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A B S T R A C T   

Wheat grain yield (GY) is a crop feature of central importance affecting agricultural, environmental, and so
cioeconomic sustainability worldwide. Hence, the estimation of within-field variability of GY is pivotal for the 
agricultural management, especially in the current global change context. In this sense, Earth Observation 
Systems (EOS) are key technologies that use satellite data to monitor crop yield, which can guide the application 
of precision farming. Yet, novel research is required to improve the multiplatform integration of data, including 
data processing, and the application of this discipline in agricultural management. This article provides a novel 
methodological analysis and assessment of its applications in precision farming. It presents an integration of 
wheat GY, Global Positioning Systems (GPS), combine harvester data, and EOS Sentinel-2 multispectral bands. 
Moreover, it compares several indices and machine learning (ML) approaches to map within-field wheat GY. It 
also analyses the importance of multi-date remote sensing imagery and explores its potential applications in 
precision agriculture. The study was conducted in Spain, a major European wheat producer. Within-field GY data 
was obtained from a GPS combine harvester machine for 8 fields over three seasons (2017–2019) and consec
utively processed to match Sentinel-2 10 m pixel size. Seven vegetation indices (NDVI, GNDVI, EVI, RVI, TGI, CVI 
and NGRDI) as well as the biophysical parameter LAI (leaf area index) retrieved with radiative transfer models 
(RTM) were calculated from Sentinel-2 bands. Sentinel-2 10 m resolution bands alone were also used as vari
ables. Random forest, support vector machine and boosted regressions were used as modelling approaches, and 
multilinear regression was calculated as baseline. Different combinations of dates of measurement were tested to 
find the most suitable model feeding data. LAI retrieved from RTM had a slightly improved performance in 
estimating within-field GY in comparison with vegetation indices or Sentinel-2 bands alone. At validation, the 
use of multi-date Sentinel-2 data was found to be the most suitable in comparison with single date images. Thus, 
the model developed with random forest regression (e.g. R2 = 0.89, and RSME = 0.74 t/ha when using LAI) 
outperformed support vector machine (R2 = 0.84 and RSME = 0.92 t/ha), boosting regression (R2 = 0.85 and 
RSME = 0.88 t/ha) and multilinear regression (R2 = 0.69 and RSME = 1.29 t/ha). However, single date images at 
specific phenological stages (e.g. R2 = 0.84, and RSME = 0.88 t/ha using random forest at stem elongation) also 
posed relatively high R2 and low RMSE, with potential for precision farming management before harvest.   

1. Introduction 

Crop yield gathers maximum attention in agricultural research and 
public policies due to its importance for guiding economic decisions and 
ensuring farmers’ incomes and food security (Rosegrant and Cline, 
2003; van Ittersum, 2016). In the current global context, crop man
agement faces several challenges which affect negatively both the pro
duction and the environment. On the one hand, crop yield is highly 

dependent on external inputs (Sutton et al., 2011), which, when mis
managed, can lead to environmental pollution and a decline in the 
performance. On the other hand, crop yields are highly susceptible to 
external pressures such as climatic conditions or pests (Savary et al., 
2019), as well as of spatial variability in soil fertility which jeopardize 
the performance of crops. Therefore, the high-resolution prediction of 
crop yields before harvest plays a central role in addressing these chal
lenges and guiding management decisions affecting agricultural, 
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environmental, and socioeconomic sustainability. In this sense, Earth 
Observation Systems (EOS) are key technologies that use satellite data 
and can be used to monitor crop yield and potentially guide the appli
cation of management strategies within precision agriculture. In the last 
years, EOS have improved their resolutions and consequently the po
tential to apply precision agriculture in crop management has increased 
(Migdall et al., 2018), as well as the capacities to monitor environmental 
features affecting crops (Hunt et al., 2019b). 

Among the current openly accessible EOS, the system that has 
gathered more attention in recent years in precision agriculture is 
Sentinel-2. Since its full operationality was reached in 2018, the 
European-launched satellite has a revisit time of 5 days, in addition to an 
improved spatial and spectral resolution in comparison with other 
equivalent satellites (Segarra et al., 2020a) used in precision farming. 
The open access nature of Sentinel-2 data is also a central factor for its 
use, as many high to middle resolution satellites have paywalls. In 
addition to EOS, other technological advancements such as Global 
Positioning System (GPS)-supported agricultural machinery have been 
developed in the last years and allows for a multiplatform development 
of precision agriculture (Bach and Mauser, 2018). These technological 
advancements can coordinate to monitor key agricultural features such 
as yield in a more efficient fashion. Besides the technological advance
ments, modelling approaches such as machine learning (ML) have 
shown considerable promise in agricultural remote sensing applications 
(Chlingaryan et al., 2018). These ML computer algorithms are particu
larly useful for studying complex biological systems, as they can capture 
complex interactions among variables and find generalizable predictive 
patterns (Bzdok et al., 2018). The use of multiplatform data to develop 
models that allow estimating grain yield before harvest is central to 
guiding agricultural management and both secure crop yield and opti
mize the use of resources (Foley et al., 2011). 

