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1. Introduction

Let n and m be positive integers, m ≥ 2, and R := K[x1, . . . , xn] a polynomial ring in n variables 
with coefficients in an infinite field K. Suppose that a1, . . . , am, p, q ∈ R are such that the following 
equality of ideals in R holds:

I := 〈a1,a2, . . . ,am〉 = 〈p,q〉. (1)
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In this paper, we will show that Syz(a1, . . . , am), the R-syzygy module of the sequence (a1, . . . , am)

is a free R-module, and we will develop algorithms for a computation of a basis of it in terms of 
the matrices of converting the ai ’s into p, q and vice versa. Our approach will be the use of the 
Effective Quillen-Suslin Theorem presented in Caniglia et al. (1993). We will also develop a bound on 
the degrees of the elements of such a basis as a function of the degrees of the input data.

Note that we are not assuming in principle that neither p and q are coprime, nor that the ideal 
they define equals the whole ring R . But our claim can be simplified in the first case by removing 
common factors without changing the syzygy module, and in the second case the problem is solved 
completely by applying the Effective Quillen-Suslin Theorem (cf. Caniglia et al., 1993) directly to the 
input data, with better bounds than those presented below. So we can assume w.l.o.g. for the rest 
of the text that gcd(p, q) = 1, and that they do not generate the unitary ideal, i.e. that the grade of 
I is equal to two. Let δa ∈ N be a bound on the total degrees of a1, . . . , am , and δ0 a bound for the 
degrees of p and q. The main result of this paper is the following.

Theorem 1.1. Given the data a1, . . . , am, p, q ∈ K[x1, . . . , xn] satisfying (1), and δa, δ0 as defined above. 
There is an algorithm which computes an R-basis of Syz(a1, . . . , am) made by vectors of polynomials of de-
gree bounded by 3n24n(δ2

0 + δa + 1)2n.
If in addition I is zero dimensional (for instance when n = 2), then another basis of the same module can 

be computed with the following degree bound:

2δ0 + 2δa + 2δ2
a + δ2

0 + 3mn24n(2δ2
a + δa + δ0 + 1)2n. (2)

The proof of this Theorem is given in Section 5.3. These results can be applied to the case treated 
in our ISSAC 2020 paper (Cortadellas Benítez et al., 2020), where n = 2, m = 4 and p, q a “Shape 
Lemma” representation of the radical ideal I . Our algorithm and main result there state that a basis 
of Syz(a1, a2, a3, a4) can be found with degree bounded by 5δ4

0(2δa + 1)4.
Note that in this case, δ0 can be expressed in terms of δa thanks to Bézout Theorem, and we can 

set δ0 := δ2
a . The results in Cortadellas Benítez et al. (2020) amount then to a bound of size δ12

a . In 
contrast, the first bound in Theorem 1.1 amounts to a constant times δ16

a , while the second one is of 
the order of δ8

a , which is an improvement with respect to this previous bound. In addition, we will 
see in Proposition 7.1 that a careful analysis of this situation can actually make the bound of size δ12

a
get smaller, comparable to the results in Cortadellas Benítez et al. (2020).

It should be pointed out, however, that even though the situation presented here contains the 
problem tackled in Cortadellas Benítez et al. (2020), this paper is not a generalization of the results 
given there, as our methods are slightly different despite the fact that in both cases we use Hilbert-
Burch and Effective Quillen-Suslin theorems. Our ISSAC 2020 paper dealt with the case when p and 
q are “shape” basis of an ideal of 4 polynomials in 2 variables, and the results were restricted to that 
case. Here, we deal with any number of polynomials and variables, and even in the case n = 2 we 
are not assuming that the ideal has a shape basis, just that it is a complete intersection of grade 2. In 
Section 7 we will compare both approaches.

The computation of syzygies of sequences of polynomials is of major interest in the Computer 
Aided Geometric Design community. In the cases of curves (n = 1) and surfaces (n = 2), these are 
called “μ-bases”, see for instance Cox (2003); Chen and Wang (2003); Chen et al. (2005); Deng et 
al. (2005); Hong et al. (2017); Shen and Goldman (2017); Yao et al. (2019); Yao and Jia (2019) and 
the references therein. The situation for curves is quite well-understood and classical, see for instance 
Cox et al. (1998). The existence of μ-bases for surfaces has been proven in Chen et al. (2005), and 
several methods have been proposed for computing them in taylored situations (revolution, canal, 
translational, ... surfaces). In Deng et al. (2005), a concrete method for computing a μ-basis is pro-
posed based on the Matrix Primitive Factorization Theorem given in Guiver and Bose (1982), but no 
concrete bounds on the outcome are given.

Even though the study of syzygies of ideals of grade 2 does not cover all the cases of interest in 
the literature —for instance, it is known that if n = 2 the syzygy module of a1, . . . , am is always free 
independently of the fact that I can be generated by 2 polynomials, see Cid-Ruiz (2019) for general 
bounds for degrees in this case— the situation presented in (1) is quite general in the sense that to 
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have Syz(a1, . . . , am) being a free module, if all the ai ’s are coprime, then Hilbert-Burch Theorem 2.1
implies that this ideal must have grade 2, and hence they should be described —at least locally— with 
two polynomials.

The paper is organized as follows: in Section 2 we review both Hilbert-Burch and Effective Quillen-
Suslin Theorems (Theorems 2.1 and 2.2 respectively), and give an explicit bound in Theorem 2.6 for 
the degree of a unimodular “inverse” matrix to a unimodular one. In Section 3 we show that the 
matrix of polynomials converting (a1 . . .am) into (p q) is unimodular, while the one reversing this 
process is “almost” unimodular, see Proposition 3.3, but can be replaced by a unimodular one (cf. 
Proposition 3.4). This result allows a complete characterization of those data a1, . . . , am, p, q ∈ R sat-
isfying (1) in terms of a unimodular conversion matrix, see Theorem 3.5.

All these results are then used in Section 4 to develop algorithms which compute an R-basis of 
Syz(a1, . . . , am) based each of them in one of these conversion matrices.

In Section 5 we study degree bounds for the output of the algorithms presented, and also prove 
Theorem 1.1. In section 6 we show some examples illustrating our methods and tools. We conclude 
the paper by comparing our approach with the one presented in Cortadellas Benítez et al. (2020) in 
Section 7.

