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Abstract
The manufacturing domain is regarded as one of the most important engineering areas. Recently, smart manufacturing merges
the use of sensors, intelligent controls, and software to manage each stage in the manufacturing lifecycle. Additionally, the
increasing use of point clouds to model real products and machining tools in a virtual space facilitates the more accurate
monitoring of the end-to-end production lifecycle. Thus, the conjunction of both, intelligent methods and more accurate
3D models allows the prediction of uncertainties and anomalies in the manufacturing process as well as reduces the final
production costs. However, the high complexity of the geometrical structures defined by point clouds and the high accuracy
required by the Quality Assurance/Quality control parameters during the process, pave the way for continuous improvements
in smart manufacturing methods. This paper addresses a comprehensive analysis of machining tool identification utilizing
temporal point cloud data. Specifically, we deal with the identification of machining tools from temporal 3D point clouds. To
do that, we propose a process to construct and train intelligent models utilizing such data. Moreover, in our case study, we
provide the research community with two labeled temporal 3D point cloud datasets, and we experiment with the pioneering
PointNet neural network and three of its variants demonstrating an accuracy of 95% in the identification of the utilized
machining tools in a machining process. Finally, we provide a prototype end-to-end intelligent system of machining tool
identification.

Keywords Deep learning · Point clouds ·Manufacturing · Identification · Intelligent systems

Introduction

Manufacturing is considered one of the most important
engineering domains and one of the pillars of the indus-
try (Lasi et al., 2014). Manufacturing intelligence is a key
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concept in the modernization of the industry and plays a
significant role in Industry 4.0 (Zhong et al., 2017). In
the context of Industry 4.0, innovative and pioneer compa-
nies should incorporate autonomous, smart, sustainable, and
resource-efficient manufacturing operations (Ghobakhloo,
2020), leading to operational cost reduction and improve-
ment in machining efficiency.

Specifically, the application of machine learning and
deep learning algorithms in manufacturing favors complex
manufacturing tasks (Harding et al., 2006). However, the
geometrical complexity of the data to be analyzed follow-
ing the high demand for Quality Assurance/Quality control
(QA/QC) parameters is still a tough and difficult challenge
(Bia and Wang, 2010; Altıparmak et al., 2021).

In this regard, recently in 3D data analysis, point clouds
have become one of the most utilized data types. A point
cloud is a collection of data that consists of a large number
of points and represents a 3D object. Point clouds are nor-
mally represented with the x , y, and z coordinates for each
point, although more information may be included such as
color intensity or the surface normals of the geometric surface
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(Wang et al., 2020). Point cloud usage is growing in numer-
ous disciplines, including manufacturing, since additional
acquisition technologies, such as LIDARs1 or 3D scanners,
become accessible (Liang et al., 2021). The acquisition of 3D
point cloud data from the aforementioned sensing technolo-
gies has great advantages over conventional measurement
methods, such as the considerably greater measurement rate
and better measurement accuracy (Wang et al., 2020).

However, the lack of specific structure and order in point
cloud data, as well as the significantly redundant and incon-
sistent sample densities, makes it challenging to analyze
(Nguyen and Le, 2013). Point clouds are characterized by
their unstructured and irregular nature; thus, computational
problems are frequently encountered (Guo et al., 2021). Even
more, in the manufacturing process, point clouds with high
point density are crucial to guarantee theQA/QC parameters.
Besides, manufacturing is a dynamic process that produces
data at different times generating temporal 3D point clouds
(Hou et al., 2016). Therefore, in addition to the spatial dimen-
sion, we have also temporality. Depending on the time step,
a workpiece in the manufacturing process will be geometri-
cally less ormore formed to the final product shape. In similar
spatio-temporal intelligent processes, such as autonomous
driving, machine, and deep learning algorithms use a wide
assortment of data as input to achieve a somehow all-around
intelligence (Zhang et al., 2022). Observing the success of
such methods in autonomous driving, it is of utmost impor-
tance to assure that certain of those methods can also be
applied in specificmanufacturing tasks, such as the automatic
identification of properties in machining processes, utilizing
this challenging data type, i.e. 3D point clouds (Ma et al.,
2019).

