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The relation between the low-energy constants appearing in the effective field theory description of the
�N → NN transition potential and the parameters of the one-meson-exchange model previously developed is
obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture
by means of a comparison to the corresponding operational structures appearing in the effective approach.
The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange
is also discussed.
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I. INTRODUCTION

The use of effective field theory (EFT) approaches provides
a systematic way of handling nonperturbative strong interac-
tion physics. In particular, it is appealing for the description of
the short-distance physics of baryon-baryon interactions.

The EFT for the nonleptonic weak |�S| = 1�N interac-
tion, which is the main process responsible for the nonmesonic
decay of mostly all hypernuclei was formulated in Refs. [1]
and [2]. While the authors in [1] constructed the effective
theory by adding to the long-range one-pion-exchange mech-
anism (OPE) a four-fermion-point interaction, coming from
Lorentz four-vector currents, Ref. [2] added the K-exchange
mechanism (OKE) to the intermediate range of the interaction,
as well as additional operational structures to the short-range
part of the transition potential. These structures result when
all possible operators compatible with the symmetries fulfilled
by the weak |�S| = 1 �N interaction are considered. The
local operators governing short distance dynamics in any EFT
appear in the Lagrangian multiplied by low-energy constants
(LECs), which have to be determined by a fit to the available
experimental data. Although neither the amount nor the quality
of hypernuclear weak decay data is comparable with the
wealth of information available in the nonstrange sector,
these data are enough to fairly constrain the lowest-order
LECs. In order to provide a higher-order description of
the weak four-fermion interaction, and therefore, a deeper
understanding of the fundamental dynamics involved, more
and better data are needed, or in their absence, a mapping
to successful one-meson-exchange (OME) models can be
performed. Understanding these low-energy constants in terms
of physical ingredients of the OME models, as masses, strong
form factor parameters and couplings of pseudoscalar and
vector mesons to baryons, is called resonance saturation [3]
and it is the aim of this paper.
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The present work is partly motivated by the possible
presence of an isoscalar spin-independent central-transition
operator in the weak-decay mechanism, and its relevant role
in the prediction of some hypernuclear decay observables
[2,4,5]. This operational structure would map a scalar σ -meson
resonance in the traditional meson-exchange picture. The
fact that the σ does not belong to the ground-state meson
octet has prevented its inclusion in many OME treatments
of the weak transition amplitude. Some works, however,
have included the phenomenological exchange of a correlated
2-π (and/or 2-ρ pair) state coupled to a scalar-isoscalar
channel, understood as a σ resonance [6–9], and pointed out
its relevance to determine the strength of some particular
transition amplitudes. The publication of accurate data on
hypernuclear decay observables during the last five years,
makes it timely to revise the calculation of Ref. [2], and
explore the feasibility of the EFT approach to constrain the
weak baryon-baryon-sigma coupling constants.

To facilitate the reading of this paper, and although the
EFT formalism as well as the OME one were developed and
presented elsewhere, we choose to include here a schematic
overview of basics, together with the final relations governing
the weak dynamics according to each one of the approaches.

II. MESON EXCHANGE POTENTIAL

The � hyperon decays in free space through the nonleptonic
weak decay modes � → nπ0 and � → pπ−, with an approx-
imate ratio of 36:64. This mechanism is highly suppressed
in the nuclear medium, since the momentum of the nucleon
in the final state is not large enough to access unoccupied
states above the Fermi energy level. However, hypernuclear
systems decay, precisely due to the presence of surrounding
nucleons, by means of single-nucleon-induced, �1N = �N →
NN , and multinucleon-induced decay mechanisms. Recently,
the detection of two nucleons in coincidence in the final
state [10–12] has allowed a more reliable extraction not only
of the total nonmesonic decay rate, but also of the ratio
between the neutron-induced process (�n → nn) and the
proton-induced one (�p → np), �n/�p [13,14]. The analysis

024606-10556-2813/2011/84(2)/024606(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.024606
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of the data points out that, in order to isolate the physical region
where medium effects and multinucleon-induced processes
are minimal, one needs to study the energy and angular
correlated spectra for the particles detected in the final state,
instead of looking at the absolute values for the partial
and total decay rates. Additionally, experiments performed
with polarized hypernuclei provide us with a measure of the
asymmetry in the angular distribution of protons in the final
state, asymmetry that can be understood from the interference
between the parity-conserving (PC) and parity-violating (PV)
weak amplitudes. The explicit expressions for the different
decay rates, as well as the PV asymmetry, can be found in the
original reference [15].