Acknowledgements: All our computations were done with the aid of the softwares Maple (Maple, 
2020) and Mathematica (Wolfram Research, Inc., 2018). We also acknowledge useful conversations 
with Martín Sombra while working some of the results of this paper. T. Cortadellas was supported 
by the Spanish MICINN Research projects MTM2013-40775-P and PID 2019-104844GB-100. C. D’An-
drea and M.E. Montoro were supported by the Spanish MICINN research projects MTM 2015-65361-P 
and PID2019-104047GB-I00. C. D’Andrea was also supported by the Spanish State Research Agency, 
through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D 
(CEX2020-001084-M).

2. Hilbert-Burch and effective Quillen-Suslin theorems

We start by recalling the well-known Hilbert-Burch Theorem for resolutions of length 1.

Theorem 2.1. (Eisenbud, 2005, Theorem 3.2) Suppose that an ideal I in a Noetherian commutative ring A
admits a free resolution of length 1 as follows:

0 → F1
G→ F2 → I → 0.

If the rank of the free module F1 is �, then the rank of F2 is � + 1, and there exists a nonzero divisor a ∈ A
such that I is equal to a times the ideal of � × � minors of the matrix G with respect with any given bases of 
F1 and F2 . The generator of I that is the image of the i-th basis vector of F2 is ±a times the determinant of the 
submatrix of G formed from all except the i-th row. Moreover, the grade of the ideal of maximal minors is 2.

Conversely, given an (� + 1) × � matrix G with entries in A such that the grade of the ideal of � × � minors 
of G is at least 2, and a given nonzero divisor a ∈ A, the ideal I generated by a times the � × � minors of G
admits a free resolution of length one as above. It has grade 2 if and only if a is a unit.

We bring also to the picture the main tool we will use in our paper, namely the Effective Quillen-
Suslin Theorem. We recall that R = K[x1, . . . , xn] is a polynomial ring in n variables with coefficients 
in an infinite field K. A matrix U ∈ Rr×s is called unimodular if the ideal generated by the maximal 
minors of it equals to the whole ring R . We denote by Ir the identity matrix of size r × r. An ele-
mentary matrix is one that consists in exchanging two rows (or two columns) of Ir , or adding to a 
row (or column) a polynomial multiple of another. The degree of a matrix equals the maximum of 
the degrees of its entries.

Theorem 2.2. (Caniglia et al., 1993, Theorem 3.1) Assume that F ∈ Rr×s is unimodular, with r ≤ s. Then, there 
exists a square matrix U ∈ Rs×s such that

(1) U is unimodular,
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(2) F · U = [Ir, 0] ∈ Rr×s ,
(3) deg(U ) = (rd)O(n) , and
(4) U is a product of O(n2s2(rd)2n) matrices, each of them being elementary or having the form T ⊕ Is−r−1

for some T ∈ S Lr+1(R).

The proof given in Caniglia et al. (1993) of this result is constructive. In the rest of this section, we 
will review some steps of it to make explicit the exponent O(n) which appears in (3).

Assume then that a unimodular matrix F ∈ Rr×s is given. In a preliminary step in Caniglia et 
al. (1993), one has to make a linear change of coordinates, and then multiply F by the unimodular 
matrix A = (aij)1≤i, j≤s defined by

aij =

⎧⎪⎪⎨
⎪⎪⎩

xn if i = j ≤ r
1 if j = i + 1
1 if i = s, j = 1
0 everywhere else

,

in such a way that the conditions of Assumption 2.8 in Caniglia et al. (1993) are satisfied, namely that 
the r × r minor of F made by choosing the first r columns is monic in all the variables x1, . . . , xn , and 
having total degree strictly larger than the degree of the remaining maximal minors of F . This may 
increase the value of d in 1, so we will have to keep track of this in order to get an explicit bound.

Next we will have to deal with a version of Hilbert’s Nullstellensatz presented in that paper. To 
do this, consider the s × s matrix Y = (yij)1≤i, j≤s where each of the yij is a new indeterminate. 
Set FY := F · Y ∈ (R ⊗K[yij])r×s . Denote with D1 (resp. D2) the determinant of the r × r submatrix 
of FY made by choosing its first r columns (resp. the columns 1, . . . , r − 1, r + 1), and denote with 
c ∈K[x1, . . . , xn−1, yij, 1 ≤ i, j ≤ s], the resultant as defined in Walker (1978, Theorem 9.3) of D1 and 
D2 with respect to xn . From Walker (1978, Theorem 10.9) we easily verify that

degx1,...,xn−1
(c) ≤ (

r(d + 1)
)2

, (3)

and moreover by applying the latter result and (Walker, 1978, Theorem 9.6) we deduce that there 
exist A1, A2 ∈K[x1, . . . , xn−1, yij, 1 ≤ i, j ≤ s] such that

c = A1 D1 + A2 D2, with degx1,...,xn−1
(A1, A2) ≤ (

r(d + 1)
)2

. (4)

Lemma 2.3. (Caniglia et al., 1993, Lemma 4.4) For all ξ ∈Kn−1 , there exists yξ ∈Ks×s such that c(ξ, yξ ) 
= 0.

With this result in hand, we can prove the following effective version of Hilbert’s Nullstellensatz.

Proposition 2.4. There exist matrices y1, . . . , yn ∈Ks×s such that

〈c(x,y1), . . . , c(x,yn)〉 = R. (5)

Proof. Denote with K the algebraic closure of K. Start by picking any ξ1 ∈Kn−1, and set y1 �→ y(ξ1). 
Thanks to Lemma 2.3 we have that c(x, y1) 
= 0, and hence the variety defined by its zeroes is a 
hypersurface in K

n−1
.

