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Abstract

The main goal of this work is to prove the Burnside’s paqb-theorem, which states
that every group G of order paqb is solvable. In order to justify the importance of
this well-known theorem, a first chapter about solvable groups will be included, in
which will be analyzed some properties of solvable groups. The provided proof will use
Representation and Character Theory which will be studied in depth.

Resum

El principal objectiu d’aquest treball és provar el teorema paqb de Burnside, que
afirma que tot grup G d’ordre paqb és resoluble. Per justificar la importància d’aquest
conegut teorema, s’inclou un primer capítol sobre grups resolubles, en el qual s’analit-
zaran algunes propietats d’aquest tipus de grups. La prova que es donarà utilitza teoria
de representacions i teoria de caràcters que seran estudiades en profunditat.
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Introduction

This project aims to prove the Burnside’s pαqβ theorem, that states that If G is a group
of order pαqβ with p and q primes, then G is solvable. The proof I will provide follows the
same lines as the proof of Burnside himself. It is not a pure group-theoretical proof as it
uses character theory.

William Burnside (2 July 1852 – 21 August 1927) was an English mathematician
mainly known for his contributions to finite group theory. He studied Mathematics
at the University of Cambridge. He lectured at Cambridge for ten years and later he
became professor of Mathematics at Royal Naval College, at Greenwich. He dedicated
most of his research to finite group theory. This was not a widely studied subject in
Britain in the late 19th century, and it took some years for his research in this area to
gain recognition.

Burnside’s most important contribution to group theory was the development of the
area of group representations, where he helped to grow some of the foundational theory,
complementing with Ferdinang Georg Frobenius. In 1904 he published the proof to the
famous pαqβ theorem, which was purely character theory related. He had published the
classic work Theory of Groups of Finite Order in 1897 but later he released a new version
in 1911 where he included character theory. This edition was for many decades the
standard work in the field.

After Burnside’s proof, many other mathematicians have struggled to give a “pure
group-theoretic” proof of it. It was not until sixty years later, when mathematician John
Griggs Thompson pointed out that a character-free proof of Burnside’s pαqβ theorem
may be extracted from his work about the classification of the n-groups, done between
1968 and 1974, and also from his proof of the famous Feit-Thompson Theorem (1963)
which states that every group of finite odd order is solvable. However, he did not provide any
proof. David M. Goldschmidt gave an explicit proof of it in 1970 [3], restricting himself
to the case in which p and q are odd. It was not until 1972, when Helmut Bender gave
a complete character-free proof of the whole theorem [1]. The problem was that it was
widely longer and more complicated than the original by Burnside. Nevertheless, in
1973, Japanese mathematician Hiroshi Matsuyama joined Goldschmidt and proved the
case of pα2β [6] and gave a purely group-theoretic proof of Burnside’s theorem that was
much simpler than Bender’s.

My interests on group theory began when I attended to the curricular course of
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iv Introduction

“Estructures Algebraiques” (Algebraic Structures), where I saw this concept for the first
time. In this course we studied the very basics of group theory, as well as ring theory.
But it was not until I studied Galois Theory in the course “Equacions Algebraiques”
(Algebraic Equations) when I became really interested in group theory. Seeing the Galois
groups encouraged me to investigate on some finite group behaviours and it opened a
wide world to me: the finite group theory.

I became really excited about finite group theory and my first idea was to dedicate
this project to the Classification of Finite Groups theorem, which I found really inter-
esting. Later on, I realised the immensity of this field of study and I decided to change
the subject to a more specific result that I could understand knowing only the basics of
group theory from the degree.

Santiago Zarzuela Armengou proposed me a few results regarding finite groups, that
could be suitable for such project, and then I decided to work on Burnside’s Theorem.
Not only because it is a theorem about finite groups, but also because the proof required
a long investigation and learning process about representations and characters which
I assume is very useful in the study of group theory in general. Therefore, it was
necessary that I learned the basics of this essential tool that is representation theory and
also character theory.

Both representation and character theory are completely new to me, but I had an
advantage. Representation theory is intimately related to module theory, as it will be
seen later, and I was lucky enough to be able to choose an optional course of the degree,
called “Introducció a l’Àlgebra Commutativa” (Introduction to Commutative Algebra),
in where we studied deeply the basics of modules over commutative rings. Although
here we will take non-commutative rings, the theory seen in the course classes was really
helpful and useful in most of the cases.

This project will contain the basic study of representation theory, restricting it to the
results that will apply to the particular case we are interested in. As I said, it is intimately
related to module theory, hence there will be results and definitions that I will assume
already known. Moreover, I will study the basic concepts of character theory, and those
necessary results to prove our main theorem. Finally, in the last chapter, I will give the
proof to the theorem that was given by Burnside.

Furthermore, as this theorem states a characterization of solvable groups, I will study
in depth some pure group-theoretic concepts of solvable groups, that have not been seen
in any of the courses I have taken. This will illustrate the importance of a group to be
solvable and hence, the relevance of the theorem we are aiming to prove.



Chapter 1

Solvable groups

This chapter will start from basic definitions such as the main definition of solvable
group, followed by some important results about solvability. The main objective is to
understand and being able to manage solvable groups and composition series. There
will also be stated and proved based on [7] the famous Zassernhaus Lemma, known also
as Butterfly Lemma.

Furthermore, I will add the Jordan-Hölder Theorem and I will present the “group
extension problem” to illustrate how important are solvable groups. This will be based
on [7] and also on [4]. To end the sections I will add the definitions of “commutator”,
“derived series” and finally there will be stated some relevant results about them.

1.1 Normal and composition series. Solvable groups

Suppose we have a group G and we want to study this group’s properties from its
subgroup’s properties. We already know a technique to do so: the Sylow Theorems
and the p-Sylow groups. Here we will define another way to study a group from its
subgroups that will consist on keep simplifying the group into its normal subgroups
and quotients.

Take any group G and we will try to get a series of subgroups G = H0 ⊇ H1 ⊇ H2 ⊇
· · · such that they are normal in each “parent” group, i.e., Hi+1 ◁ Hi and hence we will
be able to compute the quotient group Qi = Hi/Hi+1. We will try to find such series of
Hi that make these quotients simple. This will be defined later as composition series. This
way, we will be able to recover information from these “factors” to the main group.

Nevertheless, there are two problems that need to be taken care of carefully. The
first one is the fact that this series may not be finite, so this technique mentioned will
be useful if the group allows to find finite series. The other main problem is that,
supposing one can find this finite series, we are trying to recover information of a group
G by its simple subgroup quotients. Hence, if we knew the simple groups, we would
have information of G. But simple groups are not that simple as they seem. Nonetheless,
if we add the condition that these quotients should be also abelian, then it would be very
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2 Solvable Groups

easy to study them. This is the particular case of solvable groups.

Definition 1.1.1 (Normal series). A normal series1 of a group G is a sequence of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gt

with each Gi+1 a normal subgroup of Gi; the factor groups of this series are the quotient
groups

G0/G1, G1/G2, . . . , Gt−1/Gt.

and the length of the series is the number of non trivial factor groups.

Proposition 1.1.2. Note that if G is a finite group if and only if all the factor groups are finite.
In this case, we can compute |G| = ∏ |Gt/Gt+1|.

Proof. Let G = G0 ⊇ G1 ⊇ · · ·Gt a normal series of G. Then |G| = |G1|· |G/G1|. But
now, applying this to G1 we obtain |G1| = |G2|· |G1/G2|. In general, we get |Gt−1| =
|Gt|· |Gt/Gt−1| hence we get the formula.

Once seen the definition of a normal series and a sequence of subgroups as the one
in 1.1.1, we might consider the case in which the factor groups Gi/Gi+1 are simple, as
this will give more information about the main group, because one can study easily the
simple groups. The idea of the decomposition is to make it as simple as possible to get
more information of the group.

Definition 1.1.3 (Composition series). Let G be a group. A composition series is a normal
series that eventually ends at {1} all of whose nontrivial factor groups are simple. The
nontrivial factor groups of a composition series are called composition factors of G. The
length of a composition series is the number of nontrivial factors.

Note that a group need not to have a composition series, as it might have a series
with factor groups non simple. For example, the abelian group Z with respect to the
sum operation has not simple subgroups. Hence, one cannot find a composition series.

Proposition 1.1.4. Every finite simple group G has a composition series.

Proof. Take a group G with the minimum order possible such that G does not have a
composition series. Now, G is not simple, otherwise G ⊋ {1} is a composition series.
Hence, G has a proper normal subgroup H. Since G is finite, we may assume that H is a
maximal normal subgroup, so that G/H is a simple group. But |H| < |G|, so that H has
a composition series: say H = H0 ⊋ H1 ⊋ · · · ⊋ {1}. Hence, G ⊋ H ⊋ H1 ⊋ · · · ⊋ {1}
is indeed a composition series for G, a contradiction.

1This terminology is not quite standard. We know that normality is not transitive; that is, if H ⊆ K are
subgroups of a group G, then H ◁ K and K ◁ G do not force that H ◁ G. A subgroup H ⊆ G is called a
subnormal subgroup if there is a chain G = G0 ⊇ G1 ⊇ · · · ⊇ Gt = H with Gi ◁ Gi−1 for all i ≥ 1. Normal
series as defined in the text are called subnormal series by some authors; they reserve the name normal
series for those series in which each Gi is a normal subgroup of the big group G.



1.1 Normal and composition series. Solvable groups 3

Now that we have seen what a composition series is, and why are they important, we
will add more conditions to the factor groups of the composition series so that the series
provides more information about the group. In the composition series we imposed the
finiteness of the series and the simplicity of its factor groups. Now we add the condition
of the abelianity of the factor groups. A group G which can have this series will be
called solvable.

Definition 1.1.5 (Solvable). A group G is called solvable2 if it has a composition series
with abelian composition factors.

Example 1.1.6. Let’s look at some examples.

(1) Every finite abelian group is solvable. Indeed, as in 1.1.4 we have seen that a finite
group does have a composition series and if it is abelian, so will the composition
factors be.

(2) One can easily prove that S3 and S4 are solvable groups, by giving explicitly a chain
of subgroups. Nonetheless, for n ≥ 5, Sn is not solvable.

(3) Another examples of solvable groups are the quaternion group H8, the dihedral
groups D2n or the p-groups.

In general, it seems quite hard to check whether a group has a normal series, in order
to prove it is a solvable group. In the following result, there will be given characteriza-
tions of solvable groups that will allow us to check if a group is solvable by studying
relative characteristics of it.

Theorem 1.1.7. (1) Every quotient of a solvable group is itself solvable.

(2) Every subgroup of a solvable group is itself solvable.

(3) Given G a group, if H ◁ G and G/H are both solvable groups, then G is also solvable.

The proof of these three results is not given as it was seen in “Estructures Alge-
braiques”. Nevertheless, at the end of this chapter, there will be introduced a new
notion which will give us another equivalent definition of solvable groups. Using this
new definition, the proof for this theorem will be shorter and straightforward.

Example 1.1.8. Let’s look at some examples and how given these properties can a solv-
able group be characterized in an easier way.

(1) A non-abelian simple group G is not solvable, for its only proper normal subgroup
is {1}, and G/{1} ∼= G is not abelian. We see that, then, following our definition, all
its factor groups are G himself and it is non-abelian.

2The name “solvable” comes from Galois Theory, as the “solvable groups” where those generated by
the roots of polynomials “solvable by radicals”. That is, Galois discovered solvable groups even before they
were defined.



4 Solvable Groups

(2) For n ≥ 5, S5 is not solvable. If it was, then all its subgroups would be solvable as
well, following the theorem 1.1.7. But S5 has A5 as a subgroup and we already know
that A5 is simple, so it cannot be solvable by the previous example, ergo S5 cannot
be solvable neither. As A5 ⊆ S5 ⊆ Sn, n ≥ 5, we have that Sn is not solvable. This
is very relevant to Galois Theory, as it will be needed to prove that a polynomial of
degree n ≥ 5 cannot be solved by radicals.

(3) If H and K are solvable groups, then H × K is solvable. Indeed, as (H × K)/H ∼= K.

To end the section, we will prove a more general result that does not stand only in
the solvable groups, but also in more general groups. The theorem is known as the
Butterfly Lemma or the Zassenhaus, in honor to Hans Zassenhaus3, and it is called
Butterfly because it has a diagram that recalls a butterfly. Although [7] does not agree
with that.

Lemma 1.1.9 (Zassenhaus). Given four subgroups A ◁ A∗ and B ◁ B∗ of a group G, then
A(A∗ ∩ G) ◁ A(A∗ ∩ B), B(B∗ ∩ A) ◁ B(B∗ ∩ A∗), and there is an isomorphism

A(A∗ ∩ B∗)
A(A∗ ∩ B)

∼=
B(B∗ ∩ A∗)
B(B∗ ∩ A)

This isomorphism is symmetric in the sense that the right side is obtained from the
left side by changing the symbols A and B. The following diagram is what gives this
lemma the name of butterfly lemma.

A(A∗ ∩ B∗) B(A∗ ∩ B∗)

A∗ ∩ B∗

A(A∗ ∩ B) B(A ∩ B∗)

A D = (A∗ ∩ B)(A ∩ B∗) B

A ∩ B∗ A∗ ∩ B

Proof. Let’s begin with the proof of the Zassenhaus lemma. We begin by proving (A ∩
B∗) ◁ (A∗ ∩ B) and the fact (A∗ ∩ B) ◁ (A∗ ∩ B∗) is analogous so we omit it. Then we
will prove that there is an isomorphism

A(A∗ ∩ B∗)
A(A∗ ∩ B)

−→ A∗ ∩ B∗

D

which by the symmetry commented before will prove the isomorphism wanted.

• Claim that (A ∩ B∗) ◁ (A∗ ∩ B∗): that is, if c ∈ A ∩ B∗ and x ∈ A∗ ∩ B∗ then
xcx−1 ∈ A ∩ B∗. Now, xcx−1 ∈ A because we have chosen c ∈ A and also because

3Hans Julius Zassenhaus (28 May 1912 – 21 November 1991) was a German mathematician, known for
work in many parts of abstract algebra, and as a pioneer of computer algebra. Note from [11]



1.2 The Jordan-Hölder Theorem 5

x ∈ A∗ and then, as A ◁ A∗, xcx−1 ∈ A. Easier is to see that xcx−1 ∈ B∗,
as x, c ∈ A ∩ B∗ ⊂ B∗. Hence, (A ∩ B∗) ◁ (A∗ ∩ B∗). Similarly, we have that
(A∗ ∩ B) ◁ (A∗ ∩ B∗).

Therefore, the subset D = (A∗ ∩ B)(A ∩ B∗) is a normal subgroup of A∗ ∩ B∗

because it is generated by two normal subgroups4.

• Now we prove that A(A∗ ∩ B∗)/A(A∗ ∩ B) ∼= (A∗ ∩ B∗)/D and by symmetry we
will have also proved that B(A∗ ∩ B∗)/B(A ∩ B∗) ∼= (A∗ ∩ B∗)/D and hence we
will have the isomorphism wanted.

Define φ : A(A∗ ∩ B∗) → (A∗ ∩ B∗)/D by φ(ax) = [x], where a ∈ A and x ∈
A∗ ∩ B∗ and [x] represents the left or right coset, i.e. the equivalence class by the
quotient D. We need to check that φ is well defined, that is a morphism, and then
the isomorphism.

