REE ultra-rich karst bauxite deposits in the Pedernales Peninsula, Dominican Republic: Mineralogy of REE phosphates and carbonates

Cristina Villanova-de-Benavent a,*, Joaquín A. Proenza a, Lisard Torró b, Thomas Aiglsperger c, Cristina Domènech d, Diego Domínguez-Carretero d, Xavier Llovet d, Pol Suñer a, Australia Ramírez e, Jesús Rodríguez e

a Departament de Mineralogia, Patologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain
b Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru, Lima, Peru
c Dept. Civil Engineering and Natural Resources, Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
d Centres Científics i Tecnològics, Universitat de Barcelona, Lluís Sole i Sabaris, 1-3, 08028 Barcelona, Spain
e Servicio Geológico Nacional, Av. Winston Churchill 75, Edificio “J. F. Martínez”, Santo Domingo, Dominican Republic

ARTICLE INFO

Keywords:
Rare earth elements (REE)
Supergene deposits
Monazite
Secondary REE phosphates
Bastnäsite

ABSTRACT

Karst bauxites have recently received renewed attention for their potential as non-conventional REE sources. Karst bauxites from the Pedernales Peninsula in the Dominican Republic stand among the world’s richest in REE. Bauxite ore from two deposits from this bauxite district, Aceitillar and El Turco, have been selected for this study due to their outstanding REE contents and contrasting mineralogy. REE (La to Lu) contents in Aceitillar, range from 0.07 to 0.16 wt%, and Y from 0.01 to 0.13 wt%, whereas El Turco contains between 0.28 and 1.40 wt% REE, and 0.33 to 1.48 wt% Y. The characterisation of REE mineralisation was performed through powder and monocrystal XRD, SEM-EDS, and EMP analyses. REE phosphates and carbonates reveal textural features that suggest significant REE mobilisation and re-deposition within the bauxite profile. The identified REE minerals can be classified into: i) primary monazite-(Ce) and minor monazite-(La); ii) secondary Y- and Nd-dominant phosphates; and iii) secondary Gd- and Nd-carbonates of the (hydroxyl)bastnäsite group. While monazites are ubiquitous in the two studied deposits, secondary phosphates are predominant in El Turco while secondary carbonates are exclusive of Aceitillar. This contrasting mineralogy is explained by the total concentration of carbonate and/or phosphate in the karst bauxite groundwater solutions. REE phosphates are the most stable phases at [CO$_3$]2/$[^{PO_4}]_3$ \leq 2; whereas REE carbonates are stable at near neutral pH when the total aqueous carbonate concentration is two orders of magnitude higher than that of phosphate. Results of this investigation contribute to a better understanding of the formation REE minerals in the supergene environment and can be applied in REE separation methods.

1. Introduction

Bauxite ore is the main source for Al in the world (Bray, 2017). Karst bauxites—characterised by a strong association with a carbonate host (Bárdossy, 1982) and representing 14% of the bauxite resources worldwide (Mameli et al., 2007)—have gained interest recently also because of their capacity to accumulate rare earth elements (REE) (e.g., Mouchos et al., 2016; Deady et al., 2014; Mondillo et al., 2019; Yang et al., 2019). REE may be extracted as by-products in large-scale Al mines (Weng et al., 2015; Goodenough et al., 2017; Vind et al., 2018).

REE are considered critical raw materials because of the increasing demand due to their numerous technological applications (e.g., power generation, advanced electronics, production of high-tech ceramics and glass), with individual REE often having no substitutes in specific applications (Wall, 2014; Smith Stegen, 2015). An additional factor contributing to their status as “critical” is that, around 60% of the current REE mine production is supplied by one country (China) (Cordier, 2021), and it has been over 80% for a long time (Chakhmouradian and Wall, 2012; Dutta et al., 2016; Gamboji, 2017; Goodenough et al., 2017; European Commission, 2020). Separation and refining operations are

* Corresponding author.
E-mail address: cvillanovadb@ub.edu (C. Villanova-de-Benavent).

https://doi.org/10.1016/j.oregeorev.2023.105422
Received 30 October 2022; Received in revised form 23 February 2023; Accepted 28 March 2023
Available online 31 March 2023
0169-1368/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
also concentrated in a single country (China, with more than 90% of the market share in 2019) (International Energy Agency-IEA, 2021).

The karst bauxites of the Pedernales Peninsula (SW Dominican Republic) contain significant REE resources (Aiglsperger et al., 2019; Proenza et al., 2017; Torr´o et al., 2017; Villanova-de-Benavent et al., 2017, 2021, 2022; Ramírez, 2015). All the deposits of the district yield high total REE (La-Lu) contents, ranging from ~500 to ~14,000 ppm (~1,900 ppm on average), and from ~50 to ~15,000 ppm Y (~1,200 ppm on average). Two deposits of the Bahoruco district, Aceitillar and El Turco, stand out with average total REE contents of ~1,200 and ~7,600 ppm, and average Y contents of ~700 and ~8,800 ppm: Aceitillar and El Turco, respectively (Villanova-de-Benavent et al., 2017; Aiglsperger et al., 2019; Proenza et al., 2021). This study presents a first detailed characterisation of the REE-bearing minerals of these two karst bauxite deposits and discusses the processes that lead to the deposition of secondary REE phases. Our results provide evidence of authigenic REE-phosphate and REE-carbonate growth during bauxitisation and shed light on the conditions of formation of phosphates versus carbonates in weathering environments.