Sentinel-2 data in combination with GPS combine harvesters can 
contribute to precisely generate grain yield (GY) estimation models. 
Nonetheless, the potential for estimating within-field GY variability has 
yet to be fully explored and calls for a further integration of multiplat
form data and streamline data processing. In the case of Sentinel-2, only 
a few articles have dealt with remote sensing and GPS combine har
vesters, as for example the case of cereals maize (Kayad et al., 2019) and 
wheat (Cavalaris et al., 2021; Hunt et al., 2019b). For maize, ML random 
forest (RF) and support vector machine (SVM) regressions were tested to 
match Sentinel-2 vegetation indices with GPS GY points at a single field. 
The results were modest (R2 = 0.48) but showed potential in deter
mining the best phenological stage when estimating within-field GY. In 
the case of wheat, Cavalaris et al. (2021) demonstrated the possibility to 
match Sentinel-2 derived vegetation indices (VIs) with within-field GY 
using simple regressions at different phenological stages (R2 = 0.63). 
Also in wheat, Hunt et al. (2019) used RF, VIs and Sentinel-2 bands alone 
to estimate wheat within-field GY in a single season. Their results sug
gested that Sentinel-2 bands alone and VIs have similar results (R2 =

0.89). 
So far, however, biophysical variables, such as LAI (leaf area index), 

derived from radiative transfer models (RTM) have not been used in 
estimating within-field wheat GY. Overall, VIs have limitations in the 
radiometric information they can exploit and are not as robust as RTM 
(Maes and Steppe, 2019; Weiss et al., 2000). In this sense, and compared 
with VIs, LAI has shown improvements for grain yield estimation for 
several crops (Duan et al., 2021; Gilardelli et al., 2019; Lambert et al., 
2018; Mokhtari et al., 2018; Zhou et al., 2017). Moreover, in the case of 
wheat, so far ML approaches have not been matched with phenological 
stages, which could be relevant to precision agriculture management 
needs for crop-specific models. Furthermore, in the case of wheat 
within-field grain yield, ML learning approaches have not been fully 
explored, as only simple regressions and RF have been tested. In this 
sense, support vector machine (SVM) was also tested for within-field 
maize grain yield estimation (Kayad et al., 2019), but the study 
focused exclusively on the use of vegetation indices. Similarly, boosted 

regression (BR) has shown improved performance for yield estimation 
applied to winter wheat compared to SVM by several authors (Heremans 
et al., 2015; Stas et al., 2016), but again both studies used only vege
tation indices and lower-resolution satellite data. 

We aim to make the most of current technological advancements to 
define the most suitable variables for estimating within-field wheat GY. 
On the one hand, we use GPS technological advancements in combine 
harvesters, which have provided large (within fields) geolocated grain 
yield datasets. On the other hand, we match this data with remotely 
sensed Sentinel-2 satellite spectral information and RTM to feed ML GY 
estimation models. Over three seasons (2017–2019) eight different 
fields in the Province of Burgos (Spain) were monitored with Sentinel-2 
time series, biophysical parameter LAI derived from RTM and different 
VIs (NDVI, GNDVI, EVI,. RVI, TGI, CVI and NGRDI) were calculated for 
each field over the various image dates obtained throughout the seasons. 
The Sentinel-2 bands alone, the biophysical parameter and VIs were 
independently matched to the GPS combine harvester dataset. The ML 
approaches RF, SVM, generalized boosting regression (BR), together 
with a multilinear regression as baseline, were used. The study was 
structured around three questions. 

1) What processing or combination of Sentinel-2 derived spectral in
formation is more suitable to estimate within-field wheat grain 
yield?  

2) Can wheat GY models matching phenological stages be accurate and 
have potential to be applied in precision agriculture?  

3) Which ML approach is more suitable for high resolution crop-specific 
wheat grain yield modelling? 

This study concludes by discussing the potential of the findings 
presented here to be applied in field-level management for precision 
farming. Moreover, it suggests some guidelines to advance towards a 
generalized use of these technologies among farmers. 

2. Materials and methods 

2.1. Study site 

The study was conducted during three seasons (2017–2019) in the 
Province of Burgos. The region where this study takes place is the 
Northern inner plateaus (Meseta Norte) of Spain. This region is in the 
Duero Basin and is characterized by agricultural fields growing mainly 
winter cereals (barley and wheat). Regarding wheat types, Spain is 
among the top durum wheat producers in Europe (Ranieri, 2015), with 
the Duero Basin region (Castilla y León) being among the largest pro
ducers at the country level after Andalucía in Southern Spain. Data from 
8 fields in the Province of Burgos in Spain (Fig. 1) were used. Fields were 
conventionally managed and the variety Athoris of durum wheat (Tri
ticum turgidum L. subsp. durum (Desf) Husn.), which is widely grown in 
the region, was sowed. The location of the fields is shown in Fig. 2. 