To address these issues, in this paper, we study the appli-
cation of intelligent techniques in manufacturing utilizing
temporal 3D point clouds. Specifically, our contribution is
three-fold. First, we propose a novel process and develop
guidelines for the task of identification of machining tools
while having in possession temporal 3D point cloud data
of a workpiece in progress. Additionally, as a second con-
tribution, we provide to the research community two novel
3D point cloud datasets. Finally, we propose an end-to-end
intelligent system for machining tool identification using the
PointNet (Qi et al., 2017a) neural network. For clarification,
in this initial study, even though our data consist of sequences
of 3D point clouds, our modeling is based on single instance
identification. Thus, we do not fully exploit the temporality
of the provided datasets.

The paper is organized as follows. Section2 portrays an
overview of relevant studies and shows certain open chal-
lenges in 3D point cloud manufacturing in both industry
and academic research. Section3 displays the research and

1 Light Imaging, Detection, And Ranging.

development of an intelligent machining tool identification
framework and Sect. 4 describes our experiments and results.
Finally, Sect. 6 summarizes our concluding remarks and pro-
vides future research lines.

Related work

Deep learning enables sophisticated analytics capabilities for
analyzing large amounts of manufacturing data. A detailed
assessment of frequently used deep learning algorithms is
presented in (Wang et al., 2018). Also, deep learning is uti-
lized to provide intelligence in specialized manufacturing
processes, such as defects detection in products (Yang et al.,
2020), fault diagnosis inmotors (Shao et al., 2017), manufac-
turing cost estimation or part machining feature recognition
(Ning et al., 2020).

Furthermore, nowadays, specialized research exists on
tool monitoring (Nasir and Sassani, 2021). Specifically,
researchers apply deep learning techniques to analyze the
wear of a tool in high-speed (Zheng and Lin, 2019) while
others apply more sophisticated physics-guided intelligent
techniques to model the tool’s life (Karandikar et al., 2021).
Also, Liu et al. (2020) develop an intelligent prognostic
framework for remaining useful life prediction of machining
tools under variable conditions improving the health assess-
ment of machining tools by utilizing not only data from
multiple sensors but also the spindle load.

Besides, in recent times, the conjunction of deep learn-
ing and computer vision methods draws a lot of attention.
For instance, researchers focus on downstream tasks utilizing
image data, such as feature points recognition of the machin-
ing tool path (Hu et al., 2022). Sequential pattern analysis and
image processing are also employed. Others use time series
of image data (frames) paired with Recurrent Neural Net-
works (RNNs) and Convolutional Neural Networks (CNNs)
in a welding case study (Wang et al., 2021). Finally, a 3D
vision system based on image data is developed to identify
tool insert specifications, such as insert angles and cutting
edge lengths (Ping et al., 2018). All these processes described
above produce enormous amounts of data, ranging from time
series to 3D shapes (Wang et al., 2018, 2021).

The analysis of 3D shapes in the manufacturing domain is
mostly focused on using 3D CAD models instead of images
because this type of data carries implicit accurate geomet-
rical information. However, format translation from CAD
files is essential because they cannot directly deliver vol-
umetric information to a deep learning model (Peddireddy
et al., 2020). Also, there are fewer studies, such as (Feng
et al., 2019), that use mesh processing directly. However,
meshes contain certain complexity and irregularity, and, thus,
the majority of the current research on manufacturing uses
mainly 3D point clouds and voxel-based data as inputs. It is
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worth mentioning that Cao et al. (2020) proposed a graph
representation of 3D CAD models, which is more efficient
than voxels for deep learning algorithms.

Point cloud data appear in today’s literature in studies that
deal with additive manufacturing, i.e. 3D printing guidance
(Ye et al., 2020), or automated bridge component recognition,
i.e. damage observation in the bridges’ maintenance (Kim et
al., 2020), among others. Also, Ma et al. (2019) use 3D point
cloud data of part models with point-based neural networks
and CNNs to provide automatic recognition of machining
features, such as ring slot, triangular passage, etc. Recently,
3D point clouds are also utilized as input to develop efficient
and effective detection of surface defects for remanufacturing
(He et al., 2022).