2. Geological setting

The studied karst bauxites are located in the Sierra de Bahoruco in the Pedernales Peninsula, SW Dominican Republic (Fig. 1). This Peninsula represents the eastern end of the Presqu’île Du Sud (Southern Peninsula) morphotectonic zone defined by Lewis and Draper (1991), and is limited to the north by the regional, W-E trending Plantain Garden-Enriquillo fault zone. Normal faults associated to the NNE-SSE trending Beata Ridge delineate its eastern limit. According to Pérez-Valera (2010), uplift and deformation in the Bahoruco Peninsula commenced in the Pliocene in response to the oblique convergence of the North American plate continental margin and the Caribbean island arc (see also Mann, 2007). Transpressive stresses are accommodated by a series of high-angle reverse and strike-slip faults and soft, km-scale folds geomorphologically resulting in extremely rugged relieves and ample development of karsts in the exposed carbonate strata.

The crystalline basement in the Bahoruco Peninsula is composed of Campanian to lower Eocene volcanic rocks of the Dumisseau Formation, an on-land portion of the Caribbean Large Igneous Province (CLIP; Lidiak and Anderson, 2015; Escuder-Viruete et al., 2016). This basement...
Bauxite displays thicknesses between 8 and 10 m and is disrupted by carbonate pillars over a gentle hummock-shaped to flat base. Bauxite ore is massive and mostly composed of gibbsite with lesser amounts of kaolinite, hematite, boehmite, anatase, and goethite. Further detail on the geology, geochemistry, and mineralogy (including REE-bearing phases) of the Las Mercedes deposit can be found in Torro et al. (2017).

Most of the documented bauxite deposits in the district are located higher up relative to Las Mercedes, mostly between 1100 and 1900 m.a.s.l., and hosted in the Eocene-Oligocene carbonates (e.g., Aceitillar, El Turco, and Sombrero deposits; Fig. 1). In this area, bauxites are reddish-brown fine-grained material with small hard concretions (Goldich and Bergquist, 1947), and display thicknesses of a few metres to tens of metres (Fig. 2a), and may contain sterile limestone intercalations (Fig. 2b). The contact with the underlying limestone is sharp, but irregular-shaped (Goldich and Bergquist, 1947). Locally, these bauxites show black coloured zones, rich in Mn oxyhydroxides (Fig. 2c). The mineralogy of two of these deposits, Aceitillar and El Turco, is detailed below.

3. Materials and methods

For this study, two karst bauxite deposits from the Sierra de Bahoruco, El Turco and Aceitillar, were selected because of their distinctively high REE contents. Nine representative samples were collected in each deposit during two field work campaigns (Fig. 2). The samples consist of friable and/or loose, reddish brown material (Fig. 2a-d). In El Turco, this bauxitic material is locally cut by REE phosphate veinlets of yellow color (Fig. 2e-f).

Major, minor, and trace elements of bulk samples were determined at Activation Laboratories Ltd. (Actlabs, Ontario, Canada) by utilising the analytical package “4-Litho”, which uses fusion inductively coupled plasma emission (FUS-ICP) and inductively coupled plasma emission mass spectrometry (ICP-MS; for details see Lithogeochemistry at https://www.actlabs.com).

The general mineralogy of the bauxite samples was determined using powder X-ray diffraction (XRD). For this study, the samples were powdered using an agate mortar and pestle, and were manually pressed by means of a glass plate to get a flat surface in cylindrical 16x2.5 mm sample holders. The diffractograms were obtained in a PANalytical X’Pert PRO MPD Alpha1 powder diffractometer in Bragg-Brentano h/2h geometry of 240 mm radius, nickel filtered Cu Ka radiation (k = 1.5418 Å), and with 45 kV–40 mA. During analysis, samples were spun at 2 revolutions per second. A variable divergence slit kept an area illuminated constant (10 mm) and a mask was used to limit the length of the beam (12 mm). Axial divergence Soller slits of 0.04 rad were used. Powdered samples were scanned from 4 to 80° with a step size of 0.017° and measuring time of 50 s per step, using a X’Celerator detector (active length = 2.122°). Sample preparation and analysis were performed in the Scientific and Technological Centres of the Universitat de Barcelona (CCIT-UB). Furthermore, one REE carbonate grain was manually hand-picked from a monolayer polished section and was analysed by monocrystal XRD. The monocrystal diffractometer used was a Bruker D8 Venture with a Mo source, a 4 circle goniometer with Kappa geometry, with a Photon 100 CMOS area detector, at a distance of 50 mm, and 2θ = Ω = Chi = 00°, Phi = 360°, in the CCIT-UB. The X-ray diffractograms were processed using the software X’Pert HighScore® (including background subtraction, peak detection, mineral identification, and semiquantitative determination).