Meseta Norte has an inner-Mediterranean/continental climate with 
an average temperature of 10–14 ◦C, annual rainfall under 600 mm and 
average height above sea level of 800–850 m (Font Tullot, 2000). The 
fields were sown between mid-October and first week of November for 
the three seasons. The fields were fertilized with chemical fertilizers 
averaging between 35 and 40 kg/ha of N, 80–130 kg/ha of P and 60–90 
kg/ha of K in the case of basal fertilization. Regarding top-dressing 
fertilization, between 85 and 110 kg/ha N was applied throughout the 
three seasons in the different fields between tillering and stem elonga
tion, corresponding to Z30-Z32 phenological stages (Zadoks et al., 
1974). The average grain yield over the three seasons was 4.81 t/ha. 

Regarding the description of the fields shown in Fig. 2, number 1 has 
a surface of 21.30 ha and a slope of less than 1%, number 2 has a surface 
of 25.80 ha and a slope of less than 1%, number 3 has a surface of 5.80 
ha and a slope of 3%, number 4 has surface of 55.64 and a slope of 7%, 
number 5 has a surface of 18.50 ha and a slope of 2%, and number 6 has 
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a surface of 9.70 ha and a slope of 2%. The area is characterized by 
loam/clay soils with a homogenous distribution (https://suelos.itacyl. 
es/mapas). 

2.2. Sentinel-2 data and indices calculation 

The Sentinel-2 multispectral bands (Table. 1) were downloaded 
without cloud cover from Copernicus Open Access Hub (https://scihub. 
copernicus.eu/) as a 2A product (Bottom of Atmosphere reflectance 
images) for the following dates: 2017 (05–22), 2018 (04–17, 05–26), 
2019 (04–12, 05–12). In addition, the imagery captured on 04–14-2017 
was downloaded as a L1C product (Top of Atmosphere reflectance im
ages) and was subsequently corrected to level 2A using the Sen2Cor tool 
on SNAP (Sentinel Application Platform), obtaining Bottom-Of- 
Atmosphere (BOA) and cirrus corrected reflectance images. The 
sensing dates were matched to the phenological stages in situ evaluated 
following the Zadoks scale (Zadoks et al., 1974): stem elongation 
(30–39), heading (41–59) and anthesis (61–69). 

Seven widely used VIs (Table 2) were calculated on ArcGIS Pro 2.3.0 
as shown in Table 2. Moreover, the biophysical parameter, LAI (leaf area 
index) was calculated at 10 m of spatial resolution following neural 
network algorithms trained with PROSAIL radiative transfer models 
(Weiss and Baret, 2016) on SNAP (Sentinel Application Platform) 
(Table. 2). 

2.3. Matching of sentinel-2 and GPS combine harvester grain yield data 

The fields were harvested between mid-July to the beginning of 
August throughout the three seasons. A combine harvester (John Deere 
T660i + 625R) equipped with a GPS was used and relative GY results (t/ 
ha) were reported. As the obtained results were relative to the surface 
and not absolute weights, we considered that no calibration between 
actual weight and harvested weight was necessary. All GPS GY points 
obtained with the combine harvester were uploaded as a shapefile in 

ArcGIS Pro 2.3.0, and subsequently all points contained within each 
pixel were averaged using the Spatial Analysis Menu Tool Point to 
Raster. As a result, each single pixel value of the calculated LAI, NDVI, 
GNDVI, EVI, RVI, TGI, CVI and NGRDI layers and the original 10 m 
resolution Sentinel-2 bands were associated to one GY value. This pro
cessing protocol was carried out at each phenological stage. An overview 
of few indices calculated is shown in Fig. 3. A total number of 20,124 
pixels with their corresponding unique GY values and Sentinel-2 derived 
data was obtained as data set. The raw data was manually buffered to 
avoid edge effects of mix pixels as shown in Fig. 4. All the data was 
matched in a point vector file, it was easier to process and use as data is 
organized in attribute tables. The processing was carried out on ArcGIS 
Pro 2.3.0 and a schematic illustration describing the process is shown in 
Fig. 4. The cut width of the combine harvester was 7.60 m and therefore 
adequate to 10 m pixels size of Sentinel-2 imagery. Notwithstanding its 
suitability for Sentinel-2 pixel size, the GY spatial resolution of the 
combine harvester, as it is a function of the monitoring equipment, the 
cutting head and the software has some lack of precision, as reported by 
other authors (Lyle et al., 2014). 

All the GPS GY points with values lower to 0.5 t/ha were discarded. 
Moreover, a portion of the raw data was trimmed using the “tclust” 
package in R (R Core Team, 2021) based on GY and Sentinel-2 bands 
inaccuracies. Trimming allows the removal of the most outlying data 
which can strongly influence the results; this approach has been intro
duced by several authors (García-Escudero et al., 2008; Woodruff and 
Reiners, 2004). The number of clusters (k) and portion of data trimmed 
(α) was optimized and subsequently applied to remove outliers (k = 5, α 
= 0.05). The general process is sh own in Fig. 5. 