Denote with W1, . . . , W� the irreducible components of maximal dimension of this hypersurface, 
and pick χ1, . . . , χ� ∈ K

n−1
such that χ j ∈ W j . By Lemma 2.3, none of the polynomials c(χ j, yij) ∈

K[yij] can be identically zero, so the product 
∏�

j=1 c(χ j, yij) also is non-zero. As K is infinite, we 
can choose y2 ∈Ks×s such that 

∏�
j=1 c(χ j, y2) 
= 0. With this choice, we have that the variety defined 

by the zeroes of c(x, y1) and c(x, y2) cannot have components of codimension 1 in K
n−1

as the latter 
polynomial cannot vanish identically in any of the W j .
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The same argument can be applied recursively as follows: given c(x, y1), . . . , c(x, yi) such that the 
set of common zeroes of these polynomials has irreducible components of dimension at most n −1 − i, 
there exist yi+1 ∈ Ks×s such that c(x, yi+1) cuts properly every component of maximal dimension of 
this algebraic set. We will eventually arrive to the situation where the system c(x, y1), . . . , c(x, yn)

defines the empty variety in K
n−1

. Hilbert’s Nullstellensatz then implies (5). �
We will also need the following refinement of the Effective Nullstellensatz for the degrees of poly-

nomials involving a Bézout identity.

Proposition 2.5. Let c(x, y1), . . . , c(x, yn) be as in (5). Then one can have

xn = a1 c(x,y1) + . . . + an c(x,yn)

with a1, . . . , an ∈ R, and deg
(
ai ci(x, yi)

) ≤ 2
(
r(d + 1)

)2(n−1)
.

Proof. By the Effective Nullstellensatz (Theorem 1.1 in Jelonek, 2005), there exist b1, . . . , bn ∈
K[x1, . . . , xn−1] such that 1 = b1 c(x, y1) + . . .+bn cn(x, yn), with deg(bi c(x, yi)) ≤ 2(r(d +1))2(n−1) −1. 
The claim now follows by multiplying by xn both sides of this equality. �
Theorem 2.6. Assume that F ∈ Rr×s is unimodular, with r ≤ s. Then, the matrix U ∈ Rs×s of Theorem 2.2 can 
be computed with

deg(U ) ≤ 3n2(r(d + 1))2n.

Proof. We start by following the steps of the algorithms given in the proof of Proposition 4.1 (Proce-
dure 4.3) in Caniglia et al. (1993) to compute a matrix Un which “eliminates” the variable xn from F
by evaluating it to zero, i.e. F · Un = F |xn=0.

• In their step 1, their number N can be replaced by n thanks to Proposition 2.4.

• In their step 2, we have deg(ai ci(x, yi)) ≤ 2
(
r(d + 1)

)2(n−1)
thanks to Proposition 2.5.

• The degree of what is called Ek in their step 3 is bounded by

deg(Ek) ≤ r(d + 1)(1 + r(d + 1))2
(
r(d + 1)

)2(n−1) ≤ 3
(
r(d + 1)

)2n
.

• To compute the unimodular matrix Un (matrix M in their notation), one has to multiply N(= n)

of these matrices Ek , so we have that

deg(Un) ≤ 3n
(
r(d + 1)

)2n
.

By applying this process recursively and eliminating all the variables, we see that the unimodular 
matrix U of Theorem 2.2 can be computed as a product of matrices Un · Un−1 . . . U1 · U0, where for 
i > 0, each Ui eliminates the variable xi , and U0 ∈Ks×s is a matrix of scalars. So, we have then that

deg(U ) ≤ 3n2(r(d + 1)
)2n

,

as claimed. �
3. Syzygies and unimodularity

In this section, we will relate the matrices converting a1, . . . , am into p, q, and vice versa, with 
unimodular matrices. This will allow us to use the Effective Quillen-Suslin Theorem 2.2 to produce an 
R-basis of Syz(a1, . . . , am) of controlled degree.

Let then a1, . . . , am, p, q ∈ R be such that (1) holds. The syzygy module of the sequence 
(a1, . . . , am) is defined as
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Syz(a1, . . . ,am) := {(u1, . . . , um) ∈ Rm| u1a1 + . . . + umam = 0} ⊂ Rm.

Note that we are not claiming that gcd(p, q) = 1, but this can be assumed w.l.o.g. as Syz(a1, . . . , am)

does not change after removing a common factor of all these polynomials (which would be a common 
factor of p and q thanks to (1))).

From (1), we deduce that there exist matrices M ∈ R2×m and N ∈ Rm×2 such that

(a1 a2 . . . am) · N = (p q), (p q) · M = (a1 a2 . . . am). (6)

In principle, there are infinite matrices M and N that satisfy (6). The results that we prove in the 
sequel hold for any of these choices. Denote with K the 2 × 2 matrix which is the product M · N .

Lemma 3.1. Assuming that gcd(p, q) = 1, there exist e, f ∈ R such that

K =
(

1 − e · q f · q
e · p 1 − f · p

)
. (7)

Proof. Write K =
(

α β

γ δ

)
. From (6) we deduce straightforwardly that

(p q) · K = (p q) · M · N = (p q).

So, we have{
p = α · p + γ · q
q = β · p + δ · q

.

From here we deduce that{
(1 − α)p = γ · q
(1 − δ)q = β · p

,

so there exist λ, ̃λ in Q (R), the field of fractions of R , such that⎧⎪⎪⎨
⎪⎪⎩

1 − α = λ · q
γ = λ · p

1 − δ = λ̃ · p
β = λ̃ · q

.

As λ · q and λ · p are elements of R and gcd(p, q) = 1, then we deduce that λ ∈ R . The same happens 
with λ̃. The claim follows by setting e �→ λ, f �→ λ̃. �

We cannot claim that K is a unimodular matrix. As a matter of fact, with the notation above we 
have that det(K ) = 1 − e · q − f · p, which is an element of K if and only if e · q + f · p ∈ K. If 
this is the case and det(K ) 
= 1, then I is principal, and the Quillen-Suslin Theorem 2.2 shows that 
Syz(a1, . . . , am) is a free R-module, and gives bounds for the degrees of a basis of this module, which 
are better than those appearing in Theorem 4.1.

In any case, we can modify the matrix M so that we get e = f = 0. We start by denoting with

K̃ :=
(

1 − e · q f · q −q
e · p 1 − f · p p

)
∈ R2×3, (8)

the matrix which consists in adding to K the column 
(−q

p

)
.

Lemma 3.2. K̃ is a unimodular matrix.
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Proof. Indeed the 3 maximal minors of K̃ are p, q and 1 − e · q − f · p. From here the claim follows 
straightforwardly. �

To connect K̃ with M and N , we write them down explicitly:

N =

⎛
⎜⎜⎜⎝

b1 c1
b2 c2
...