For the production of heavy mineral concentrates, 100 g of two homogenised bauxite samples, one from Aceitillar (sample AC-1–3) and another from El Turco (sample KM30-1) were processed at the hydroseparation (HS) laboratories available in the University of Barcelona (https://www.hslab-barcelona.com) and the Luleå University of Technology. The computer-controlled hydroseparation device CNT HS 11 was used (Rudashevsky and Rudashevsky, 2007; see also https://www.cnt-mc.ru) following the methodology for soft rocks proposed by

![Fig. 2. Images of the old mining pits of Aceitillar (a-e) and El Turco (d-f). Note the yellow and black mineralisations in e) and f), which correspond to REE phosphates (REE-Ph) and Mn oxyhydroxides (MnOxOH), respectively. Specific sample sites are indicated by white diamonds with their associated sample number.](image-url)
Aiglsperger et al. (2015). Heavy mineral concentrates from three size fractions (<30, 30–75, and 75–125 µm) were further separated with a FRANTZ magnetic separator. Each separation product was embedded in resin to obtain cylindrical monolayer polished sections of 2.5 cm in diameter for subsequent investigation. A total of 116 REE mineral separates of the coarser size fractions (30–75 and 75–125 µm) of these, 57 grains were phosphates, and 59 were carbonates.

The mineralogy and textures of REE-bearing minerals were studied on monolayer polished sections, polished sections, and thin sections, by means of transmitted and reflected light petrographic microscopy and scanning electron microscopy. The scanning electron microscope (SEM) equipped with an INCA Energy 250 EDS microanalysis system (operating conditions: acceleration voltage of 20 kV and a beam current of 15 nA) at CCIT-UB. Chemical analyses of the REE-bearing minerals were performed using a JEOL JXA-8230 electron microprobe (EMP) also at 1 nA) at CCIT-UB.

The structural formulae were calculated following the criteria described in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Abbreviation</th>
<th>Ideal formula</th>
<th>Structural formula calculation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monazite</td>
<td>Mnz</td>
<td>REE(PO₄)₀⁻</td>
<td>O = 4</td>
</tr>
<tr>
<td>Xenotime</td>
<td>Xen</td>
<td>Y(PO₄)₀⁻</td>
<td>O = 4</td>
</tr>
<tr>
<td>Churchite</td>
<td>Chc</td>
<td>REE(PO₄)₂H₂O</td>
<td>O = 4; H₂O = 2*(P + Si)</td>
</tr>
<tr>
<td>Rhabdophane</td>
<td>Rha</td>
<td>REE(PO₄)₂H₂O</td>
<td>O = 4; H₂O = (P + Si)</td>
</tr>
<tr>
<td>Bastnäsite</td>
<td>Bas</td>
<td>REE(CO₃)(OH)</td>
<td>∑REE + Y + Ca + Ga = 1; OH + F + Cl = 1; CO₃ = ∑REE + Y + Ga + Ca</td>
</tr>
</tbody>
</table>

Aiglsperger et al. (2015). Heavy mineral concentrates from three size fractions (<30, 30–75, and 75–125 µm) were further separated with a FRANTZ magnetic separator. Each separation product was embedded in resin to obtain cylindrical monolayer polished sections of 2.5 cm in diameter for subsequent investigation. A total of 116 REE mineral separates of the coarser size fractions (30–75 and 75–125 µm); of these, 57 grains were phosphates, and 59 were carbonates.

The mineralogy and textures of REE-bearing minerals were studied on monolayer polished sections, polished sections, and thin sections, by means of transmitted and reflected light petrographic microscopy and scanning electron microscopy. The scanning electron microscope (SEM) equipped with an INCA Energy 250 EDS microanalysis system (operating conditions: acceleration voltage of 20 kV and a beam current of 15 nA) at CCIT-UB. Chemical analyses of the REE-bearing minerals were performed using a JEOL JXA-8230 electron microprobe (EMP) also at the CCIT-UB, operated at 20 kV acceleration voltage, 15 nA beam current, and a beam diameter of 5 µm. Analytical standards and lines used for analyses were: wollastonite (Si Kα), apatite (Ca Kα, P Kα), barite (Ba Lα), celestine (Sr Lα), UO₂ (U Mβ), ThO₂ (ThMα), GaAs (Ga Lα), YAG (Y Lα), LaB₆ (La Lα), CeO₂ (Ce Lα), REE-1 (Pr Lβ, Er Lα), REE-2 (Ho Lβ, Tm Lα, Eu Lα), REE-3 (Yb Lα, Sm Lβ, Nd Lβ) and REE-4 (Lu Lα, Tb Lb, Nd Lβ). The structural formulae were calculated following the criteria described in Table 1.