2.4. Machine learning approaches 

One of the most widely used machine learning (ML) approaches is 
random forest (RF) regression. It has been successfully used for esti
mating wheat grain yield (Hunt et al., 2019a; Jeong et al., 2016; Wang 

Fig. 1. Map of the Iberian Peninsula with the province of Burgos, where the fields are located, highlighted in green. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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et al., 2016). The RF algorithm is a ML method developed by (Breinman, 
2001), where the set of predictors is randomly distributed at each split, 
while the variables randomly selected at each split is a user-defined 
parameter as well as the number of trees. The optimal parameters 
regarding the number of trees and the number of variables randomly 
sampled as candidates at each split was optimized to 300 and 6 
respectively. In this case the package “RandomForest” was used in R (R 
Core Team, 2021). 

Support vector machine (SVM) used in regressions (Vapnik, 2013) is 
a ML approach that has also been used in agriculture for grain yield 
estimation (Oguntunde et al., 2018; Saruta et al., 2013). In R (R Core 
Team, 2021) the package “e1071” was used for the SVM in eps- 
regression, and the degree parameter needed for kernel was set at 3. 
Generalized boosted regression (BR) are combinations of two tech
niques: decision tree algorithms and boosting methods (Freund et al., 

1999; Friedman, 2001). These approaches have been successfully used 
in grain yield estimation (Arumugam et al., 2021; Zhang et al., 2019). In 
R (R Core Team, 2021) package “gbm” was used, the number of trees 
was optimized at 5000 and the interaction depth at 5. 

For all ML approaches, a 70% of the dataset (13,685 pixels) was used 
to train the models and a 30% of the dataset (6439 pixels) containing 
two fields not used in the training were used for validation. Fig. 6 shows 
the distribution of the data set, as density due to the different number of 
pixels in each set. We assume the distribution of data is equivalent in 
train and validation sets. Both training and validation datasets followed 
a similar distribution of data (Fig. 6). The accuracy assessment was 
carried out by calculating R2, RMSE (eq. (1)) and actual GY MEAN (eq. 
(2)) to derive the % RMSE (eq. (3)) of the validation dataset. 

Fig. 2. Locations of the fields used in the study during season 2017–2019. Six fields are shown, two of them were used in alternate seasons, and the reference number 
for each field is indicated. Fields used independently for validation of the GY estimation model are highlighted in red, those used for training are in green. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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2

n

√
√
√
√
√

(1)  

MEAN =

∑n
i=1actuali

n
(2)  

%RMSE =
RMSE
MEAN

∙100 (3)  

3. Results 

3.1. Machine learning approaches 

The ML approach that produced higher R2 and lower %RMSE is RF 
regression (Fig. 7), followed by BR and SVM. All machine learning ap
proaches had better results in comparison with the baseline, multilinear 
regression (Table 3). For all phenological stages and indices, RF 
regression averaged between a highest R2 = 0.89 and %RMSE = 15.4 
and a lowest of R2 = 0.83 and %RMSE = 19.1; meanwhile BR averaged 
between a highest R2 = 0.85 and %RMSE = 18.3 and a lowest of R2 =

0.81 and %RMSE = 20.7; SVM averaged between a highest R2 = 0.84 
and %RMSE = 19.1 and a lowest of R2 = 0.74 and %RMSE = 23.7. The 
multilinear regression as baseline averaged between a highest R2 = 0.69 
and %RMSE = 26.8 and a lowest of R2 = 0.37 and %RMSE = 35.7. 

3.2. Phenology and date 

Multidate Sentinel-2 imagery improved all data feeding instances 
here studied. There is a slightly improved result when using Sentinel-2 
timeseries, rather than stem elongation and heading/anthesis pheno
logical stages alone. In general terms, with single date images, heading/ 
anthesis phenological stage performed slightly better in comparison 
with stem elongation (Table 3). In the case of RF regression, for instance, 
at stem elongation R2 ranged between 0.83 and 0.84 and %RMSE 

Table 1 
Sentinel-2 multispectral instrument information.  

Band Spatial Resolution (m) Central Wavelength (nm) 

B1: Coastal Aerosol 60 443 
B2: Blue 10 490 
B3: Green 10 560 
B4: Red 10 665 
B5: Red-Edge 20 705 
B6: Red-Edge 20 740 
B7: Red-Edge 20 783 
B8: NIR 10 842 
B8A: Vegetation RE 20 865 
B9: Water Vapour 60 945 
B10: SWIR Cirrus 60 1375 
B11: SWIR 20 1610 
B12: SWIR 20 2190  

Table 2 
The calculated vegetation indices and biophysical parameters.  