Traditionally, and in analogy with the strong NN interac-
tion, the one-nucleon-induced decay mode, �N → NN , has
been described by a one-boson-exchange model, according to
which a pion emitted at the weak �N vertex is absorbed by
the NN pair at the strong one. While mesons other than the
pion would be forbidden for the decay of the � particle in
free space, there is no restriction for the off-shell exchange
of massive bosons. In the considered energy domain, one
needs to explicitly consider the exchange of the ground state of
pseudoscalar and vector meson octets. Higher energy physics
is parameterized through explicit cutoffs of ≈1 GeV. The
momentum space transition potential will be therefore given by
the nonrelativistic limit of the appropriate Feynman amplitude
depicted in Figs. 1(a) and 1(b).

Using the strong and weak Hamiltonians given explicitly in
Appendix A, the OPE potential reads:

Vπ (�q) = −GFm
2
π

g

2MS

(
Â + B̂

2MW

�σ1 �q
)

�σ2 �q
�q 2 + μ2

, (2.1)

where �q = �p1 − �p3 is the momentum carried by the pion
directed towards the strong vertex, g = gNNπ the strong
coupling constant for the NNπ vertex, μ the pion mass, MS

(MW ) the average of the baryon masses at the strong (weak)
vertex, and Â = Aπ �τ1 �τ2 and B̂ = Bπ �τ1 �τ2 the isospin operators
containing the weak parity-violating and parity-conserving
coupling constants.

The η and K exchanges, whose strong and weak vertices
are again explicitly given in Appendix A, can be obtained from
Eq. (2.1) by making the replacements

g → gNNη, μ → mη, Â → Aη, B̂ → Bη

FIG. 1. (Color online) (a) Nonstrange and (b) strange meson-
exchange contributions to the �N → NN weak transition potential.
A weak insertion is indicated by an empty square, while a filled square
stands for a strong interaction vertex.

in the case of the η exchange, and

g → g�NK, μ → mK,

Â →
(

CPV

K

2
+ DPV

K
+ CPV

K

2
�τ1 �τ2

)
, (2.2)

B̂ →
(

CPC

K

2
+ DPC

K
+ CPC

K

2
�τ1 �τ2

)
in the case of the K exchange.

The short-range one-meson exchange �N interaction is
supplemented by the inclusion of more massive bosons, up
to a mass of around 1 GeV, the ρ, ω, and K∗ mesons. For
the ρ meson, for example, the nonrelativistic reduction of the
pertinent Feynman amplitude, computed using the vertices of
Appendix A, gives the following transition potential:

Vρ(�q) =
[
F1α̂ − (α̂ + β̂)(F1 + F2)

4MSMW

(�σ1 × �q)(�σ2 × �q)

− i
ε̂(F1 + F2)

2MS

(�σ1 × �σ2)�q
]

GFm
2
π

�q 2 + μ2
, (2.3)

with μ = mρ , F1 = gV

NNρ
, F2 = gT

NNρ
and where the operators

α̂, β̂, and ε̂, defined by

α̂ = αρ �τ1 �τ2, β̂ = βρ �τ1 �τ2, ε̂ = ερ �τ1 �τ2,

contain the isospin structure in addition to the weak coupling
constants.

The nonrelativistic potential can be obtained from the
general expression given in Eq. (2.3) by making the following
replacements:

μ → mω, F1 → gV

NNω
, F2 → gT

NNω
,

(2.4)
α̂ → αω, β̂ → βω, ε̂ → εω

in the case of the ω exchange, and

μ → mK∗ , F1 → gV

�NK∗ , F2 → gT

�NK∗

α̂ → CPC,V

K∗

2
+ DPC,V

K∗ + CPC,V

K∗

2
�τ1 �τ2

(2.5)

β̂ → CPC,T

K∗

2
+ DPC,T

K∗ + CPC,T

K∗

2
�τ1 �τ2

ε̂ →
(

CPV

K∗

2
+ DPV

K∗ + CPV

K∗

2
�τ1 �τ2

)
for the exchange of a K∗ meson. Note that the K∗ weak
vertex has the same structure as the K one, the only difference
being the parity-conserving contribution, which has two terms,
related to the vector and tensor couplings.

Due to the lack of enough phase space to produce the desired
decay vertex, the baryon-baryon-meson couplings for mesons
heavier than the pion are not available experimentally. To fix
such couplings one uses SU(3) flavor (SU(6) spin flavor) sym-
metry to relate the unknown couplings involving pseudoscalar
(vector) mesons to the pionic decay vertex. For the strong
vertices we use the values given by the Nijmegen soft-core
f [16] and the Jülich B [17] models, which also rely on the
same symmetries. This choice generates a model dependency
in our approach, which also propagates to the weak couplings
through the pole model [18] used to evaluate the weak PC
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TABLE I. Nijmegen (NSC97f) meson-exchange parameters used
in the present work. The weak couplings are in units of GF mπ

2 =
2.21 × 10−7.