Aqueous speciation and prededence Eh-pH diagrams to study REE mineral stability have been drawn with the code PhreePlot® (Kinniburgh and Cooper, 2011) using the database llnl.dat supplied with the code PHREEQC (Parkhurst and Appelo, 2013) at 25 °C. This thermodynamic database contains equilibrium constants for aqueous speciation and mineral formation of major and minor elements. In the case of REE, llnl.dat database accounts for the formation of pure hydroxides, carbonates, and phosphates for most REE. However, data for churchite (YPO₄OH) was not included in the database and the equilibrium constant from Spahić and Bruno (1995) for r.1 was used in calculations (Eq. (1)).

\[
\text{YPO}_4\cdot x\text{H}_2\text{O} = \text{Y}^{3+} + \text{PO}_4^{2-} + x\text{H}_2\text{O} \\
\log K^* = -22.4r.1
\]

4. Results

4.1. Major and trace element composition

In the studied bauxite samples, Al and Fe are the elements with the highest concentrations. In El Turco, Al₂O₃ contents vary between 40 and 46 wt%, and Fe₂O₃ between 16 and 19 wt%. In Aceitillar, Al₂O₃ contents are between 35 and 50 wt%, and Fe₂O₃ between 15 and 21 wt%. In both deposits, SiO₂ contents are below 2 wt%. CaO values are below 1 wt% in both deposits, except for one sample from Aceitillar reaching 13 wt%. MnO contents are contrasting in samples from both deposits, with values of 2–7 wt% in El Turco and <1 wt% in Aceitillar. In El Turco and Aceitillar, P₂O₅ is up to 4 wt% and 1 wt%, respectively. Based on the major element composition (Bárdossy, 1982), samples from El Turco and Aceitillar can be classified as iron-rich bauxites (Fig. 3), like bauxite
ore from Las Mercedes (Torró et al., 2017). Elements at minor and trace levels include TiO$_2$ (<3 wt%), Ni (1,320–6,960 ppm in El Turco and 200–660 ppm in Aceitillar), Cr (<850 ppm), Zr (<515 ppm), Sc (<75 ppm), Ga (<50 ppm), and Ge (<6 ppm).

The analysed samples from El Turco and Aceitillar yield very high REY (La-Lu + Y) contents. Samples from El Turco are particularly enriched in these elements, with REY contents up to 2.88 wt% and an average value of 1.64 wt% (Table 2). In samples from Aceitillar, REE + Y contents are up to 2,865 ppm, with an average value of 1,810 ppm.

Samples from El Turco have average contents of LREE (La-Nd), MREE (Sm-Gd), and HREE (Tb-Lu) between ~2,000 and ~3,000 ppm each, and Y contents reach 8,841 ppm (Fig. 4a). They are enriched between 1,000 and 10,000 times relative to chondritic values. Samples from Aceitillar have LREE, MREE, HREE, and Y average contents between ~120 and ~800 ppm. They are enriched ~1,000 times in LREE and ~200 to 300 times in MREE and HREE relative to the chondritic values thus showing negative slopes in chondrite-normalised REE patterns (Fig. 4b-c). Most samples from Aceitillar have moderate negative anomalies of Ce and Eu (Fig. 4c).

4.2. General mineralogy of the bauxite and phosphate-vein samples

Powder XRD analyses indicate that bauxite samples consist mainly of gibbsite [Al(OH)$_3$], with lesser amounts of hematite [Fe$_2$O$_3$], boehmite [AlO(OH)], goethite [Fe$^{3+}$O(OH)$_2$], anatase [TiO$_2$], and rutile [TiO$_2$] (Fig. 5a-b). In addition, minor amounts of lithiophorite-asbolane ([Al,Li]MnO$_2$(OH)$_2$·(Ni,Co)$_2$·Mn(OOH)$_6$·nH$_2$O) and florencite [REEAl$_3$(PO$_4$)$_2$(OH)$_8$] have been identified in the sample from El Turco (Fig. 5b).
The main mineralogy is very similar to that reported by Torro et al. (2017) in the nearby Las Mercedes deposit. The predominance of gibbsite and the scarcity of kaolinite, or lack thereof, indicate a mature profile, representative of an advanced state of bauxitization (see also Torro et al., 2017; Proenza et al., 2017; Villanova-de-Benavent et al., 2017).

Furthermore, one sample from the yellowish vein infilling in bauxites from El Turco (Fig. 2f) was also analysed by powder XRD. The vein material consists mostly of xenotime, with minor gibbsite and traces of lithiophorite-asbolane and florencite (Fig. 6).

4.3. Detailed REE mineralogy

In the study area, REE-bearing minerals are divided into phosphates and carbonates. According to textural features, phosphates may be in turn sub-divided into primary (relict) and secondary (authigenic).

