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A search for the rare decay D0 → μ+μ− is performed using a data sample, corresponding to an
integrated luminosity of 0.9 fb−1, of pp collisions collected at a centre-of-mass energy of 7 TeV by the
LHCb experiment. The observed number of events is consistent with the background expectations and
corresponds to an upper limit of B(D0 → μ+μ−) < 6.2 (7.6) × 10−9 at 90% (95%) confidence level. This
result represents an improvement of more than a factor twenty with respect to previous measurements.
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1. Introduction

Flavour-changing neutral current (FCNC) processes are highly
suppressed in the Standard Model (SM) since they are only al-
lowed at loop level and are affected by Glashow–Iliopoulos–Maiani
(GIM) suppression [1]. They have been extensively studied in pro-
cesses that involve K and B mesons. In D meson decays, FCNC
processes are even more suppressed by the GIM mechanism, due
to the absence of a high-mass down-type quark. The D0 → μ+μ−
decay is very rare in the SM because of additional helicity suppres-
sion. The short distance perturbative contribution to the branching
fraction (B) is of the order of 10−18 while the long distance non-
perturbative contribution, dominated by the two-photon interme-
diate state, is about 2.7 × 10−5 × B(D0 → γ γ ) [2]. The current
upper limit on B(D0 → γ γ ) of 2.2 × 10−6 at 90% confidence level
(CL) [3] translates into an upper bound for the SM prediction for
B(D0 → μ+μ−) of about 6 × 10−11. Given the current upper limit
on B(D0 → μ+μ−) of 1.4 × 10−7 at 90% CL [4], there is therefore
more than three orders of magnitude in B(D0 → μ+μ−) to be ex-
plored before reaching the sensitivity of the theoretical prediction.

Different types of beyond the Standard Model (BSM) physics
could contribute to D0 → μ+μ− decays and some could give en-
hancements with respect to the short distance SM prediction of
several orders of magnitude. These include R-parity violating mod-
els [2,5] and models with Randall–Sundrum warped extra dimen-
sions [6], with predictions for B(D0 → μ+μ−) up to a few times
10−10. In general, searches for BSM physics in charm FCNC pro-
cesses are complementary to those in the B and K sector, since
they provide unique access to up-type dynamics, the charm being
the only up-type quark undergoing flavour oscillations.

In this Letter, the search for the D0 → μ+μ− decay is per-
formed using D∗+ → D0(μ+μ−)π+ decays, with the D∗+ pro-

duced directly at a pp collision primary vertex (PV). The inclusion
of charge conjugated processes is implied throughout the Letter.

The data samples used in this analysis were collected during
the year 2011 in pp collisions at a centre-of-mass energy of 7 TeV
and correspond to an integrated luminosity of about 0.9 fb−1.

2. Detector and simulation

The LHCb detector [7] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined
tracking system provides momentum measurement with relative
uncertainty that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c,
and an impact parameter (IP) resolution of 20 μm for tracks with
high transverse momentum. Charged hadrons are identified using
two ring-imaging Cherenkov (RICH) detectors. Photon, electron and
hadron candidates are identified by a calorimeter system consisting
of scintillating-pad and pre-shower detectors, an electromagnetic
calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multi-wire pro-
portional chambers. The trigger consists of a hardware stage, based
on information from the calorimeters and muon systems, followed
by a software stage that applies a full event reconstruction [8].

Events are triggered and offline-selected in a way that is sim-
ilar for the signal channel D∗+ → D0(μ+μ−)π+ , the normali-
sation channel D∗+ → D0(π+π−)π+ , and the control channels
J/ψ → μ+μ− , D∗+ → D0(K −π+)π+ , and D0 → K −π+ selected
without the D∗ requirement.

All events are triggered at the hardware stage by requiring
one muon with transverse momentum pT > 1.5 GeV/c or two
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muons with
√

pT 1 × pT 2 > 1.3 GeV/c. Decay channels with muons
in the final state, D∗+ → D0(μ+μ−)π+ and J/ψ → μ+μ− , are
required to have one of the decay particles having triggered the
event. Channels with only hadrons in the final state, D∗+ →
D0(K −π+)π+ , D∗+ → D0(π+π−)π+ and D0 → K −π+ , are re-
quired to be triggered by particles other than those forming the
candidate decay, called spectator particles in the following.