Abbreviation Parameter Calculation Reference 

NDVI Vegetation 
index 

B8 − B4
B8 + B4  

(Rouse Lr. 
et al., 1974) 

GNDVI Vegetation 
index 

B8 − B3
B8 + B3  

(Gitelson et al., 
1996) 

EVI Vegetation 
index 

2.5 
B8 − B4

(B8 − 6∙B4 − 7.5∙
B2) + 1  

(Haboudane 
et al., 2002) 

RVI Vegetation 
index 

B8
B4  

(Tucker, 1979) 

TGI Vegetation 
index 

− 0.5∙(190∙(B4-B3)-120∙ 
(B4-B2)) 

(Hunt et al., 
2013) 

NGRDI Vegetation 
index 

(B3 − B4)
(B3 + B4)

(Hunt et al., 
2005) 

CVI Vegetation 
index 

B8Ã⋅B3
B3Ã⋅B4  

(Vincini et al., 
2008) 

LAI Biophysical 
parameter 

RTM on SNAP (Weiss and 
Baret, 2016)  

Fig. 3. Overview of LAI (in green A and C) and NDVI (in blue B and D) calculated from the Sentinel-2 images, with Field 3 as an example of the model validation with 
the two phenological stages studied, stem elongation at the top of the Figure (A and B) and heading/anthesis at the bottom (C and D). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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18.3–19.1. Meanwhile at heading/anthesis, R2 ranged between 0.86 and 
0.88 and %RMSE 16.8–17.0. Finally, when using the whole timeseries, 
R2 ranged between 0.87 and 0.89 and %RMSE 15.4–16.2. Hence, the 
estimation of within-field grain yield has a slightly improve when 
combining sensing dates. 

3.3. Vegetation indices and biophysical parameters 

In Fig. 7 a linear regression between the observed and estimated 
values at validation using multidate LAI data is shown. A higher density 
of points is observed around 3 to 6 t/ha as most sampled points were 
around these values. The linearity of the results is evident, yet the 
density of points is slightly uneven due to the nature of the data obtained 
in this area. The results suggest that with RF regression LAI using stem 
elongation and heading/anthesis dates together has the best perfor
mance (R2 = 0.89 and %RMSE = 15.4). However, for the same specific 
situation VIs (R2 = 0.87 and %RMSE = 16.2) and 10 m resolution 
Sentinel-2 bands (R2 = 0.88 and %RMSE = 15.8) performed relatively 
well too. This trend was also observed for the rest of machine learning 
approaches here studied. Therefore, within-field wheat GY variability 
can be estimated relatively accurately with all the data feeding ap
proaches here studied (vegetation indices, LAI and 10 m Sentinel-2 
bands alone) being LAI the most accurate. 

Regarding the vegetation indices alone (Table 4), we observed that 
RF regression yielded the best results. Support vector machine had more 
limited results and linear regression showed unacceptable %RMSE. With 
RF regression and multidate data, RVI, GNDVI and NDVI had the lowest 
%RMSE (16.2 in all the cases) as well as the highest R2 (0.87 in all the 
cases). Greenness sensitive indices such as TGI or CVI had lower R2 

(0.85) and higher %RMSE (17.4) in contrast with the previous biomass 
sensitive indices. 

RF regression is the most promising ML approach when using LAI 
derived from Sentinel-2 data processing. The use of all available dates 
also improved the results. Within-field relative accuracy can be observed 
in Fig. 8, where a comparison between observed and estimated wheat 
GY using LAI data is shown. The pixels shown in the two fields are 
validation pixels, two independent fields of the 30% not used for 

training the model; therefore, these present an independent visual 
validation of the accuracy of the developed model. Moreover, they 
reflect comparable general patterns of wheat GY within-field variability. 

4. Discussion 

This study is structured around three questions that cover three 
relevant factors for within-field GY variability mapping, with a central 
relevance in remote sensing for precision farming. First, we determined 
what Sentinel-2 derived data is more accurate to estimate within-field 
GY. Second, we analysed how relevant is the temporal variable of the 
information that is sensed, namely the potential of phenological stages 
assessment. And third, we inferred what modelling approach, weather 
simple linear regressions or more complex ML approaches, work best. 
Finally, we discuss the scope of the findings presented here in regard to 
precision farming. 

4.1. Sentinel-2 data 

Coming back to question one (What processing or combination of 
Sentinel-2 derived spectral information is more suitable to estimate 
within-field wheat GY?) we observed that the biophysical parameter LAI 
had a slightly improved performance in contrast with Sentinel-2 bands 
and VIs. The lower %RMSE (15.4) in the model derived from LAI in 
comparison with the one developed with VIs (16.2 %RMSE) is in line 
with other studies, which showed improved performance of LAI for 
estimating cereal (e.g. wheat) grain yield (Lambert et al., 2018; Zhou 
et al., 2020b). However, VIs constitute a simple approach to extract 
information from remotely sensed data and have been linked to crop 
yield features in the last years (Gracia-Romero et al., 2017; Liu et al., 
2006; Segarra et al., 2020b). VIs are easy to use, yet the spectral infor
mation RTM can capture is more robust as it captures reflectance 
changes in crop stages and changing architectures (Viña et al., 2011), in 
this sense, LAI was calculated using RTM, which are able to capture 
improved information of crop canopies (Wolanin et al., 2019). More
over, most indices experience saturation at certain crop stages (Bannari 
et al., 1995), although a combination of trait specific indices might 