Now take ax = a′x′, where a, a′ ∈ A and x, x′ ∈ A∗ ∩ B∗. We can arrange that
to obtain (a′)−1a = x′x−1. As a, a′ ∈ A, (a′)−1a ∈ A and as x, x′ ∈ A∗ ∩ B∗,
x′x−1 ∈ A∗ ∩ B∗. Then everything belongs to A ∩ (A∗ ∩ B∗) = A ∩ B∗ ⊆ D.

Also φ is a homomorphism: axa′x′ = a′′xx′ where a′′ = a(xa′x−1) ∈ A because
A ◁ A∗ and so φ(axa′x′) = φ(a′′xx′) = [xx′] = [x][x′] = φ(ax)φ(a′x′).

It is easy to see that φ is surjective, it gets values from a set which contains A∗ ∩ B∗.
Also it is easy to check that Ker φ = A(A∗ ∩ B) as ax ∈ Ker φ if and only if
φ(ax) = [x] = 0, i.e. if and only if ax ∈ D and as a ∈ A and x ∈ (A∗ ∩ B∗), this
only happens if x ∈ (A∗ ∩ B), i.e. if and only if ax ∈ A(A∗ ∩ B). By the First
Isomorphism Theorem we have the proof.

Note that the Second Isomorphism Theorem is a particular case of the Zassenhaus
Lemma, i.e. the Zassenhaus Lemma implies the Second Isomorphism Theorem: if S and
T are subgroups of a group G with T ◁ G, then TS/T ∼= S/(S ∩ T); set A∗ = G, A = T,
B∗ = S and B = S ∩ T.

1.2 The Jordan-Hölder Theorem

The next goal is to understand and prove the Jordan-Hölder5 Theorem, which states
that every two composition series of a group G are equivalent. To understand and make
the proof we will need some previous motivation and results.

4Take G a group and K ◁ G and H ◁ G. Then HK ◁ G. Indeed, we want to check that for any x ∈ G
and y ∈ HK we have xyx−1 ∈ HK. As y ∈ HK we can write y = hk where h ∈ H and k ∈ K. Then,
xyx−1 = xhkx−1 ∈ HK because xh ∈ H and kx−1 ∈ K for H and K being subgroups of G and x ∈ G.

5This important theorem is called after Camille Jordan (Lyon, 1838 - 1922) and Otto Hölder (Stuttgart,
1859 - 1937). Jordan is known for his fundational work in Group Theory, and for his influential Cours
d’analyse (source: [10]). Not to be confused with the geodesist Wilhelm Jordan, from Gauss-Jordan elimina-
tion. Hölder is noted for many theorems, from abstract algebra to differential equations (source [12]).



6 Solvable Groups

Firstly, note that if G is a solvable group, then there is a composition series whose
factor groups are abelian. For the definition of composition series, these factor groups
are also simple. Hence, the only simple abelian groups are those cyclic of prime order,
and hence we have that each factor group of a solvable group is finite.

Example 1.2.1. Let’s see all these definitions in a particular case to see them more clearly.
Take G = ⟨x⟩ of order 30. As G is abelian, we have automatically the normality of
all subgroups of G, hence I will just assume that. We can calculate easily these two
composition series of G:

G = ⟨x⟩ ⊋ ⟨x2⟩ ⊋ ⟨x10⟩ ⊋ {1}; (1.1)

G = ⟨x⟩ ⊋ ⟨x5⟩ ⊋ ⟨x15⟩ ⊋ {1}; (1.2)

The factor groups of the series (1.1) are ⟨x⟩/⟨x2⟩ ∼= Z2, ⟨x2⟩/⟨x10⟩ ∼= Z5, and ⟨x10⟩/{1} ∼=
Z3; while the factor groups of the second series (1.2) are ⟨x⟩/⟨x5⟩ ∼= Z5, ⟨x5⟩/⟨x15⟩ ∼= Z3

and ⟨x15⟩/{1} ∼= Z2. This gives a clear example of how the factor groups are the same
but they appear in a different order. This is the essence of the Jordan-Hölder Theorem.

In order to prove the Jordan-Hölder Theorem and to realise its implications we are
going to give a brief definition that will make clearer its statement. Once seen the
definition of a normal series, one could ask him or herself if a group could have more
than one normal series, and when would they be equivalent, in some way. It is easy to
see that there can be more than one normal series for a group G, but we are going to
see when are they equivalent. In addition, we will be giving a definition of a “simpler
normal series” which we will call refinement and we will prove that any two normal
series have equivalent refinements. This last statement is known as Schreier Refinement
Theorem 1.2.4 and it will be the key to the Jordan-Hölder Theorem.

Definition 1.2.2 (Equivalent normal series). Two normal series of a group G are equiv-
alent if there is a bijection between the list of nontrivial factor groups of each so that
corresponding factor groups are isomorphic.

In view of this definition, we can say that the two composition series of the previous
example 1.2.1 are equivalent. The Jordan-Hölder Theorem states that any two composi-
tion series of a group G are equivalent. Nevertheless, there is a more general result, due
to Schreier, which I will do first and then Jordan-Hölder Theorem will be a corollary of
it. We need a previous definition.

Definition 1.2.3 (Refinement). A refinement of a normal series of a group G is a normal
series G = N0 ⊇ . . . ⊇ . . . having the original series as subsequence.

In other words, a refinement of a normal series is a normal series obtained by the
original one by inserting more subgroups.

Notice that if we have a composition series then all refinements are insignificant; one
can merely repeat terms (if Gi/Gi+1 is simple, there will be no more proper nontrivial
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normal subgroups and, hence, there is no intermediate subgroup L with Gi ⊋ L ⊋ Gi+1

and L ◁ Gi). Therefore, any refinements of a composition series is equivalent to the
original composition series.

Theorem 1.2.4 (Schreier Refinement Theorem). Any two normal series ending at {1}

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1}

and
G = N0 ⊇ N1 ⊇ · · · ⊇ Nk = {1}

of a group G have equivalent refinements.

Proof. The idea consists on inserting a copy of the second series between each pair of
adjacent terms in the first series. In more detail, for each i > 0, define

Gij := Gi+1(Gi ∩ Nj)

which is a subgroup because Gi+1 ◁ Gi. Since N0 = G we have now

Gi0 = Gi+1(Gi ∩ N0) = Gi+1Gi = Gi

and since Nk = {1} we have

Gik = Gi+1(Gi ∩ Nk) = Gi+1{1} = Gi+1

Therefore, we can create a series of Gi and Gi+1 like this:

Gi = Gi0 ⊇ Gi1 ⊇ Gi2 ⊇ · · · ⊇ Gik = Gi+1

and if we do this for every i, it gets interspersed in our first original series, so we
created another series with a total of nk elements having the first original series as a sub-
sequence. Now, we can do the analogous with Nji = Nj+1(Nj ∩ Gi) and create another
series which the second original series as a sub-sequence, and with exactly nk elements.
Careful because nobody says that these are normal series, i.e. nobody says that these
are refinements of the original series respectively. Lucky for us, we have Zassenhauss
Lemma. For each i, j, Zassenhaus Lemma (1.1.9), for the subgroups Gi+1 ◁ Gi and
Nj+1 ◁ Nj, says both sub-sequences are normal series, hence are refinements because
the Lemma gives the isomorphism

Gi+1(Gi ∩ Nj)

Gi+1(Gi ∩ Nj+1)
∼=

Nj+1(Nj ∩ Gi)

Nj+1(Nj ∩ Gi+1)
;

that is, with our double-index notation,

Gi,j/Gi,j+1
∼= Ni,j/Ni,j+1

and as the association Gi,j/Gi,j+1 → Ni,j/Ni,j+1 is a bijection, by the definition of refine-
ment and equivalence we have that the two refinements are equivalent.
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With this result, we are able now to prove Jordan-Hölder Theorem in just a few lines.

Corollary 1.2.5 (Jordan-Hölder Theorem). Any two composition series of a group G are
equivalent. In particular, the length of a composition series, if one exists, is an invariant of G.

Proof. As we remarked earlier, this is a particular case of the Schreier Theorem (1.2.4).
Any refinement of a composition series is equivalent to the original composition series,
as every factor group is simple, hence it follows that any two composition series are
equivalent by the Theorem.

A direct implication of this theorem is the Fundamental Theorem of Arithmetic.
Rotman in [7] gives a proof based on this last theorem and although it is not our main
purpose, it is a clear example of how important and relevant is Jordan-Hölder Theorem
in other contexts rather than pure Group Theory.

Theorem 1.2.6 (Fundamental Theorem of Arithmetic). Every integer n ≥ 2 has a factor-
ization into primes, and the prime factors and their multiplicities are uniquely determined by
n.

Proof. Since the group Zn is finite, it has a composition series. Let S1, . . . , St be the factor
groups. Now, an abelian group is simple if and only if is of prime order. Since n = |Zn|
is the product of the orders of the factor groups (by 1.1.2), we have proved that n is a
product of primes. Moreover, the Jordan-Hölder Theorem (1.2.5) gives the uniqueness
of the (prime) orders of the factor groups and their multiplicities.

Furthermore, one can observe that non isomorphic groups can have the same com-
position factors. For example, Z4 and V = Z2 ×Z2 have the same factor groups, which
are Z2 and Z2, but they are not isomorphic groups.

The next example will illustrate how to use Jordan-Hölder Theorem to prove that a
particular group is not solvable.

Example 1.2.7. Let G = GL(2, F4) be the general group of all 2× 2 non-singular matrices
with entries in the field F4 with four elements. Now, det : G → (F4)

∗, where (F4)
∗ ∼= Z3

is the multiplicative group of non-zero elements of F4. Since Ker det = SL(2, F4), the
special linear group consisting of those matrices of determinant 1, there is a normal
series

G = GL(2, F4) ⊇ SL(2, F4) ⊇ {1}

The factor group of this normal series are Z3 and SL(2, F4). It is true that SL(2, F4) is
a non-abelian simple group (there exists the isomorphism SL(2, F4) ∼= A5) and so this
series is a composition series. Observe that there is a factor group with order not prime,
as |A5| = 5!/2 = 60. We cannot yet conclude that G is not solvable, for the definition
of solvability requires that there be some composition series, not necessarily this one,
having factor groups of prime order. However, the Jordan-Holder Theorem (1.2.5) says
that if one composition series of G has all its factor groups of prime order, then so does
every other composition series. We may now conclude that GL(2, F4) is not a solvable
group.
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1.3 Group extensions and the extension problem

In this section we are going to give a little change of view to discuss more deeply
the significance of Jordan-Hölder Theorem and solvability. We will talk about “group
extensions” and we will see an important mathematical problem called the “extension
problem” for groups. Then we will see that this is not that problematic when the groups
treated are solvable, and hence the importance of solvability again. To get started there
will be defined the notion of group sequence and then there will be given the definition of
the notion of group extension, together with some examples. Moreover, one will see the
definition of equivalent group extensions and then there will be proposed the “Extension
Problem”

Definition 1.3.1 (Group sequence). A Group sequence is a sequence of groups and group
homomorphisms

G0
f0−→ G1

f1−→ · · · fr−→ Gr+1
fr+1−→ · · ·

and it is said to be exact at Gi if Im( fi) = Ker( fi+1). A group sequence is said to be
exact if it is exact in each step (i.e. for each i ≥ 0, im( fi) = Ker( fi+1)). Finally, a group
sequence is called short exact sequence if it is an exact sequence of the form

0 −→ A
f−→ B

g−→ C −→ 0

Then, following the above definition, we have here that im( f ) = Ker(g) and that f is a
monomorphism and g an epimorphism. Furthermore, the First Isomorphism Theorem
gives us the isomorphism B/im( f ) ∼= C, while the fact that Ker g = im f gives us that
f (A) ◁ B

Definition 1.3.2 (Group extensions). Given two groups K and H, a group G is called
extension of K by H if there exists a small exact sequence

0→ K ι−→ G π−→ H → 0.

Note that ι(K) ◁ G and also that G/ι(K) ∼= H for the First Isomorphism Theorem.
The fact that ι is a monomorphism gives us the isomorphism ι(K) ∼= K.

Example 1.3.3. Let’s study some examples given the definition.

(i) The direct product K × Q is an extension of K by Q. Indeed, we can consider the
following short exact sequence

0 −→ K ι−→ K×Q π−→ Q −→ 0.

This is a well defined sequence. We can define ι : K → K×Q as the inclusion, and
then we get a monomorphism. Also we can define the π : K × Q → Q as for any
(k, q) ∈ K × Q, π(k, q) = q and we get trivially an epimorphism. Then we check
that Ker π = imι which is trivial. We have, hence, an exact short series and then
K×Q is indeed an extension of K by Q.
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(ii) Another example, which is indeed an example from the last example, could be the
following. Given the groups Z3 and Z2 we want to look for an extension of Z3 by
Z2. We know that Z3 ×Z2 ∼= Z6 is one, so we can take it. But one may notice that
S3 is another extension of Z3 by Z2.

Following the last example, one may wonder some questions about the extensions.
We already saw in the first example that we can always find an extension of K by Q,
for any given two groups K, Q, which is K× Q. Hence, an extension of K by Q may be
viewed as a “product” of K and Q. But is this product the only possibility? Are there
even non-isomorphic groups to K × Q that can also be extensions of K by Q? Is there
some notion of “extension equivalence”? These questions are treated more deeply in
“Chapter 7: Extensions and Cohomology” chapter in [8].

There exists a notion of equivalence regarding group extensions, and it is defined as
follows.

Definition 1.3.4 (Equivalent group extensions). We say that extensions

0→ K ι−→ G π−→ H → 0 and 0→ K ι′−→ G′ π′−→ H → 0

are equivalent6 if there exists a group isomorphism f : G → G′ that makes commutative
the following diagram

0 // K ι //

=
��

G π //

f
��

H //

=
��

0

0 // K ι′ // G′ π′ // H // 0

We can take then equivalence classes and the set of all the equivalent classes of
extensions of K by Q are given by the set Ext1

Z(K, Q). This set is, in fact, a group, but we
will not discuss this as it is getting very deep into cohomology of groups and it diverges
from the purpose of this notes.

This explanation about group extensions was made only to illustrate how useful can
be the solvable groups into this matter: the group extension problem is the problem of
classification of all the possible group extensions modulus extension equivalence. I.e.,
given two groups K and Q we want to find all possible extension groups of K from
Q modulus extension equivalence. Thus, if we could solve this problem, we would be
able to “recover” the information of a group G given a normal subgroup N ◁ G and
its quotient G/N. This would be particularly useful in the context of normal series and
solvability. For example, let’s suppose that the group G has the ending normal series

G = K0 ⊇ K1 ⊇ · · · ⊇ Kn−1 ⊇ Kn = {1}

with factor groups Q1, . . . , Qn, where Qi = Ki−1/Ki, for all i ≥ 1. Then, if we knew all
these factors, we could recover the information of G recursively like this: Kn−1 = Qn,

6Sometimes they are also called congruent extensions.
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but Kn−2 is an extension of Kn−1 by Qn−1, for Kn−1 ◁ Kn−2 and Kn−2/Kn−1 = Qn−1.
Then, going backwards we obtain that G is an extension of K1 by Q1.