Exceptions to this trigger scheme are made for J/ψ → μ+μ−
events, when used to determine the trigger efficiency, and D∗+ →
D0(K −π+)π+ events, when used to determine the probability of
hadron to muon misidentification, as described in Sections 4 and 5,
respectively.

The software trigger selects events, for muonic final states, with
either one track identified as a muon with pT > 1.0 GeV/c and
impact parameter with respect to the PV larger than 0.1 mm,
or with two oppositely-charged tracks identified as muons, that
form a vertex and have an invariant mass mμ+μ− > 1 GeV/c2. For
hadronic final states, it selects events with at least one track with
pT > 1.7 GeV/c and χ2

IP > 16, where χ2
IP is the difference between

the χ2 of the PV built with and without the considered track.
In a second stage, the software trigger uses algorithms that re-

construct two-body D0 decays using exactly the same criteria as
the offline selection for signal and control samples. In the soft-
ware trigger, all selected final states are required to have one
of the decay particles having triggered the event. Both D∗+ →
D0(π+π−)π+ and D∗+ → D0(K −π+)π+ candidate events are
prescaled to comply with the bandwidth requirements of the ex-
periment.

Simulation samples of signal, normalisation and control chan-
nels, produced in an inclusive way, i.e. including also the cor-
rect fraction of decays from b hadrons, are used for determin-
ing the various efficiencies: pp collisions are generated using
Pythia 6.4 [9] with a specific LHCb configuration [10]; decays of
hadronic particles are described by EvtGen [11] in which final
state radiation is generated using Photos [12] and the interac-
tion of the generated particles with the detector and its response
are implemented using the Geant4 toolkit [13,14] as described in
Ref. [15].

3. Candidate selection

Candidate D0 → μ+μ− decays are reconstructed in D∗+ →
D0π+ decays. The two D0 daughter tracks are required to be of
good quality (χ2 per degree of freedom (ndf) < 5) and to be dis-
placed with respect to the closest PV, with χ2

IP larger than 3 and
8 and pT larger than 750 MeV/c and 1100 MeV/c. The D0 sec-
ondary vertex (SV) is required to be of good quality (χ2

SV < 10)
and clearly separated from the PV in the forward direction (vertex
separation χ2 > 20). When more than one PV per event is recon-
structed, the one that gives the minimum χ2

IP for the candidate is
chosen. The D0 candidate has to point to the PV (χ2

IP < 15 and
cos(θP) > 0.9997, where θP is the angle between the D0 momen-
tum in the laboratory frame and the direction defined by the PV
and SV) and have pT > 1800 MeV/c. The same selection is also
applied to J/ψ → μ+μ− candidates, which are used for validat-
ing the muon identification and trigger efficiency derived from the
simulation. Candidate D0 ( J/ψ ) mesons are selected if their decay
products have an invariant mass in the region of the known D0

( J/ψ ) mass.
An additional selection requirement, not applied at the trig-

ger stage, is that the bachelor π+ of the D∗+ → D0π+ decay
has χ2

IP < 10, pT > 110 MeV/c and is constrained to the PV us-
ing a Kalman filter (KF) [16]. This provides an improved reso-
lution for the mass difference between the D∗+ and D0 can-

didates, �mh+h(′)− ≡ mh+h(′)−π+ − mh+h(′)− , where h = μ,π and
h′ = K ,μ,π . Candidates are selected with a mass difference value
around 145.5 MeV/c2.

After the selection, the background of the signal channel has
two main sources: a peaking background due to two- and three-
body D0 decays, with one or two hadrons misidentified as muons,
and combinatorial background due to semileptonic decays of
beauty and charm hadrons. The former is reduced with tight par-
ticle identification criteria while the latter is reduced applying a
multivariate selection.

The muon candidates in the D0 decay are required to have as-
sociated muon chamber hits that are not shared with any other
track in the event. A cut on a combined particle identification like-
lihood, aimed at separating muons from other particle species [17],
is applied. This likelihood combines information about track-hit
matching in the muon chambers, energy associated to the track in
the calorimeters and particle identification in the RICH detectors.
In order to explicitly veto kaons, thereby suppressing backgrounds
such as D∗+ → D0(K −μ+νμ)π+ decays, an additional cut on a
particle identification likelihood aimed at separating kaons from
other particle species [18] is applied. The remaining dominant
source of pion to muon misidentification is due to pion decays in
flight.