M Strong c.c. Weak c.c. �i

PC PV (GeV)

π gNNπ = 13.16 Bπ = −7.15 Aπ = 1.05 1.750
η gNNη = 6.42 Bη = −11.9 Aη = 1.80 1.750
K g�NK = −17.66 CPC

K
= −23.70 CPV

K
= 0.76 1.789

gN�K = 5.38 DPC

K
= 8.33 DPV

K
= 2.09

ρ gV

NNρ
= 2.97 αρ = −3.29 ερ = 1.09 1.232

gT

NNρ
= 12.52 βρ = −6.74

ω gV

NNω
= 10.36 αω = −0.17 εω = −1.33 1.310

gT

NNω
= 4.195 βω = −7.43

K∗ gV

�NK∗ =−6.105 C
PC,V

K∗ = −4.02 CPV

K∗ = −4.48 1.649
gT

�NK∗ = −14.85 C
PC,T

K∗ = −19.54
D

PC,V

K∗ = −5.46 DPV

K∗ = 0.60
D

PC,T

K∗ = 6.23

baryon-baryon-meson constants. In order to be consistent, we
use the same strong potential models to derive the scattering
(T matrix) NN wave functions in the final state [19].

To regularize the potentials at higher energies we include
a form factor at each vertex of the OME diagram. The form
of this form factor depends on the strong interaction model
we are considering. In the case of the Jülich B model we
use a monopole form factor, F (�q) = (�2

i
− μ2

i
)/(�2

i
+ �q2), at

each vertex, while for the Nijmegen SC97 models, we use
a modified monopole version [19], F (�q) = �2

i
/(�2

i
+ �q2). In

both cases, the value of the cutoff, �i , depends on the meson
exchanged (with mass μi). The full set of meson-exchange
parameters employed here is given in Tables I and II.

III. EFFECTIVE FIELD THEORY APPROACH

To a given order in the EFT approach, the weak nonleptonic
�N → NN interaction is built by adding to the π and K

exchange mechanisms a series of local terms with increas-
ing dimension (i.e., increasing number of derivatives) and

TABLE II. Same as Table I but for the Jülich B model.

M Strong c.c. Weak c.c. �i

PC PV (GeV)

π gNNπ = 13.45 Bπ = −7.15 Aπ = 1.05 1.300
η gNNη = 0 Bη = 0 Aη = 1.80 1.300
K g�NK = −13.48 CPC

K
= −17.67 CPV

K
= 0.76 1.200

gN�K = 3.55 DPC

K
= 5.50 DPV

K
= 2.09

ρ gV

NNρ
= 3.25 αρ = −3.60 ερ = 1.09 1.400

gT

NNρ
= 19.82 βρ = −9.55

ω gV

NNω
= 15.85 αω = −5.85 εω = −1.33 1.500

gT

NNω
= 0 βω = −10.96

K∗ gV

�NK∗ =−5.63 C
PC,V

K∗ = −3.71 CPV

K∗ = −4.48 2.200
gT

�NK∗ = −18.34 C
PC,T

K∗ = −26.38
D

PC,V

K∗ = −5.03 DPV

K∗ = 0.60
D

PC,T

K∗ = 12.18

FIG. 2. (Color online) Lowest-order contribution to the weak
�N → NN diagram. Empty symbols represent weak vertices while
solid ones represent strong vertices. A circle stands for a nonderivative
operator.

compatible with chiral symmetry, Lorentz invariance, and the
applicable discrete symmetries.

Therefore, the leading-order (LO) contribution will contain,
apart from the OPE and OKE diagrams, contact operators with
no derivatives acting on the four-baryon vertex. The inclusion
of the long-range π -exchange mechanism is justified by the
high value of the momentum transfer in the weak reaction,
|�q| ∼ 400 MeV, a consequence of the difference between the
� and nucleon masses in the initial state. The same argument
holds for the explicit inclusion of the K meson, supported also
by chiral symmetry. From the diagramatical point of view the
LO contribution to the potential is given by Fig. 2.

One may, equivalently, proceed to chirally expand the
vertices entering the �N → NN transition, and use a phe-
nomenological approach to account for the strong interaction
between the baryons involved in the process. Those vertices
are nothing else but combinations of the five Dirac bilinear
covariants: 1, γ 5, γ μ, γ μγ 5, and iσμνqν

2M
, where σ μν = i

2 [γ μ, γ ν],
M is the mass of the baryon, and qν is the transferred
momentum. Since the relativistic form of these bilinears
encodes all the orders in a momentum expansion, it is their
chiral expansion that will better allow the power counting by
comparing nonrelativistic terms of size 1, p/M, etc. In order
to avoid formal inconsistencies from the chiral point of view,
we rely directly on the terms that enter at each order given the
symmetries fulfilled by the weak |�S| = 1 transition.