However, complex analysis in manufacturing operations
using point clouds implies certain challenges, which mainly
belong to the heavy industry (Kumar et al., 2018;Moon et al.,
2019). Machining manufacturing thrives for complex mod-
eling in its operations due to the need for high-performance
computations, which are resource hungry and as a result,
their efficiency is more than a need (He et al., 2012).Machin-
ing is the removal of material from a workpiece in order to
bring it into the desired shape. To perform machining oper-
ations on the workpiece a variety of specialized tools are
used, such as drilling, milling, and turning tools. Initially,
the workpiece is usually a piece of raw material or an exist-
ing product, and the machine setup is dictated by the type of
material and the amount of material to be removed. During
this process, machine tool accessories, precision measure-
ment equipment, and advanced mathematical methods are
utilized to ensure and guarantee optimal machining results
(Ehmann et al., 1997).

Monitoring a workpiece in progress during a machining
task is not a new concept and it aims to enhance the agility in
manufacturing (Sun and Jiang, 2008). In complex machining
tasks, such as turn-milling, the classification of the machin-
ing tools and their properties by understanding the impact
of cutting angles and forces is critical. In such machining
scenarios, the identification of the optimal tool and its pos-
ture could lead to high-efficiency machining and improve
the life of the tools. During a machining process, Utsumi et
al. (2020) model time series of cutting forces to produce a
final point cloud of a workpiece. They represent a workpiece
with a point cloud, with any points that interfere with the
tool volume being eliminated when the tool edge passes over
the workpiece’s surface, i.e. the swept volume. Besides, fore-
casting the swept volume of a workpiece during a machining
process can be a key aid in diminishing the tool wear and
making the necessary tool change during the machining pro-
cess.Wiederkehr et al. (2018) developed stochasticmodeling
of tool wear in a grinding simulation utilizing point clouds of
the swept volume. Finally, the analysis and prediction of the
3D surface topography of a workpiece in progress and its 3D

shape evolution are considered a need in auto, aviation, and
other industries that have high-performance requirements.
However, in prediction tasks that involve five-axis machine
tool processing, the process ofmachining becomeswaymore
challenging due to the time-varying tool locations and orien-
tations (Wang et al., 2020).

The main source of challenges and issues in the research
of point clouds is the dimensionality of the data and espe-
cially the number of points contained in a point cloud. The
data analysis and theways to pre-process them require certain
high computational power and expertise. The majority of the
point-based neural network architectures, such as PointNet
(Qi et al., 2017a), PointNet++ (Qi et al., 2017b), RSConv
(Liu et al., 2019), PointMLP (Ma et al., 2022) operate in
most cases with small in size point clouds, i.e. the number of
points in each point cloud are normally 1024, 2048 or 4096.
However, in real machining scenarios and even machining
simulations, the extracted point clouds contain thousands or
millions of points. Therefore, there are two ways of analyz-
ing such data: (i) suitable oversampling or undersampling
techniques should be considered depending on the size of
extracted simulated data, and/or (ii) the input size scalability
of the applied neural networks should be enhanced. Indeed,
sampling and representation learning on 3D point clouds are
challenging because of the irregular and unstructured nature
of such data.

In summary, according to our analysis of the existing lit-
erature, we have identified certain needs and challenges of
the current research on the intersection of temporal 3D point
clouds extracted through machining processes and the mod-
eling of them with deep learning algorithms. This fact leads
us to perform a series of analysis tasks, provide meaning-
ful insights and develop an end-to-end intelligent system
in this field. There is a gap in tool identification methods
and especially when working with temporal point clouds,
i.e. point clouds extracted in time intervals with uniform or
non-uniform sampling forming a sequence of temporal 3D
point clouds.While the majority of the studies in the domain,
focus on side data of the workpiece or the machining tool,
such as cutting forces or other properties, to later form a final
point cloud through modeling Utsumi et al. (2020), we focus
directly on the point clouds of the workpiece and tools. We
aim to provide end-to-end intelligence in such machining
scenarios emphasizing the point clouds sampled through the
whole machining process in different time steps.