Primary phosphates are monazites, which occurs as individual grains up to 60 μm in length. Most of them are euhedral (Fig. 7a), but some exhibit slightly rounded edges and/or irregular, fractured outlines that suggest transport (Fig. 7b-d). Melt inclusions are common in some monazite grains (Fig. 7e). Most EMP analyses of primary monazite show analytical oxide totals close to 100 wt% and near ideal stoichiometry (both A and B site cations have total ~1 a.p.f.u.; Table 3). All monazites from El Turco and Aceitillar classify as monazite-(Ce) except for one grain from El Turco that has a monazite-(La) composition (Fig. 7f). Monazite-(Ce) contains 27.5–33.3 wt% Ce₂O₃ (average of 30.6 wt%), 11.2–20.0 wt% La₂O₃ (average of 15.9 wt%), and 9.6–13.4 wt% Nd₂O₃ (average of 10.7 wt%). They also yield notable Pr (2.3–3.4 wt%, average 2.7 wt% Pr₂O₃) and Gd (1.0–3.6 wt%, average of 2.6 wt% Gd₂O₃) contents. Y₂O₃, Sm₂O₃, Eu₂O₃, Dy₂O₃, and Tm₂O₃ are mostly below 1 wt% each, and Tb₂O₃, Ho₂O₃, Er₂O₃, Yb₂O₃, and Lu₂O₃ are below their respective lower limits of detection. As expected, analysed monazites yield much higher ThO₂ (2.1–10.7 wt%, average of 4.7 wt%), than UO₂ (<d.l.-1.2 wt%, average of 0.4 wt%). CaO contents are up to 1.2 wt% (average of 0.7 wt%; Table 3). Primary relict monazite-(Ce) from El Turco and Aceitillar present similar textures and compositions to those of Las Mercedes (Fig. 7g), where this phosphate constitutes the main REE-phase in heavy concentrates of bauxite ore (Torró et al., 2017). The monazite-(La) grain contains 26.6 wt% La₂O₃, 17.0 wt% Nd₂O₃, 4.8 wt% Sm₂O₃, 3.8 wt% Pr₂O₃, 2.7 wt% Gd₂O₃, 1.4 wt% Y₂O₃, the rest of the REE below 1.0 wt% REE₂O₃, and 9.8 wt% CaO.

Based on EMP analyses, secondary REE phosphates are anhydrous (possibly xenotime [REE(PO₄)])) to hydrated (possibly rhabdophane [REE(PO₄)·H₂O] and/or churchite [REE(PO₄)·2H₂O]), all with a ∑REE: PO₄ ratio of 1:1. However, it must be noted that some analyses were slightly non stoichiometric, and data with high Al₂O₃ were not
considered for this study since they were probably contaminated by nearby gibbsite. Secondary REE phosphates display a wide variety of textural features, most notably as porous vein fillings crosscutting the gibbsite matrix; they consist of rounded, submicrometric free grains or micrometric aggregates finely intergrown with gibbsite (Fig. 8a-b). Submicrometric grains may agglomerate in larger porous clusters (Fig. 8a-b). In numerous areas of the studied samples, secondary REE phosphates occur as fine coatings on rounded micrometric (Fig. 8c) to millimetric (12.5 wt% Nd contents (average 31.0 wt%) and Nd and Sm as the dominant REE cat-
b). In numerous areas of the studied samples, secondary REE phosphates display a wide variety of textural features, most notably as porous vein fillings crosscutting the gibbsite matrix; they consist of rounded, submicrometric free grains or micrometric aggregates finely intergrown with gibbsite (Fig. 8a-b). Submicrometric grains may agglomerate in larger porous clusters (Fig. 8a-b). In numerous areas of the studied samples, secondary REE phosphates occur as fine coatings on rounded micrometric (Fig. 8c) to millimetric Mn oxyhydroxide grains (Fig. 8d-e). In addition, they also form angulous Mn oxyhydroxide grains (Fig. 8f), subrounded, homogeneous, irregular-Mn oxyhydroxide grains (Fig. 8d-e). In addition, they also form angulous Mn oxyhydroxide grains (Fig. 8f), subrounded, homogeneous, irregular-