All these possible transitions are shown in Table III for
an initial S-wave �N state, where the model-independent
leading-order operators in momentum space responsible for
the transitions are listed (we are assuming that | �p1 − �p2| is
small enough to disregard higher powers of the derivative
operators �p1 − �p2). Organizing all these contributions in
increasing size operators, we obtain the most general Lorentz
invariant potential, with no derivatives in the fields, for
the four-fermion (4P) interaction in momentum space up to

TABLE III. �N → NN transitions for an initial �N relative
S-wave state.

partial wave operator size I

a : 1S0 → 1S0 1̂, �σ1 �σ2 1 1
b : 1S0 → 3P0 (�σ1 − �σ2)�q, (�σ1 × �σ2)�q q/MN 1
c : 3S1 → 3S1 1̂, �σ1 �σ2 1 0
d : 3S1 → 1P1 (�σ1 − �σ2)�q, (�σ1 × �σ2)�q q/MN 0
e : 3S1 → 3P1 (�σ1 + �σ2)�q q/MN 1
f : 3S1 → 3D1 (�σ1 × �q)(�σ2 × �q) q2/MN

2 0
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O(q2/M2) order (in units of GF = 1.166 × 10−11 MeV−2)

V4P (�q) = C0
0 + C1

0 �σ1 �σ2 + C0
1

�σ1 �q
2M

+ C1
1

�σ2 �q
2M

+ iC2
1

(�σ1 × �σ2) �q
2M̃

+ C0
2

�σ1 �q �σ2 �q
4MM

+C1
2

�σ1 �σ2 �q 2

4MM
+ C2

2
�q2

4MM̃
, (3.1)

where M is the nucleon mass, M = (M + M�)/2, M̃ =
(3M + M�)/4 (with M� the � mass), and Cj

i
is the jth

low energy coefficient at ith order. To derive the previous
expression, we have used the relation (�σ1 × �q)(�σ2 × �q) =
(�σ1 �σ2) �q 2 − (�σ1 �q)(�σ2 �q). Notice that, in principle, one could
write, at next-to-next-to-leading-order (NNLO) another set of
eight operators containing the isospin structure �τ1 �τ2. However,
once one imposes that the final two-nucleon state must
be antisymmetric, the number of structures in the effective
potential is reduced to half the original, leaving to only eight
independent operators.

The relation between the LO constants appearing in
Eq. (3.1) and the ones in the nonantisymmetrized potential,

V LO′
4P

(�q) = C0
0sc

+ C0
0vec

�τ1 �τ2 + C1
0sc

�σ1 �σ2 + C1
0vec

�σ1 �σ2 �τ1 �τ2

is the following (see Ref. [20]):

C0
0 = C0

0sc
− 2 C0

0vec
− 3C1

0vec

C1
0 = C1

0sc
− C0

0vec
. (3.2)

From the former derivation, it is clear that the form of
the contact terms is model independent. The LECs represent
the short-distance contributions and their size depends on
how the theory is formulated, and more specifically upon the
chiral order we are working with. The low-energy parameters
are fitted to the known weak-decay observables discussed in
Sec. II.

IV. RELATIONS BETWEEN ONE-MESON EXCHANGE
POTENTIALS AND THE EFFECTIVE FIELD THEORY

To relate the meson-exchange constants to the LECs in the
effective �N → NN potential, we perform a low-momentum
expansion of the various (regularized) meson-exchange po-
tentials other than the pion and the kaon, since these two are
explicitly included in both the OME and the EFT approaches.
This procedure leads to a series of contact terms organized
by their increasing dimension (i.e., with increasing powers
of momenta), an appropriate form to compare with the EFT
potential. Therefore, one can write these terms up toO(�q2/M2)
order (in units of GF = 1.166 × 10−11 MeV−2) as

V LO

OME
(�q) =

[
gV

�NK∗

mK∗ 2

(
CPC,V

K∗

2
+ DPC,V

K∗

)
+ gV

NNω
αω

mω
2

+
(

gV

�NK∗C
PC,V

K∗

2mK∗ 2
+ gV

NNρ
αρ

mρ
2

)
�τ1 �τ2

]
mπ

2,

V NLO

OME
(�q) = −mπ

2

2M

AηgNNη

mη
2

�σ2 �q − mπ
2

2M

⎡
⎣

⎛
⎝ i

(
gV

�NK∗ + gT

�NK∗
)(CPV

K∗
2 + DPV

K∗
)
mπ

2

mK∗ 2
+ i

(
gV

NNω
+ gT

NNω

)
εωmπ

2

mω
2

⎞
⎠

+
(

i
(
gV

�NK∗ + gT

�NK∗
)
CPV

K∗ mπ
2

2mK∗ 2 + i
(
gV

NNρ
+ gT

NNρ

)
ερmπ

2

mρ
2

)
�τ1 �τ2

]
(�σ1 × �σ2)�q,

V NNLO

OME
(�q) = mπ

2

4MM

[(
CPC,V

K∗

2
+ DPC,V

K∗ + CPC,T

K∗

2
+ DPC,T

K∗

)
gV

�NK∗ + gT

�NK∗

mK∗
2

+ (αω + βω)
(
gV

NNω
+ gT

NNω

)
mω

2

+
((

CPC,V

K∗ + CPC,T

K∗
) (

gV

�NK∗ + gT

�NK∗
)