A boosted decision tree (BDT) [19], with the AdaBoost algo-
rithm [20], provides a multivariate discriminant and is based on
the following variables: χ2

KF of the constrained fit, χ2
IP of the D0

vertex, D0 pointing angle θP, minimum pT and χ2
IP of the two

muons, positively-charged muon angle in the D0 rest frame with
respect to the D0 flight direction and D0 angle in the D∗+ rest
frame with respect to the D∗+ flight direction. The BDT training
makes use of D∗+ → D0(μ+μ−)π+ simulated events and mμ+μ−
sideband data (1810–1830 MeV/c2 and 1885–1930 MeV/c2); the
data sample for the training consists of a separate sample of
80 pb−1, satisfying the same selection criteria, and is not used
in the search for the D0 → μ+μ− decay. The absence of corre-
lation between mμ+μ− and the BDT output variable is explicitly
checked using data selected with the cuts �mμ+μ− > 147 MeV/c2

and mμ+μ− > 1840 MeV/c2. The cut value on the BDT output
variable is chosen in order to achieve the best expected limit
on B(D0 → μ+μ−), based on simulated pseudo-experiments (see
Section 6) assuming no signal, and has an efficiency of 74% on the
signal while providing a reduction of more than a factor of three
for the combinatorial background.

4. Normalisation

The D0 → μ+μ− branching fraction is obtained from

B
(

D0 → μ+μ−) = Nμ+μ−

Nπ+π−
× εππ

εμμ
×B

(
D0 → π+π−)

= α × Nμ+μ− (1)

using the decay D∗+ → D0(π+π−)π+ as a normalisation mode,
where α is the single event sensitivity, Nπ+π−(μ+μ−) are the
yields and εππ(μμ) the total efficiencies for D∗+ → D0(π+π−)π+
(D∗+ → D0(μ+μ−)π+) decays. In this section the various contri-
butions to α are determined.

The trigger efficiencies for the signal and normalisation chan-
nels are calculated using their corresponding simulations and
corrected using data driven methods, based on the study of con-
trol channels. To cross-check the signal trigger efficiency, J/ψ →
μ+μ− events are selected in both data and simulation and trig-
gered using spectator particles; consistency is observed within
the relative statistical uncertainty of 2.7%. To cross-check the
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trigger efficiency for the normalisation channel, the trigger effi-
ciency of the D0 → K −π+ decay is measured in a sub-sample
of data taken with very loose trigger requirements, selecting
minimum-bias events. A correction factor for the trigger efficiency
of D∗+ → D0(π+π−)π+ events as derived from the simulation
is obtained, with a systematic uncertainty of 4.9%, mostly arising
from the statistical uncertainty on the correction itself. The trig-
ger efficiencies are found to be (86.4 ± 2.4)% and (3.3 ± 0.2)%
for D∗+ → D0(μ+μ−)π+ and D∗+ → D0(π+π−)π+ , respec-
tively. The low efficiency of the hadronic channel comes from
the requirement of the event being triggered by spectator parti-
cles.

The muon identification efficiency is also measured with simu-
lated events and validated with a sample of J/ψ → μ+μ− decays
triggered by spectator particles. The efficiency of the requirement
of having associated hits in the muon chambers is determined us-
ing J/ψ → μ+μ− decays selected without muon identification
requirements on one of the two tracks. The efficiency correction
of the combined particle identification likelihood is determined
comparing J/ψ → μ+μ− decays selected with the above muon
identification criteria and in a kinematic of region of mean trans-
verse momentum (〈pT (μ)〉 < 1 GeV/c) and opening angle of the
two muons in the plane transverse to the beam (�φ < 1 rad)
which is similar to that of the D∗+ → D0(μ+μ−)π+ decays. Good
agreement between data and simulation is observed within 2.6%,
which is assigned as a systematic uncertainty.

Acceptance, reconstruction and selection efficiencies for the
signal and normalisation channels are measured using simulated
events. In order to estimate discrepancies between data and sim-
ulation, the D∗+ → D0(K −π+)π+ channel, which benefits from
high yield and low background, is used. Small deviations from the
simulation shapes are observed in the D0 daughter impact param-
eter, momentum and transverse momentum distributions. Since,
for the branching fraction measurement, only the efficiency ratio
matters, any systematic uncertainty related to these quantities can-
cels at first order. Indeed, varying the cuts, it is verified that the
ratio of selection efficiencies changes by a negligible amount com-
pared to other systematic uncertainties on α. The effect of interac-
tions of the decay products with the detector material, different for
muons and pions, results in an additional systematic uncertainty
of 3% per track [21]. The selection and reconstruction efficiency
ratio between the normalisation and signal channel is found to be
1.17±0.08, with the deviation from unity mostly coming from the
muon identification efficiency.