concentric zoning (Fig. 10c) or more convolute internal heterogeneities (Fig. 10d). In terms of chemical composition, they fall within the so-called bastnäsite [REE(O3)(F,OH)]-synchysite [CaREE(CO3)2(F,OH)] polysomatic mineral series (Zeug et al., 2021 and references therein). Their main feature is that the dominant REE is mostly Gd (Fig. 10a-d) and less commonly, Nd (Fig. 10e-f). They contain 4.8–38.8 wt% Gd2O3 (average of 26.1 wt%), 4.1–40.1 wt% Nd2O3 (average of 12.8 wt%) and 4.6–19.0 wt% Sm2O3 (average of 10.6 wt%), <10 wt% La2O3, Pr2O3, Eu2O3, Tb2O3, Dy2O3, and Y2O3, and less than 2 wt% Ho2O3, Er2O3, Tm2O3, Yb2O3, and Lu2O3. Cerium is below its lower limit of detection (Table 5). Since Ca is below 5.6 wt% (average of 1.7 wt%) and F is below its lower limit of detection, the datapoints plot closer to the bastnäsite end-member (x synchysite composition; Fig. 10g) and hence the name hydroxybastnäsite is more appropriate. If so, and pending further crystallographical or structural evidence, this would be the first description of a natural Gd-dominated carbonate. Nevertheless, monocrystal XRD on one hand picked Gd-dominant carbonate grain gave a calcioancylite [CaREE(CO3)2(OH)-(H2O)] structure, which indicates that the mineralogy of REE carbonates from bauxites in Bahoruco might be particularly complex and requires more detailed and systematic crystallochemical studies (Fig. 11).

While monazite can be found in similar proportions in both deposits, secondary phosphates are more abundant in El Turco, and the secondary carbonates are exclusive of Aceitillar. In addition, two grains of apatite have been found in heavy concentrates in samples from El Turco. The observed apatite grains are subhedral, poorly rounded, and have a porous appearance; they do not have significant REE contents. Note-
worthily, cerianite [CeO2], which was documented in the Las Mercedes deposit (Torro et al., 2017), was not observed in the studied samples
from the El Turco and Aceitillar deposits.

5. Discussion

5.1. The mineralogical nature of REE ores in Sierra de Bahoruco

The most typical REE minerals identified in bauxite deposits worldwide include cerianite, parisite, röntgenite, synchysite-(Nd), rhabdophane, churchite, bastnäsite-(Ce), bastnäsite-(Nd), hydroxybastnäsite-(Nd, La), hydroxylcarbonate-(Nd, La), xenotime, monazite-(La), and monazite-(Nd) (Ochsenkühn-Petropulu and Ochsenkühn, 1995; Lymperopoulou, 1996; Maksimović and Pantó, 1996, 1991; Mongelli, 1997; Pantó and Maksimović, 2001; Laskou et al., 2003; Maneli et al., 2007; Wang et al., 2010; Gamaletsos et al., 2011; Li et al., 2013; Liu et al., 2016; Kalatha et al., 2017). REE minerals in bauxite deposits are originated by accumulation of residual (primary) phases, precipitation (neoformation), and adsorption of ions onto mineral surfaces (mostly clay minerals) (Deady et al., 2014 and references therein).

The REE minerals identified in bauxites from the Pedernales Peninsula are both relict and authigenic. On one hand, as in many other karst-BAUXITE deposits, the main detrital REE-mineral is monazite-(Ce) (Maksimović and Pantó, 1996). The presence of monazite grains results in high LREE values in the studied bauxite ores. We interpreted that monazite grains were transported into karstic pockets and survived the bauxitisation process (Maksimović and Pantó, 1991; Mondillo et al., 2011). On the other hand, authigenic REE-phosphates and REE-carbonates evidence REE mobilisation and redeposition during the bauxitisation process as vein infillings crosscutting the gibbsite matrix and/or coatings on other grains. Specifically, the secondary REE-bearing phases can be grouped into: i) anhydrous and hydrated, Y-dominated phosphates with a ratio REE:PO4 of 1:1 (possibly xenotime, rhabdophane, and/or churchite), and ii) Gd-dominated carbonates of the bastnäsite group (precisely hydroxylbastnäsite-(Gd)) (Figs. 7, 8 and 10).

It is noteworthy that hydroxylbastnäsite-(Nd) is commonly described as the most common authigenic REE mineral in karst-bauxite according to Deady et al. (2014). However, hydroxylbastnäsite from bauxite deposits in Bahoruco concentrate preferentially Gd. Therefore, the existence of new mineral species or varieties of REE minerals in Sierra de Bahoruco is plausible and further, on-going work is required for their correct crystallochemical characterization.

The mineralogical differences on the authigenic REE phases found in the two bauxite deposits studied here are conspicuous. While REE-phosphates are characteristic of El Turco, REE-carbonates are only found in Aceitillar translating also in distinctive contents of particular rare earth elements. Importantly also, the contrast between the main REE in primary (Ce, La) vs. secondary (Y, Nd) phosphates and carbonates (Gd, Nd) requires consideration of an additional source of REE for the secondary phosphates and carbonates, other than the primary
phosphates. Information on the REE mineralogy related to karst bauxites being limited yet, we focus in the following lines on the stability of authigenic REE minerals and constraints on their behaviour during the bauxitisation process.

It must be noted that no textural relationships were observed between primary and secondary REE phosphates, between REE phosphates and REE carbonates, and between REE-carbonates and REE-free carbonates.