2mK∗
2

+ (αρ + βρ)(gV

NNρ
+ gT

NNρ
)

mρ
2

)
�τ1 �τ2

]
(�σ1 �q �σ2 �q − �σ1 �σ2 �q2)

− mπ
2

4MM

BηgNNη

mη
2

�σ1 �q �σ2 �q − 2mπ

2

[
gV

�NK∗ (�2 + mK∗ 2)
(C

PC,V

K∗
2 + DPC,V

K∗
)

mK∗ 4�2
+ gV

NNω
αω(�2 + mω

2)

mω
4�4

+
(

gV

�NK∗ (�2 + mK∗ 2)CPC,V

K∗

2mK∗ 4�2
+ gV

NNρ
αρ(�2 + mρ

2)

mρ
4�4

)
�τ1 �τ2

]
�q2. (4.1)

We have chosen to show the explicit expressions of the
LECs in terms of meson-exchange parameters in Appendix B.
Here we only quote the relations at LO. In order to

compare these expressions with the 4P potential of Eq. (3.1)
we need to use the same base of operators. Eq. (3.2)
allows us to obtain the LO coefficients in the 1̂, �σ1 �σ2
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TABLE IV. Values for the LECs obtained from the two sources: OME expansion and LO (PC) EFT calculation, using the Nijmegen and
Jülich strong interaction models. All the quantities are in units of GF = 1.166 × 10−11 MeV−2.

Nijmegen Jülich

OME expansion LO PC calculation OME expansion LO PC calculation

C0
0 1.07 ± 0.88 −0.92 ± 0.31 4.01 ± 0.23 −1.7 ± 2.6 4.03 ± 0.50 0.89 ± 0.58

C1
0 0.02 ± 0.36 −2.41 ± 0.11 0.02 ± 0.33 0.12 ± 0.37 −0.30 ± 0.28 −1.52 ± 0.18

χ 2 3.89 13.43 4.26 4.58

base,

C0
0 =

[
gV

�NK∗

mK∗ 2

(
CPC,V

K∗

2
+ DPC,V

K∗

)
+ gV

NNω
αω

mω
2

− gV

�NK∗C
PC,V

K∗

mK∗ 2
− 2gV

NNρ
αρ

mρ
2

]
mπ

2, (4.2)

C1
0 =

[
−gV

�NK∗C
PC,V

K∗

2mK∗ 2
− gV

NNρ
αρ

mρ
2

]
mπ

2. (4.3)

In Table IV we show the results for the LECs obtained
within both formalisms. On the one hand, we quote the values
for the coefficients obtained from Eqs. (4.2) and (4.3) (left
column, under the label: OME expansion). The numerical
values for the constants in front of the spin-isospin operators
have been obtained for each strong interaction model, and
Eq. (3.2) has been used to write the LECs in the antisymmetric
base of operators. On the other hand, we show the values
obtained from a fit of our EFT to reproduce the experimental
data described in Sec. II (right column, under the label:
LO calculation). We note that it is enough to consider the
LO EFT (i.e., just two constants) to obtain a reasonable fit
to the data. Notice that the values derived from the OME
approach do not arise from any fit to the observables but
from symmetry considerations together with studies of the

FIG. 3. (Color online) Hypernuclear decay observables (total and
partial decay rates and asymmetry for �

5 He, �

11B and �

12C), including
their error bars and their fitted values. The total decay rates are in
units of the � decay rate in free space (�� = 3.8 × 109s−1). All the
quantities are adimensional.

strong baryon-baryon interaction. Their errors are estimated
considering an uncertainty in the couplings of ±30%.

The fits give two minima for each one of the strong
interaction models. Note that the two models differ not only
on the kaon exchange contribution (coupling constants and
cutoffs), but also on the final NN wave functions. The
corresponding total χ2 for a fit to 11 observables is also given in
the table. In Fig. 3 we show the values for the observables used
in the present fit together with their respective fitted values,
while Fig. 4 shows the contribution of each point to the χ2.