The yield extraction for the normalisation channel is performed
with an unbinned extended maximum likelihood fit to the two-
dimensional distribution of �mπ+π− and mπ+π− . The probability
density functions (PDFs) that parametrise the �mπ+π− distribu-
tion are a double Gaussian shape with common mean for the
signal and the parametric function

f�(�mπ+π− ,a,b, c) = (
1 − e−(�mπ+π−−�m0)/c)

×
(

�mπ+π−

�m0

)a

+ b ×
(

�mπ+π−

�m0
− 1

)
(2)

for the combinatorial background, where �m0 = 139.6 MeV/c2

and a, b and c are fit parameters. For the D∗+ → D0(π+π−)π+ fit
only the c parameter is varied and a and b are set to 0. The mπ+π−
distribution is parametrised with a Crystal Ball (CB) [22] function
for the signal and a single exponential shape for the combinato-
rial background. The CB is a four-parameter function consisting
of a Gaussian core, of mean μ and width σ , and a power-law

Fig. 1. (a) Invariant mass difference �mπ+π− , with mπ+π− in the range
1840–1885 MeV/c2, and (b) invariant mass mπ+π− , with �mπ+π− in the range
144–147 MeV/c2, for D∗+ → D0(π+π−)π+ candidates in data. The projections of
the two-dimensional unbinned extended maximum likelihood fit are overlaid. The
curves represent the total (solid black), D∗+ → D0(π+π−)π+ (dashed red), the un-
tagged D0 → π+π− (dash-dotted cyan), the combinatorial background (dashed yel-
low) and the D∗+ → D0(K −π+)π+ (dash-dotted blue) contributions. The D∗+ →
D0(π+π−)π+ candidates are prescaled at the software trigger stage by a factor
0.03. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this Letter.)

low-end tail with negative slope n, below a threshold, defined
by the ω parameter, at the value μ − ω × σ . A small back-
ground component due to the random association of a D0 →
π+π− decay with a pion from the PV is also added to the
fit, with the same PDF as the D∗+ → D0(π+π−)π+ for the
mπ+π− distribution, and the same f� function as the combina-
torial background for the �mπ+π− distribution. For the D∗+ →
D0(K −π+)π+ component, a Gaussian PDF for the �mπ+π− distri-
bution and a single exponential function for the mπ+π− distribu-
tion are used.

Fig. 1 shows the �mπ+π− and the mπ+π− distributions for
D∗+ → D0(π+π−)π+ from which a total yield of 6201 ± 88 de-
cays is estimated. The total uncertainty on the yield is dominated
by statistics. It has been verified that alternative PDF parameteri-
sations, such as modifications of the f� function, do not lead to
significant changes in the extracted D∗+ → D0(π+π−)π+ yields.

A single event sensitivity of (3.00 ± 0.27) × 10−10 is obtained.
The systematic uncertainty of α, which dominates the total un-
certainty, is obtained by summing in quadrature the individual
contributions, which are summarised in Table 1.

5. Background yields from D∗+ → D0(π+π−)π+ decays

Due to the similar topology to the signal decay channel and
the small difference between the pion and the muon mass, only
the D∗+ → D0(π+π−)π+ decay can significantly contribute as
peaking background in both the mμ+μ− and �mμ+μ− distributions
when the two pions are misidentified as muons.
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Table 1
Contributions to the systematic uncertainty of the single
event sensitivity α.

Source Relative
uncertainty (%)

Material interactions 6.0
Muon identification efficiency 2.6
Hadronic trigger efficiency 4.9
Muon trigger efficiency 2.7
B(D0 → π+π−) [23] 1.9

Total systematic uncertainty 8.8

Fig. 2. (a) Invariant mass difference �mK −π+ and (b) invariant mass mK −π+ dis-
tributions in data for D∗+ → D0(K −π+)π+ candidates, with muon identification
applied to the pion. The events are triggered by spectator particles with respect to
the D0 daughter pion. The D∗+ → D0(K −π+)π+ candidates are prescaled at the
software trigger stage by a factor 0.15.