...

bm cm

⎞
⎟⎟⎟⎠ and M =

(
d1 d2 . . . dm

e1 e2 . . . em

)
. (9)

Proposition 3.3. N is a unimodular matrix, and so is M̃, where

M̃ :=
(

d1 d2 . . . dm −q
e1 e2 . . . em p

)
∈ R2×(m+1). (10)

Proof. Set

Ñ =

⎛
⎜⎜⎜⎜⎜⎝

b1 c1 0
b2 c2 0
...

...

bm cm 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ∈ R(m+1)×3. (11)

We clearly have M̃ · Ñ = K̃ . As K̃ is unimodular, so are Ñ and M̃ (this can be seen for instance by using 
the Cauchy-Binet formula (Broida and Williamson, 1989, §4.6) for computing minors of a product of 
matrices). The fact that N is unimodular follows just by noting that all the nonzero maximal minors 
of it are —up to the sign— the nonzero maximal minors of Ñ . �

Note that Proposition 3.3 states that any matrix N as in (6) is unimodular. That does not apply to 
M , see for instance Example 6.2. However, one can always replace M with a unimodular one as the 
following result shows.

Proposition 3.4. M can be chosen as in (6) to be unimodular.

Proof. Let e, f ∈ R be such that (7) holds. If (e, f ) = (0, 0) we are done. If not, because N is unimod-
ular, its rows generate R2 as an R-module, so there exist x1 . . . xm ∈ R such that

x1 · (b1 c1) + x2 · (b2 c2) + . . . + xm · (bm cm) = (e − f ). (12)

Set then

M ′ = M +
(

x1q x2q . . . xmq
−x1 p −x2 p . . . −xm p

)
. (13)

We clearly have that M ′ satisfies (6), and an easy computation shows that

M ′ · N =
(

M +
(

x1q x2q . . . xmq
−x1 p −x2 p . . . −xm p

))
· N =

(
1 0
0 1

)
, (14)

thanks to (12). So, M ′ is unimodular, as claimed. �
We conclude by showing a characterization of those ideals of grade 2 having the property (1) via 

the matrix M .
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Theorem 3.5. For a1 . . . , am, p, q ∈ R, we have that 〈a1, . . . , am〉 = 〈p, q〉 if and only if there exists a unimod-
ular matrix M ∈ R2×m such that

(p q) · M = (a1 . . .am).

Proof. The “if” part follows from Proposition 3.4. For the converse, apply Theorem 2.2 to the unimod-

ular matrix M , and let U ∈ Rm×m be such that M · U =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
. Set N ∈ Rm×2 to be the 

matrix consisting of the first two columns of U . We then have that (6) holds and so (1), which proves 
the claim. �
Remark 3.6. The role of M and N are different in the characterization of ideals satisfying (1). In-
deed, having N unimodular is not enough to characterize these ideals, as for instance we may have 

a1, . . . , am ∈ R with m ≥ 3 be such that a3 /∈ 〈a1, a2〉. If we set N =

⎛
⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
.
.
.

.

.

.

0 0

⎞
⎟⎟⎟⎟⎟⎠, then it is clear that we 

will never find an M such that (6) holds.

4. Algorithms

We will now exhibit algorithms to compute R-bases of Syz(a1, . . . , am) by applying the Effective 
Quillen-Suslin Theorem 2.2 to M̃, M ′ or N .

4.1. Working with M̃

With notation as above, from Theorem 2.2 we deduce that there exists a square unimodular matrix 
U ∈ R(m+1)×(m+1) such that

M̃ · U =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
. (15)

Assume w.l.o.g. that det(U ) = 1. From (6) we deduce that (p q) · M̃ = (a1 . . .am 0), and hence we must 
have

(p q) · M̃ · U = (p q 0 . . . 0) = (a1 . . .am 0) · U (16)

Let Û ∈ Rm×(m−1) the submatrix of U consisting in removing its first two columns and its last row. 
From (16) we deduce that the columns of Û are syzygies of (a1, . . . , am). Our main result is the 
following.

Theorem 4.1. The columns of ̂U are an R-basis of Syz(a1, . . . , am).

Proof. Let U 1, . . . , Um+1 be the columns of U , and denote with Ũ ∈ R(m+1)×m the matrix whose 
columns are −q · U 1 + p · U 2, U 3, . . . , Um+1, in this order. By applying Cramer’s rule to the last 
equality of (16), we deduce that the signed maximal minors of this matrix are a1, . . . , am, 0. Hence, 
the ideal generated by these maximal minors is I , which has grade 2 by our initial assumptions. By 
applying then the converse of the Hilbert-Burch Theorem 2.1, we deduce then that the columns of Ũ
are a basis of Syz(a1, . . . , am, 0).

We claim now that the first two rows of U−1, the inverse matrix of U , are equal to M̃ . Indeed, 
denote then by U−1

2×(m+1) the submatrix of U−1 made by these rows. From (15) we deduce that

M̃ · U = U−1
2×(m+1) · U ,
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and as U is invertible, the claim follows. In particular, the last column of U−1 is of the form 

⎛
⎜⎜⎜⎜⎜⎝

−q
p
r3
.
.
.

rm+1

⎞
⎟⎟⎟⎟⎟⎠

for suitable r3, . . . , rm+1 ∈ R . From the identity U · U−1 = Im+1, we deduce that

−q · U 1 + p · U 2 + r3 · U 3 + . . . + rm+1 · Um+1 =

⎛
⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎠ .

This implies that if we perform the following column operation in Ũ : to its first column (which is 
equal to −q · U 1 + p · U 2) we add r3U 3 + . . . + rm+1Um+1, the fact that its columns are an R-basis 
of Syz(a1, . . . , am, 0) remains unchanged, but now the first column of the modified matrix is equal to ⎛
⎜⎜⎜⎝

0
.
.
.

0
1

⎞
⎟⎟⎟⎠.

From here, we can perform new column operations in U 3, U 4, . . . , Um+1 in such a way that the 
last row of Ũ equals to (1 0 . . . 0), and the other coefficients of this matrix have not changed. So, we 
have shown that Syz(a1, . . . , am, 0) has an R-basis of the form(

0 Û
1 0

)
.