The results in Table IV show two important features. First,
the LECs derived from the two OME models considered, Jülich
and Nijmegen, are compatible albeit mostly due to the large
theoretical uncertainties. The OME prediction for C1

0 is in both
cases compatible with zero. Secondly, the comparison between
the OME extracted LECs’ values and the LO PC fitted ones
shows only partial agreement. The largest disagreement is seen
in C0

0 in all cases. In the next section we will discuss how this
disagreement can be reduced with the inclusion of a scalar
exchange in the OME formalism.

Note that the results for the LECs presented here are
different from the ones given in Ref. [2]. This comparison
has to be made with the results obtained with the Nijmegen
NSC97f strong interaction model, which is the only one used
in [2]. Apart from small (kinematical) changes in the final
NN-wave functions, and in the regularization of the OKE
mechanism, the main difference between both calculations

FIG. 4. (Color online) Contribution of each experimental point
included in the fit to the total χ 2 for the four different fits discussed
in the text.
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resides in the experimental values used to perform the fit. We
have updated our data set in order to include the recent rates
extracted from the measure in coincidence of the two nucleons
in the final state. Moreover, values of the neutron-to-proton
(�n/�p) ratio close to one have been disregarded, following the
last experimental and theoretical analysis, and more accurate
data with smaller error bars have been included.

V. SCALAR EXCHANGE INTERACTION

By inspecting Table IV one clearly sees that the largest
discrepancy affects the C0

0 coefficient. This could be an
indication of the relevance of a scalar exchange (σ ), which
is not explicitly included in the meson exchange formalism
employed. A sensible way of inferring qualitatively the
physical properties of such scalar would be to add it to the
meson exchange description. The one-scalar-exchange (OSE)
contribution can be obtained from the following weak and
strong vertices [4]:

HS

NNσ
= gNNσψN

φσψN,
(5.1)

HW

�Nσ
= GFm

2
π
ψ

N
(Aσ + Bσγ5) φσψ�

(
0
1

)
,

where Aσ and Bσ parametrize the parity-conserving and
parity-violating weak amplitudes. In the nonrelativistic ap-
proximation, the corresponding potential reads,

VOSE(�q) = −GFm
2
π
gNNσ

(
Aσ + Bσ

2MW

�σ1 �q
)

1

�q 2 + m2
σ

.

(5.2)

We can now try to establish the values of the weak couplings
Aσ and Bσ by direct comparison to the results of the fits. We
can obtain information about Aσ using the numbers obtained
in our LO (parity-conserving) fit. Insight on Bσ would require
a NLO fit, which, as we already mentioned, is not needed to
get a reasonable fit to our observables.

The OSE gives contribution, in particular, to C0
0 , which now

becomes

C
0(σ )
0 =

[
gV

�NK∗

mK∗ 2

(
CPC,V

K∗

2
+ DPC,V

K∗

)
+ gV

NNω
αω

mω
2

− gV

�NK∗C
PC,V

K∗

mK∗ 2
− 2gV

NNρ
αρ

mρ
2

− AσgNNσ

m2
σ

]
mπ

2.

(5.3)

Since C1
0 is not modified by the inclusion of the σ , the

minima that may be improved via this mechanism are the
ones in which this coefficient is already in agreement with
the one obtained from the OME expansion. Focusing on these
minima (the ones with χ2 = 13.43 and χ2 = 4.26), we can
extract the value of Aσ needed to make the two formalisms
agree (at LO) within each strong interaction model. Using
mσ = 550 MeV and gNNσ = 8.8 [21] we get values for Aσ in
the range 3.3 → 7.3 for the Nijmegen minimum and in the
range 4.8 → 16 for the Jülich one.

The shaded (blue) band in Figs. 5 and 6 shows the value of
C

0(σ )
0 given by Eq. (5.3) as a function of Aσ , when the Nijmegen

or Jülich strong interaction model is used respectively. Note
that the error band in C

0(σ )
0 is given by the propagation of the

FIG. 5. (Color online) Comparison between C0
0 and C

0(σ )
0 for the

Nijmegen minimum. The shaded blue area represents the dependence
of C

0(σ )
0 on Aσ given by Eq. (5.3), while the fitted EFT C0

0 value is
represented by the solid orange area. See text for details.

uncertainties in the baryon-baryon-meson coupling constants,
taken to be of the order of 30%. In the same plot we represent
the corresponding fitted value in the EFT approach (solid
orange) band. The range for Aσ quoted before corresponds
to the intersection of both bands in the plot (i.e, the values for
Aσ that make compatible the OME and EFT formalisms).