The study of Ping et al. (2018) is somehow related to our
study. However, they provide a solution to the problem of
misplacement of tool inserts in machining tools with turning
capability. Their proposed framework is able to identify insert
angles, cutting edge lengths, and nose radii utilizing image
data and not on 3D point clouds. Instead, we utilize 3D point
clouds of the surface of an in-machining process workpiece
and identify the tool that was utilized to machine its surface.
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Our work provides novelty in the analysis of manufacturing-
related 3D point clouds. Machining tool identification may
lead to the reverse engineering of workpieces. Additionally,
incorporating a tool identification model into a machining
decision support system may provide extra insights to avoid
defects or resource waste due to non-optimal tool selection.

At the time of writing, there are no exact relative studies or
well-known frameworks able to provide concrete end-to-end
results and insights in the task of tool identification based on
temporal 3D point cloud data of a workpiece in progress.
Finally, the forecasting of the shape of the workpiece in
progress and the swept volume during the machining process
are two open issues of utmost importance for the manufac-
turing industry.

Case study: machining tool identification

This section details the designed machining tool identi-
fication case study. First, Sect. 3.1 defines the problem.
Second, Sect. 3.2 details the overall process of machining
tool identification. Third, Sect. 3.3 describes the complete
data preparation and pre-processing steps to construct tem-
poral 3D point clouds from a workpiece in progress. Fourth,
Sect. 3.4 defines the modeling process, where the goal is
to effectively classify the input 3D point clouds to identify
the most utilized machining tool that shaped the workpiece.
Finally, Sect. 3.5 shows the final intelligent system to identify
machining tools.

Problem statement

Normally, the machining process starts with a workpiece of
raw material in which different tools can be used to achieve
the final product shape. In Fig. 1,we illustrate examples of the
machining process of a raw material utilizing two different
tools. In our case, we assume that all the present elements in
a machining process, i.e. workpiece and machining tools, are
modeled through a sampling process with 3D point clouds
at different steps in time, resulting in temporal point clouds.
In Eqs. 1 and 2, we formulate a point cloud and a series of
temporal point clouds per machining tool respectively. Also,
the total number of temporal point clouds per machining tool
is formulated and explained in Eq.3.

pctooli =
{
k1, . . . , knpoints

}
(1)

where pctooli denotes a point cloud of a workpiece shaped
by a machining tool, tooli , and k1, . . . , knpoints represent the
points contained in it, with npoints showing the maximum
number of points.

Fig. 1 Amachining process of aworkpiece using two differentmachin-
ing tools (The figures were downloaded from https://www.grainger.
com/category/machining. No copyright infringement intended)

ptooli =
T⋃
t=0

pctoolit =
{
pctooli0 , . . . , pctooliT

}
(2)

where ptooli denotes a series of temporal point clouds
(i.e. multiple temporal pctooli ) of a workpiece utilizing the
machining tool, tooli . The union

⋃T
t=0 includes all the point

clouds from the time step t = 0 to t = T . The T denotes the
final time step of sampling.

P =
n⋃

i=1

ptooli =
{
ptool1, . . . , ptooln

}
(3)

where P shows the total number of temporal point clouds
obtained by utilizing all the availablemachining tools (n) and
it represents the complete dataset. The union

⋃n
i=1 includes

all the temporal point clouds that belong to each tool ranging
from the tool1 to tooln .

For completion, we also show three examples of temporal
point clouds of a workpiece in progress in Fig. 2. Then, given
a product (workpiece), the aim is to identify the machining
tool with which it has been created. For this purpose, we
utilize as input in our intelligent process these temporal point
clouds of the workpiece, capturing all the machining process
evolution, from the first step to the final product workpiece.

Overall process

In this section, we describe the overall process of machin-
ing tool identification utilizing point clouds. An abstract
overview of the development of an intelligent framework
to identify machining tools is portrayed in Fig. 3. Actually,
the knowledge in the intelligent system, depicted in Fig. 3,
is provided by a model that is trained in a set of temporal
workpieces resulting from different machining tools. In the
first stage, namely data preparation and pre-processing, a set
of temporal point clouds of the workpiece shapedwith differ-
ent tools is built. These temporal workpieces are categorized
according to the machining tool that is used to remove raw
material during the shaping process into the desired form. In
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Fig. 2 Temporal point clouds of the workpiece in progress. In this
example, we show the application of tool 4 in three different time steps,
t = 0, t = 150, t = 300 (from left to right) illustrating the pctool40 ,