From here the claim follows straightforwardly. �
4.2. Working with a unimodular M

If M is already unimodular (which is for instance the case of the matrix M ′ defined in (13), 
although we are not requiring that M · N = I2 as in (14)), we can apply directly the Effective Quillen-
Suslin Theorem 2.2 to M and obtain a unimodular U∗ ∈ Rm×m such that

M · U∗ =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
. (17)

From (6) we now get that (p q) · M = (a1 . . .am), and hence

(p q) · M · U∗ = (p q 0 . . . 0) = (a1 . . .am) · U∗. (18)

Denote the columns of U∗ with U∗1 U∗2 . . . , U∗m . Let Û∗ ∈ Rm×(m−1) be the matrix

Û∗ =
(

qU∗1 − pU∗2, U∗3, . . . , U∗m
)

. (19)

By applying Cramer’s rule to (18), and using the converse of the Hilbert-Burch Theorem 2.1, we 
deduce straightforwardly that

Theorem 4.2. The columns of Û∗ defined in (19) are an R-basis of Syz(a1, . . . , am).

4.3. Working with N

We can also work directly with the unimodular matrix N from (6) and construct an R basis of 
Syz(a1, . . . , am) as follows: denote with N∗ ∈ Rm×m a matrix of determinant equals to 1 such that 
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it has N as its first 2 columns. This can be done by applying the Quillen-Suslin Theorem 2.2 to Nt . 
The matrix N∗ can be taken to be the inverse of matrix U in this claim. Denote its columns with 
N∗1, . . . , N∗m .

From (6), we clearly have that (a1 . . .am) · N∗1 = p, and (a1 . . .am) · N∗2 = q. As for all i = 1, . . . , m, 
we have that (a1 . . .am) · N∗i ∈ 〈a1, . . . , am〉 = 〈p, q〉, for i = 3, . . . , m we write (a1 . . .am) · N∗i = λi p +
δiq for suitable λi, δi ∈ R .

Perform then the following elementary column operations in N∗: for i = 3, 4, . . . , m, replace col-
umn N∗i with N∗i − λi N∗1 − δi N∗2. Call the remaining matrix N∗∗ . By construction:

• det(N∗∗) = 1, i.e. N∗∗ is unimodular;
• (a1 . . .am) · N∗∗ = (p q 0 . . . 0)

Denote then with N∗∗1, N∗∗2, . . . the columns of N∗∗ , and let N̂ ∈ Rm×(m−1) the matrix whose columns 
are

N̂ = (
qN∗∗1 − pN∗∗2 N∗∗3 . . . N∗∗m)

(20)

Theorem 4.3. The columns of ̂N are an R-basis of Syz(a1, . . . , am).

Proof. As before, by taking into account that (a1 . . .am) · N∗∗ = (p q 0 . . . 0), and applying Cramer’s 
rule to this matrix, it is easy to see that the signed maximal minors of N̂ are a1, . . .am . The converse 
of the Hilbert-Burch Theorem 2.1 then proves the claim. �
4.4. Relations among the bases

In the following, we will show that if one picks convenient unimodular matrices in the process 
of computing the several R-basis of Syz(a1, . . . , am) described above, the ansatz is essentially the 
same. We begin by proving the following straightforward relation between U ∗ and N∗ if M is already 
unimodular.

Proposition 4.4. Suppose that M · N = I2 (in particular, we have that M is unimodular). Then, one can find 
a unimodular m × m matrix which can be used as U∗ in (17) and also as N∗∗ from §4.3. Moreover, we get 
Û∗ = N̂ , i.e. the bases from Theorems 4.2 and 4.3 coincide.

Proof. Start by picking any U∗
0 ∈ Rm×m satisfying (17). Denote its columns with U∗1

0 . . . U∗m
0 . As we 

have

M · (U∗1
0 U∗2

0

) = M · N =
(

1 0
0 1

)
,

we deduce that each of the columns of 
(
U∗1

0 U∗2
0

) − N belongs to the right-kernel of M . Denote also 
with N1 and N2 the columns of N . As M is unimodular, its right-kernel is a free R-module, with basis 
U∗3

0 , . . . , U∗m
0 . So there exist yi3, . . . , yim ∈ R such that

U∗i
0 − Ni = yi3U∗3

0 + . . . + yimU∗m
0 , i = 1,2

Set now U∗ to be the matrix obtained from U∗
0 by substracting to the column i the following linear 

combination of columns: yi3U∗3
0 + . . . + yimU∗m

0 , i = 1, 2. Clearly U∗ is unimodular, and has N as its 
first two columns, so the first part of the claim follows.

To see the second part, note that as we have

(a1 . . .an) · N∗ = (p q) · M · U∗ = (p q 0 . . . 0),

we deduce that λi, δi, i = 3, . . . , m from §4.3 are all equal to zero, and hence the matrix N∗∗ defined 
in that section equals to N∗ (which is equal to U∗). As the process to convert N∗∗ into N̂ and U∗
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into Û∗ is the same (replace the first two columns with q times the first column minus p times the 
second column), we deduce straightforwardly that Û∗ = N̂ , which concludes with the proof of the 
proposition. �

If M is not unimodular anymore, we will have to work with matrices M̃ and Ñ which were defined 
in (10) and (11) respectively. The following result then holds.

Proposition 4.5. The matrices U and N∗ from (15) and §4.3 respectively can be chosen in such a way that the 
latter is a submatrix of the first, and that Û∗ = N̂ , i.e. the bases from Theorems 4.2 and 4.3 coincide.

Note that we are not having any requirement about the result of the product between M̃ and Ñ
as it may be hinted by the situation in Proposition 4.4.

Proof. Denote the columns of N with N1, N2, and set

Ñ∗ =
(

N1 N2 qN1 − pN2

−e f 1 − eq − f p

)
∈ R(m+1)×3, (21)

with e, f ∈ R as in (3.1). As M̃ · Ñ = K̃ , with K̃ defined in (8), we deduce that

M̃ · Ñ∗ =
(

1 0 0
0 1 0

)
.

This implies that Ñ∗ is unimodular, and hence can be extended to an invertible U ∈ R(m+1)×(m+1)

such that (15) holds and having Ñ∗ as its first columns. We have then that

U =
(

N1 N2 qN1 − pN2 N4 . . . Nm+1
−e f 1 − eq − f p r4 . . . rm+1

)

for suitable columns N4, . . . , Nm+1 in Rm×1 and suitable r4, . . . , rm+1 ∈ R . As by performing ele-

mentary operations in the first columns of U we can get 

⎛
⎜⎜⎜⎝

0
.
.
.