This means that we could recover G from all its factor groups by just making the
“product” of them (see 1.3.3). But then we face two problems:

1. A group could have more than one non equivalent normal series, and

2. we don’t know if there are more non equivalent group extensions, apart from the
“product” already seen.

Regarding the first problem, Jordan-Hölder Theorem 1.2.5 gives a solution for it, if
our series is a composition series. Indeed, as it is a unique factorization theorem: the
factors in this product, namely, the composition factors of G, are uniquely determined by
G. Therefore, we could survey all finite groups if we knew the finite simple groups and
we could solve the extension problem. In fact, all the finite simple groups are known and
proved in the Classification Theorem of Finite Simple Groups. This shows the importance of
composition series and the Jordan-Hölder Theorem.

Regarding the second problem, it is unsolved in the sense that no one knows a way,
given K and Q, to compute the exact number of non-isomorphic extensions of K by Q.

As it was said at the beginning, this was like a subsection talking about the impor-
tance and relevance of the Jordan-Hölder Theorem, but it is not the main object of the
notes, so we have to keep on track.

1.4 Commutators and derived series

In this section we will see a new notion related to group series, which is the derived
series that will be defined from a particular operation between groups: the commutator.
This is particularly useful as it will give us some results that will characterize when a
group is abelian, not simple or solvable. Firstly, there will be stated the basic definition of
commutator of a group and given some properties and characterizations. Secondly, there
will be given the definition of derived series and its implications regarding solvability of a
group. Finally there will be given alternative proofs to our “main properties” of solvable
groups already seen on the first section of this chapter.

Definition 1.4.1 (Commutator). If G is a group and x, y ∈ G, then their commutator is the
element

[x, y] := xyx−1y−1

Moreover, if X and Y are subgroups of a group G, then we define their commutator by

[X, Y] := ⟨[x, y] : x ∈ X, y ∈ Y⟩

In particular, the commutator subgroup G′ of a group is

G′ = [G, G]

the subgroup generated by all the commutators.
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Note that for any subgroups X, Y of a group G, the set [X, Y] defined here needs
not to be closed under products, i.e. it may not be a subgroup of G. Nevertheless, the
commutator subgroup G′ is a subgroup because it is defined as the subgroup generated
by all the commutators of G.

It is clear that two elements x and y in a group G commute if and only if their
commutator [x, y] is 1. The next proposition generalizes this observation.

Proposition 1.4.2. The commutator subgroup G′ is a normal subgroup of G and G/G′ is
abelian. Moreover, if H ◁ G and G/H is abelian, then G′ ⊆ H.

Proof. First we may notice that, for x, y ∈ G,

[x, y]−1 = (xyx−1y−1)−1 = yxy−1x−1 = [y, x].

Therefore, each element of G′ is a product of commutators. But any conjugate of a
commutator is another commutator. Indeed, given a ∈ G and x, y ∈ G we have

a[x, y]a−1 = axyx−1y−1a−1 = (axa−1)(aya−1)(ax−1a−1)(ay−1a−1) = [axa−1, aya−1].

This implies that G′ ◁ G. Finally, if we consider cosets in G/G′, [a], [b] ∈ G/G′, then we
may observe that

[a][b][a]−1[b]−1 = [aba−1b−1] = [[a, b]] = [1]

where the outer brackets symbolize the coset and the inner brackets symbolize the com-
mutator. Also [1] denotes the neutral element of G/G′.

To end the proof, let’s see that if H ◁ G such that G/H is abelian, then G′ ⊆ H.
Indeed, if a, b ∈ G, then [a][b] = [b][a], where the brackets denote cosets in G/H. This
implies that b−1a−1ba ∈ H and as every commutator has this form, we have G′ ⊂ H.

This tells us that G′ is the smallest normal subgroup of G such that G/G′ is abelian.
Let’s see some examples of the usability of G′.

Remark 1.4.3. A group G is abelian if and only if G′ = {1}.

Remark 1.4.4. If G is a simple group, then G′ = {1} or G′ = G.

Proof. Suppose G is simple. Then it has no proper non-trivial normal subgroups except
from G and {1}.

An example of this may be the group An. We have that A′n = An, for all n ≥ 5. A
group G with G′ = G is called perfect. Thus, every non-abelian simple group is perfect.

Example 1.4.5. Let’s study what is S′n. Since Sn/An ∼= Z2 is abelian, the proposition we
just saw tells us that S′n ⊆ An. For the reverse inclusion, first note that S′n ∩ An ◁ An;
hence, if n ≥ 5, the simplicity of An implies that this intersection is trivial or An. But
S′n ∩ An ̸= {(1)}, so S′n ∩ An = An and An ⊆ S′n. This proves that S′n = An for all n ≥ 5.
A further exercise shows that the equality also holds for n = 2, 3, 4.
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Definition 1.4.6 (Derived series). The derived series of a group G is

G = G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · ⊇ G(i) ⊇ G(i+1) ⊇ · · · ,

where G(0) = G, G(1) = G′ and G(i+1) = (G(i))′ = [G(i), G(i)] for all i ≥ 0.

Remark 1.4.7. The derived series is a normal series.

Proposition 1.4.8. Let G be a finite group. Then the following are equivalent

(1) G is solvable.

(2) For some n, G(n) = {1}.

Proof. Assume that G is solvable, so there is a normal series

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1}

whose factor groups Gi/Gi+1 are abelian. We show, by induction on i ≥ 0, that G(i) ⊆ Gi.
Since G(0) = G = G0, first step is already covered. For the inductive step, as Gi/Gi+1

is abelian, the proposition (1.4.2) gives G′i ⊆ Gi+1. On the other hand, the inductive
hypothesis gives G(i) ⊆ Gi, which implies that

G(i+1) = (G(i))′ ⊆ (Gi)
′ ⊆ Gi+1

In particular, G(n) ⊆ Gn = {1} which is what we wished to show.
Conversely, if G(n) = {1}, then the derived series is a normal series with abelian

factor groups and then it gives what we want.

This characterization of solvable groups allows us to re-define the concept. In fact,
some algebra books such as [4], define “solvable group” as a group G whose derived
series eventually ends in {1}, i.e., for some n ≥ 0, G(n) = {1}. This allows us to extend
the definition of “solvable” to groups of any order, even infinite. With the previous
definition, we only could define a solvable group if it was finite, because if G was not
finite, one could not assure that the factor groups were abelian finite.

To end this section it is proposed to re-prove all the characterizations of solvable
groups stated in theorem 1.1.7, but with this definition.

Theorem 1.4.9. (1) Every quotient of a solvable group is itself solvable.

(2) Every subgroup of a solvable group is itself solvable.

(3) Given G a group, if H ◁ G and G/H are both solvable groups, then G is also solvable.

Proof. (1) If f : G → K is surjective, then f (G(i)) = f (G)(i) for all i7. Therefore, G(n) = 1
implies that 1 = f (G(n)) = f (G)(n), so that taking f = π : G → G/H (where H is
some normal subgroup), we get that G/H is solvable.

7To prove this, we just need to prove that f (G′) = f (G)′. This is true as a generator of G′ is xyx−1y−1,
for x, y ∈ G. Then f (xyx−1y−1) = f (x) f (y) f (x)−1 f (y)−1 which is a generator of f (G)′. The other inclusion
is the same backwards.
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(2) If H is a subgroup of G, then H(i) is a subgroup of G(i) for all i; hence G(n) = 1
implies H(n) = 1 for some n.

(3) Let π : G → G/H be the natural map. Then (G/H)(n) = 1 for some n by hypothesis,
which implies that π(G(n)) = 1 and hence G(n) is a subgroup of H. As H is also
solvable, there exists m (not necessarily equal to n) such that H(m) = 1 and then
(G(n))(m) = 1. Finally one proves by induction that G(n+m) is a subgroup of (G(n))(m)

for all m, and so G is solvable.

Then with this final definition of solvable groups, the abelian groups are always
solvable, regardless they are finite or infinite.



Chapter 2

Representation theory

Every mathematician that studies Group Theory comes across Representation The-
ory at the very beginning. Thus, this theory is used to give proofs of well-known theo-
rems although they are not directly involved in this area. However they are shorter and
more intuitive

Thus, Burnside’s Theorem, is proven using Character Theory, which will be dis-
cussed in the next chapter, but it is very related and based on Representation Theory. I
will give the basic definitions, as well as prove important theorems regarding them.

As we may see, Representation Theory is intimately related to Module Theory. The
first chapter will contain basic definitions of our main object: a linear representation.
Moreover, I will discuss the group ring, i.e., a ring described by a finite group, and the
modules over them. Then we will see the relation between modules over group rings
and linear representations, and it will seen that in fact we will be able to change from
one theory to another when we need to. The last two sections will aim to prove two
important theorems. The first one is Maschke’s Theorem which is a purely Represen-
tation Theory theorem and the second one is a more general Module Theory theorem,
called Wedderburn’s Theorem. This last theorem will require a bit more background on
Module Theory that may be essential for it.

2.1 Linear representations

To start, let V be a vector space over the field algebraically closed. Unless specifically
said, we will fix V a finite dimensional vector space over an algebraically closed field k.
Now, remember that we called GL (V) the linear group1 to the group of isomorphisms
of V onto itself. An element a ∈ GL (V) is, by definition, a linear mapping of V into V
which has an inverse, denoted a−1 which is also linear. When we can establish a finite
basis {e1, . . . , en} of V, each linear map a : V → V is defined obtaining the images of the
basis, in terms of this basis. All the images can be expressed in an n× n matrix (aij)ij,

1The GL stands for its name in French “Groupe Linéaire”, and it is also denoted LG for its name in
English. I will always write GL as I’m also used to this for it is the same in Spanish and Catalan.

15
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where aij are the coefficients in the field k given by

a(ej) =
n

∑
i=1

aijei

This means that every element a ∈ GL (V) has an n × n matrix associated, which we
can call Ma := (aij)ij and if v ∈ V, the image of v by the linear map a : V → V is given
by the product a(v) = Mav.

Saying that a is an isomorphism from V onto V is the same as saying that the matrix
representing a : V → V has determinant det(a) ̸= 0. Hence, the group GL (V) is
identifiable with the group of invertible square matrices of order n.

Definition 2.1.1 (Linear representation). Let (G, · ) be a group with neutral element 1,
and V be a C-linear space. A linear representation of G in V is a homomorphism ρ : G →
GL (V).

In other words, we associate each element x ∈ G an element ρ(x) ∈ GL (V) in such
way that we have the equality

ρ(xy) = ρ(x)ρ(y) ∀x, y ∈ G

and also ρ(1) = 1 ∈ GL (V) and ρ(x−1) = ρ(x)−1. To denote ρ(x) we will often write ρx,
for any x ∈ G. When this ρ is given, we say that V is a representation space of G (or even
simply, by abuse of language, a representation of G). The fact that we fixed a vector space
of finite dimension is not a severe restriction: for most applications, one is interested in
dealing with a finite number of elements xi of V, and can always find a sub-representation of
V (we will define later this concept) of finite dimension, which contain the xi; just take
the vector subspace generated by the images ρs(xi) of the xi, for s ∈ G.

Suppose then that V has a finite dimension, and let n be its dimension. We say also
that n is the degree of the representation under consideration. Let {e1, . . . , en} be a basis of
V, and if s ∈ G suppose given the representation ρs ∈ GL (V). As we said early, this is
a linear map with a matrix associated to it with respect the given basis, which we will
call Rs. Now, by the properties we discussed before, we have

det(Rs) ̸= 0, Rst = Rs· Rt

for any s, t ∈ G with the product · here being the usual matrix product. If we denote
rij(s) to the (i, j)-th element of Rij the second formula becomes

rik(st) =
n

∑
j=1

rij(s)· rjk(t)

Conversely, given matrices Rs = (rij(s))ij satisfying the preceding identities, there
is a corresponding linear representation ρ of G in V: this is what it means to give a
representation “in matrix form”.
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2.2 Group rings

Before going further in the study of the invariants of such representations, and giving
some examples of them, we should introduce and emphasize before the concept of
“group ring“ that will be particularly useful and will bring us a more general way of
understanding representation theory.

Suppose we have a commutative ring R with unity and 1 ̸= 0. Suppose we also have
a finite group, say G = {g1, . . . , gn}, with the operation expressed multiplicative. Then
we define the group ring as follows.

Definition 2.2.1 (Group ring). We define R[G] as the set of all formal sums of the form

a1g1 + · · ·+ angn, ai ∈ R

Now, if e is the neutral element (or identity) of G we shall write ae = a, for any a ∈ R.
In the same way, we write 1g = g for any g ∈ G. We define the addition of elements of
R[G] as follows

n

∑
i=1

aigi +
n

∑
i=1

bigi =
n

∑
i=1

(ai + bi)gi.

It can be understood as “componentwise”. To define the multiplication, first for a, b ∈ R
we define (agi)(bgj) = (ab)gk, where the product ab is performed in R and gigj = gk in
the group G. Then we extend this definition with the “distributive” laws:

(
n

∑
i=1

aigi

)(
n

∑
i=1

bigi

)
=

n

∑
k=1

 ∑
i,j

gi gj=gk

aibj

 gk

Example 2.2.2. Let’s see a few examples to understand the concept more clear.

(1) Take the group G = D2·4 (the dihedral group of order 8) often denoted by D2·4 =

⟨σ, ρ : σ2 = ρ4 = id, σρ−1 = ρσ⟩. Take as the ring R = Z and then we study the
group ring Z[D2·4] often called “integral ring of D2·4”. Some elements of this ring
might be

α = ρ + ρ2 − 2σ, β = −3ρ2 + ρσ

and we can compute the sum and the product and we get

α + β = · · · = ρ− 2ρ2 − 2σ + σρ

and
αβ = (ρ + ρ2 − 2σ)(−3ρ2 + ρσ) = · · · = −3− 5ρ3 + 7ρ2σ + ρ3σ

(2) Take now the ring Q and the group S3, the permutation group. The elements r =

5(1, 2)− 7(1, 2, 3) and s = −4(1, 2, 3) + 12(1, 3, 2) are some examples of members of
Q[S3]. We can compute the sum and product of them to see how they interact.

r + s = 5(1, 2)− 11(1, 2, 3) + 12(1, 3, 2)

rs = −20(2, 3) + 28(1, 3, 2) + 60(1, 3)− 84
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(3) Take now G = ⟨g⟩ a cyclic group of order n ∈ Z+ and R = k to be a field. Then the
elements of k[G] are of the form

n−1

∑
i=0

αigi

where αi ∈ k. The map k[x] → k[⟨g⟩] which sends xk to gk for all k ≥ 0 extends by
k-linearity to a surjective ring homomorphism with Ker equal to the ideal generated
by xn − 1 (as g has order n). Then, by the First Isomorphism Theorem we have an
isomorphism of k-algebras (i.e. a ring isomorphism which is k-linear)

k[⟨g⟩] ∼= k[x]/(xn − 1)

Let now r = 1 + g + g2 + · · ·+ gn−1, so r(1− g) = 0 and thus k[⟨g⟩] contains zero
divisors (supposing n > 1). This is a particular case of what I will discuss in a brief
moment.

To end the section, let’s discuss a few more properties of these group rings.