pctool4150 , pctool4300 respectively. Please note that each point cloud has 1024

points, i.e. pctool4 =
{
p1, . . . , p1024

}

Fig. 3 Process of the intelligent tool identification framework

the learning process, a deep learning model is trained to clas-
sify a temporalworkpiece according to n different tool labels,
where n denotes the number of available tools. Afterward,
this trained model will be used by the intelligent system to
classify unknown temporal workpieces, predicting with cer-
tain accuracy the machining tool that shaped the workpiece.
It should be noted that, initially, we extract temporal 3D point
clouds during a machining process of a workpiece with sev-
eral tools. Then, the temporal point clouds of a workpiece
are categorized and labeled according to the machining tool
that was used during shaping.

Data preparation and pre-processing

In our study, we acquire data through machining simula-
tion software, which uses an implicit surface representation
during geometric modeling. Then, in order to extract tempo-

ral 3D point clouds of the in-process workpiece geometry,
a scanline-based approach is used for point sampling of the
implicit surface representation, as displayed in Figs. 4 and 5.

Themachining process is illustrated in four steps in Fig. 4.
Steps (a), (b), and (c) refer to the machining simulation
and the actions that take place before the process of data
preparation. In the first step (a) we have the initial 3D mesh
workpiece. Thenwe apply amachining tool, where the swept
volume of a moving machining tool is depicted in yellow in
(b) and we observe the material removal on the resulting
workpiece in step (c). Finally, in step (d) we show the cur-
rent tool engagement, where we apply a sampling process
in the exact region in which the machining tool removed the
material of the workpiece. Indeed, the data preparation of our
proposal takes place in step (d).

Once we obtain the region to be rasterized (Fig. 4 (d)),
we proceed with the next process. Initially, three scanline
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Fig. 4 Illustration of machining
process and 3D point cloud
sampling

Fig. 5 3D point cloud sampling

directions in a geometrical box are used to scan the x , y,
and z coordinated space. The scanlines are used to sample
the implicit surface representation of the current workpiece
geometry. Figure5 details the sampling process according to
which we acquired the 3D point clouds. To achieve a fixed
and predefined number of sampled points, a recursive subdi-
vision of scanlines using a breadth-first strategy is utilized.
The levels of scanlines denote the recursive subdivision. The
scanning process stops when the defined number of sampling
points is acquired. The scanning takes place in different time
steps during the machining process. It is worth noticing that,
the sampled points acquired during each scanning dimension
are merged together to form the final point cloud. Please note
that, during the whole process, we sample the entry points of
the implicit surface, or alternatively the first contact points,
in which a scanline is passing through.

Therefore, by following the above-mentioned sampling
process, we acquire two 3D point cloud datasets, taking into
account different scanning resolutions. The first one, called

16 Tools Small Dataset, consists of point cloud objects hav-
ing a fixed amount of sampled points (1024) in each point
cloud. It contains 324 sequential (in time) temporal point
cloud objects of theworkpiece in each tool labelwhile having
in total 16 different tools (n = 16). The total number of point
clouds in 16 Tools Small Dataset is 5184. The second dataset,
called 16 Tools Large Dataset, is obtained by adjusting the
sampling density of the sampling process, which similarly
to the 16 Tools Small Dataset consists of point cloud objects
having a fixed amount of sampled points (1024) in each point
cloud. However, in this case, the sampling process is done in
a smaller region of the workpiece point cloud, which corre-
sponds to a more compact geometrical sampling box. This
region of points corresponds to the exact contact area of con-
tact between the tool and the workpiece in progress, i.e. the
bounding box of the scanning is more compact and focuses
on a smaller region. This dataset contains 810 temporal point
cloud objects for each tool label while having in total 16 dif-
ferent tools. The total number of point clouds in 16 Tools
Large Dataset is 12960. In practice, the geometrical sam-
pling box in the creation of 16 Tools Small Dataset covers a
larger area of the implicit surface of the workpiece than the
one in 16 Tools Large Dataset. We summarize the details of
the two datasets in Table 1. Also, we portray example point
clouds obtained by applying different machining tools on the
workpiece in progress in Fig. 6.