Fig. 4. Explanation of the distribution of yield points obtained with the combine harvester. Fields were manually buffered to avoid edge effects. The interpolation of 
GPS yield points to Sentinel-2 derived data is also shown. 
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overcome this issue. Regarding Sentinel-2 bands alone, there is still a 
slightly improvement of GY models when using LAI (%RMSE 15.4) than 
bands alone (%RMSE 15.8). Other authors (Hunt et al., 2019a) argued 
that ML algorithms extract the most from the spectral information due to 
their capacity to capture complex interactions among variables, and 
therefore are successfully linked with within-field GY. Nonetheless, on 
top of this, we can argue that hybrid models that use advanced RTMs to 
describe biophysical parameters such as LAI and subsequently are 
matched to GY to feed ML models can even improve and add robustness 
to the models. These approaches have mainly been used in phenotyping 
(Jin et al., 2021), but as observed here can be almost operational for use 
in within-field wheat GY estimation. 

4.2. Time series and phenology 

Regarding question two (Can wheat GY models matching pheno
logical stages be accurate and have potential to be applied in precision 
agriculture?) we observed that multi-date data improves the capacity to 
estimate within-field grain yield variability. In all three data feeding 
instances (Sentinel-2 bands, LAI and VIs), R2 was higher and RMSE 
lower when using multi-date Sentinel-2 data (Table 3). Yet, the full 
temporal resolution of Sentinel-2 images could not be exploited as the 
availability of images for the regions studied was limited throughout the 
three seasons due to cloud cover. Despite of the limitations, several 

images throughout the season could be analysed following the pheno
logical stages stem elongation and heading/anthesis. Interestingly, LAI 
assessed at stem elongation and heading/anthesis predicted better GY 
(lower %RMSE) than VIs and Sentinel-2 bands. This is coherent with the 
fact that LAI is a good indicator of potential canopy photosynthesis, with 
these reproductive stages being crucial in defining yield (Miralles et al., 
2000; Villegas, 2001). In the case of the VIs and eventually of the single 
bands they may reflect later (during the crop cycle); particularly in 
terms of stay green and the onset of crop senescence during grain filling 
(Aparicio et al., 2000). Decrease in Stay Green, as response for example 
of water stress or lack of mineral nutrients effects may affect GY through 
an accelerated reduction of photosynthetic assimilates during the grain 
filling (Christopher et al., 2016), which might be too late for a reasoned 
management (e.g. additional irrigation or top-dressing fertilization). 
Moreover, LAI and VIs in wheat are frequently weakly correlated, which 
means their performance predicting yield are not necessarily compara
ble (Serrano et al., 2000). In this sense, for single phenological stages, 
the efficiency of the models was relatively high. Hence the estimation of 
GY before the whole season is completed, around March to May can help 
farmers to guide management decisions and ensure a better harvest. 
Several authors have matched Sentinel-2 images with phenology to es
timate wheat GY at various resolutions (Fieuzal et al., 2020; Segarra 
et al., 2020b; Toscano et al., 2019) that allows an improved opportunity 
for precision farming management. The technical progress of Sentinel-2 

Fig. 5. Method overview of the process to estimate wheat GY using several data and ML approaches.  
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and the increasing development of modelling approached for GY esti
mation now makes precision farming affordable and cost-effective and 
thus, almost operational (Weiss et al., 2020). 

4.3. Modelling approaches 

Regarding the third question (Which ML approach is more suitable 
for high resolution crop-specific wheat GY modelling?) we observed that 
RF clearly outperformed BR, SVM and multilinear regression (Table 4). 
In contrast with this, other authors (Heremans et al., 2015) observed an 
improved performance of BR in comparison with RF regression, when 
using VIs. Nonetheless, we can argue that the findings of this article 

show RF as an improved modelling approach when using LAI to estimate 
within field grain yield, as discussed previously. In contrast with other 
authors who did not find improvements between simple linear re
gressions and ML (Uno et al., 2005; Zhou et al., 2020a), we found that 
the relationship between crop yield and reflectance is complex enough 
for ML approaches and results in improvements in within-field yield 
predictions. RF is less prone to outliers, and hence one would expect 
yield estimation performance to increase, as we have corroborated here. 
Besides, RF algorithm is powerful in handling both linear and non-linear 
relationship as wheat yield and spectral information might have some 
non-linearity (Kumhálová and Matějková, 2017; Tesfaye et al., 2021). In 
general, we observed that the modelling approach is central for an 
effective GY estimation. We can argue that the modelling is the most 
important factor, followed by the sensing date (timeseries availability 
importantly linked to phenology) and the processing of the spectral data 
(LAI, for instance). In an equivalent study developed in the UK, RF was 
also used and compared to simple regression but no other machine 
learning approaches were presented (Hunt et al., 2019a). The results 
here obtained confirm the effectiveness of RF regression to estimate 
within-field GY variability using Sentinel-2 imagery for the case of 
Spain. Nonetheless, a further research and comparison of ML approaches 
could be developed aiming to standardize methodologies for specific 
regions and crop-specific cases for this almost operational precision 
agriculture technology. The ability of RF to cope with multivariate re
lationships between data of different types and resolutions is a key 
advantage over methods such as linear regression, which can only 
address univariate relationships. 