Remark 2.2.3. The ring R appears in R[G] as the elements of R multiplied by the neutral element
e of G are in R. Note that the definition of the addition and multiplication in R[G] restricted to
these elements is just the addition and multiplication in R).

The group G also appears in R[G], as the element gi appears in R[G] as 1gi, for all i =

1, . . . , n. In particular, each element of G has a multiplicative inverse in the ring R[G] (namely,
its inverse in G). This means that G is a subgroup of the group of units of R[G].

Remark 2.2.4. If |G| > 1, R[G] always has zero divisors, as for example, take g an element of
order m > 1. Then

(1− g)(1 + g + · · ·+ gm−1) = 1− gm = 1− 1 = 0

so 1− g is a zero divisor as, by the definition of R[G] we gave, neither of the formal sums in the
above product is zero.

Remark 2.2.5. If S is a subring of R, then S[G] is a subring of R[G]. For instance, Z[G] (the
integral group ring of G) is a subring of Q[G] (the rational group ring of G ).

On the other hand, if H is a subgroup of G, then R[H] is a subring of R[G].

2.3 Correspondence between representations of G and k[G]-modules

Now we will study the representations taking into account what we have discussed
of group rings. Take any field k and then, in particular, k is a ring. Take now a finite
group G = {g1, . . . , gn} and take the group ring k[G]. Then, as we discussed in the
previous section, the group G appears in k[G] (identifying gi with 1gi) and the field k
appears in k[G] (identifying β with βg1, where g1 is the identity of G). Under these
identifications

β

(
n

∑
i=1

αigi

)
=

n

∑
i=1

(βαi)gi, ∀β ∈ k.
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In this way, k[G] is a vector space over k with the elements of G as a basis. In particular, k[G]

is a vector space over k of dimension equal to |G|. The elements of k commute with all
elements of k[G], i.e. k is contained in the center of k[G]. When we wish to emphasize
the latter two properties we shall say that k[G] is an k-algebra2.

In this chapter we will discuss then the relation between the representations of G on
the k-vector space V and the k[G]-modules, but first let’s recall what is a module over a
ring.

Definition 2.3.1 (Module over a ring). Let R be a ring (not necessarily commutative nor
with 1). A left R-module or a left module over R is a set M together with

(1) a binary operation + on M under which M is an abelian group, and

(2) an action of R on M (that is, a map R×M → M) denoted by rm, for all r ∈ R and
for all m ∈ M that satisfies

(a) (r + s)m = rm + sm, for all r, s ∈ R, m ∈ M,

(b) (rs)m = r(sm), for all r, s ∈ R, m ∈ M, and

(c) r(m + n) = rm + rn, for all r ∈ R, m, n ∈ M.

(d) If the ring R has a 1 we impose the additional axiom: 1m = m, for all m ∈ M.

This definition is given in [2]. The descriptor “left” in the definition indicates that
the ring elements appear on the left; “right” R-modules can be defined analogously.
If the ring R is commutative and M is a left R-module, we can make M into a right
R-module by defining mr = rm for m ∈ M and r ∈ R. But if R is not commutative,
axiom 2(b) generally will not hold with this definition of right R-module, so not every
left R-module is also a right R-module. Unless explicitly mentioned otherwise the term
“module” will always mean “left module”. Finally, if the ring is a field k, the axioms for
an R-module are precisely the same as those for a vector space over k, so that modules
over a field k and vector spaces over k are the same.

We now go back to representations and let’s see what does this modules have to do
with them. Take a finite group G and a field k and take σ : G → GL (V) to be a linear
representation over an k-vector space V. Write G = {g1, . . . , gn} and then, for some
i ∈ {1, . . . , n}, σgi := σ(gi) is a linear transformation from V into itself: σgi : V → V.
Now we will build V as an k[G]-module. Define the following action of any element of
k[G] on an element v ∈ V: (

n

∑
i=1

αigi

)
v :=

n

∑
i=1

αiσgi(v)

Proposition 2.3.2. This action defines V (the vector space representation of G) as an k[G]-
module.

2In general, an k-algebra is a ring R which contains k in its center, so R is both a ring and an k-vector
space.
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Proof. It is clear that satisfies the first condition of the definition of module over a ring
(2.3.1). Now let’s see the second. We have that αi ∈ k for the definition of group ring
(2.2.1), thus αiσgi(v) is an element of V (as it is a vector space over k) hence all the sum
is. Then it is a well defined action. Now let’s see if it satisfies the conditions.

(a) It is easy to see that this one holds:(
n

∑
i=1

αigi +
n

∑
i=1

βigi

)
v =

(
n

∑
i=1

(αi + βi)gi

)
v =

n

∑
i=1

(αi + βi)σgi(v) =

=
n

∑
i=1

(αiσgi(v) + βiσgi(v)) =

(
n

∑
i=1

αigi

)
v +

(
n

∑
i=1

βigi

)
v

The first equality holds for the definition of the addition in k[G], the second one is
the definition of the action and then it is just play with the properties of sums.

(b) We verify a special case of this axiom which shows precisely where the fact that σ is
a group homomorphism is needed:

(gigj)v = σgi gj(v) =

= (σgi ◦ σgj)(v) =

= σgi(σgj(v)) =

= gi(gjv)

and then the argument extends to the general case of an arbitrary element of k[G].
The first and last equality hold for the definition of the action, while the second one
since σ is a group homomorphism.

(c) This case is very easy to prove, and it is similar to case (a).

(d) This case is trivial.

Hence, V is an k[G] module with this action we defined.

Now we will see a result that states the correspondence we want: the k[G]-modules
are in bijective correspondence with the representations of G over an k-vector space.

Proposition 2.3.3. There is a bijection between k[G]-modules and pairs (V, σ), where V is an
k-vector space and σ a representation of G over V, i.e.

{
V an k[G]-module

}
←→


V a vector space over k

and
σ : G → GL (V) a representation


Giving a representation σ : G → GL (V) on a vector space V over k is therefore equivalent to
giving an k[G]-module V. Under this correspondence we shall say that the module V affords the
representation φ of G.
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Proof. This proof comes from a discussion made in [2] that I transform in a more formal
proof.

Note that k is a subring of k[G] (we already discussed that in the general case at the
beginning of the previous section) and the action of the field element α on a vector is the
same as the action of the ring element α1 on a vector, i.e- the k[G]-module action extends
the k action on V. This proves the arrow from right to left.

Conversely, suppose now that we are given an k[G]-module V. We obtain an associ-
ated vector space over k and representation of G as follows. We already saw that since
V is an k[G]-module, it is also an k-vector space, so there we got it. Also, for g ∈ G, we
obtain a map from V to V, denoted by σg, defined by

σg(v) = gv ∀v ∈ V

where gv is the given action of the ring element g on the element v of V. Since the
elements of k commute with each g ∈ G, it follows by the axioms for a module that for
all v, w ∈ V and all α, β ∈ k we have

σg(αv + βw) = g(αv + βw) =

= g(αv) + g(βw) =

= α(gv) + β(gw) =

= ασg(v) + βσg(w)

that is, for each g ∈ G, σg is a linear transformation. Furthermore it follows from axiom
2(b) of a module that

σgi gj(v) = (σgi ◦ σgj)(v)

which proves that σ is a group homomorphism (in particular σg−1 = σ−1
g ) so every

element of G maps to a non-singular linear transformation, i.e. a representation σ : G →
GL (V).

Remark 2.3.4. If V is an k[G]-module and its correspondent representation is φ, then a subspace
U of V is called G-invariant or G-stable if g· u ∈ U for all g ∈ G and u ∈ U (it is the applied
definition of stability in group action context). By the correspondence we have φg(u) ∈ U for all
g ∈ G and all u ∈ U. It follows easily that the k[G]-submodules of V are precisely the G-stable
subspaces of V.

Example 2.3.5. Let’s see some examples of representations.

(1) Let V be a 1-dimensional vector space over k and make V into an k[G]-module by
letting gv = v for all g ∈ G and v ∈ V. This module affords the representation
φ : G → GL (V) defined by φ(g) = id for all g ∈ G, where id represents the
identity transformation. The corresponding matrix with respect to any basis of V is
the identity matrix. We shall henceforth refer to this as the trivial representation of G.
It has degree 1.
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(2) Let g be the order of G, i.e. |G| = g. Let V be a vector space of dimension g, with
basis (et)t∈G, indexed by elements t of G. For s ∈ G, let ρs be the linear map of V
into V which sends et into est. This defines a linear representation which is called
the regular representation of G. Its degree is equal to the order of G.

Let’s try to imagine how would the matrix representation of ρ(s) be. As ρ(s) : V → V
sends eg to esg the only thing that does is to permute the columns of the identity
matrix, as ∀g ∈ G, sg ∈ G.

(3) Let n ∈ Z>0 and G = Sn the permutation group. Let V be an k-vector space of
dimension n with basis {e1, . . . , en}. Then we define ∀σ ∈ Sn, the action of Sn over V
as

σ· ei := eσ(i), ∀i = 1, . . . , n

and hence we have a representation φ : Sn ↪→ GL (V) that is a representation of Sn

into an k[Sn]-module. Then, call j = σ(i) and we get that φ(σ) is a linear transfor-
mation

φ(σ) = φσ : k[G] −→ k[G]

ei 7−→ ej

and hence each column of the matrix representation of φσ is full of zeroes except in
position j that there is a 1.

Let’s examine a practical example. Suppose n = 3 and take σ = (1, 2) and τ =

(1, 2, 3). Then the matrices of φσ and φτ would be

φσ =

0 1 0
1 0 0
0 0 1

 and φτ =

0 0 1
1 0 0
0 1 0


(4) Take now G = D2·n = ⟨σ, ρ : σ2 = ρn = id, ρσ = σρ−1⟩. Now, if R and S are

matrices that satisfy Rn = S2 = id and RS = SR−1, then the map ρ 7→ R and σ 7→ S
extends uniquely to a homomorphism from D2n to the matrix group generated by R
and S, hence gives a representation of D2n.

If we recall what is the dihedral, ρ represents a rotation of 2π/n degrees and σ a
symmetry, of a n-gon in the plane. Then R is a rotation matrix and S is a symmetry
matrix, both in the plane, and these matrices are well-known:

R =

(
cos 2π

n − sin 2π
n

sin 2π
n cos 2π

n

)

Hence the maps ρ 7→ R and σ 7→ S extend uniquely to a degree 2 representation of
D2n into GL (V) where V is a 2-degree R-vector space.

This is, in fact, a very trivial example, because it is equivalent to giving the matrix
representations of the elements of D2·n which are exactly the isometries.
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Definition 2.3.6 (Equivalent representations). Two representations of G are equivalent or
similar if the k[G]-modules that correspond to them are isomorphic modules. Represen-
tations which are not equivalent are called inequivalent.

We stop a moment to recall what does it mean to have isomorphic modules. If
R is any ring, then a R-morphism of modules M1 and M2 is a map f : M1 7→ M2

such that f (x + y) = f (x) + f (y) and f (λx) = λ f (x) for all x, y ∈ M1 and all λ ∈
R. In our case, the ring is k[G] and the modules are the ones corresponding to each
representation. For example, suppose that we have φ : G → GL (V) and ψ : G →
GL (W) two representations of a group G. Then V is a k[G]-module, as well as W, and
φ and ψ will be equivalent representations if V ∼= W.

In this situation, let T : V →W be a k[G]-module isomorphism between them. Since
T is, in particular, a k-isomorphism, T is a vector space isomorphism, so V and W must
have the same dimension as k-vector spaces. Furthermore, for all g ∈ G, v ∈ V, we have
T(g· v) = g· (T(v)), since T is an isomorphism of k[G]-modules. By definition of the
action of ring elements, this means that T(φg(v)) = ψg(T(v)), that is

T ◦ φg = ψg ◦ T ∀g ∈ G

then we have the following commutative diagram

V
φg //

T
��

V

T
��

W
ψg

//W

In particular, if we identify V and W as vector spaces, then two representations φ and
ψ on the vector space V are equivalent if, and only if, there is some T ∈ GL (V) such
that T ◦ φg ◦ T−1 = ψg, for all g ∈ G. This T is a simultaneous change of basis for all φg,
g ∈ G.

All this translated to matrix terminology would be saying that two representations
φ and ψ are equivalent if there is a fixed invertible matrix P such that

PMφg P−1 = Mψg ∀g ∈ G

The linear transformation T or the matrix P in each case is said to intertwine the repre-
sentations φ and ψ (it gives the “rule” for changing φ into ψ).

Regarding this definition and these observations, we can now see some properties of
modules and submodules to transfer them to representations. The following definitions
are in general affecting R-modules for any ring R, and further we will aply them to our
particular case.

Definition 2.3.7. Let R be a ring and M a non-zero R-module.

(1) The module M is said to be irreducible if its only submodules are 0 and M. Otherwise
M is called reducible.
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(2) The module M is said to be indecomposable if M cannot be written as M1 ⊕ M2 for
any nonzero submodules M1 and M2. Otherwise M is called decomposable.

(3) The module M is called completely reducible if it is a direct sum of irreducible sub-
modules.

(4) If M is a completely reducible R-module, any direct summand of M is called con-
stituent of M (i.e. N is a constituent of M if there is a submodule N′ of M such that
M = N ⊕ N′).

An irreducible module is, by definition, both indecomposable and completely re-
ducible. We shall shortly give examples of indecomposable modules that are not irre-
ducible. Now I translate these definitions to representations as follows.

Definition 2.3.8. A representation is called irreducible, reducible, indecomposable, decompos-
able or completely reducible according to whether the corresponding k[G]-module has the
corresponding property.

If R = k[G], an irreducible k[G]-module V is a nonzero k-vector space with no non-
trivial proper G-invariant subspaces. For example, if dimk V = 1, then V is necessarily
irreducible (its only subspaces are 0 and V).

Suppose V is a finite dimensional k[G]-module and V is reducible. Let U be a G-
stable subspace. Take a basis of U and enlarge it to obtain a basis of V. Then, for each
g ∈ G, the matrix of φg, call it Mφg , of g acting on V with respect to this basis is of the
form

Mφg =

(
φ1(g) ψ(g)

0 φ2(g)

)

where φ1 = φ|U with respect to the chosen basis of U and φ2 is the representation of
G on V/U, and ψ is not necessarily a homomorphism (not need to be a square matrix).
I denote φi(g) instead of (φi)g for cleaner notation. So, reducible representations are
those with a corresponding matrix representation whose matrices are in block upper
triangular form.

Furthermore, assume that the k[G]-module V is decomposable, and write V = U ⊕
U′. Take for basis of V the union of a basis of U and a basis of U′. With this choice of
basis, the matrix for each g ∈ G is of the form

φg =

(
φ1(g) 0

0 φ2(g)

)

i.e. ψg = 0 for all g ∈ G. Thus, decomposable representations are those with corre-
sponding matrix representation whose matrices are in block diagonal form.
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2.4 Maschke’s Theorem

In this section there is proved the first fundamental result on Representation Theory
of Finite Groups, known as Maschke’s Theorem3.

Theorem 2.4.1 (Maschke’s Theorem). Let G be a finite group and let k be a field whose
characteristic does not divide |G|. If V is a k[G]-module and U is any submodule of V, then
V has a submodule W such that V = U ⊕W. In other words, every submodule is a direct
summand.