The yield of misidentified D∗+ → D0(π+π−)π+ decays,
Nπ+π−→μ+μ− , is obtained from the yield of selected D∗+ →
D0(π+π−)π+ events, Nπ+π− , as

Nπ+π−→μ+μ− = Nπ+π− × εππ→μμ

εππ
(3)

where εππ→μμ is the total efficiency for D∗+ → D0(π+π−)π+
events with both pions misidentified as muons. Both the efficien-
cies in the numerator and denominator are obtained from the
simulation of a very large D∗+ → D0(π+π−)π+ event sample and
corrections are applied using data driven methods. The main sys-
tematic uncertainties in Eq. (3) come from the trigger efficiency
for D∗+ → D0(π+π−)π+ events, as discussed in Section 4, and
the misidentification probability, which is cross-checked with data
using D∗+ → D0(K −π+)π+ events.

The invariant mass difference �mK −π+ and invariant mass
mK −π+ distributions in data for D∗+ → D0(K −π+)π+ candidates,
with muon identification applied to the pion and triggered by
spectator particles with respect to the D0 daughter pion, are
shown in Fig. 2. These distributions show some remarkable dif-

Fig. 3. Invariant mass difference �mK −π+ for D∗+ → D0(K −π+)π+ candi-
dates, with both hadrons misidentified as muons, with mμ+μ− in the range
1720–1800 MeV/c2. The two muons are reconstructed using the Kπ and π K mass
hypotheses. The result of the unbinned extended maximum likelihood fit is over-
laid. The curves represent the total distribution (solid black), the combinatorial
background (dashed yellow) and the D∗+ → D0(K −π+)π+ (dash-dotted blue) con-
tribution.

ferences compared to those of Fig. 1: a tail appears on the left of
the peak in the mK −π+ distribution and the �mK −π+ and mK −π+
distributions display a broader mass distribution. As the simula-
tion shows, the left-hand tail in the mK −π+ distribution comes
from two effects of comparable size, a low mass tail of the D∗+ →
D0(K −π+)π+ decays due to the momentum loss in the pion de-
cay and a high mass tail of D∗+ → D0(K −μ+νμ)π+ decays, the
latter also contributing to the broadening of the mass resolution
of the �mK −π+ distribution. To suppress the background from
D∗+ → D0(K −μ+νμ)π+ decays, the measurement of the misiden-
tification probability is performed using only the candidates on the
upper side of the mK −π+ peak, taking the ratio of events with and
without the muon identification applied to the pion. A correction
factor of 1.2 ± 0.1, taking into account the event yield in the pion
decay tail, is applied.

The single pion to muon misidentification probability in data
is (2.9 ± 0.2) × 10−3, with a ratio of data to simulation of 0.88 ±
0.15. This latter value, squared, is used as a correction factor for
εππ→μμ as determined from the simulation. A reweighting of the
single misidentification probability taking into account the mo-
mentum correlation of the two D0 daughter pions gives consistent
results within the uncertainties. It is also verified that the small
difference in the momentum distribution between data and simu-
lation has a negligible impact on the determination of the misiden-
tification probability.

The number of expected doubly-misidentified D∗+ →
D0(π+π−)π+ decays in our data sample is 45 ± 19.

The determination of the number of doubly-misidentified
events is cross-checked by considering the observed number of
D∗+ → D0(K −π+)π+ candidates with double misidentification
in the lower sideband of the mμ+μ− distribution, extending in
the selection down to 1720 MeV/c2. The yield of these events
is determined from an unbinned extended maximum likelihood
fit to the �mK −π+ distribution, where the two muons are re-
constructed using the Kπ and π K mass hypotheses, requiring
mμ+μ− < 1800 MeV/c2, as shown in Fig. 3. The PDFs used for
the fit are a single Gaussian shape for the D∗+ → D0(K −π+)π+
events with floating mean and width and an f� function for the
background, will all three a, b and c parameters allowed to vary.
To obtain a prediction for the number of misidentified D∗+ →
D0(π+π−)π+ decays, the number of D∗+ → D0(K −π+)π+ can-
didates is multiplied by the ratio of D0 → π+π− to D0 → K −π+
branching fractions and by the ratio of pion to muon and kaon
to muon misidentification probabilities, assuming factorisation
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Table 2
PDF components describing mμ+μ− and �mμ+μ− distributions in the signal and corresponding freely varying and Gaussian constrained fit parameters. The coefficients of
the exponential (EXP) function used to describe both the D∗+ → D0(K −π+)π+ and D∗+ → D0(π−μ+νμ)π+ backgrounds are γKπ and γπμν while f Kπ and fπμν are
the normalisation factors to the D∗+ → D0(π+π−)π+ events. The symbols 〈�mμ+μ− 〉η , η = i, j and k represent the mean values and (σ�

1 )η the narrower width of the
double Gaussian (DG) PDF describing D∗+ → D0(π+π−)π+ , D∗+ → D0(K −π+)π+ and D∗+ → D0(K −μ+νμ)π+ distributions (for D∗+ → D0(K −π+)π+ a single Gaussian
(SG) PDF is used). The normalisation for the D∗+ → D0(π+π−)π+ event yield is obtained from the procedure described in Section 5. The function fm is a constant. The
parameters ω, μ and σ of the Crystal Ball function describing the D∗+ → D0(π+π−)π+ events are described in Section 4.

Fit component mμ+μ− �mμ+μ− Free Constrained

Combinatorial fm f� yield,
a, b, c

D∗+ → D0(π+π−)π+ CB DG α, εππ→μμ , ω, μ, σ ,
〈�mμ+μ− 〉i , (σ�

1 )i

D∗+ → D0(K −π+)π+ EXP SG γKπ , f Kπ , 〈�mμ+μ− 〉 j , (σ�) j

D∗+ → D0(π−μ+νμ)π+ EXP DG γπμν , fπμν , 〈�mμ+μ− 〉k , (σ�
1 )k

D∗+ → D0(μ+μ−)π+ CB DG yield
of the misidentification probabilities of the two D0 daughters.
The kaon to muon misidentification probability is measured with
D∗+ → D0(K −π+)π+ decays, triggered by spectator particles with
respect to the kaon, and is found to be (6.3 ± 0.6) × 10−4. This
very small value is achieved using the kaon veto based on the
RICH detectors, as described in Section 3. The estimated yield of
D∗+ → D0(π+π−)π+ is compatible with that obtained from the
method described above, though with a larger uncertainty.

6. Results

The search for the D0 → μ+μ− decay is performed us-
ing an unbinned extended maximum likelihood fit to the two-
dimensional distribution of �mμ+μ− and mμ+μ− . The five different
fit components are the signal D∗+ → D0(μ+μ−)π+ , the combina-
torial background and the background from D∗+ → D0(π+π−)π+ ,
D∗+ → D0(K −π+)π+ and D∗+ → D0(π−μ+νμ)π+ decays.

The PDF shapes are chosen as detailed in Table 2. The param-
eter input values are determined from the simulation of the in-
dividual channels, except for the combinatorial background, which
is assumed to have a smooth distribution across the whole invari-
ant mass difference �mμ+μ− and invariant mass mμ+μ− ranges,
as in the D∗+ → D0(π+π−)π+ fit of Section 4. The table also
shows the corresponding fit parameters that are allowed to vary,
both freely and with Gaussian constraints. Other fit parameters,
not included in the table, are fixed to the values obtained from the
simulation. It is explicitly checked that the final result is insensi-
tive to the variation of these parameters.

The width of the CB function describing the D∗+ →
D0(π+π−)π+ background in the mμ+μ− distribution and the
narrower width of the double Gaussian shape describing the
D∗+ → D0(π+π−)π+ background in the �mμ+μ− distribution are
corrected for the broader mass distribution observed in data; the
widths are increased by about 40% in �mμ+μ− and 25% in mμ+μ− .
The CB slope parameter is fixed to the mean value obtained from
simulation. Varying this value within its uncertainty leads to a
negligible change in the final result.

The D∗+ → D0(K −π+)π+ and D∗+ → D0(π−μ+νμ)π+ yields
are normalised to the D∗+ → D0(π+π−)π+ yields based on their
relative branching fractions, on the number of generated events
and on the pion to muon and kaon to muon misidentification
probabilities, as measured from data. To take into account discrep-
ancies between data and simulation for these two latter quantities,
a conservative uncertainty of 50% and 30% is assigned, respectively.

The signal PDFs are parametrised as in the D∗+ →
D0(π+π−)π+ fit of Section 4 and the shape parameters are fixed
to the D∗+ → D0(π+π−)π+ output fit values. A variation of these
parameters within their uncertainties give a negligible effect on
the final value for B(D0 → μ+μ−).