5.2. Mineral stability of REE phosphates and carbonates

Predominance diagrams shown in Fig. 12 summarise the stability fields of the major minerals identified in the deposits of Aciéitilier and El Turco. In Aciéitilier, the presence of gibbsite, kaolinite and hematite, together with calcite suggests that groundwaters should be alkaline (pH in the range 8–10); the fact that no Mn minerals have been identified would, in addition, indicate that such groundwaters were not very oxidant (Eh < 0.5 V). In Aciéitilier, REE phases are mainly carbonate minerals, whose stability field is close to the equilibrium of calcite and agrees with equilibrium between kaolinite and gibbsite (Fig. 12, left). In El Turco, however, as Mn oxides have been identified, Eh conditions should be more oxic than in Aciéitilier (Eh > 0.5 V; Fig. 12, right).

Neither kaolinite nor calcite are present at El Turco, and REE-bearing minerals, whose stability field is close to the equilibrium of calcite and oxidant (Eh < 0.5 V). In Aciéitilier, REE phases are mainly carbonate minerals, whose stability field is close to the equilibrium of calcite and gibbsite (Fig. 12, left). In El Turco, however, as Mn oxides have been identified, Eh conditions should be more oxic than in Aciéitilier (Eh > 0.5 V; Fig. 12, right).

Concerning aqueous speciation, REE as free cations are the most important species at pH lower than 6, even when fluoride ion is present, those of Aciéitilier. Eh-pH conditions of El Turco are lower pH and higher Eh relative to Aciéitilier, the presence of gibbsite, kaolinite and hematite, together with calcite suggests that groundwaters should be alkaline (pH in the range 8–10); the fact that no Mn minerals have been identified would, in addition, indicate that such groundwaters were not very oxidant (Eh < 0.5 V). In Aciéitilier, REE phases are mainly carbonate minerals, whose stability field is close to the equilibrium of calcite and agrees with equilibrium between kaolinite and gibbsite (Fig. 12, left). In El Turco, however, as Mn oxides have been identified, Eh conditions should be more oxic than in Aciéitilier (Eh > 0.5 V; Fig. 12, right).

Neither kaolinite nor calcite are present at El Turco, and REE-bearing minerals, whose stability field is close to the equilibrium of calcite and oxidant (Eh < 0.5 V). In Aciéitilier, REE phases are mainly carbonate minerals, whose stability field is close to the equilibrium of calcite and gibbsite (Fig. 12, left). In El Turco, however, as Mn oxides have been identified, Eh conditions should be more oxic than in Aciéitilier (Eh > 0.5 V; Fig. 12, right).
complexes, being the distribution highly dependent on the concentration of total carbonate and phosphate in groundwater. Thus, although the tendency of carbonate aqueous species of being formed is lower than phosphate ones, they are the dominant species at neutral-basic pH, because the carbonate aqueous concentration is usually higher than the phosphate aqueous concentration in groundwater. Phosphate aqueous species only appear at low pH, where carbonate is not stable, or in groundwaters richer in phosphate compared to carbonate.

The predominance of Al oxyhydroxides (gibbsite) and the insignificant amounts of kaolinite reveal a mature profile, characteristic of later stages of bauxitisation (Gu et al., 2013). During advanced bauxitisation, pH and Eh in the profile evolve towards more acidic and oxidising conditions, respectively. Those changes in pH and Eh would favour the dissolution of REE carbonates, formed during the initial stages, and the remobilisation of REE (Li et al., 2013). REE in solution (as free ions or forming organic acid or phosphate complexes) could precipitate as REE phosphates (e.g., rhabdophane, churchite and flor-encite) (Liu et al., 2016). This behaviour is coherent with the
5.3. Metallurgical implications

Karst bauxite deposits from the Sierra de Bahoruco in the Dominican Republic are characterised by relatively high REE contents (up to 2.8 wt % REY in bulk) that represent a potential by-product commodity of Al. Simonetti (2014), for example, reports on grades of economic interest as low as 500 ppb REO where conditions are favourable (e.g., easy open pit mining; beneficial LREE/HREE ratios; simple mineral processing). It should also be noted that not all individual REE are equal in terms of availability and necessity (a.k.a. replaceability; Du and Graedel, 2013; Nassar et al., 2015). Of special interest in the current global market are MREE (Sm-Gd) and HREE (Tb-Lu) because of their greater economic value compared with LREE (La-Nd; Gielen and Lyons, 2022). In the case of Aciellitar and El Turco karst bauxite deposits (and likely other deposits in the district) with existing economic value from high-quality Al ore (Si content ∼4 wt%), the absolute contents of REE (0.12 wt% in Aciellitar and 0.76 wt% in El Turco, on average), Y (0.07 wt% in Aciellitar and 0.88 wt% in El Turco, on average), and the MREE/LREE and HREE/LREE ratios (0.22 and 0.30 in Aciellitar, and 0.89 and 1.28 in El Turco, on average, respectively) presented in this article make the case for a highly prospective ore for the extraction of REE as by-products, metallurgical considerations aside.