The key to prove Maschke’s Theorem relays on “producing” a k[G]-module epimor-
phism (a k[G]-module homomorphism that is onto) π : V → U which is a projection
onto U, i.e. that satisfies the following two properties:

(i) π(u) = u for all u ∈ U,

(ii) π(π(v)) = π(v) for all v ∈ V, i.e. π2 = π.

Once we have proven the existence of such projection, we will have easily the proof for
Maschke’s Theorem.

Proposition 2.4.2. If k is any field and G a finite group such that the characteristic of k does
not divide |G|, then consider V any k[G]-module and U any submodule of V. Then, there exists
a k[G]-module homomorphism

π : V → U

such that satisfies the following two properties:

(i) π(u) = u for all u ∈ U

(ii) π(π(v)) = π(v) for all v ∈ V, so π2 = π.

These two properties indicate that π can be understood as a projection map from V to U.

Proof. Let’s try to see that this π exists. Thinking U as a subspace of V, we can take
a complement W0, i.e. V = U ⊕W0 as subspaces. This can be done in the following
way: take B1 = {u1, . . . , ur} a basis of U and take a basis of V extending it, i.e. B =

{u1, . . . , ur, vr+1, . . . , vn}. Then, B \ B1 = {vr+1, . . . , vn} is a basis for W0.
Now, the problem is that W0 need not be a k[G]-module. We are going to build a

k[G]-module about it. Take v ∈ V as v = u + w0 with u ∈ U and w0 ∈W0 and define the
following application between vector spaces over k:

π0 : V → U

that takes v = u + w0 and sends it to π0(v) = u. This can easily seen as a projection
from V onto U as vector spaces. Now, take for all g ∈ G the following map

gπ0g−1 : V → U
3Heinrich Mascke (Breslau, German Empire (now Wroclaw, Poland), 1853 - Chicago, USA, 1908) was a

german matematician principally known for this theorem.
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which sends v ∈ V to gπ0g−1(v) = g·π0(g−1· v). Here we are extending ourselves
to k[G] because the “·” denotes the action of elements in k[G]. Since we have that π0

maps V into U and U is stable under the action of g, we have that gπ0g−1 maps V
into U. Also, g and g−1 both act as k-linear transformations so gπ0g−1 is also a k-linear
transformations. Furthermore, if u is in the G-stable subspace U, then so is g−1u, and by
definition of π0 we have π0(g−1u) = g−1u, hence gπ0g−1(u) = gg−1u = u for all u ∈ U.
This shows that gπ0g−1 is also a projection of V onto U.

Consider now n = |G| and see n as an element of k, i.e. n = 1 + 1 + · · ·+ 1 n times.
By hypothesis, the characteristic of k does not divide n, so n can be inverted. Define
now

π :=
1
n ∑

g∈G
gπ0g−1

We will prove now that π is the one that satisfies all the properties. Since π is a scalar
multiple of a sum of linear transformations from V to U, it is himself a linear trans-
formation from V to U. Furthermore, each term in the sum defining π restricts to the
identity map on the subspace U and so π|U is 1/n times the sum of n copies of the iden-
tity. These observations prove that π : V → U is a linear transformation that satisfies (i)
and (ii).

It remains to show that π is a k[G]-module homomorphism (i.e. that is k[G]-linear).
It suffices to prove that for all h ∈ G, π(hv) = hπ(v) for v ∈ V. In this case

π(hv) =
1
n ∑

g∈G
gπ0(g−1hv) =

1
n ∑

g∈G
h(h−1g)π0((g−1h)v) =

=
1
n ∑

k=h−1g
g∈G

h(kπ0(k−1v)) = hπ(v)

as g runs over all elements of G, so does k = h−1g and the module element h may be
brought outside the summation by the distributive law in modules). This establishes the
existence of the k[G]-module projection π and so completes the proof.

Now we can give the proof to Maschke’s Theorem 2.4.1 as follows.

Proof of Maschke’s Theorem 2.4.1. Suppose π : V → U with the above properties. Then
define W = Ker π. Since π is a module homomorphism, W is a submodule. Now it
only remains to see that W is a direct sum complement of U, i.e. that U ∩W = 0 and
U + W = V.

• If v ∈ U ∩W, then by the first property of π we have v = π(v) but by definition of
W = Ker π it must be π(v) = 0. Hence U ∩W = 0.

• Let v be an arbitrary element of V and write v = π(v) + (v− π(v)). By definition,
π(v) ∈ U and it remains to show that v− π(v) ∈W. By the second property of π,
and the fact that π is a k[G]-module homomorphism, we have

π(v− π(v)) = π(v)− π(π(v)) = π(v)− π(v) = 0
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which shows that v− π(v) ∈ Ker π = W as we wanted. This shows that any v is
expressed as a sum of an element of U and an element of W, hence V = U + W

These two points show that V = U ⊕W as we wanted.

A direct result of this theorem is the following corollary.

Corollary 2.4.3. Every representation of a finite group G over a field k whose characteristic does
not divide the order of G is a direct sum of irreducible representations.

Proof. Given the definitions of irreducible representations 2.3.8 and the correspondence
theorem 2.3.3 the proof is straight forward as the Maschke’s Theorem states that if V
is the correspondent k[G]-module of the representation φ : G → GL (V), then any
submodule U is a direct summand, i.e., there exists another submodule W such that
V = U ⊕W. Now, if U and W are both irreducible as k[G] modules, the correspondent
representations will be also irreducible and hence we found an irreducible decompo-
sition of φ. If we suppose that U is not irreducible, we can apply again Maschke’s
Theorem 2.4.1 and obtain another decomposition U = U1 ⊕U2 and so on.

We have seen so far that every representation of a finite group G over a field k whose
characteristic does not divide |G| decomposes in direct sum of irreducible representa-
tions. Therefore, we are interested now in the study of these irreducible representations.
In the next section we will give some results about the structure of these irreducible
modules and its correspondent irreducible representations. We will study the structure
of k[G] as a ring and we will see that it belongs to a special category of rings: the semisim-
ple rings. We will see also that k[G] can also be seen as a k[G]-module and it is itself
reducible into a direct sum of irreducible modules.

2.5 Wedderburn’s Theorem and consequences

In this section I will state the Wedderburn’s Theorem which is a general theorem
in ring theory that gives the structure of semisimple rings. Unlike Maschke’s Theorem,
this theorem will characterize a more generic type of rings, which are semisimple rings,
and we wil say that k[G] is one of them.

I will state the theorem and after we will discuss some of its consequences and
analyze it from the point of view of our k[G]-modules. In “Introducción al Álgebra
Conmutativa” we have already seen and studied the concepts of projective and injective
modules, which are used in the following results. Hence, I will assume these concepts
as known.

The theorem by Wedderburn stated in [2] is as follows:

Theorem 2.5.1 (Wedderburn’s). Let R be a nonzero ring with 1 (not necessarily commutative).
Then, the following are equivalent:

(1) every R-module is projective
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(2) every R-module is injective

(3) every R-module is completely reducible

(4) the ring R considered as a left R-module is a direct sum:

R = L1 ⊕ L2 ⊕ · · · ⊕ Ln,

where each Li is a simple module (i.e., a simple left ideal) with Li = Rei, for some ei ∈ R
with

(i) eiej = 0 if i ̸= j

(ii) e2
i = ei for all i

(iii) ∑n
i=1 ei = 1

(5) as rings, R is isomorphic to a direct product of matrix rings over division rings4, i.e., R =

R1× R2× · · · × Rr where Rj is a two-sided ideal of R and Rj is isomorphic to the ring of all
nj× nj matrices with entries in a division ring ∆j, j = 1, 2, . . . , r. The integer r, the integers
nj, and the division rings ∆j (up to isomorphism) are uniquely determined by R.

A ring R satisfying any of the (equivalent) properties of the theorem is called semisim-
ple with minimum condition. These rings also satisfy the minimum condition or the descend-
ing chain condition (D.C.C.) on left ideals: if I1 ⊇ I2 · · · is a descending chain of left ideals
of R, then there is an N ∈ Z≥0 such that Ik = IN for all k ≥ N, which explains the use
of this term above in the definition.

The rings we are dealing with will all have this minimum condition. For example,
group algebras always have this property since in any strictly descending chain of ideals,
the vector space dimensions of the ideals (which are k-subspaces of k[G]) are strictly
decreasing, hence the length of a strictly descending chain is at most the dimension
of k[G] (i.e. |G|). We shall therefore use the term “semisimple” to mean “semisimple
with the minimum condition”. The rings Ri in conclusion (5) of Wedderburn’s Theorem
2.5.1 are called Wedderburn components of R and the direct product decomposition of R
is called its Wedderburn decomposition.

We now apply Wedderburn’s Theorem to our group algebra k[G]. First of all, let’s
recall that it is mandatory that our characteristic of k does not divide |G|, the order
of the group. In fact, since we shall be dealing with numerical data in the sections to
come it will be convenient to have the characteristic of k equal to 0. Secondly, it will
simplify matters if we force all the division rings which will appear in the Wedderburn

4A division ring ∆ is a ring all whose elements different from zero are invertible, but that does not
need to be commutative. A commutative division ring is what we usually call field. Sometimes fields are
refereed to as commutative division rings, and sometimes there are references that call fields to the division
rings, without the commutativity. In these notes, a division ring will be a ring all whose non-zero elements
are invertible. but without being commutative.

There is another well known “Wedderburn Theorem” which states that any division ring being finite is
also commutative.
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decomposition of k[G] to equal the field k (later on we will prove that imposing the
condition that k be algebraically closed is sufficient to ensure this). In the book [2] the
authors argue that it is useful for the reader to take k = C.

Recalling the definitions of injective and projective modules, Maschke’s Theorem
2.4.1 implies the following corollary.

Corollary 2.5.2. If G is a finite group and k a field whose characteristic does not divide |G|, then
the group ring k[G] is a semisimple ring.

Proof. Maschke’s Theorem states that if K is a submodule of a k[G]-module M, then there
exists L such that M = K ⊕ L. This is equivalent to say that k[G]-modules are injective.
Hence, Wedderburn’s Theorem gives that k[G] is semisimple.

In particular, this implies that there is the following decomposition:

k[G] ∼= R1 × · · · × Rr

where Ri is the ring of ni × ni dimension matrices over some division ring ∆i.
Our next step will be to see a result that gives, in particular, the structure of the

simple k[G]-modules.

Proposition 2.5.3. Let R = R1 × · · · × Rr, where Ri is the ring of ni × ni matrices over the
division ring ∆i, i = 1, . . . , r. It is a very extense proposition, based on [2], and the proof is to
much extended and requires too many tools, hence it will not be proven here.

(1) Identify Ri with the i-th component of the direct product. Let zi be the r-tuple with the
identity of Ri at position i and zero in all other positions, i.e. zi := (0, . . . , 0, 1Ri

i)
, 0, . . . , 0).

Then Ri = ziR and for any a ∈ Ri, zia = a and zja = 0 for j ̸= i. The elements z1, . . . , zr are
all of the primitive central idempotents5 of R. They are pairwise orthogonal and ∑r

i=1 zi = 1
in R.

(2) Let N be any left R-module and let ziN = {zix : x ∈ N}, 1 ≤ i ≤ r. Then ziN is a left
R-submodule and it is an Ri-module on which Rj acts trivially for all j ̸= i. And also

N = z1N ⊕ z2N ⊕ · · · ⊕ zr N

(3) The simple R-modules are the simple Ri-modules on which Rj acts trivially for j ̸= i in
the following sense. Let Mi be the unique simple Ri-module. We may consider Mi as an R-
module by letting Rj act trivially for all i ̸= j. Then M1, . . . , Mr are pairwise non-isomorphic
simple R-modules and any simple R-module is isomorphic to one of M1, . . . , Mr. Explicitly,
the R-module Mi is isomorphic to the simple left ideal (0, . . . , 0, Li

i)
, 0, . . . , 0) of all elements

of R whose i-th component, Li, consists of matrices with arbitrary entries in the first column
and zeros elsewhere.

5The central elements are those who belong to the center. The primitive elements are those that cannot
be decomposed as a sum of central orthogonal elements.
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(4) For any R-module N the R-submodule ziN is a direct sum of simple R-modules, each of
which is isomorphic to the module in (3). In particular, if M is a simple R-module, then there
is a unique i such that zi M = M and for this index i we have Mi

∼= M and for all j ̸= i,
zj M = 0.

(5) If each ∆i equals the field k, then R is a vector space over k of dimension ∑r
i=1 n2

i and
dimk Z(R) = r.

This big proposition gives a characterization of the structure of the simple k[G]-
module. Note that, in particular, the division ring ∆i is a vector space over k of dimension
ni ≤ n. Now, the following proposition will show that this implies ∆i = k.

Proposition 2.5.4. If ∆ is a division ring that is a finite dimensional vector space over an
algebraically closed field k and k ⊆ Z(∆) (its center), then ∆ = k.

Proof. Suppose k ⊆ Z(∆). Then, for each α ∈ ∆, the division ring generated by α and k
is a field. Also, since ∆ is finite dimensional over k, the field extension k(α) of k will be
also finite. But as k is algebraically closed, it cannot have finite non-trivial extensions,
hence k(α) = k for all α ∈ ∆, ergo ∆ = k.

With this proposition we get that each Ri in Wedderburn’s decomposition of k[G],
where k is an algebraically closed field, is a matrix ring over k, i.e. Mni(k).

Proposition 2.5.5. The number of matrix rings in k[G]’s Wedderburn decomposition is equal to
the number of conjugacy classes of G.

Proof. Let K1, . . . ,Ks be the conjugacy classes of G. Recall that they are disjoint, and
form a partition of G. Now, for each i define

Xi := ∑
g∈Ki

g ∈ k[G]

As the conjugacy classes are disjoint, we have that Ki and Kj have distinct elements
and hence these Xi’s are linearly independent elements of k[G]. Furthermore, since
conjugation by a group element permutes the elements of each class, h−1Xih = Xi, i.e.
Xi commutes with all group elements. This implies that Xi ∈ Z(k[G]).

Finally we show that Xi’s form a basis of Z(k[G]) and we will have s = r =

dimk Z(k[G]). We already discussed that they are linearly independent. We now show
that they span Z(k[G]). Let X = ∑g∈G αgg be an arbitrary element of Z(k[G]). Since
h−1Xh = X,

∑
g∈G

αgh−1gh = ∑
g∈G

αgg.

since the elements of G form a basis of k[G], the coefficients of g in the above two sums
are equal, i.e. αhgh−1 = αg. Since h was arbitrary, every element in the same conjugacy
class of a fixed group element g has the same coefficient in X, hence X can be written as
a linear combination of the Xi’s.
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Before going through some particular examples, let me state this theorem that sum-
marizes everything we have seen during these last two sections and then a corollary
directly from it. This theorem does not need a proof, as it collects all the results seen
since now, that have already been proved.

Theorem 2.5.6. Let G be a finite group and k an algebraically closed field whose characteristic
does not divide |G|.

(1) k[G] ∼= Mn1(k)×Mn2(k)× · · · ×Mnr(k).

(2) k[G] has exactly r distinct isomorphism types of irreducible modules and these have di-
mensions (as k-vector spaces) n1, . . . , nr respectively (and so G has exactly r inequivalent
irreducible representations over k of the corresponding degrees).