Fig. 4. (a) Invariant mass difference �mμ+μ− , with mμ+μ− in the range
1820–1885 MeV/c2 and (b) invariant mass mμ+μ− , with �mμ+μ− in the range
144–147 MeV/c2 for D∗+ → D0(μ+μ−)π+ candidates. The projections of the two-
dimensional unbinned extended maximum likelihood fit are overlaid. The curves
represent the total distribution (solid black), the D∗+ → D0(π+π−)π+ (dashed
red), the combinatorial background (dashed yellow), the D∗+ → D0(K −π+)π+
(dash-dotted blue), the D∗+ → D0(π−μ+νμ)π+ (dash-dotted purple) and the sig-
nal D∗+ → D0(μ+μ−)π+ (solid green) contribution. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
this Letter.)

The systematic uncertainties related to both the normalisation,
through α, and the background shapes and yields, are included in
the fit as Gaussian constraints to the parameters.

After the fit, all constrained parameters converged to the input
values within a few percent but εππ→μμ and ω, which changed by
about +16% and −20%, respectively, though remaining consistent
with the fit input values, within the uncertainty.

Fig. 4 shows the �mμ+μ− and mμ+μ− distributions, together
with the one-dimensional binned projections of the two-dimen-
sional fit overlaid. The χ2/ndf of the fit projections are 1.0 and 1.3,
corresponding to probabilities of 44% and 19%, respectively. The
data are consistent with the expected backgrounds. In particular,
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Fig. 5. CLs (solid line) as a function of the assumed D0 → μ+μ− branching frac-
tion and median (dashed line), 1σ and 2σ bands of the expected CLs , in the
background-only hypothesis, obtained with the asymptotic CLs method. The hori-
zontal lines corresponding to CLs = 0.05 (blue solid) and CLs = 0.1 (red solid) are
also drawn. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this Letter.)

a residual contribution from D∗+ → D0(π+π−)π+ events is visi-
ble among the peaking backgrounds.

The value obtained for the D0 → μ+μ− branching fraction is
(0.09 ± 0.30) × 10−8. Since no significant excess of signal is ob-
served with respect to the expected backgrounds, an upper limit is
derived. The limit determination is performed, using the signal and
background models parametrised as described above, in the RooSt-

ats framework [24], using the asymptotic CLs method [25]. This is
an approximate method, equivalent to the true CLs method per-
formed with simulated pseudo-experiments, when the data sam-
ples are not too small.

Fig. 5 shows the expected and observed CLs as a function of
the assumed D0 → μ+μ− branching fraction. The expected upper
limit is 5.5 (6.7)+3.1

−2.0 × 10−9 at 90% (95%) CL, while the observed
limit is 6.2 (7.6) × 10−9 at 90% (95%) CL. The p-value for the
background-only hypothesis is 0.4.

The robustness of the fit procedure is tested with simulated
pseudo-experiments using the same starting values for the fit pa-
rameters used in the data fit except for the combinatorial back-
ground PDF, for which the fitted parameters from data are used.
Simulated pseudo-experiments are performed corresponding to
D0 → μ+μ− branching fraction values of 0, 10−8 and 5 × 10−8.
In all cases the results reproduce the input values within the esti-
mated uncertainties.

Several systematic checks are performed varying the selection
requirements, including the muon identification criteria, varying
the parametrisation of the fit components and the fit range and re-
moving the multivariate selection. The measured B(D0 → μ+μ−)

does not change significantly with these variations.
To test the dependence of the result on the knowledge of the

double misidentification probability, the uncertainty is doubled in
the fit input; B(D0 → μ+μ−) is consistent with the baseline re-
sult.

In addition, the robustness of the result is checked by artificially
increasing the value of the kaon to muon misidentification as de-
termined from data in Section 5 up to 200% of its measured value,
and the fitted branching fraction still remains consistent with no
significant excess of signal with respect to the background expec-
tations.

7. Summary

A search for the rare decay D0 → μ+μ− is performed using a
data sample, corresponding to an integrated luminosity of 0.9 fb−1,

of pp collisions collected at a centre-of-mass energy of 7 TeV by
the LHCb experiment. The observed number of events is consistent
with the background expectations and corresponds to an upper
limit of

B
(

D0 → μ+μ−)
< 6.2 (7.6) × 10−9 at 90% (95%) CL.

This result represents an improvement of more than a factor
twenty with respect to previous measurements but remains sev-
eral orders of magnitude larger than the SM prediction.
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