For clarification purposes, we also calculate the maxi-
mum distance of each point from all the other points inside
a point cloud in each dataset using the generalization of the
Euclidean distance in 3D space. Thus, in 16 Tools Large
Dataset the maximum distance of a point from its neighbors
is approximately 1.77, while in 16 Tools Small Dataset it is
approximately 1.86, showing that the point clouds contained
in 16 Tools Small Dataset capture a larger area of the current
tool engagement with 1024 points, while the ones contained
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Table 1 Description of the two
introduced point cloud datasets

Dataset Sampled points Temporal objects per tool Total point clouds

16 Tools Small Dataset 1024 324 5184

16 Tools Large Dataset 1024 810 12960

in 16 Tools Large Dataset capture a smaller one with the
same number of points (1024).

Modelling

During the learning process, depicted in Fig. 3, we train intel-
ligent models to identify the tools that have been used in the
machining process utilizing the temporal point clouds that

we previously extracted from a workpiece, as explained in
Sect. 3.2. We analyze the task of tool identification with four
point-based deep learning models, the PointNet (Qi et al.,
2017a) and three variants of it. These point-based neural net-
works are based on the pioneering deep learning architecture,
PointNet. PointNet is a fundamental deep learning architec-
ture that enables the direct analysis of point cloud instances.
Also, we construct three variants of PointNet architecture in

Fig. 6 Point clouds obtained by the application of different tools on the workpiece in progress

Fig. 7 Point Net+1L Architecture. We have added a layer of (1024, 1024) on the PointNet’s classification head (Qi et al., 2017a)

Fig. 8 Point Netv1l Architecture. We have decreased the number of neurons per layer on PointNet’s (Qi et al., 2017a) architecture to 1/4, both in
the back-end feature extraction layers and classification head
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Fig. 9 Point Netv2l Architecture. We have decreased the number of neurons per layer on PointNet’s (Qi et al., 2017a) architecture to 1/4 in the
classification head while keeping the default backend feature extraction layers

order to exploit its full capabilities in identifying underlying
point cloud data relations and to create a baseline method for
machining tool identification using 3D point clouds.

We decided to fully exploit the capabilities of the well-
known point-based neural network architecture, PointNet, in
order to create a baseline for future analyses, by modifying it
in threeways: (i) extending its classification head by adding a
linear layer, (ii) simplifying it by reducing the number of neu-
rons in each layer in both backend feature extraction layers
and classification head layers, (iii) simplifying it by reducing
the number of neurons in each layer of the classification head
but keeping the default backend feature extraction layers.

Firstly, we increase the complexity and the number of
parameters in the default PointNet architecture in order to
identify highly complex relations between the point cloud
data. Thus, we experiment with the addition of a linear layer
with an input and output size equal to the length of the global
feature vector in PointNet architecture, i.e 1024. We name
Point Net+1L the neural network that includes this addi-
tional layer on top of PointNet and is depicted in Fig. 7. By
increasing the network’s complexity, we expect to observe
higher classification accuracy than the default architecture in
the presence of highly complex underlying relations in the
input point clouds.

Secondly, to reveal the effectiveness of a simpler neu-
ral network, we experiment with less complex PointNet
architectures having fewer parameters than the default one,
namely Point Netv1l and Point Netv2l . In Point Netv1l , we
decrease the neurons in each layer (both backend and clas-
sification head) to 1/4 compared to the default PointNet
architecture. In Point Netv2l , we decrease the neurons in
each layer of the classification head to 1/4 compared to the
default PointNet architecture and keep the default backend
feature extraction. Figures8 and 9 display Point Netv1l and
Point Netv2l respectively.

Fig. 10 Prototype intelligent system for tool identification. The input
point cloud and output classification label of the intelligent system are
examples

Final system

Finally, after the learning process, as shown in Fig. 3, an
intelligent system is constructed by selecting the best-trained
model. Figure10 shows an example run of the intelligent sys-
tem, wherewe have the input of a point cloud into the system.
Then, the system utilizes a pre-trained neural network model
to identify themachining tool that was used to shape the input
workpiece.