Other works have fitted this same parameter using different
approaches. For instance, Ref. [4], which incorporates the
OPE, OKE, and OSE mechanisms together with a direct-quark
transition, uses the phenomenological approach of Block and
Dalitz [22] to write the nonmesonic decay rates in terms of the
squares of the amplitudes given in Table III for the s-shell 5

�
He,

4
�
He, and 4

�
H hypernuclei. This factorization in terms of two-

body amplitudes is possible when effective (spin-independent)
correlations are used to account for the strong interaction
among baryons, where no mixing between the different partial
waves is possible. The strong interaction model used in this
work is NSC97f. This approach leads to a quadratic equation
to determine the couplings, resulting in two values for Aσ , 3.9
and −1.0 (note that the first of these two values is compatible
with the range we are quoting for this constant when the
same strong interaction model is used). Another approach was
followed in Ref. [5], where the exchanges of all the mesons
belonging to the pseudoscalar and vector mesons octets are

FIG. 6. (Color online) Same as Fig. 5 but for the Jülich minimum.
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considered in the weak transition in addition to the σ meson,
while again, effective (spin-independent) correlations are used
in the strong sector. Fixing the value of the strong NNσ

coupling to be the same as the πNN one, a range of variation
for the σ mass and cutoff leads to different values for the weak
couplings, once a fit to the nonmesonic decay rate and the
neutron-to-proton ratio for 5

�
He is performed. Even though

the inclusion of the σ -exchange mechanism does modify
their prediction for the intrinsic asymmetry, their results are
insensitive to the particular values of the Aσ and Bσ couplings,
and a simultaneous reproduction of all the data is not achieved.

VI. CONCLUSION

We have derived the relations between the low-energy
coefficients appearing in the EFT description of the two-body
�N → NN transition driving the decay of hypernuclei and
the parameters appearing in the widely used meson-exchange
model. This has been achieved by comparing the momentum
space expansion of the OME potentials to the different orders
in the EFT formalism.

In both approaches, the one-pion- and one-kaon-exchange
mechanisms are explicitly included to account for the long
and intermediate ranges of the interaction. The higher mass
contributions (η, ρ, ω, and K∗) in the OME model are
parametrized as contact four-point interactions in the EFT
approach. With this procedure we obtain relations for the LECs
in terms of the masses, couplings, and cutoffs characteristic
of the OME formalism. The numerical values for the LO EFT
LECs have been obtained by fitting the available experimental
data for hypernuclear decay observables. In the OME case,
however, the LECs have been written in terms of the masses,
couplings, and cutoffs, taken from their experimental values,
symmetry constraints, or strong interaction models.

The considered experimental database of hypernuclear
decay observables can be described with good accuracy within
a LO EFT supplemented by π and K meson exchanges. This
implies that further experimental efforts will be needed to con-
strain the higher-order terms in the EFT of hypernuclear decay.

Finally, we have analyzed the contribution of a scalar
exchange in OME models, estimating the size of the corre-
sponding parity conserving amplitude, needed to achieve a
better agreement to the available experimental data.
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APPENDIX A: MESON-EXCHANGE POTENTIALS

The weak and strong vertices entering the one-pion-
exchange (OPE) amplitude are

HW

�Nπ
= iGFm

2
π
ψ

N
(Aπ + Bπγ5)�τ �φπψ�

(
0
1

)
,

(A1)
HS

NNπ
= igNNπψN

γ5 �τ �φπψN,

where GFm
2
π

= 2.21 × 10−7 is the weak coupling constant,
and Aπ and Bπ , empirical constants adjusted to the observables
of the free � decay, which determine the strength of the parity-
violating and parity-conserving amplitudes, respectively. The
nucleon, �, and pion fields are given by ψN , ψ�, and �φπ ,
respectively, while the isospin spurion ( 0

1 ) is included to
enforce the empirical �T = 1/2 rule observed in the decay of
a free �. The Bjorken and Drell convention for the definition
of γ5 [23] is taken.

For the exchange of the pseudoscalar η and K mesons, the
strong and weak vertices are (weak constants are given in units
of GFm

2
π
)

HS

NNη
= igNNηψN

γ5φ
ηψN,

HW

�Nη
= iψ

N
(Aη + Bηγ5)φηψ�

(
0
1

)
,

HS

�NK
= ig�NKψ

N
γ5φ

Kψ�, (A2)

HW

NNK
= i

[
ψ

N

(
0
1

) (
CPV

K
+ CPC

K
γ5

)
(φK)†ψN

+ψ
N
ψN

(
DPV

K
+ DPC

K
γ5

)
(φK)†

(
0
1

)]
,

where the weak coupling constants cannot be taken directly
from experiment.