(3) ∑r
i=1 n2

i = |G|.

(4) r equals the number of conjugacy classes in G.

Corollary 2.5.7. Let G be a finite abelian group. Every irreducible representation over an
algebraically closed field k is 1 dimensional (i.e., a homomorphism G → k∗) and G has |G|
inequivalent irreducible representations over k. Furthermore, every finite dimensional matrix
representation over k of G is equivalent to a representation into a group of diagonal matrices.

Proof. If G is abelian, k[G] is a commutative ring. Since a m×m matrix is not commu-
tative whenever m > 1, we must have each ni = 1. Thus, r = |G| (and equals also
the number of conjugacy classes of G). Since every k[G]-module is a direct sum of irre-
ducible submodules, there is a basis such that the matrices are diagonal with respect to
this basis.

Example 2.5.8. To end the section, we are going to see some examples. For these exam-
ples, to make it easier, we are going to take k = C, the complex field.

(1) Take G an abelian finite group. Then, by the theorem of decomposition for abelian
groups. We have G ∼= C1 × · · · × Cn, where Ci = ⟨xi⟩ are cyclic groups. Let di :=
|Ci| = |⟨xi⟩ be its degree. Now we will describe the irreducible C-representations of
G, i.e. the homomorphisms G → C∗.

If f : Ci → C∗ is a homomorphism, it should preserve the fact that xdi
i = 1 and as

f sends the neutral to the neutral, it must be f (xi)
di = f (xdi

i ) = f (1) = 1, hence
f (xi)

di = 1 meaning that f (xi) must be one of the di-th roots of unity in C∗.

So, fixing an i ∈ {1, . . . , n}, take Ci = ⟨xi⟩ one of these cyclics of order di, and let
{ξ1, . . . , ξdi} be the di di-th roots of 1 in C∗. We have then di possible homomorphisms

φj : G −→ C∗

xi 7−→ ξ j
j = 1, . . . , di

Then, for each i = 1, . . . , n we have di choices for φj, then for all G we will have in
total d1· · · · · dn choices of representations, i.e. we have |G| possible representations
and all of them are like these.



32 Representation theory

(2) Let G = S3. By 2.5.5, the number of C-representations of G equals the number of
conjugacy classes of S3, in this case 3. Then we must have only three representations
(up to equivalence) and let them be

φi : G −→ GL (C) ∼= C∗, i = 1, 2, 3.

We also have the fact that ∑r
i=1 n2

i = |G|, where in our case r = 3 and ni is the
degree of the representation φi, for i = 1, 2, 3. Hence, we have n2

1 + n2
2 + n2

3 = 6, for
n1, n2, n3 ∈ Z≥1. So, up to permutations of the sub-indexes, the only possibility is to
have n1 = 1, n2 = 1 and n3 = 2. Now, let’s try to find each representation.

• φ1 of degree 1. This can be the trivial representation, the one that sends every
σ ∈ S3 to 1 in C∗.

• φ2 of degree 1. This can be the following

φ2(σ) =

{
1 if σ is an even permutation
−1 if σ is an odd permutation

Recall that the parity of a permutation was (−1)s, where s was the number of
transpositions in which the permutation decomposed.

• φ3 of degree 2. This is the tricky one.

Consider the correspondence with k[G]-modules, in this case k[S3]-modules,
and the representations (see 2.3.3). Let V be a 3-dimensional vector space with
basis {e1, e2, e3} and consider the action on V by G = S3, i.e. permuting the
indexes of the basis. Then the vector t = e1 + e2 + e3 is S3-invariant and thus
it spans a S3-invariant 1-dimensional vector subspace. Call it U. Then, by
Maschke’s Theorem 2.4.1 there is a 2-dimensional S3-invariant vector subspace
W.

Let’s now see that this W cannot be reduced in W1 ⊕W2 (i.e. it is irreducible).
If it was reducible, then the affording representation would have as a matrix
a diagonal 2 × 2 matrix, hence φ3 would have a diagonal matrix too. This
cannot happen as the permutations would commute on their action, but this is
impossible since G is not abelian.

Thus, W affords the representation of degree 2 irreducible. We can see W as

W = {w ∈ V : w = α1e1 + α2e2 + α3e3 with α1 + α2 + α3 = 0}.

Clearly e′1 := e1 − e2 and e′2 := e2 − e3 are linearly independent vectors in W,
hence they form a basis in W, B2 = {e′1, e′2}. With this basis one can find
the matrix representations for given elements in S3. For example, let’s take
(1, 2, 3) ∈ S3 and try to find the matrix representation of this element. We have
to see how is the action in the basis elements of W:

(1, 2, 3)e′1 = (1, 2, 3)(e1 − e2) = (e2 − e3) = e′2
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and

(1, 2, 3)e′2 = (1, 2, 3)(e2 − e3) = (e3 − e1) = −(e1 − e2 + e2 − e3) = −e′1 − e′2

hence, the matrix representation would be

(1, 2, 3) 7−→
(

0 −1
1 −1

)

and for the element (1, 2) ∈ S3 one can follow the same calculations and get the
matrix representation

(1, 2) 7−→
(
−1 1
0 1

)
.





Chapter 3

Character Theory

This chapter contains all the basic knowledge about Character Theory, as well as the
results needed to prove Burnside’s Theorem at the end. It will be based on the reference
[2] as well as on [5].

In general, for groups of large order the representations are difficult to compute
and unwieldy if not impossible to write down. For example, a matrix representation
of degree 100 involves matrices with over 10,000 entries, and a number of 100 × 100
matrices may be required to describe the representation, even on a set of generators for
the group.

In this chapter we will be attaching, for each representation φ : G → GLn(k), an ele-
ment of k to each matrix φ(g) and we shall see that this number can, in many instances,
be computing without really knowing the matrix φ(g). Moreover, we shall see that these
invariants are independent of the similarity class of φ (i.e. they are the same for a fixed
g ∈ G if the representation φ is replaced by an equivalent representation1 and that they,
in some sense, characterize the similarity classes of representations of G.

3.1 Character theory: basic knowledge

Throughout this section G is a finite group and k will be an arbitrary algebraically
closed field. All the representations considered are assumed to be finite dimensional.

In this section I will give the definition of character of a group, and then prove
that two representations are equivalent if, and only if, they have the same character.
Moreover I will give an important general proposition regarding ring decompositions
and then I will apply it to our case to show how to find “irreducible characters”.

Definition 3.1.1 (Class function). Let G be a finite group and k an arbitrary field. A class
function is any function from G into k which is constant on the conjugacy classes of G,
i.e. f : G → k such that f (g−1xg) = f (x) for all g, x ∈ G.

1see 2.3.6

35
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Definition 3.1.2 (Character). If φ is a representation of G afforded by the k[G]-module
V, the character of φ is the function

χ : G −→ k
g 7−→ χ(g) := trφ(g)

where trφ(g) means the trace of the matrix φ(g) with respect to some basis of V (i.e. the
sum of the diagonal entries of the matrix). The degree of a character is the degree of any
representation affording it.

Definition 3.1.3 (Irreducible character). A character is called reducible or irreducible ac-
cording to whether the representation affording it is reducible or irreducible, respec-
tively.

In the notation we shall also refer to χ as the character afforded by the k[G]-module
V. In general, a character is not a homomorphism from a group into either the additive
or multiplicative group of the field.

Example 3.1.4. Let’s see some examples before continuing.

(1) The character of the trivial representation is the function χ(g) = 1 for all g ∈ G. This
is called the principal character of G.

(2) If φ is a degree 1 representation, then the character is usually identified with φ by
identifying the entry of the 1× 1 matrix representation. Thus, for abelian groups,
irreducible complex representations and their characters are the same.

(3) Let Π : G → Sn be a permutation representation and let φ be the resulting linear
representation on the basis e1, . . . , en of the vector space:

φg(ei) = eΠg(i)

(see previous examples). With respect to this basis, the matrix of φg = φ(g) has a 1
in the diagonal entry (i, i) if Π(g) fixes i; otherwise the matrix of φg has a zero in
position (i, i). Thus, if π is the character of φ, then π(g) equals the number of fixed
points of g on {1, . . . , n}.

(4) Recall the definition of regular representation in 2.5.8 number (2). Now we will define
the regular character, which is a special case of the previous example, when Π is the
regular permutation representation of G. If we call ρ the character, then we have

ρ(g) =

{
0 if g ̸= 1
|G| if g = 1

The reason of this character definition follows from the definition of the matrix rep-
resentation of the regular representation.
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Proposition 3.1.5. Characters are also to be considered as functions defined on the group ring
k[G].

Proof. If V is a k[G]-module whose corresponding representation has character χ, then
each element of the group ring k[G] acts as a linear transformation V → V. Thus,
for each ∑g∈G αgg ∈ k[G] there is a trace associated when it is considered as a linear
transformation from V to V. The trace of g ∈ G acting on V is, by definition, χ(g). Since
the trace of any linear combination of matrices is the linear combination of the traces,
the trace of ∑g∈G αgg acting on V would be ∑g∈G αgχ(g).

To end the proof, given any map f : G → k, this can be extended by linearity and
obtain k[G]→ k homomorphism

Now we will see two important results regarding characters, that will help us work
with them. The first one states that the character of a representation is the sum of the
characters of the constituents appearing in a direct sum decomposition. The second one
will state that two representations are equivalent if, and only if, they have the same
character.

Theorem 3.1.6. The character of a representation is the sum of the characters of the constituent
appearing in a direct sum decomposition.

Proof. Consider M = M1 ⊕M2 and φ the representation afforded by the module M. We
choose a basis of M consisting on one of M1 extended adding the basis of M2. Then, the
matrix representation with respect to this basis is of the form

φ(g) =

(
φ1(g) 0

0 φ2(g)

)

where φi is the representation afforded by Mi, for i = 1, 2. From this point it is im-
mediate that if ψ is the character of φ and ψ1 and ψ2 are the characters of φ1 and φ2

respectively, then ψ(g) = ψ1(g) + ψ2(g), for all g ∈ G. Then, by induction we obtain the
result.

This last theorem states that if ψ is the character afforded by the module in (2.5.3)
above, this gives

ψ = a1χ1 + · · ·+ arχr

Thus, every character over k is a non-negative sum of irreducible characters over k.
Conversely, by taking direct sum of modules, one sees that every such sum of characters
is the character of some complex representation of G.

We now focus our attention on the next theorem that, as it may be expected, it will
state that two representations are equivalent if and only if they have the same character.
For this, though, we have to go through a deep proposition regarding ring theory, that
we skipped before, but now we can not avoid.

Theorem 3.1.7. Two representations are equivalent if and only if they have the same character.
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Proof. One implication is easy: if ψ and φ are equivalent representations, then the ma-
trices Mφ(g) and Mψ(g) of φ(g) and ψ(g) satisfy that there exists a fixed invertible matrix
P such that P−1Mψ(g)P = Mφ(g) for all g ∈ G. Hence, it is easy to see that the traces are
the same.

Conversely, let z1, . . . , zr be the primitive central idempotents of k[G] described in
2.5.3. Since they are orthogonal, it is trivial that they are k-linearly independent ele-
ments of k[G]. As above in 3.1.5, each irreducible character χi is a function on k[G]. By
proposition 2.5.3, part (3), we have

(a) If j ̸= i, then zj Mi = 0, i.e. zj acts as the zero matrix on Mi, hence χi(zj) = 0.

(b) zi acts as the identity on Mi, hence χi(zi) = ni.

Thus, χ1, . . . , χr are multiples of the dual basis to the independent set z1, . . . , zr, hence
are linearly independent functions2. Now, if the k[G]-module M described in 2.5.3 above
can be decomposed in a different fashion into irreducibles, say

M ∼= b1M1 ⊕ · · · ⊕ br Mr

then we would obtain a relation

a1χ1 + · · ·+ arχr = b1χ1 + · · ·+ brχr

and by linear independence of the irreducible characters, we would get bi = ai for all
i ∈ {1, . . . , r}. Thus, in any decomposition of M into a direct sum of irreducibles, the
multiplicity of the irreducible Mi is the same, for all 1 ≤ i ≤ r and in particular we get
the result.

3.2 Orthogonality relations between characters

In this section we are going to build an Hermitian inner product structure on the
space of class functions and prove that the irreducible characters form an orthonormal
basis with respect to this inner product. We first check that they already form a basis of
the complex class functions.

For the rest of the chapter, we will take k = C as our field, as we are attaching
numerical data to representations over k. Hence, we restrict ourselves to the case of

2Here is where we see the importance of extending a character from k to all k[G] ring. From this point of
view, a character can be thought as a linear form from k[G] to k, i.e. an element of the dual space of k[G] as
a vector space over k.Then, z1, . . . , zr are elements linearly independent of k[G] (but not necessarily a basis,
as they may not span all k[G]). Then we consider the subspace W of k[G] generated by z1, . . . , zr and then
they define the dual basis z∗1 , . . . , z∗r of W∗. Now, we can restrict the character to this vector subspace and
think it as a dual form of W∗. Hence, it can be expressed as a linear combination of irreducible characters χi

we discussed before. But these irreducible characters we know how they act on z1, . . . , zr on W, therefore,
we can deduce from here that any irreducible character is a multiple of the z∗i corresponding and then
every character is the linear combination of the dual basis a1z∗1 + · · ·+ arz∗r , where a1, . . . , ar are uniquely
determined.
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complex representations and complex characters, as we will be able to define an explicit
inner product.

Proposition 3.2.1. The irreducible characters are a basis for the space of all complex class func-
tions.

Proof. The vector space of all complex valued class functions on G has a basis consisting
of the functions which are 1 on a given class and zero on all the other classes3. Therefore,
there are r of these, where r is the number of conjugacy classes of G, so the dimension
of the complex vector space of class functions is r. Since the number of complex irre-
ducible characters of G equals the number of conjugacy classes and these are linearly
independent class functions, we see the proposition.

Definition 3.2.2 (Inner product). Let θ and ψ be class functions. We define

(θ, ψ) =
1
|G| ∑

g∈G
θ(g)ψ(g)

where the bar denotes the complex conjugation.

Proposition 3.2.3. The product defined in 3.2.2 is an Hermitian inner product.

Proof. For α, β ∈ C and θ1, θ2, ψ1, ψ2, θ and ψ class functions, we have

(a) (αθ1 + βθ2, ψ) = α(θ1, ψ) + β(θ2, ψ),

(b) (θ, αψ1 + βψ2) = α(θ, ψ1) + β(θ, ψ2),

(c) (θ, ψ) = (ψ, θ),

and they can be proved easily by playing with sums and conjugations in complex num-
bers.

Our principal aim now is to show that the irreducible characters form an orthonor-
mal basis for the space of complex class functions f : G → C with respect to this
Hermitian form. We already saw in 3.2.1 that they form a basis, so it just remain to
show the orthonormality. This fact will follow from the orthogonality of the primitive
central idempotents, once we have explicitly determined these in the next proposition.

Proposition 3.2.4. Let z1, . . . , zr be the orthogonal primitive central idempotents in C[G] la-
belled in such a way that zi acts as the identity on the irreducible C[G]-module Mi and as zero
in all other Mj, for i ̸= j, and let χi be the character afforded by Mi. Then

zi =
χi(1)
|G| ∑

g∈G
χi(g−1)g.