Experiments

We detail our experimental setup in Sect. 4.1, and discuss our
results in Sect. 4.2.

Experimental setup

Here, we describe our experimental investigation on the
development of an intelligent system capable of identifying
machining tools with the extracted temporal 3D point clouds
of a workpiece in progress.

Technically, we use Python 3.8.10, CUDA 10.2, and
Pytorch 1.8.1 version. Our system configuration includes an
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Intel Core i9-10900 paired with 32GB of RAM and a Quadro
RTX 5000 with 16 GB and the operating system is Ubuntu
20.04.

We utilize a standard protocol for training and testing the
neural network models. Regarding the training and testing
with the 16 Tools Small Dataset, we utilize 4672 temporal
point clouds of a workpiece for training and 512 for testing.
Concerning the training with 16 Tools Large Dataset, we
utilize 11661 temporal point clouds for training and 1295 for
testing. In both cases, 90%of the total point clouds is used for
training and 10% for testing. Also, to assess the variability
in our models we run the training of the models 4 times and
we report the standard deviation of the results.

Moreover, although our data collection consists of arti-
ficial/synthetic data, we train the selected neural networks
with certain data augmentation techniques in order to robus-
tify their performance. Specifically, during training,we apply
input noise in each point cloud, scaling, and random point
dropout. Additionally, we train all the networks for 200
epochs utilizing the Adam optimizer with exponential learn-
ing rate decay and an initial learning rate of 0.001. Finally,
we experiment with different batch size values (8, 16, 32, and
64).

Results

In this section, we show the results of our experiments in
Table 2 and describe them onwards. As detailed in Sect. 4.1,
we investigate different batch sizes for training the four neural
network models, PointNet, Point Net+1L , Point Netv1l and
Point Netv2l . Besides, we run the training process for each
model 4 times to estimate the models’ variability, and we
include themean learning curves, i.e. training and testing loss
and accuracy curves, in the Supplementary material. Please

recall that the models are trained with input noise in each
point cloud, scaling, and randompoint dropout,which clearly
enhances the generalizability of the models.

Also, as efficiency is a need in machining manufacturing
systems (He et al., 2012), we report the time for a single
instance inference (i.e. 1 × [1024, 3]) and the number of
parameters of each model in Table 3. Please note that mea-
suring inference time is closely related to the system setup,
which is described previously in Sect. 4.1.

It can be observed that in the 16 Tools Small Dataset, the
two best models are the ones that use fewer parameters, i.e.
themost efficient ones (Table 3). Point Netv2l achieves a high
classification accuracy of 0.77 with a batch size of 8. Also,
both Point Netv2l and the most efficient model Point Netv1l
achieve the second-best score of 0.68 with batch sizes equal
to 32 and 16 respectively. However, Point Netv2l has a lower
standard deviation in its best results, meaning that it has a
lower variability in its predictions.

On the other hand, in 16 Tools Large Dataset, we observe
that Point Netv2l using a batch size of 16 achieves the best
accuracy of 0.95, with a very low standard deviation of 0.01,
denoting that it has consistency in its best accuracy results
in the 4 training sessions. PointNet achieves the second-best
accuracy with a score of 0.84 with a batch size of 32. In
fact, in both datasets, large batch sizes do not achieve high
accuracy.

It should be noted that the accuracy scores of Point Netv1l
and Point Netv2l in both datasets, reveal two promisingmod-
els in terms of machining tool identification as the selected
model for a tool identification system should also be highly
efficient in its utilized resources. Point Netv1l has 0.17M
parameters while Point Netv2l has 2.94M. Also, their infer-
ence times are lower than the rest of the models.