The weak �Nρ, �Nω, NNK∗, and strong NNρ, NNω,
�NK∗ vertices are given by [24]

HW

�Nρ
= ψ

N

(
αργ

μ − βρi
σ μνqν

2M
+ εργ

μγ5

)
�τ �ρμψ�

(0
1

)
,

(A3)

HS

NNρ
= ψ

N

(
gV

NNρ
γ μ + i

gT

NNρ

2M
σ μνqν

)
�τ �ρμψN, (A4)

HS

NNω
= ψ

N

(
gV

NNω
γ μ + i

gT

NNω

2M
σ μνqν

)
φω

μ
ψN (A5)

HW

�Nω
= ψ

N

(
αωγ

μ − βωi
σ μνqν

2M
+ εωγ

μγ5

)
φω

μ
ψ�

(
0
1

)
,

(A6)

HS

�NK∗ = ψ
N

(
gV

�NK∗γ
μ + i

gT

�NK∗

2M
σ μνqν

)
φK∗

μ
ψ�, (A7)

HW

NNK∗ = [
CPC,V

K∗ ψ
N

(
0
1

) (
φK∗

μ

)†
γ μψN

+DPC,V

K∗ ψ
N
γ μψN

(
φK∗

μ

)† (0
1

)
+CPC,T

K∗ ψ
N

(
0
1

) (
φK∗

μ

)†
(−i)

σ μνqν

2M
ψN

+DPC,T

K∗ ψ
N
(−i)

σ μνqν

2M
ψN

(
φK∗

μ

)† (0
1

)
+CPV

K∗ ψ
N

(
0
1

) (
φK∗

μ

)†
γ μγ5ψN

+DPV

K∗ ψN
γ μγ5ψN

(
φK∗

μ

)† (0
1

) ]
. (A8)
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APPENDIX B: LECS IN TERMS OF MESON-EXCHANGE
PARAMETERS

The expressions for the LECs in terms of the meson-
exchange parameters are the following:

C0
0sc

=
[
gV

�NK∗

mK∗ 2

(
CPC,V

K∗

2
+ DPC,V

K∗

)
+ gV

NNω
αω

mω
2

]
mπ

2,

C0
0vec

=
(

gV

�NK∗C
PC,V

K∗

2mK∗ 2
+ gV

NNρ
αρ

mρ
2

)
mπ

2,

C1
0sc

= 0, C1
0vec

= 0, C0
1sc

= 0,

C0
1vec

= 0, C1
1sc

= −mπ
2

2M

AηgNNη

mη
2

, C1
1vec

= 0,

(B1)

C2
1sc

= −mπ
2

2M

⎡
⎣ i

(
gV

�NK∗ + gT

�NK∗
)(CPV

K∗
2 + DPV

K∗
)
mπ

2

mK∗ 2
+ i

(
gV

NNω
+ gT

NNω

)
εωmπ

2

mω
2

⎤
⎦ ,

C2
1vec

= mπ
2

2M

[
i
(
gV

�NK∗ + gT

�NK∗
)
CPV

K∗ mπ
2

2mK∗ 2 + i
(
gV

NNρ
+ gT

NNρ

)
ερmπ

2

mρ
2

]
,

C0
2sc

= mπ
2

4MM

[(
CPC,V

K∗

2
+ DPC,V

K∗ + CPC,T

K∗

2
+ DPC,T

K∗

)
gV

�NK∗ + gT

�NK∗

mK∗
2

+ (αω + βω)
(
gV

NNω
+ gT

NNω

)
mω

2
− BηgNNη

mη
2

]
,

C0
2vec

= mπ
2

4MM

[(
CPC,V

K∗ + CPC,T

K∗
) (

gV

�NK∗ + gT

�NK∗
)

2mK∗
2

+ (αρ + βρ)
(
gV

NNρ
+ gT

NNρ

)
mρ

2

]
,

C1
2sc

= − mπ
2

4MM

[(
CPC,V

K∗

2
+ DPC,V

K∗ + CPC,T

K∗

2
+ DPC,T

K∗

)
gV

�NK∗ + gT

�NK∗

mK∗
2

+ (αω + βω)
(
gV

NNω
+ gT

NNω

)
mω

2

]
, (B2)

C1
2vec

= − mπ
2

4MM

[(
CPC,V

K∗ + CPC,T

K∗
) (

gV

�NK∗ + gT

�NK∗
)

2mK∗
2

+ (αρ + βρ)
(
gV

NNρ
+ gT

NNρ

)
mρ

2

]
,

C2
2sc

= −2mπ

2

⎡
⎢⎢⎣

gV

�NK∗
(
�2 + mK∗ 2

) (
C

PC,V

K∗
2 + DPC,V

K∗

)
mK∗ 4�2

+ gV

NNω
αω

(
�2 + mω

2
)

mω
4�4

⎤
⎥⎥⎦ ,

C2
2vec

= −2mπ

2

[
gV

�NK∗
(
�2 + mK∗ 2

)
CPC,V

K∗

2mK∗ 4�2
+ gV

NNρ
αρ

(
�2 + mρ

2
)

mρ
4�4

]
.
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