3Consider any complex class function f : G → C, then it is in particular f : C[G] → C such that
f (g−1xg) = f (x) for all x ∈ G. Then, all the class functions seen as dual applications, form a vector space
with generators fi(xi) = 1 and fi(xj) = 0 ∀j ̸= i, i = 1, . . . , |G|. Then if we take K1, . . . ,Kr all the conjugacy
classes of G with representatives g1, . . . , gr respectively, then every f can be expressed as f = ∑r

i=1 λi fi,
where λi ∈ C. Then fi generate the vector space of complex class functions of G and, as they can be
associated with characters, as we saw before, they are linearly independent, hence basis.
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Proof. Let z = zi and write
z = ∑

g∈G
αgg.

Now, recall from example 4 the definition of the regular character. Then, by theorem
2.5.6 we have that C[G] ∼= Mn1(C)× · · · ×Mnr(C) and by proposition 3.2.4 each Mni(C)

decomposes further as a direct sum of ni isomorphic simple ideals. These ideals give a
complete set of isomorphic classes of irreducible C[G]-modules. Thus, the regular rep-
resentation over C of G decomposes as the direct sum of all irreducible representations
of G, each appearing with multiplicity equal to the degree of that (irreducible) represen-
tation. Taking now the characters, this implies that the regular character decomposes as
follows:

ρ =
r

∑
i=1

χi(1)χi

due to the fact that χi(1) is the degree of the corresponding irreducible representation.
To find the coefficient αg, apply ρ to zg−1 and using linearity of ρ together with its

definition, we obtain that ρ(zg−1) = αg|G|. Computing ρ(zg−1) and using ρ’s decompo-
sition, we finde

r

∑
j=1

χj(1)χj(zg−1) = αg|G|

Let φj be the irreducible representation afforded by Mj, for 1 ≤ j ≤ r. Since we
may consider φj as an algebra homomorphism from C[G] into End(Mj), we obtain
φj(zg−1) = φj(z)φj(g−1). Also, we have already observed that φj(z) is 0 if i ̸= j and
φi(z) is the identity endomorphism on Mi. Thus

φj(zg−1) =

{
0 if j ̸= i

φi(g−1) if j = i

This proves χj(zg−1) = χi(g−1)δij, where δij is zero if i ̸= j and 1 if i = 1. Substituing
this into the last equation gives αg = 1

|G|χi(1)χi(g−1). This is the coefficient of g in the
statement of the proposition.

We already can prove the orthonormality of irreducible characters by just doing some
little calculations, which are done in 3.2.6. But there remains one little step at the end
of the proof, which states that χj(g−1) = χj(g). This little step is proven in the next
proposition.

Proposition 3.2.5. If ψ is any character of G then ψ(x) is a sum of roots of 1 in C and ψ(x−1) =

ψ(x) for all x ∈ G.

Proof. Let φ be a representation whose character is ψ, fix an element x ∈ G and let
|x| = m. Since the minimal polynomial of φ(x) divides Xm − 1, hence has distinct roots,
there is a basis of the underlying vector space such that the matrix of φ(x) with respect
to this basis is a diagonal matrix with m-th roots of 1 on the diagonal. Since ψ(x) is
the sum of the diagonal entries, ψ(x) is a sum of roots of 1. Moreover, if ξ is a root
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of 1, it is clear that ξ−1 = ξ. Thus, the inverse of a diagonal matrix with roots of 1 on
the diagonal is the diagonal matrix with the complex conjugates of those roots of 1 on
the diagonal Since the complex conjugate of a sum is the sum of complex conjugates,
ψ(x−1) = trace(φ(x−1)) = trace(φ(x)) = ψ(x).

It is important to notice that in this proof we first fixed a group element x and then
chose a basis of the representation space so that φ(x) was a diagonal matrix. It is always
possible to diagonalize a single element but it is possible to simultaneously diagonalize
all φ(x)’s if and only if φ is similar to a sum of degree 1 representations.

Finally we prove our result.

Proposition 3.2.6. The irreducible characters are orthonormal.

Proof. It will follow directly from the orthogonality of the central primitive idempotents
via the following calculations. Let δij be the “Kronecker Delta”, valued δij = 1 if i = j
and δij = 0 for i ̸= j. Then it is clear that ziδij = zizj. Indeed, as if i = j then we have
zizj = z2

i = zi for being idempotent, and if j ̸= i then we have zizj = 0 because they are
orthogonal, and δij = 0 so it is consistent. Now, we calculate zizj with the given values
in 3.2.4 and get

ziδij = zizj =
χi(1)
|G|

χj(1)
|G| ∑

g,h∈G
χi(g−1)χj(h−1)gh

Now, substituting y = gh and x = h, we have that g = x−1 and hence, the last calcula-
tions remain

· · · = χi(1)
|G|

χj(1)
|G| ∑

y∈G

(
∑

x∈G
χi(xy−1)χj(x−1)

)
y

Now, in the other side of the equation, we had ziδij which can be rewritten, taking into
account proposition 3.2.4, as δij

χi(1)
|G| ∑g∈G χi(g−1)g hence the equality remains

δij
χi(1)
|G| ∑

g∈G
χi(g−1)g =

χi(1)χj(1)
|G|2 ∑

y∈G

(
∑

x∈G
χi(xy−1)χj(x−1)

)
y

Since the elements of G are a basis of C[G], we may equate coefficients with those of zi

in the other side, i.e.

δij
χi(1)
|G| χi(g−1) =

χi(1)χj(1)
|G|2 ∑

x∈G
χi(xg−1)χj(x−1).

Simplifying and replacing g by g−1 gives

δij
χi(g)
χj(1)

=
1
|G| ∑

g∈G
χi(xg)χj(x−1)

for all g ∈ G. Taking now g = 1 we have that

δij =
1
|G| ∑

x∈G
χi(x)χj(x−1)

Now we have that χj(x−1) = χj(x) for all x ∈ G by the proposition 3.2.5.
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Combining the last two propositions we can state our final main theorems.

Theorem 3.2.7 (The First Orthogonality Relation for Group Characters). Let G be a finite
group and let χ1, . . . , χr be the irreducible characters of G over C. Then with respect to the inner
product (· , · ) defined in 3.2.2, we have

(χi, χj) = δij

and the irreducible characters are an orthonormal basis for the space of class functions. In partic-
ular, if θ is any class function,

θ =
r

∑
i=1

(θ, χi)χi.

Proof. We just proved that the irreducible characters form an orthonormal basis for the
space of class functions. If θ is any class function, θ = ∑r

i=1 aiχi for some ai ∈ C. It
follows from linearity of Hermitian product that ai = (θ, χi), as stated.

3.3 Characters of some groups of small order

As an example of character calculations we find here some character tables that are
listed in [2].

The character table of a finite group is a table of the character values formatted as
follows: list representative of the r conjugacy classes along the top row and list the
irreducible characters down the first column. The entry in the table in row χi and
column gj is χi(gj). The character table of a finite group is unique up to a permutation
of its rows and columns. It is customary to make the principal character the first row
and the identity the first column and to list the characters in increasing order by degrees.

A large number of character tables is given in the Atlas of Finite Groups by Conway,
Curtis, Norton, Parker and Wilson, Clarendon Press, 1985. These include the character
table of the monster simple group, M. This group has 194 irreducible characters. çThe
smallest degree of a nonprincipal irreducible character of M is 196883 and the largest
degree is on the order of 2× 1026. Nonetheless, it is possible to compute the values of
all these characters on all conjugacy classes of M.

Example 3.3.1. Consider G = ⟨x⟩ be the cyclic group of order 2. Then G has 2 conjugacy
classes and two irreducible characters. Indeed, as any homomorphism f : ⟨x⟩ → C∗

should preserve the fact that f (1) = 1 so f (x)2 = f (x2) = f (1) = 1 meaning that f must
be one of the 2 roots of 1 in C. Then we have two possible representations:

ψ1(x) = 1 and ψ2(x) = −1

(and they send 1 to 1 trivially) of degree obviously 1. Then the table is this:
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classes: 1 x
sizes: 1 1

χ1 1 1
χ2 1 −1

Table 3.1: Character Table of Z2

Example 3.3.2. Consider now G = ⟨x⟩ of degree 3. By the same reasoning as in the
previous example, we have that every representation must send each element to a 3-th
root of 1 in C. Call ζ ∈ C one of the three third roots of 1 Then, we have three options,
and they let us the next table:

classes: 1 x x2

sizes: 1 1 1
χ1 1 1 1
χ2 1 ζ ζ2

χ3 1 ζ2 ζ

Table 3.2: Character Table of Z3

Again, the representations will be of degree 1 because we have the theorem stating
that the sum of the squares of the degrees of the representations must be equal to |G|
which in this case is three, ergo we have n2

1 + n2
2 + n2

3 = 3 and the only possibility is
n1 = n2 = n3 = 1. Hence, each representation matrix is a 1× 1 matrix over C∗, i.e., a
complex nonzero number, and then the character is this number itself.

Example 3.3.3. Let G = S3. In 2.5.8 we computed all the possible representations, and we
found one representation of degree 2 and two of degree 1. We can use this to compute
the table. I will compute manually some of them to have an example. Take φ3 of this
example, which was the degree 2 representation. We had that

φ3((1, 2, 3)) =

(
0 −1
1 −1

)
, φ3((1, 2)) =

(
−1 1
0 1

)
and φ3(id) =

(
1 0
0 1

)
hence we just have to calculate the trace of each matrix to obtain χ3((1, 2, 3)) = −1,
χ3((1, 2)) = 0 and χ3(id) = 2. The other representations were of degree 1 so they are
only 1× 1 matrices. The table is then:

classes: 1 (1, 2) (1, 2, 3)
sizes: 1 3 2

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

Table 3.3: Character Table of S3





Chapter 4

Burnside’s Theorem

In this chapter we will finally prove the Burnside Theorem 4.1.1 that will use all the
theory seen in previous chapters about characters and representations.

4.1 Burnside’s proof

The following result was proved by Burnside in 1904. Although purely group-
theoretic proofs of it were discovered, the original proof by Burnside and the one we
will be giving is very accessible and lies over character theory. The theorem states the
following.

Theorem 4.1.1 (Burnside). For p and q primes, every group of order paqb is solvable.

To move to the proof we will need to establish some previous results. The first
propositions I will state now are to prove corollary 4.1.9, which states that the degrees
of the irreducible characters of any finite group divide its order. Then there will come
the final lemmas 4.1.10 and 4.1.11 which will lead directly to the proof of Burnside’s
Theorem.

Firstly, I will recall the definition of algebraic integer and state a proposition that
characterizes them. This has all been seen in class of “Introducció a l’Àlgebra Commu-
tativa”.

Definition 4.1.2 (Algebraic integer). An element α ∈ C is called an algebraic integer if it
is a root of a monic polynomial with coefficients from Z.

Proposition 4.1.3. Let α ∈ C.

(1) The following are equivalent:

(i) α is an algebraic integer.

(ii) α is algebraic over Q and the minimal polynomial of α over Q has integer coefficients,
and
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(iii) Z[α] is a finitely generated Z-module (where Z[α] is the sub-ring of C generated by Z

and α, i.e. all the Z-linear combinations of non-negative powers of α).

(2) The algebraic integers in C form a ring and the algebraic integers in Q are the elements of Z.

Corollary 4.1.4. For every character ψ of the finite group G, ψ(x) is an algebraic integer, for all
x ∈ G.

Proof. By proposition 3.2.5 of the previous chapter, ψ(x) is a sum of roots of 1. Each root
of 1 is an algebraic integer, so the result follows immediately from proposition 4.1.3.

Next proposition is more character related, and we will see how characters and
algebraic integers are related. We will use the following notation, which is the usual one
we have been using all along. Take an arbitrary finite group G and χ1, . . . , χr are the
distinct irreducible complex characters of G, K1, . . . ,Kr are the conjugacy classes of G
and φi is an irreducible matrix representation whose character is χi for each i.

Before going into it, I state the Schur’s Lemma, which is proposed as an exercise in
[2] and used in the proof. I will state the general Schur’s Lemma I found in [9], which
is a pure representation theory lemma, and then I will state a corollary, which is the
exercise of [2] and the one we will use directly.

Definition 4.1.5 (G-linear). Let k be an algebraically closed field and G a finite group.
Let V and W be k-vector spaces and f : V → W a map. It is said to be G-linear if it is a
linear map f : V →W as k[G]-modules.

Lemma 4.1.6 (Schur). Let V and W be vector spaces and ρV and ρW be irreducible representa-
tions of a finite group G in V and W respectively.

(1) If V and W are not isomorphic, then there are no nontrivial G-linear maps f : V →W.

(2) If V = W are finite dimensional over an algebraically closed field (e.g. C in our particular
case) and ρV = ρW , then the only nontrivial G-linear maps f : V → V are the identity and
homothecy.

Proof. (1) Suppose f : V → W is nonzero G-linear map. We will prove that V ∼= W, i.e.,
that f is an isomorphism.

For each g ∈ G, choose any x ∈ Ker f . Then

f (ρV(g)(x)) = ρW(g)( f (x)) = ρW(g)(0) = 0

where ρV(g)(x) is the value by the linear map ρV(g) : V →W of x. Then, this means
that f (ρV(g)(x)) = 0 meaning that ρV(g)(x) ∈ Ker f . That is, for each x ∈ Ker f ,
ρV(g)(x) ∈ Ker f which implies that Ker f is G-invariant, hence a subrepresentation.
But we assumed that the representations where irreducible, hence Ker f = 0 (as f is
nonzero, so we assume Ker f cannot be the whole V) and we have injectivity.
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For the surjectivity the arguments are pretty similar. As we have that f (ρV(g)(x)) =
ρW(g)( f (x)), we can conclude that for an arbitrary choice of f (x) in Im f , ρW(g)
sends f (x) to somewhere else in Im f , in particular to the image of ρV(g)(x). So
Im f is a subspace of W which is G-stable, and hence it is a subrepresentation. But
again, as the representations where assumed to be irreducible, this must be Im f = 0
or Im f = V. The first one cannot be true as we assumed f nonzero, hence Im f = W
and it is surjective.

(2) If V = W and f : V → V is G-linear and V is a vector space over an algebraically
closed field (we can assume C, as the rest of the chapter is done over C), there exists
an eigenvalue λ ∈ C∗. Let f ′ = f − λId and x be an eigenvector of eigenvalue λ.
Then f ′(x) = 0. We can also see that f ′ is trivially G-linear. Then, as before, Ker f ′

is G-stable, because

f ′(ρV(g)(x)) = ρV(g)( f ′(x)) = ρV(g)(0) = 0 =⇒ ρV(g)(x) ∈ Ker f ′

and hence Ker f ′ is a subrepresentation. As V is irreducible, Ker f ′ = 0 or V, but
cannot be zero, as x ∈ Ker f ′ and we know x ̸= 0 because it is the eigenvector of an
existing eigenvalue λ ∈ C∗. Hence, Ker f ′ = V being then f ′ = 0, i.e., f = λId.

Corollary 4.1.7. If φ : G → GLn(C) is an irreducible matrix representation and A is an n× n
matrix commuting with φ(g) for all g ∈ G, then A is a scalar matrix, i.e., A = λI, with λ ∈ C∗

and I is the identity n× n matrix.