0
1

⎞
⎟⎟⎟⎠, we deduce then that, by picking 

N∗ = (N1 N2 N4 . . . Nm+1) ∈ Rm×m ,

• N∗ is unimodular and has as first two columns N1 and N2, i.e. it is a valid N∗ in the sense of the 
algorithm described in §4.3.

• Following the steps of that algorithm, N∗∗ = N∗ .
• N̂ from (20) equals to 

(
qN1 − pN2 N4 . . . Nm+1

) = Û from Theorem 4.1.

This concludes with the proof of the Proposition. �
5. Degree bounds and proof of the main theorem

In this section, we will apply our explicit bound given in Theorem 2.6 to give bounds for deg(Û )

from Theorem 4.1, deg(Û∗) from Theorem 4.2, and deg(N̂) from Theorem 4.3. These bounds are given 
in terms of the degrees of both the input polynomials, but also of the transition matrices. We will 
show also some relations among the input bounds, and conclude by proving Theorem 1.1 from the 
Introduction.

Recall that we have δ0 being a bound for the degrees of p and q, and δa being a bound on the 
degrees of a1, . . . , am . In addition, we set δN (resp. δM ) being a bound for the degrees of the elements 
in N (resp. M).
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Proposition 5.1. With notation as above, if δ ≥ max{δM , δ0}, we have that

deg(Û ) ≤ 3n24n(δ + 1)2n.

Proof. Note that Û is a submatrix of the unimodular matrix U . The result is then consequence of 
Theorem 2.6 with r = 2. �
Proposition 5.2. With notation as above, if M is unimodular, we have that

deg(Û∗) ≤ 3n24n(δM + 1)2n + δ0.

Proof. By applying Theorem 2.6 to the unimodular matrix M we obtain U∗ as in (17) with

deg(U∗) ≤ 3n24n(δM + 1)2n.

To get Û∗ we only have to modify the first column of U∗ and multiply a couple of columns of the 
latter by −q and p. From here, the claim follows straightforwardly. �

Interestingly, the computation of a basis of syzygies starting from N will give us degree bounds 
which can differentiate the degrees of the different actors involved. The drawback is that this bound 
depends also on m, the number of elements of the sequence. Sometimes this leads to lower bounds 
as in the case of parametric curves, see Section 7.

Proposition 5.3. With notation as above, we have that

deg(N̂) ≤ δ0 + δN + δM + 3mn24n(δN + 1)2n.

Proof. By applying the Effective Quillen-Suslin procedure to the unimodular matrix N , we deduce 
that the matrix U of Theorem 2.2 has degree bounded by 3n24n(δN + 1)2n , thanks to Theorem 2.6
with r = 2.

The matrix N∗ from §4.3 is then the inverse of U , and can be computed by using cofactors. Hence, 
its entries have degree bounded by

3mn24n(δN + 1)2n.

As we have (p q) · M = (a1 a2 . . .am) from (6), we get

(a1 . . .am) · N∗i = λi p + δiq = (p q) · M · N∗ i
,

and deduce then that deg(λi), deg(δi) ≤ δN + δM for all i = 3, . . . , m. By construction, we have that

deg(N∗∗) ≤ δN + δM + 3mn24n(δN + 1)2n.

To pass from N∗∗ to N̂ , the matrix encoding a basis of Syz(a1, . . . , am), we only need to modify the 
first column of N∗∗ , and we have

deg(N̂) ≤ δ0 + δN + δM + 3mn24n(δN + 1)2n,

as claimed. �
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5.1. From M̃ to an unimodular M

The bounds on the degrees of the bases computed via M̃ or M if the latter is unimodular are 
not very comparable, for instance they depend on whether δ0 > δM or vice versa. We will compute 
for completion of our study of the degrees appearing in these matrices a bound on the unimodular 
matrix M ′ defined in (13) in terms of the input degrees of the problem.

Proposition 5.4. With notation as above, a matrix M ′ as in (13) can be computed with

deg(M ′) ≤ 3n24n(δN + 1)2n + δM + δN + δ0.

Proof. Note that e and f from (7) have degrees bounded by δM + δN . Let U N ∈ Rm×m the unimodular 
matrix such that Nt · U N = (I2 0) ∈ R2×m . By Theorem 2.6, U N can be computed with deg(U N ) ≤
3n24n(δN + 1)2n . As usual, denote the columns of U N with U 1

N , . . . Um
N . If we set,⎛

⎜⎜⎜⎝
x1
x2
...

xm

⎞
⎟⎟⎟⎠ := eU 1

N + f U 2
N

we deduce that (12) is satisfied. By computing explicitly, we get

deg(xi) ≤ 3n24n(δN + 1)2n + δM + δN .

To compute M ′ from M as in (13), we have to add to the latter a matrix with coefficients then 
bounded by 3n24n(δN + 1)2n + δM + δN + δ0. From here, the claim follows straightforwardly, as this 
bound is larger than δM , which bounds the degree of M . �
5.2. Relations among bounds

So far, we have

• δM , a bound on the degree of the elements of M;
• δN , a bound on the degree of the elements of N;
• δ0, a bound on the degrees of p and q;
• δa , a bound on the degrees of a1, . . . , am .

Is there any relation among these bounds? Clearly, from (6) we deduce straightforwardly that

• given δa and δN , one can set δ0 := δa + δN ;
• given δ0 and δM , one can set δa := δ0 + δM .

The following relation is less subtle.

Proposition 5.5. Given δ0 and δa, there exists a matrix M such that one can take δM := δ2
0 + δa.

Proof. As we are assuming gcd(p, q) = 1, we get these polynomials are an affine complete inter-
section in Kn . The result then follows straightforwardly from Corollary 5.2 in Dickenstein et al. 
(1991). �

The connection between M and N given via Theorem 3.5 gives a bound for δN in terms of δM and 
δ0 but not a very optimal one.
136



T. Cortadellas Benítez, C. D’Andrea and M.E. Montoro Journal of Symbolic Computation 115 (2023) 124–141
Proposition 5.6. Given δM and δ0 , there exists a matrix N such that one can take δN = 3n24n(max{δ0, δM} +
1)2n.

