretical works reported anisotropic SHE
in WTe2 and MoTe2 as a function of charge cur-
rent direction and Fermi energy position [61, 62].
However, the elongated geometry of our WTe2 flake
(figure 2(d)) implies that the current component
along ŷ is very small and a very large CSI efficiency
would be required to make this scenario viable. These
observations confirm that the spin density along x̂ is
likely generated in the proximitized graphene.

Recent first-principles calculations addressing the
twist-angle dependence of proximity-induced SOC in
graphene by TMDCs MoS2, MoSe2, WS2 and WSe2
have shown that the Rashba SOC could exhibit a
radial component, thus deviating from the typical
tangential orientation [37]. As discussed in references
[35, 37], the radial component is allowed for twist
angles between the graphene and TMDC lattices dif-
ferent from 0◦ and 30◦, where mirror symmetries are
broken and the point group symmetry of graphene-
TMDC is reduced to C3. Similarly, an arbitrary twist
angle between the graphene and WTe2 crystal lattices

can break the remaining symmetry upon reflection in
Ma. At their interface, with radial Rashba SOC coup-
ling, a spin polarization component parallel to jc can
then arise.

It remains to be understood why the radial com-
ponent has never been observed in graphene-WS2
and graphene-MoS2 [28–30]. The high annealing
temperatures used in those works, to clean the hetero-
structures and improve the interface quality, might
have favored 0◦ or 30◦ twist angles, although this
argument would not be valid if the initial (arbit-
rary) twist angle was larger than perhaps a fraction
of a degree. Therefore, further studies are required to
address this question.

Finally, the observed spin current along ŷ, which
is polarized in ẑ, has not been reported in prior
graphene-WTe2 studies [36, 46]. It is however allowed
even in high-symmetry structures, and has been
reported in graphene-MoS2 and graphene-WS2
[28–30]. In these experiments, the generation of a
spin density with polarization in ŷ was also found.
It was further confirmed that both the spin current
polarized in ẑ and the spin density in ŷ can originate
solely from the SHE and the ISGE in proximitized
graphene, respectively [28, 30]. But, in general, the
former could be due to the SHE, in graphene or in
the TMDC, while the latter to the ISGE in graphene
or the SHE in the TMDC [29].

The previous discussion strongly suggests that
the unconventional CSI components in graphene-
WTe2 originate from interfacial or proximity effects.
In contrast, the observed spin current with polar-
ization in ẑ and the spin densities in ŷ are permit-
ted both in the bulk of Td-WTe2 and in proximit-
ized graphene. Quantifying the spin absorption in
WTe2 could in principle help separate these remain-
ing CSI contributions, however, the analysis is not
straightforward or free of ambiguities. The estimation
of the spin absorption requires detailed knowledge
of heterostructure properties that cannot be readily
obtained in nonlocal devices. The properties include
the precise interface resistance between graphene and
WTe2 as well as the spin relaxation parameters in
both the proximitized graphene andWTe2. Any subtle
change in these parameters, or in the implementa-
tion of the spin absorptionmodel, can result in diver-
ging conclusions. In addition, due to the 2D nature
of graphene, the spin absorption is not uniform at
the graphene-WTe2 interface, even if the spin-current
absorption occurs in z direction. This can be eas-
ily understood by considering the inverse SHE, com-
monly used inCSI experiments. Because of spin relax-
ation and the fact that there is no alternative path
for spins to cross the CSI region, as in a 3D system,
the majority of spins will be absorbed on the side of
graphene-WTe2 that is closest to the FM injector. This
leads to a spin accumulation gradient (and a spin cur-
rent) in the TMDC along the spin channel.

6



2D Mater. 9 (2022) 035014 L Camosi et al

3. Conclusions

We have demonstrated experimentally that the CSI
in graphene-WTe2, with a current along the WTe2 a
axis, induces spin-polarized carriers with polarization
components in all three spatial directions. By imple-
menting systematicmulti-terminal nonlocal spin pre-
cession experiments, we have shown that it is possible
to disentangle the CSI from the spin Hall and ISGEs.
A spin current flowing along the graphene channel
leads to opposite spin polarization on the two sides of
the CSI region, inducing a signal with opposite sign in
remote FM detectors at each side. In contrast, a spin
density in the CSI region produces a signal with equal
sign in the same detectors.

We confirmed a spin accumulation with polariz-
ation along the applied current, which by symmetry
is not allowed in the WTe2 bulk. Our analysis indic-
ates that this spin accumulation originates at the
graphene-WTe2 interface and involves the emergence
of a radial component in the proximity-induced
Rashba SOC, which arises from twisting [35, 37].
To validate this interpretation, additional experi-
ments are needed. In particular, the radial compon-
ent was predicted to be extremely sensitive to the twist
angle, unintended doping and carrier density [37].
Therefore, it is necessary to systematically address
the dependence of the spin accumulation parallel to
the current as a function of crystalline orientation,
sample annealing temperature and gate voltage. For
the latter, thin, ideally monolayer, WTe2 should be
used to avoid both gate shielding (from semi-metallic
bulk WTe2) and added complexity from spin absorp-
tion. Nevertheless, to unambiguously demonstrate
the radial Rashba component, it might be better to
simply focus on semiconducting TMDCs.

We also show, for the first time, the presence of
spin currents and spin densitieswith polarization per-
pendicular to the substrate plane in graphene-WTe2.
The observed spin polarization, as generated by the
SHE spin current is always allowed, and can be
induced in the bulk of WTe2 or in proximitized
graphene. However, symmetry considerations show
that the spin density with perpendicular polarization
must originate from the ISGE at the graphene-WTe2
interface.

Overall, our work demonstrates that multi-
terminal CSI measurements combined with sym-
metry analysis are powerful approaches to discrim-
inate CSI signals. This is important for both applied
and fundamental reasons. In particular, understand-
ing the CSI originating from SHE and ISGE with all
possible orientations is a promising route for mag-
netic memory applications, where the generation of
unconventional spin-orbit torques is required [38].

Overall, our work demonstrates that multi-
terminal CSI measurements combined with sym-
metry analysis are powerful approaches to discrim-
inate CSI signals. This is important for both applied

and fundamental reasons. In particular, understand-
ing the CSI originating from SHE and ISGE with all
possible orientations is a promising route for mag-
netic memory applications, where the generation of
unconventional spin-orbit torques is required [38].

Note added in proof : Related results show uncon-
ventional spin-to-charge conversion in graphene-
NbSe2 devices that are consistent with reduced sym-
metry at the twisted graphene/NbSe2 interface [63].
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