Proof. Using Schur’s Lemma 4.1.6 part (2) it is very easy. As A can be seen as the matrix
representation of a G-linear form of a C-vector space V, i.e., f : V → V with matrix
A, then this f must be f = λId and hence the matrix is also a scalar matrix. It cannot
be zero matrix, because we know λ ∈ C∗ for V being a nonzero G-linear vector space
over C, an algebraically closed field, and hence the existence of nontrivial eigenvalues is
proved.

Proposition 4.1.8. Define the complex valued functions ωi on {K1, . . . ,Kr} for each i by

ωi(Kj) =
|Kj|χi(g)

χi(1)

where g is any element of Kj. Then ωi(Kj) is an algebraic integer for all i and j.

Proof. This proof is quite hard so I will do it step by step. First we prove that if I is the
identity matrix, then

∑
g∈Kj

φi(g) = ωi(Kj)I (4.1)

Then, if aijs is the number of ordered pairs gi, gj, with gi ∈ Ki and gj ∈ Kj and gigj = 0,
we will prove that for all i, j, t ∈ {1, . . . , r}

ωt(Ki)ωt(Kj) =
r

∑
s=1

aijsωt(Ks). (4.2)
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Finally we will see that this last equality implies that the subring of Z generated by Z

and ωt(K1), . . . , ωt(Kr) is a finitely generated Z-module for each t ∈ {1, . . . , r} and this
will imply the result, using proposition 4.1.3.

1. As we saw in the previous chapter, each x ∈ G acting by conjugation permutes
the elements of Kj, and so ∑g∈Kj

φi(g) commutes with φi(g) for all g. By Schur’s
Lemma 4.1.7 we have then that ∑g∈Kj

φi(g) = αI for some α ∈ C. It remains to
show that α = ωi(Kj). But

tr ∑
g∈Kj

φi(g) = ∑
g∈Kj

trφi(g) = ∑
g∈Kj

χi(g) = |Kj|χi(g),

thus αχi(1) = tr ∑g∈Kj
φi(g) = |Kj|χi(g) as needed.

2. Let g be a fixed element of Ks and let aijs be the number of ordered pairs gi, gj such
that gi ∈ Ki, gj ∈ Kj and gigj = g. Notice that aijs is an integer. It is independent of
the choice of g in Ks because if x−1gx is a conjugacy of g, then every ordered pair
gi, gj whose product is g gives rise to another ordered pair x−1gix, x−1gjx whose
product is x−1gx and vice versa.

Now we prove (4.2). To see this, note that by 4.1 we have that, adding I matrix in
each term of the left hand side of 4.2, we get

ωt(Ki)Iωt(Kj)I

and applying 4.1 we get then

=

 ∑
g∈Ki

φt(g)

 ∑
g∈Kj

φt(g)

 = ∑
gi∈Ki

∑
gj∈Kj

φt(gigj)

by multiplicativity of φ and doing some distributive. Now, taking into account aijs

is the number of combinations gi, gj such that gigj = g, we get that

=
r

∑
s=1

∑
g∈Ks

aijs φt(g) =
r

∑
s=1

aijs ∑
g∈Ks

φt(g) =
r

∑
s=1

aijsωt(Ks)I

where I applied the fact that aijs is independent of g ∈ Ks and in the last equality I
applied 4.1. Then we got an equality of scalar matrices, so we compare its entries
and we get then the equality 4.2.

3. Now we want to see that Z[ωt(Ki)] is a finitely generated Z-module. To see
this, we will see that the set generated by Z and ωt(K1), . . . , ωt(Kr) is a finitely
generated Z-module as follows:

If we take any element x of Z[ωt(K1), . . . , ωt(Kr)] we want to see that this element
is indeed a linear combination of the elements ωt(Ki). But it is, because of the
equality 4.2, any product of ωt(Ki)ωt(Kj) gives a linear combination of elements
of this type. So we have that the subring of C generated by Z and ωt(Ki), for
i = 1, . . . , r, generate a finitely generated Z-module, and as Z is a Principal Ideal
Domain, Z[ωt(Ki)] is also a finitely generated Z-module, for all i = 1, . . . , r.
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Then, by proposition 4.1.3 we have that ωt(Ki) is an algebraic integer, as we wanted.

Corollary 4.1.9. The degree of each complex irreducible representations of a finite group G
divides the order of G, i.e., χi(1) | |G| for i = 1, . . . , r.

Proof. Under the notation of the previous proposition 4.1.8 and with gj ∈ Kj we have,
where (ψ1, ψ2) was the hermitian product defined previously,

|G|
χi(1)

=
|G|

χi(1)
gcd(χi, χi) =

r

∑
j=1

|Kj|χi(gj)χi(gj)

χi(1)
=

r

∑
j=1

ωi(Kj)χi(gj).

where I am using that (χi, χi) = 1 and the definition of the hermitian product we defined
previously. The right hand side of this equality is an algebraic integer and the left hand
side is obviously a rational number, hence is an integer. This completes the proof.

The next two lemmas are the final results needed to complete the proof of Burnside’s
Theorem.

Lemma 4.1.10. Let G any group and K a conjugacy class and φ an irreducible representation
with character ψ such that gcd(|K, χ(1)) = 1. Then, for g ∈ K either χ(g) = 0 of φ(g) is a
scalar matrix.

Proof. By hypothesis and Bézout’s Identity, there exists λ, µ ∈ Z such that

λ|K|+ µχ(1) = 1

Multiplying every side by χ(g) we get

λ|K|χ(g) + µχ(1)χ(g) = χ(g)

and now dividing by χ(1) we get

λ
|K|χ(g)

χ(1)
+ µχ(g) =

χ(g)
χ(1)

By corollary 4.1.4 χ(g) is an algebraic integer, and by proposition 4.1.8 |K|χ(g)
χ(1) is also an

algebraic integer. Hence, χ(g)
χ(1) is a linear combination of algebraic integers, i.e., it is an

algebraic integer.
Let a1 = χ(g)

χ(1) and let a2, . . . , an be its conjugates in Q, i.e., the other roots of the
minimal polynomial of a1 over Q. We know by 3.2.5 that χ(g) is a sum of roots of 1,
then a1 will be the sum of χ(1) roots of 1 divided by χ(1), i.e., χ(g) = ξ1 + · · · + ξn,
where ξi is a root of 1 over C, then

a1 =
χ(g)
χ(1)

=
ξ1 + · · ·+ ξn

χ(1)

and computing the complex absolute value we get

|a1| =
∣∣∣∣∣χ(g)
χ(1)

∣∣∣∣∣ = |ξ1 + · · ·+ ξn|
|χ(1)| ≤ |ξ1|+ · · ·+ |ξn|

n
= 1
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so ∀i, |ai| ≤ 1. Now define

b :=
n

∏
i=1

ai ∈ Q

and we see that b is an algebraic integer. Indeed, as the minimal polynomial of a1 is

(x− a1)(x− a2) · · · (x− an) =
n

∏
i=1

ai + b1x + b2x2 + · · ·+ bnxn

where bi are the coefficients (integers) but we are not interested in them. The constant
term is exactly b, so b is the product of algebraic integers and by a result regarding
algebraic integers, we obtain that b is an algebraic integer. Even more, as the polynomial
described above is the minimal polynomial over Q of a1, but we know a1 is an algebraic
integer, is then the minimal polynomial of a1 over Z, hence all the coefficients are integer,
and in particular b ∈ Z.

Then, taking modules we get

|b| =
n

∏
i=1
|ai| ≤ 1

and as b ∈ Z, we obtain b = 0 or b = 1. If b = 0 then there must be some i ∈ {1, . . . , n}
such that ai = 0. Let without loss of generality, a1 = 0. Then χ(g) = 0, which was one
option of the lemma. Take for instance b = 1. Then it must be |ai| = 1 for all i and hence
|χ(g)| = |χ(1)| = χ(1).

Let φ1 be a matrix representation equivalent to φ in which is a diagonal matrix (by
doing some translation). Then it is like

φ1(g) =


ϵ1 0 · · · 0
0 ϵ2 · · · 0
...

...
. . .

...
0 0 · · · ϵn


thus χ(g) = ϵ1 + ϵ2 + · · ·+ ϵn. By triangle inequality, if ϵi ̸= ϵj we get |χ(g)| = |ϵ1 +

· · ·+ ϵn| < n = χ(1). But we had equality, so it must be ϵi = ϵ for all i = 1, . . . , n and
hence φ1 = ϵI is a scalar matrix. Since scalar matrices are similar only to themselves, it
must be φ(g) = φ1(g) = ϵI as well. Then this gives the other option of the lemma, and
completes the proof.

Lemma 4.1.11. If |K| is a power of a prime for some non identity conjugacy class K of G, then
G is not a non-abelian simple group.

Proof. Suppose that G is a non-abelian simple group. Let |K| = pc where p is prime and
c ∈ Z≥0. Then take g ∈ K. If c = 0 then we would have K = {g} and if g ̸= 1 (as K
is not the identity class by hypothesis) this means that for every x ∈ G, xgx−1 = g, i.e.,
g ∈ Z(G) having center not trivial. But we have that always Z(G) ◁ G contradicting
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that G is simple and not abelian (if it was abelian then Z(G) = G and this would not
contradict simplicity). Then, for the rest of the proof we will consider c ̸= 0.

Let χ1, . . . , χr be all the irreducible characters of G, with χ1 the principal character
(i.e., χ1(g) = 1 for all g ∈ G) and let ρ be the regular character of G1. Then, we de-
compose the regular character with the decomposition given by the First Orthogonality
Relation Theorem 3.2.7 and we get

ρ(g) =
r

∑
i=1

(ρ(g), χi(g))χi(g)

but the computation of the hermitian product goes as follows:

(ρ, χi) =
1
|G| ∑

g∈G
ρ(g)χi(g) =

1
|G|ρ(1)χi(1) = χi(1)

for all i, because ρ(g) = 0 for all g ̸= 1 and ρ(1) = |G|. Also because χi(1) is the degree
of χi, i.e. it is an integer and its complex conjugate is itself. Then the decomposition
follows

ρ(g) =
r

∑
i=1

χi(1)χi(g) = 1 +
r

∑
i=2

χi(1)χi(g)

as χ1(g) = 1 for all g ∈ G. Also, if we suppose g ̸= 1 we know ρ(g) = 0, hence

1 +
r

∑
i=2

χi(1)χi(g) = 0 (4.3)

Now, if p | χj(1) for all j > 1 with χj(g) ̸= 0, then we write χj(1) = pdj. In this case,
the equality in 4.3 becomes

1 + p
r

∑
j=2

djχj(g)

hence ∑r
j=2 = − 1

p is an algebraic integer because it is a linear combination of characters
(whose are algebraic integers by 4.1.4). But this is a contradiction, as we know that Z is
integrally closed over Q. This proves there must exist some j such that p does not divide
χj(1) and χj(g) ̸= 0. Then take φ the representation whose character is χj, then φ is
faithful (because G is simple by hypothesis) and, by lemma 4.1.10, as gcd(pc, χj(1)) = 1,
we get that φ(g) is a scalar matrix. A scalar matrix always commutes with all matrices,
hence φ(g) ∈ Z(φ(G)) and this forces g ∈ Z(G) contradicting again the simplicity of
G. So either way we get a contradiction and this completes the proof.

1Recall that the regular character of a group was the character of the regular representation of G. That is,
take k[G] as a k[G]-module and take a basis of this module formed by the elements of G, e.g., {g1, . . . , gn}.
Then for every g ∈ G, the action is defined as a permutation of the element in G, for example: ggi = gj and
then the matrix representation of g has 1 in row i and column j if ggj = gi and zero in all the other entries.
Hence, the only element g ∈ G such that the diagonal has a nonzero element will be g = 1, as ggi = gi if
and only if g = 1 in this representation. This way the principal character is defined as follows:

ρ(g) =

{
1 if g = 1
0 otherwise
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We are now prepared to complete the proof of Burnside’s Theorem. I will state again
the theorem and write the proof below.

Theorem 4.1.12 (Burnside). For p and q primes, every group of order paqb is solvable.

Proof. Let G be a group of order paqb for some primes p and q. We first discard some
more trivial cases.

If p = q, or if either exponent is zero, then G is nilpotent hence solvable. Then let’s
assume this is not the case, i.e. p ̸= q and a, b > 0.

Suppose p, q, a, b be the minimum possible such that G is not solvable (i.e., for lower
p, q, a, b combinations suppose G is solvable and the we do some kind of induction). If
G has a proper non trivial normal subgroup N, then both N and G/N are solvable, and
then G is solvable (due to the proposition 1.1.7), so this is another trivial case. Thus we
may assume G is a non-abelian simple group.

Suppose G is a non-abelian simple group and let P be a p-Sylow subgroup of G.
Then, there exists g ∈ Z(g), g ̸= 1, by consequences of Sylow groups we saw on the
courses of the degree. Since P is a subgroup of CG(g), the centralizer of g, then the
order of conjugacy class of g which equals to [G : CG(g)] is prime to p. As it must
divide the order of |G| = paqb it must hence divide q, i.e., it is a power of q. But then we
get a nontrivial conjugacy class K (the conjugacy class of g) whose order is a power of
prime and hence we violate lemma 4.1.11. Hence, G must be solvable.



Conclusions

In this project, we have worked through group representations and character theory
to reach the Burnside’s Theorem proof like Burnside himself stated. Firstly, we have
studied in depth some properties of solvable groups, illustrating how the solvability is
an important property for a group. As an example, we have seen that the extension
problem could be solved easier if the group is solvable. We have also worked on new
concepts such as the commutator and derived series, and we have learnt a new approach
to the concept of solvable groups.

Moreover, we have dealt with the basics of representation theory. It has been estab-
lished the definition of linear representation of a finite group G over a k-vector space and
we have proven some properties, for instance the bijective correspondence with modules
over the ring k[G]. This last property has given us the ability to work with modules and
obtain the equivalent results for representations. Since modules were treated in cur-
ricular courses, it has made easier the study. On the other hand, we addressed some
important results such as Maschke’s Theorem 2.4.1 and Wedderburn Theorem 2.5.1, to-
gether with some implications. These statements are not trivial, and thereby we had
to deal with non-commutative ring theory, as well as specific facts of module theory.
This is the part in which I struggled the most, given that lots of concepts were new and
complex.

Furthermore, essential concepts of character theory have been studied and orthogo-
nality relations between characters lead us to prove the First Orthogonality Relation for
Characters 3.2.7 which has resulted key for our main proof of Burnside’s Theorem. In
addition, we have seen some examples of character computation in character tables to
illustrate how characters work and how to compute them.

Finally, we have worked through the proof of the main matter. Nevertheless some
previous results were needed in order to get into some complicated concepts such as
algebraic integers and the well-known Schur’s Lemma 4.1.6.

The implementation of this work has enriched my capacities of academic mathemat-
ical research as I have been working with many references, some of them even primary
references. I learnt to use the well-known data basis of AMS and EMS and also to look
through a large amount of algebra books. It has not only given me the knowledge about
all these matters, but it has also provided me new skills for creating a project of this
dimension, working in complicated LATEX projects and managing bibliography.
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