4.4. Precision farming 

To our knowledge, hitherto advanced models using ML approaches 
to estimate within-field GY in cereals have focused on demonstrations 
(Hunt et al., 2019a; Kayad et al., 2019) of single machine learning 
models and VIs or simple regressions (Cavalaris et al., 2021). Overall, 
there are a handful of articles (only two focused on bread wheat and 
none on durum wheat) dealing with GPS combine harvester and 
Sentinel-2 images and none have assessed several ML approaches, 
spectral indices and biophysical parameters retrieved from RTM. Hence, 
the results here presented assessing several ML approaches and Sentinel- 
2 data processing approaches are a novelty for this growing research 

Fig. 6. Datasets distribution, orange shading indicates data forming the test set, 
blue shading the data forming the training set. The dotted line indicates a 
theoretical perfect normal distribution. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Regression between observed and estimated-GY relative values at validation using RF regression, LAI data) and the whole timeseries combined. The black line 
indicates perfect correlation. 
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Table 3 
At validation, model accuracies achieved for the various sensing periods and indices with random forest regression, support vector machine, boosted regression and 
baseline multilinear regression. S2 refers to Sentinel-2, while RMSE stands for root mean square error.     

Random Forest Support Vector Machine Boosted Regression Multilinear regression 

S2 date Phenological stages data R2 RMSE 
(t/ha) 

% 
RMSE 

R2 RMSE 
(t/ha) 

% 
RMSE 

R2 RMSE 
(t/ha) 

% 
RMSE 

R2 RMSE 
(t/ha) 

% 
RMSE 

March/April Stem elongation VIs  0.83  0.92  19.1  0.74  1.11  23.0  0.82  0.96  19.9  0.61  1.33  27.6 
LAI  0.84  0.84  17.4  0.72  1.09  22.6  0.84  0.82  17.1  0.47  1.73  35.9 
10 m 
S2  

0.84  0.88  18.3  0.76  1.14  23.7  0.81  1.00  20.7  0.53  1.57  32.6 

May  VIs  0.86  0.82  17.0  0.80  0.99  20.5  0.84  0.92  19.1  0.54  1.41  29.3 
Heading/Anthesis LAI  0.88  0.76  15.8  0.81  1.01  20.9  0.82  1.01  21.0  0.38  1.86  38.6  

10 m 
S2  

0.86  0.81  16.8  0.81  1.09  22.6  0.82  0.97  20.1  0.37  1.72  35.7 

March/April 
+ May/ 
June 

Stem elongation +
Heading/Anthesis 

VIs  0.87  0.78  16.2  0.82  0.89  18.5  0.84  0.91  18.9  0.69  1.29  26.8 
LAI  0.89  0.74  15.4  0.84  0.92  19.1  0.85  0.88  18.3  0.48  1.74  36.1 
10 m 
S2  

0.88  0.76  15.8  0.83  0.91  18.9  0.83  0.94  19.5  0.58  1.49  30.9  

Table 4 
Testing of single vegetation indices for all the analysed dates together.    

Random Forest Support Vector Machine Boosted Regression Linear regression 

Vegetation index R2 RMSE (t/ha) %RMSE R2 RMSE (t/ha) %RMSE R2 RMSE (t/ha) %RMSE R2 RMSE (t/ha) %RMSE 

GNDVI  0.87  0.78  16.2  0.78  1.00  20.7  0.83  0.79  16.4  0.47  1.60  33.2 
NDVI  0.87  0.78  16.2  0.79  0.98  20.3  0.83  0.79  16.4  0.53  1.56  32.4 
EVI  0.84  0.81  16.8  0.77  1.02  21.2  0.81  0.81  16.8  0.56  1.44  29.9 
RVI  0.87  0.78  16.2  0.78  1.03  21.4  0.83  0.79  16.4  0.51  1.56  32.4 
TGI  0.85  0.84  17.4  0.74  1.20  24.9  0.83  0.82  17.0  0.37  1.75  36.3 
NGRDI  0.85  0.79  16.4  0.75  1.05  21.8  0.84  0.79  16.4  0.55  1.55  32.2 
CVI  0.85  0.84  17.4  0.74  1.24  25.7  0.83  0.81  16.8  0.37  1.77  36.7  