Proof. A possible matrix N can be taken by using the first columns (except the last row) of a uni-
modular U ∈ R(m+1)×(m+1) such that (15) holds. Thanks to Theorem 2.6, we have that the degree of 
N is bounded by 3n24n(max{δ0, δM} + 1)2n , which proves the claim. �

In the zero-dimensional case, one can have a sharper bound for δN .

Proposition 5.7. If the ideal I is zero-dimensional, given δ0 and δa, there exists a matrix N such that one can 
take δN = 2δ2

a + δa + δ0 .

Proof. This follows essentially from Theorem 2.5 in Hashemi (2009). �
We conclude this section by giving the proof of the main result announced in the Introduction.

5.3. Proof of Theorem 1.1

The first algorithm essentially consists in computing the matrix U from (15), and extract the sub-
matrix Û which —thanks to Theorem 4.1— encodes an R-basis of Syz(a1, . . . , am).

A degree bound for Û is given in Proposition 5.1 in terms of the degrees of δM and δ0. By using 
Proposition 5.5, we can replace this bound by δ2

0 + δa , and then the first part of the claim follows 
straightforwardly.

For the second part, we will work with the matrix N as in §4.3. The algorithm proposed there 
computes N̂ which —thanks to Theorem 4.3— encodes also an R-basis of Syz(a1, . . . , am), having the 
degree bounds given in Proposition 5.3. Note that we are not assuming yet that I is zero-dimensional. 
This would be used to replace δN and δM with the bounds given in Propositions 5.5 and 5.7 to get 
(2). �
6. Examples

We present here the computation of two examples. The first one is the running example in Cor-
tadellas Benítez et al. (2020) and has already M being unimodular, while the second does not. To be 
consistent with the notation of Cortadellas Benítez et al. (2020), we label the variables as s, t . So in 
both examples we have that n = 2.

6.1. Example 4.1 in Cortadellas Benítez et al. (2020)

Here we have m = 4, p = t − s + 2, q = s2 + 1 and⎧⎪⎪⎨
⎪⎪⎩

a1(s, t) = 11 − 4s + 3s2 + 4t
a2(s, t) = 5 − 4s + 2s2 + 4t − 2st + t2

a3(s, t) = 1 + 3s2 − s3 + s2t
a4(s, t) = 7 − 3s + s2 + 3t.

As it was shown in Cortadellas Benítez et al. (2020), one can take for this case

M =
(

4 t − s + 2 s2 3
3 1 1 1

)
.

In addition, a simple N is the following:

N =

⎛
⎜⎜⎝

− 1
5

3
5

0 0
0 0
3 − 4

⎞
⎟⎟⎠ . (22)
5 5
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In this case, as the columns 1 and 4 of M are already an invertible matrix in K[s, t]. The same 
happens with the rows 1 and 4 of N . By pivoting the 2 × 2 invertible submatrix of M , it is easy to 
compute a matrix 4 × 4 unimodular matrix U∗ such that

M · U∗ =
(

1 0 0 0
0 1 0 0

)
,

we get:

U∗ =

⎛
⎜⎜⎝

− 1
5 − s

5 + t
5 + 2

5
s2

5 + s
5 − t

5 − 2
5

s
5 − t

5 + 1
5

0 1 −1 −1
0 0 1 0
3
5

3s
5 − 3t

5 − 6
5 − 3s2

5 − 3s
5 + 3t

5 + 6
5 − 3s

5 + 3t
5 + 2

5

⎞
⎟⎟⎠ .

To pass from U∗ to Û∗ we proceed as in (19) and get that

Û∗ =

⎛
⎜⎜⎝

− 2s2

5 + st
5 + 9s

5 − 7t
5 − 3 s2

5 + s
5 − t

5 − 2
5

s
5 − t

5 + 1
5

s − t − 2 −1 −1
0 1 0

6s2

5 − 6st
5 − 12s

5 + 3t2

5 + 12t
5 + 3 − 3s2

5 − 3s
5 + 3t

5 + 6
5 − 3s

5 + 3t
5 + 2

5

⎞
⎟⎟⎠ .

Thanks to Theorem 4.2, the columns of Û∗ encode a basis of Syz(a1, a2, a3, a4). Note that what we 
obtained with this procedure is quite different than the basis obtained in Cortadellas Benítez et al. 
(2020). For instance, the degree of this basis is 2, which is lower than the one obtained in that paper 
(equal to 5).

Now we work with N . From (22) it is easy to extend N to a 4 × 4 unimodular matrix, we chose

N∗ =

⎛
⎜⎜⎝

− 1
5

3
5 0 0

0 0 −5 0
0 0 0 1
3
5 − 4

5 0 0

⎞
⎟⎟⎠ .

To produce the matrix N∗∗ of the algorithm, we have to modify the columns 3 and 4 of N∗ by using 
M . We obtain

N∗∗ =

⎛
⎜⎜⎝

− 1
5

3
5 s − t + 1 s2

5 − 3
5

0 0 −5 0
0 0 0 1
3
5 − 4

5 −3s + 3t + 2 4
5 − 3s2

5

⎞
⎟⎟⎠ .

Finally, to obtain N̂ we must replace the columns 1 and 2 of N∗∗ with the first column multiplied by 
−q plus the second column multiply by p:

N̂ =

⎛
⎜⎜⎝

s2

5 − 3s
5 + 3t

5 + 7
5 s − t + 1 s2

5 − 3
5

0 −5 0
0 0 1

− 3s2

5 + 4s
5 − 4t

5 − 11
5 −3s + 3t + 2 4

5 − 3s2

5

⎞
⎟⎟⎠ .

By Theorem 4.3, the columns of N̂ encode another R-basis of Syz(a1, a2, a3, a4). Note that the bases 
obtained via N̂ and Û∗ are essentially different. For instance, the first column of N̂ is a relation that 
only involves a1 and a4, but nothing of this nature can be found from the columns of Û∗ . This is 

because the relation M · N =
(

1 0
0 1

)
does not hold.
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6.2. Another example

Set now m = 4 again, and p = t + 2s + 1, q = −2t − s which are not under the conditions of 
the Shape Lemma as all the results in Cortadellas Benítez et al. (2020) are. Consider the following 
sequence of polynomials:⎧⎪⎪⎨

⎪⎪⎩
a1 = s + 3s2 + t + 4st − t2

a2 = −s2 + t + t2

a3 = s + 2s2 − 2t2

a4 = 1 + s − t.