Table 2 Model comparisons in
the test set of the two 16 Tools
datasets

Batch size PointNet Point Net+1L Point Netv1l Point Netv2l
acc std acc std acc std acc std

(a) 16 Tools Small Dataset

8 0.65 0.15 0.66 0.21 0.43 0.12 0.77 0.16

16 0.57 0.01 0.59 0.06 0.68 0.16 0.56 0.10

32 0.53 0.04 0.60 0.09 0.65 0.13 0.68 0.05

64 0.60 0.15 0.60 0.05 0.60 0.11 0.63 0.14

(b) 16 Tools Large Dataset

8 0.69 0.07 0.70 0.05 0.58 0.09 0.68 0.13

16 0.71 0.10 0.69 0.17 0.82 0.09 0.95 0.01

32 0.84 0.13 0.79 0.10 0.70 0.11 0.75 0.04

64 0.77 0.06 0.63 0.04 0.81 0.10 0.83 0.12

Table (a) corresponds to the 16 Tools Small Dataset, while Table (b) corresponds to the 16 Tools Large
Dataset. We show the mean of the best accuracy scores achieved in 4 training sessions, denoted as (acc), and
the standard deviation of the measurements, denoted as (std). Please note that we use bold and italic numbers
to denote the best and second-best scores
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Table 3 Time and space efficiency of the utilized neural networks
(NNs)

NN I n ftime (ms) #Par (M)

PointNet 1.51 3.47

Point Net+1L 1.58 4.52

Point Netv1l 1.39 0.17

Point Netv2l 1.48 2.94

We report the time of a single instance inference in GPU (I n ftime) in
milliseconds (ms), and the number of parameters of the models, #Par ,
in millions (M). Please note that our system setup is shown in Sect. 4.1

Consequently, due to its general high accuracy in both
datasets and its efficiency, Point Netv2l is utilized to serve as
a classifier of tools in our intelligent system for machining
tool identification, presented in Fig. 3. However, the model
selection could be changed according to the expert’s needs.

Limitations and discussion

Machining tool identification based on 3D point clouds of
a workpiece in-process could lead to reverse engineering
of a final product shape and reduce material waste due to
non-optimal tool selection. The purpose of this research is
to provide a baseline framework and a prototype end-to-end
intelligent system of machining tool identification based on
3D point cloud representation learning. Point-based neural
networks have shown great potential in a wide variety of
artificial and real datasets and successfully applied in other
domains (Guo et al., 2021). In this study, we develop our
framework with synthetic/artificial data due to non-publicly
available real data for such tasks. We are aware that in a
real machining environment the acquired 3D point cloud of
the area by a LIDAR scanner will be highly saturated from
noise and probably we will observe degraded accuracy per-
formance of the trained neural network. In this case, data
pre-processing is essential and should receive high attention.
Noise filtering, outlier removal, and context-aware sampling
methods should be employed prior to modeling. However, in
an attempt to handle such issues, we apply data augmenta-
tion during training. Specifically, as mentioned in Sect. 4.1,
we apply input noise in each point cloud, scaling, and random
point dropout. Augmenting the input data during training is
beneficial for a model to generalize better. It may strengthen
its robustness to noise, outlier points, and rigid transforma-
tions to achieve similar performance in a real scenario. In
the near future, we plan to utilize point-based neural net-
works to analyze 3D point clouds captured in the wild from
real laser sensors. Finally, even though our data consist of
sequences of 3D point clouds, our modeling is based on sin-
gle instance identification and thus,wedonot fully exploit the

temporality of the provided datasets. For this, a future work
direction of utmost importance is spatio-temporal forecast-
ing of multiple machining tools using sequences of temporal
3D point clouds of a workpiece. Also, as an extension, poten-
tial research directions imply forecasting the whole shape of
a workpiece in progress.

Conclusion

The analysis of point cloud data originating from manufac-
turing simulations implies certain challenges and research
opportunities. In this paper, we propose a novel process and
advance guidelines in the task of identification of machin-
ing tools while possessing temporal 3D point cloud data
of a workpiece in progress. In addition, we provide to
the research community two datasets, the 16 Tools Small
Dataset and 16 Tools Large Dataset, both of them con-
taining sequences of temporal 3D point clouds. The two
datasets can be found in this data repository: https://doi.org/
10.34810/data205. Finally, we propose a prototype intelli-
gent system for machining tool identification using PointNet
neural network, which is able to analyze the input 3D point
clouds of a workpiece in progress and identify the utilized
machining tool with high accuracy. Our research could be
a source of interest for industrial companies and research
institutes. The code associated with this study is available in
the following GitHub repository: https://github.com/thzou/
machining_tools_identification.
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