Fig. 8. Comparison between actual GY pixels (A) and estimated GY with the independent validation dataset (B) in the field 3 (top) and 6 (bottom) using random 
forest regression and LAI data derived from RTM and Sentinel-2 data. 
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field. In this sense, we believe that the methodology here developed, and 
the results obtained can contribute to precision farming. First, the ML 
approaches analysed present RF as an efficient model to monitor within- 
field wheat GY. The use of ML to retrieve GY has been considered one of 
the most important areas develop associated with remote sensing and 
agriculture (Weiss et al., 2020). On top of that, based on the results, we 
can argue that retrieving biophysical parameters with RTM that can be 
linked to crop traits and subsequently used for ML models is a step 
forward in precision agriculture. The usage of RTMs with ML regression 
algorithms is opening up a powerful and promising field of vegetation 
properties retrieval from EOS data (Berger et al., 2020; Estévez et al., 
2020), but has yet to be fully explored in precision agriculture. LAI, leaf 
structure parameters, leaf chlorophyll content, leaf carotenoid content, 
leaf anthocyanin content or leaf equivalent water thickness are, among 
others, traits of agricultural crops that can be retrieved from RTM 
(Danner et al., 2021). The availability of biophysical processors in 
software such as SNAP of the European Space Agency used here opens a 
door to the applicability of these parameters. In this sense, with 
increased computing power available in the next years, RTM inversion 
can provide an elegant alternative to estimate fertilizer requirements in 
precision agriculture (Maes and Steppe, 2019). Furthermore, RTM have 
shown the potential of Sentinel-2 data to map disease-incidence dy
namics in agriculture plots (Hornero et al., 2020). Regarding irrigation, 
cropland canopy water content thematic layers have been developed 
with RTM and Sentinel-2 imagery (Boren and Boschetti, 2020) using 
several parameters such as water thickness or dry matter content, among 
others. 

In addition to this, the results obtained in this study with single 
image acquisition and its matching with phenological stage can help to 
locate low-yielding spots in croplands and subsequently apply precise 
farming decisions. In this sense, the performance of LAI and other bio
physical parameters of interest for precision agriculture retrieved from 
RTM could contribute to find physiological or agronomic explanations 
and apply reasoned managements. Our study also has some limitations 
to overcome such as its applicability in other crops and in different agro- 
climates. 

We believe that a way to implement the adoption of precision 
farming for wheat in the inner Mediterranean/continental regions of 
Spain following these findings would be:  

1) Further expanding this study by increasing the geolocated dataset of 
GPS combine harvesters across different environmental and crop 
type conditions in Spain. This machinery is more accessible nowa
days and is being applied more frequently now. Moreover, Spain, 
where this study takes places, meets a wide range of climatic con
ditions and crop types with relevance to European agricultural 
systems.  

2) Based on our results, RF regression is the most suitable modelling 
approach to estimate within-field GY at different growing stage and 
can serve as a starting point to further develop streamlined and 
standardized models  

3) Biophysical parameters retrievable with RTM such as LAI, leaf 
structure parameters, leaf chlorophyll content, leaf carotenoid con
tent, leaf anthocyanin content or leaf equivalent water thickness, 
among others, could be used as explanatory variables to understand 
limitations in specific field spots and guide the application of 
adequate management strategies (smart fertilization, regeneration of 
degraded soils, etc.). These parameters can be relevant to physio
logically and agronomic-related crop performances at each pheno
logical stages.  

4) The public agricultural institutions of the country together with 
farmers could lead the creation of an openly accessible platform to 
estimate within field wheat GY and guide specific management de
cision for farmers with this information. Following the example of 
Belgium and the platform WatchItGrow (Curnel, 2017) to monitor 
potato yield with Sentinel-2 data. 

5. Conclusions 

This article studied the performance of Sentinel-2 derived spectral 
information, EOS Sentinel-2 multi-date images, and machine learning 
approaches to define the most effective parameters for within-field GY 
variability mapping. To our knowledge, no study has focused on the use 
of biophysical parameters (LAI) retrieved from RTM and a complete set 
of VIs as training data for high resolution wheat GY estimation as they 
have in general terms focused on few VIs or spectral bands alone. As 
most studies focus on field to regional scale GY estimation, only a scarce 
number of studies have focused on within-field wheat GY. Hence, this 
study contributes with novel methodological advancements in within- 
field wheat GY estimation (and to the best of our knowledge none in 
durum wheat) with implications in precision farming. When comparing 
the individual performances of different categories of parameters (LAI 
versus VIs / single bands) assessed at a given phenological stage we 
found that each category of traits best predicted GY at a different 
phenological stage, which may have also practical applications for 
precision agriculture. We found that the modelling approach (specif
ically RF in our study) is the most relevant factor for GY estimation, 
followed by the sensing date (single date or multi-date time series) and 
finally the Sentinel-2 derived information (biophysical parameters, 
vegetation indices or band alone). At the best performing scenario RF 
regression with the whole phenological images available the model 
reached and R2 of 0.89 and a % RMSE of 15.4, which we can consider a 
relatively high performing model. Understanding wheat GY variability 
within a field and applying precision farming management practices is 
central for environmental, agricultural, and socioeconomic 
sustainability. 
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