Since the mineralogy of REE can influence the economic potential and exploitation viability of the mining project, understanding the residence of REE in bauxite ore (carbonates, different types of
phosphates, oxides) is crucial for any exploration project. Therefore, an accurate mineralogical characterisation of REE minerals is important from a metallurgical point of view. During the Bayer process, REE (and other associated elements such as Sc), tend to stay unaltered in the solid phases, ending in the residue of bauxite processing (the so-called “red muds”). In fact, in red muds, LREE occur mainly as ferrotitanates and carbonates, and Y as phosphates. While the ferrotitanates are neoformed during the Bayer digestion, LREE-carbonates and Y-phosphates are resistant to the process (Agrawal and Dhawan, 2021, and references therein). Since LREE-carbonates and Y-phosphates are precisely the main mineralogy in Aceitillar and El Turco, respectively, other ore processing methods should be evaluated. The preliminary results of a pilot leaching project using bauxite samples from Greece indicate that up to 47% of the REE in the bauxite are easily leachable using ion exchange agents like ammonium sulphate (Mouchos et al., 2016). The impact of the REE mineralogy in the bauxite ore, prior to its metallurgical processing, in the final REE contents of the respective “red muds” is yet to be evaluated.

6. Final remarks

This investigation in the deposits of Aceitillar and El Turco (SW Dominican Republic) lead to the following conclusions:

- Aceitillar and El Turco consist of mature bauxite profiles, with predominant Al oxyhydroxides and insignificant amounts of kaolinite.
- In addition to the Las Mercedes deposit, other deposits in the Pedernales Peninsula such as the ones studied in this article, contain potential REE resources.
- The REE contents in Aceitillar samples vary between 0.07 and 0.16 wt% (0.12 wt% on average), and in El Turco, between 0.28 and 1.40 wt% (0.76 wt% on average). Y ranges from 0.008 to 0.13 wt% in Aceitillar (0.07 wt% on average), and from 0.33 to 1.48 wt% in El Turco (0.88 wt% on average).
- The MREE/LREE ratio in Aceitillar is 0.22 and 0.89 in El Turco, whereas the HREE/LREE ratio is 0.30 in Aceitillar, and 1.28 in El Turco, on average.
- The REE host minerals mainly include relict monazite-(Ce), and authigenic Y-dominant phosphates, and REE carbonates, namely hydroxy bastnäsite-(Gd).
- Authigenic REE phosphates and REE carbonates appear concentrated in different bauxite profiles, suggesting particular controls in their environment of deposition during the bauxitisation process.
- The predominance diagrams obtained are consistent with the REE mineralogy in Aceitillar and El Turco (carbonates versus phosphates) and the coexisting minerals (gibbsite, Mn oxyhydroxides). The conditions at El Turco would indicate more oxic and acidic than in Aceitillar.
- Further data is needed to precisely identify some of the REE-bearing minerals, and the presence of new mineral species (e.g., Gd-dominant carbonates) is possible.
Table 5

Representative EMP analyses of REE-carbonates from the Sierra de Bahorou bauxite deposits (n.a.: not analysed; d.l.: below detection limit). FeOt: total Fe, OH and CO3 are calculated according to Table 1.

| Label | Si | Ti | Al | Mn | Fe | Co | Ni | Ca | Sr | Ba | U | Th | Y | Yb | Lu | Gd | Tb | Ho | Er | Tm | Yb | Lu | Gd | Tb | Ho | Er | Tm | Yb | Lu | Gd | Tb | Ho | Er | Tm | Yb | Lu | Gd | Tb | Ho | Er | Tm | Yb | Lu | Gd | Tb | Ho | Er | Tm | Yb | Lu | Gd | Tb | Ho | Er | Tm | Yb | Lu |
|-------|---
Data availability

Data will be made available on request.

Acknowledgements

This research has been funded by the MESCYT (Ministry of Higher Education, Science and Technology of the Dominican Republic) projects 2014-1B4-133 and 2022-1A4-189. Additional funding has been
References

Escuder-Viruete, J., Joubert, M., Abad, M., Pocino, A., 2021. The Potential for REE and Associated Critical Elements to Be a Solution for the Energy Transition. Mineral Resources for the Energy Transition (MinerResET (Mineral Resources for the Energy Transition) research group). This paper has been produced within the framework of the MinResET (Mineral Resources for the Energy Transition) research group (2021-SGR-00239, Agència de Gestió d’Ajuts Universitaris i de Recerca de Catalunya). We are grateful to Bernhard Dold, Edwin García, Ramón Elías Ramírez and Santiago Muñoz for their collaboration and support, to DOVEMCO for their hospitality, and to driver Wilson and Miguel, and assistants Johny and Lili for their inestimable help, during the field work campaigns. Sincere thanks are also extended to the two Reviewers for their kind remarks, and their thorough and constructive suggestions that helped to improve the quality of the manuscript.