In this case, we can take

M =
(

s + t t s 1
−s + t s t 1

)
,

and note that M is not unimodular (setting s = t = 0 makes the rank of M drops). In contrast, we 
have that

M̃ =
(

s + t t s 1 s + 2t
−s + t s t 1 t + 2s + 1

)
is unimodular, and by applying Quillen-Suslin to this matrix we obtain U such that

M̃ · U =
(

1 0 0 0 0
0 1 0 0 0

)
.

In our case, we get

U =

⎛
⎜⎜⎜⎝

0 0 0 1 0
2 −2 2t − 2s −4s 2s − 2t + 1
1 −1 −s + t + 1 −2s s − t
1 0 −s −s − t −t

−1 1 s − t 2s t − s

⎞
⎟⎟⎟⎠ ,

and hence

Û =

⎛
⎜⎜⎝

0 1 0
2t − 2s −4s 2s − 2t + 1

−s + t + 1 −2s s − t
−s −s − t −t

⎞
⎟⎟⎠

is a basis of Syz(a1, a2, a3, a4). Note that the first columns of U (except the last row) encode the 
matrix N , i.e. we can take this matrix as

N =

⎛
⎜⎜⎝

0 0
2 −2
1 −1
1 0

⎞
⎟⎟⎠ .

From here, we can extend it easily to a unimodular

N∗ =

⎛
⎜⎜⎝

0 0 1 0
2 −2 0 1
1 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

and then we get
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N∗∗ =

⎛
⎜⎜⎝

0 0 1 0
2 −2 −4s 2s − 2t + 1
1 −1 −2s s − t
1 0 −s − t −t

⎞
⎟⎟⎠ .

To conclude, we need to replace the first two columns by a combination of them, to get

N̂ =

⎛
⎜⎜⎝

0 1 0
−2s + 2t − 2 −4s 2s − 2t + 1
−s + t − 1 −2s s − t

s + 2t −s − t −t

⎞
⎟⎟⎠

which encodes another basis of Syz(a1, a2, a3, a4). This basis is quite similar than the one we found 
via U . Indeed, the second and the third columns of both matrices coincide, while the first column 
of N̂ equals to the first minus 2 times the last column of Ũ . This “coincidence” is explained by our 
choice of N from the first two columns of the matrix U above.

7. Minimal μ-bases of parametric surfaces

From a geometric point of view, the sequence (a1, . . . , am) of polynomials in K[x1, . . . , xn] can be 
regarded as the parametrization of a variety Y ⊂Km being the image of the map (a1, . . . , am) :Kn →
Km . Understanding the role of Syz(a1, . . . , am) in the study of geometric properties of Y is an active 
area of research, and several results and challenges are well identified there, see for instance Cox 
(2003). In particular, when n = 2, this map represents typically a surface in Km , and bounding the 
degrees of generators of the syzygy module has been posed as an open problem in Chen et al. (2005)
for the case m = 4, i.e. surfaces in 3-dimensional space.

A first answer to this problem was posted in Cid-Ruiz (2019), where the author exhibits a general 
bound of order δ33

a to solve this problem (n = 2, m = 4). In Cortadellas Benítez et al. (2020) we 
improved this bound to δ12

a in the case the ideal I has a so-called “shape basis”, meaning that one 
can take p and q in (1) as x2 − r and s respectively, with r, s ∈ K[x1]. Indeed, our main result there 
(Cortadellas Benítez et al., 2020, Theorem 1.2) is that a basis of Syz(a1, a2, a3, a4) in that case can be 
found with degree bounded by

5δ4
0(2δa + 1)4. (23)

The approach to solve that problem differs significantly than the one presented here. For instance 
we only used there the “simplified” Effective Quillen-Suslin Theorem presented in Fitchas and Galligo 
(1990), which is essentially Theorem 2.2 in the case r = 1. We only worked with the matrix which 
is called M in (6), and took advantage of the fact that one of its rows only depends on the variable 
x1 in the shape-basis case. From there, after applying the Effective Quillen-Suslin algorithm to that 
univariate row (r = 1), a tricky manipulation of the remaining row would allow us to perform again 
the same simplified Effective Quillen-Suslin algorithm to the second row. The basis would come then 
after some simplifications and substitutions of these calculations.

In the present paper, we only apply once the Effective Quillen-Suslin algorithm described in 
Caniglia et al. (1993) with r = 2 to the modified matrix M̃ instead of M . As a result, we obtain 
the matrix Û which encodes the elements of a basis of Syz(a1, . . . , am) (Theorem 4.1). In addition, we 
also get another algorithm over the matrix N which gives another basis for this module (Theorem 4.3). 
This approach was not considered in Cortadellas Benítez et al. (2020).

When applied to the case n = 2, m = 4, and using the fact that thanks to Bézout’s Theorem one 
can take δ0 ≤ δ2

a , the first bound in Theorem 1.1 then amounts to a constant times δ16
a , while the 

second one is of the order of δ8
a , which is better than the results obtained in Cortadellas Benítez et 

al. (2020) if one substitutes δ0 with δ2
a .

But we can actually improve the bound of δ16
a from Theorem 1.1 if we inspect carefully the struc-

ture of a matrix M converting a shape basis into the input sequence a1 . . .a4, as it was done in 
Cortadellas Benítez et al. (2020). Indeed, we have
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Proposition 7.1. If a1, a2, a3, a4 ∈K[s, t] have degrees bounded by δ1 and the ideal generated by them has a 
shape basis as in Cortadellas Benítez et al. (2020) of degree δ0 , a basis of Syz(a1, a2, a3, a4) can be found with 
degree bounded by 192(δ0δa + 1)4 .

Proof. From the proof of Theorem 1.2 in Cortadellas Benítez et al. (2020), we get that the matrix 
M converting the shape basis into the original sequence has δM ≤ δaδ0. The result now follows by 
applying Theorem 2.6 to M̃ with n = r = 2. �
Remark 7.2. Note that the bound obtained in Proposition 7.1 is of the same order than the one in (23)
in terms of δ0 and δa .
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